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Abstract 

The Error-Reduction algorithm is tested to reconstruct the exact 2D-shape of irregular rough 

particles from their experimental interferometric images. The particles tested are “programmable” 

particles generated with a digital micromirror device. The method is first applied to centrosymmetric 

particles, and then to non-centrosymmetric particles where the twin image problem brings additional 

difficulty. 

 

 

I - Introduction 

The detection and the characterization of irregular particles in a flow is particularily important in many 

domains from combustion and sprays, to meteorology, nuclear safety, cosmetics, or medicine. 

Contrary to classical microscopy, the goal is to observe an ensemble of submillimetric particles that 

cover a field of view of tens of square centimeters, while the working distance exceeds tens of 

centimeters. With these constraints, the ability to observe and measure precisely all particles observed 

with a single-shot set-up represents a challenge. Interferometric Particle Imaging (IPI) offers a solution 

that has been explored in the last years: from single-view to multi-views set-ups for the tomography 

of particles in flows [1-14]. With this technique, particles are illuminated by a nanosecond laser pulse 

(the velocity of the flow can thus be very important, compatible with airborne operation for example). 

Light is scattered by the particles in all directions. A CCD sensor associated to an imaging optics records 

a defocused image of each particle present in the field of view. The speckle pattern obtained for each 

particle is analysed for size measurement and morphological characterization. Special attention is 

presently paid to the reconstruction of the exact particles’ shapes from their speckle patterns 

[8,11,12]. 

Let us consider an irregular rough particle of any shape under laser illumination. A priori, there is no 

theoretical model to predict rigorously the electromagnetic field scattered by the particle. This is 

particularily true in the case of ice crystals whose growth’s description and shape’s modelling 

themselves represent an intense domain of research [15,16]. Despite this lack of a rigorous light 

scattering description, IPI enables approximate rough particle sizing. In a simplified description indeed, 

the rough particle can be assimilated to an ensemble of coherent point emitters that cover the whole 

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0030401821004788
Manuscript_8a531719366ded7ea1b83efb62a01980

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0030401821004788
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0030401821004788


2 

 

particle. Using a scalar Huygens-Fresnel theory, the 2-Dimensional Fourier transform of the 

interferometric image of the particle is then shown to be linked to the 2D-autocorrelation of the 

envelope of the particle through relation (1) [5]: 

|�������	
����, 
���� �|  ∝  |�������	��, ���|  (1) 

where I is the intensity of the interferometric out-of-focus image of the particle and G0 the electric 

field scattered by the illuminated particle (a sum of Dirac functions representing each point emitter). 


 is the wavelength of the laser. λBtot is the scaling factor between both functions which is deduced 

from the experimental set-up. This relation has been validated experimentally in different studies [5-

10]. In most cases, it was done by comparison between the binarized 2D-autocorrelation of the in-

focus image of a particle and the binarized 2D-Fourier transform of the interferometric image of the 

same particle. It has been further reproduced with “programmable” particles generated with a Digital 

Micromirrors Device (DMD) [17]. The “rough particles” are then made of an ensemble of on-state 

micromirrors, randomly located in a global envelope, i.e. the contour of the programmed particle. 

Consequently, this device has become a powerful tool to test image processing algorithms in different 

configurations, without having to “wait for particles” in the field of view of an IPI system.  

In many previous studies, the use of relation (1) has been limited to the comparison of the contours of 

the binarized functions |�������	
 B�� �, 
 B�� ��| and |�������	��, ���|. It enabled particle sizing, 

some particle’s shape recognitions and lead to first attempts of 3D-tomography of irregular rough 

particles in a flow. However, the limit of these studies is that different 2D-shapes can exhibit the same 

2D-autocorrelation. Recent studies showed that it should be possible to reconstruct the exact contour 

of the particle using the Hybrid Input-Output algorithm or a deep learning approach. In experiments, 

the interferometric image of a particle is recorded. It is 2D-Fourier transformed, binarized, and then 

assimilated to the 2D-autocorrelation of the particle’s projection (according to the angle of view that 

is considered). If different 2D-shapes exhibit the same 2D-autocorrelation, the reconstruction is not 

unique. Algorithms exist that solve the phase problem and enable the reconstruction of a 2D-shape 

from its 2D-autocorrelation [19]. If relation (1) between both functions is not limited to the sole 

detection of the binarized contours of both functions involved, it can then be expected that unique 

reconstructions are possible from interferometric particles’ images. 

In this paper, we “program” different contours of rough particles using a Digital Micromirrors Device 

(DMD). The device is then illuminated by a coherent HeNe laser. The interferometric out-of-focus 

images are recorded with a CCD sensor, and 2D-Fourier transformed. A 2D-reconstruction of the 

particle’s face is then done using the error reduction algorithm, and discussed. Section II describes the 

algorithm of reconstruction that has been used. Section III describes the experimental set-up, while 

section IV shows different examples of reconstructions from experimental interferometric images. 

Two cases are analysed and discussed : centrosymmetric particles and non-centrosymmetric particles 

where the twin-image problem appears to be an important source of noise [20,21]. 

 

II – Error reduction algorithm 

The error reduction algorithm [18] is a method to solve the phase-retrieval problem. Based on the 

Gerchberg-Saxton algorithm [19], it permits to determine a function �	�, �� from measurements that 

give the modulus of its 2D-Fourier transform  |�	�, ��|.  
�	�, �� = |�	�, ��|���	 ,!� = ������	�, ���               	2� 
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	�, �� are the two-dimensional coordinates of the object in real space. 	�, ��  are the spectral 

coordinates after 2D-Fourier transform operation. |�	�, ��| is the modulus of the Fourier transform 

which is known while # is the spectral phase that is unknown. In our case, �	�, �� is the 2D-object to 

be found.  

First a starting object $%	�, �� must be constructed. For this, an initial support S is defined. This initial 

support S is a binarized 2D-object. It is obtained using the tri-intersection method applied to the 

binarized form of the 2D Fourier transform of the interferometric speckle image [11]. This support S is 

then used for the construction of the starting object $%	�, ��. The value of all pixels belonging to this 

support S (equal to 1 due to the binarisation) are replaced by the values of the corresponding pixels in 

the image of the 2D Fourier transform of the interferometric pattern. This last step allows faster 

convergence to a solution using the phase of the Fourier transform restricted to the support of the tri-

intersection object. The 2D-function obtained is $%	�, ��.  

The error-reduction algorithm uses  then a four-step process. For the &�' iteration, the different steps 

are as follows: 

Step 1: $(	�, �� undergoes 2D-Fourier transform:  

�(	�, �� = |�(	�, ��|��)*	 ,!� =  �����$(	�, ���   (3) 

Step 2: The experimental value of |�	�, ��|  (here the interferometric out-of-focus image according to 

the Wiener-Khintchine theorem) is substituted for |�(	�, ��|, giving:  

�(+ 	�, �� = |�	�, ��|��)*	 ,!�       (4) 

where the symbol «  ‘ » indicates that the object is temporary, for further calculations. 

Step 3: �(+ 	�, �� is inverse Fourier transformed: 

$(+ 	�, �� = |$(+ 	�, ��|��,*- 	.,/� = ����0%��(+ 	�, ���   (5) 

Step 4: $(+ 	�, �� must then be changed so that the new estimate of the object, $(1%	�, �� satisfies the 

object constraints. $(1%	�, �� is therefore defined piecewise as: 

$(1%	�, �� =  2$(+ 	�, ��    if 	�, ��  ∋ 6
0                if 	�, �� ∈ 6      (6) 

where 6 is the domain in which $(+ 	�, �� does not satisfy the object constraints. A new estimate 

$(1%	�, �� is obtained and the four-step process can be repeated iteratively. The support 6 is variable 

and recalculated at each iteration. For the first iteration, 6 is equal to S, i.e. it is the same binarized 

object than S obtained from the tri-intersection. For the next iterations, the support 6 is calculated 

from a threshold fixed on the estimated object $(+ 	�, �� : if the pixels are higher than this threshold, 

these pixels and their first neighbors become white, otherwise they become black. 

 

 

III – Experimental set-up for image acquisition 

Experimentally, the interferometric images of perfectly known « programmable » particles are 

recorded with a CCD sensor. The system is composed of a Digital Micromirror Device (DMD) that 

reproduces a « rough particle » illuminated by an HeNe laser (wavelength: 632.8 nm). It is presented 

in figure 1. The particle is composed of the micromirrors that are programmed « on-state », i.e. that 

reflect the laser light into the direction of an imaging system. Other micromirrors keep « off-state » : 
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i.e. no reflection in the direction of the imaging system. An exemple of “programmed” particle is shown 

on figure 1 (top left of the figure). The imaging system records the interferometric out-of-focus image 

of the programmed particle. It is composed of a lens and a CCD sensor. The CCD sensors records this 

interferometric image, i.e. a speckle pattern as illustrated in figure 1. 

 

 

 

Fig. 1 : experimental set up to generate the interferometric images of « programmable » particles with a Digital 

Micromirror Device. 

 

The DMD active screen used is the model DLP6500FYEHD by Texas Instruments. It has full HD 

resolution 1080 p (1920 × 1080 mirrors with a square geometry). The separation between the centers 

of two adjacent mirrors is 7.56 μm.  

The imaging system is in the direction associated to the “On-State” micro-mirrors.  The lens (L3) of 

figure 1 is actually a Nikon objective of focus length f = 180 mm.  Figure 1 is not at the real scale. In the 

set-up used, z1=42cm, and z2=37.5cm (using extension rings). The CCD sensor is a Thorlabs BC106N-

VIS/M camera with 1360 x 1024 pixels, and a pixel size of 6.45=> × 6.45=>. The interferometric 

images that are Fourier transformed are sections composed of 680 × 680 pixels (of height 6.45=>). 

The next step is the application of the scaling factor 
��� for quantitative sizing. It is deduced from 

the experimental set-up and from the defocus parameter. The coefficient ��� equals - 0.08m in this 

experiment. 

 

IV- 2D-Reconstructions of the particle’s face 

A- Centrosymmetric particles 

Let us now present some examples of reconstruction using the Error-Reduction algorithm described in 

section II. Figure 2(a) shows the first particle that has been programmed. It is composed of 1000 on-
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state micromirrors randomly located on a cross. Figure 2(b) shows the section of its interferometric 

image that will be used for reconstruction. Figure 2(c) shows finally the “best” reconstructed particle. 

This reconstruction is obtained from the 2D-Fourier transform of the interferometric image and the 

application of the ER-algorithm. The scaling factor 
��� has been applied on the axes of figure 2(c), 

according to relation (1). The axes of figures 2(a) and 2(c) can thus be directly compared. 

Reconstruction appears very satisfactory in this case. Figure 3(a) shows a second case where the cross 

has larger branches. This new programmed particle is composed of 1000 on-state micromirrors. As 

previously, figure 3(b) shows the section of its interferometric image obtained on the CCD sensor, and 

that will be used for reconstruction. Figure 3(c) shows finally the “best” reconstructed particle. We can 

observe that the cross is still recovered. Nevertheless, the reconstruction becomes more difficult to 

obtain. 

 

Fig. 2 : particle programmed on the DMD (a), the section of its interferometric image considered for 

reconstruction (b) and the reconstructed particle (c). 

 

 

Fig. 3 : particle programmed on the DMD (a), the section of its interferometric image considered for 

reconstruction (b) and the reconstructed particle (c). 

 

Let us show two other examples of reconstruction. Figure 4(a) shows a stick-like particle composed of 

500 on-state micromirrors, randomly located on a stick. Figure 4(b) shows the section of its 

interferometric image that will be used for reconstruction. Figure 4(c) shows finally the “best” 

reconstructed particle. Reconstruction appears quantitatively very satisfactory again. Figure 5(a) 

shows a fourth case where the particle is a dendrite-like particle with six branches, composed of 2100 
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micromirrors. Figure 5(b) shows the section of its interferometric image, while figure 5(c) shows the 

best reconstructed particle. In this case again, despite some noise in the reconstructed particle, the 

global shape of the particle is relatively well recovered, qualitatively and quantitatively in size. 

 

 

Fig. 4 : particle programmed on the DMD (a), the section of its interferometric image considered for 

reconstruction (b) and the reconstructed particle (c). 

 

 

Fig. 5 : particle programmed on the DMD (a), the section of its interferometric image considered for 

reconstruction (b) and the reconstructed particle (c). 

 

Figure 2(c), 3(c), 4(c) and 5(c) show that isolated pixels can be present in the reconstructed particles, 

and introduce noise. In the case of figure 4(c), it brings a difficulty to evaluate the exact length of the 

stick. This problem is clearly evidenced for the stick-like particle, but it is actually present in all cases 

tested: the reconstructed particles show some isolated pixels, and the addition of such pixels can 

enlarge more or less the contour of the reconstructed particle, depending on the threshold used in 

step 4 of the ER-algorithm : an object’s constraint is introduced (using a threshold) to define the 

domain γ where $(1%	�, �� is set equal to zero.  

The initial cause of this difficulty is that the programmed particles themselves are not plain particles, 

homogeneously bright. They are composed of a random repartition of micromirrors in a global 

envelope, which reproduces well the bright asperities of irregular rough particles under laser 

illumination. It appears here that the reconstruction “amplifies” this property, giving some domains 
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with an accumulation of bright pixels and domains where there are only a few bright pixels, which is 

well observed on the reconstructed dendrite on figure 5(c). Nevertheless, a useful help can be given 

for quantitative size measurements by the reconstruction’s algorithm itself. If this threshold defined 

in step 4 of the ER-algorithm is very low, the algorithm leads to the reconstruction of the 2D-

autocorrelation of the particle. Figure 6 illustrates the influence of this threshold: in step 4 of the 

algorithm (see end of section III), the definition of the new function $(1%	�, �� is subject to the fact 

that $(+ 	�, �� must satisfy the object’s constraint. Numerically, it means that the domain 6 is defined 

by the condition  
A*- 	.,/�

BCD	E,F�	A*- 	.,/�� < �ℎ. Figure 6(a) shows the reconstruction of the cross-like particle of 

figure 2 obtained when �ℎ = 0.45%. It corresponds to the best-reconstruction. Figures 6(b), (c) and 

(d) show then the reconstructions of the same particle obtained when �ℎ = 0.35%, �ℎ = 0.2%  and 

�ℎ = 0.08%. respectively. We can observe important differences between figures (a), (b) and (c). But 

the binarized shapes observed in figures (c) and (d) contain a very similar information although 

parameter �ℎ continues to be reduced. Both figures report the 2D-autocorrelation of the initial shape 

of the particle.  

 

Fig. 6 : Reconstructions of the cross-like particle of figure 2, for differentvalues of the threshold �ℎ: 

 �ℎ = 0.45%  in (a), 0.35% in (b), 0.2% in (c) and 0.08% in (d). 
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Figure 7 summarizes the low-threshold reconstructions that are obtained with the four previous 

particles: cross-like particles of different thicknesses in figures (a) and (b), stick-like particle in figure 

(c) and dendrite-like particle in figure (d). The value of the low-threshold is not a sensitive parameter 

of the algorithm. In the four cases presented in figure 7, the value of �ℎ is the same : 0.15%. And the 

results would be very similar using �ℎ = 0.1% or 0.2%.  It is thus very easy to obtain the 2D-

autocorrelation of the particles’ contours precisely. But the threshold that leads to the best-

reconstruction requires to be adjusted for each particle, and depends on the particle (number of 

micromirrors used in particular). 

Let us now discuss quantitatively the best reconstructions obtained (and presented in figures 2, 3, 4 

and 5). Let us consider the programmed cross-like particle shown in figure 2(a): the lengths of both 

horizontal and vertical branches are 1.12mm. The analysis of figure 6(a) gives an horizontal length of 

1.06mm, and a vertical branch of 1.055mm (keep in mind that the 2D-autocorrelation of a rectangle is 

twice larger than the initial rectangle in both directions). The difference between the programmed 

particle and the size estimation is less than 10%. As second example, let us consider the programmed 

cross-like particle shown in figure 3(a): the lengths of both horizontal and vertical branches are 1.12mm 

again. The anlysis of figure 6(b) gives an horizontal branch of 1.07mm, and a vertical branch of 1.07mm. 

The difference is still very low. These low-threshold reconstructions of figure 6 are actually very 

powerful tools to adjust the exact constraint’s threshold of the reconstruction, i.e. the one that gives 

the final particle’s reconstructions of figures 2(c), 3(c), 4(c) and 5(c) respectively. In particular, they are 

very useful to identify the real sizes of particle’s branches.  

In summary, the ER-algorithm gives relatively good reconstructions of the initial object, although a 

precise size estimation can be more difficult in absence of this complementary low-threshold 

reconstruction. A very important criterium is the calculus time. Each reconstruction presented in this 

section requires only three iterations. Using a matlab code on a standard portable computer, the 

reconstruction from an interferometric image of 680x680 pixels requires between 30 seconds and 2 

minutes (depending on the computer). This time includes the 2D-Fourier transform of the 

interferometric image, the initial tri-intersection to define the initial support and the iterations of the 

ER-algorithm. 

All examples presented in this section have a common property: there are centrosymmetric. Note that 

such a case is not necessarily an exception in practice, depending on the family of particles that are 

under observation, for example ice crystals. Next section will present the case of non-centrosymmetric 

particles. 
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Fig. 7 : reconstructions when the constraint’s threshold of the reconstruction is very low: the 2D-

autocorrelation of the initial particles is then obtained: figures (a), (b), (c) and (d) must be compared to 

previous figures 2(c), 3(c), 4(c) and 5(c) respectively. 

 

B- Non-centrosymmetric particles 

Figure 8(a) shows a reverse Y-like particle (composed of three branches that make an angle of 120° 

two by two). It is composed of 1500 on-state micromirrors randomly located on the reverse Y. Figure 

8(b) shows its experimental interferometric image. Figure 9(a) shows a first binarized form of the 2D-

Fourier transform of the speckle pattern of figure 8(b). After tri-intersection, the initial object 

considered in the reconstruction process is presented in figure 9(b). Finally the “best” reconstructed 

particle obtained after three iterations is shown in figure 10(a). The result would be very similar after 

ten iterations. Reconstruction appears very different from the initial object. This is due to the non 

centro-symmetric shape of the particle, and the so-called “twin image” problem when using the 

reconstruction algorithm in this case. The algorithm does not choose between the initial Y and its 

centrosymmetric image. We obtain then a particle composed of 6 branches and not three. In addition 

the lenghs of the branches are smaller than the real ones. It is important to find tools that enable to 

identify this situation and correct the reconstruction, if possible. One of these tools has been presented 

in figure 9(b). Figure 9(b) shows indeed the initial support used in the algorithm, obtained from an 

initial tri-intersection. This plot gives an interesting information to identify that the particle is probably 

not a six-branches particle but a three-branches particle. Figure 10(b) shows the second tool. It is the 

low threshold reconstruction. Once again, as mentioned in figure 7 of previous section, it reproduces 

the 2D-autocorrelation of the initial reverse Y-like particle: it is composed of six branches whose 
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directions are not the ones of the three branches of the initial particle (which is perfectly normal 

concerning the 2D-autocorrelation of such an reverse Y-like particle). Combining the reconstruction of 

figure 10(a), and the informations given by figure 9(b) and 10(b), it is possible to identify a particle with 

three thin branches and from the length of the red arrow in figure 9(b) to have a better quantitative 

evaluation of the length of the branches.  

It seems thus possible to “refine” the reconstruction, in order to reduce significantly the presence of 

the twin image. The definition of the intial support is actually very important. In a new reconstruction, 

we perform a more precise estimation of the binarized 2D-Fourier transform of the speckle pattern: it 

consists actually in a better definition of the sharp extremities of the binarized function (need 

evidenced by the low-threshold reconstruction of figure 10(b)). The new binarized function that will 

be used now is presented in figure 11(a). The better definition of the sharp extremities enables to 

obtain a refined support after tri-intersection: the initial support obtained, that will then be used in 

the reconstruction algorithm, is indeed the one of figure 11(b). After reconstruction, the best-

reconstructed particle obtained after three iterations is shown in figure 11(c): the twin image is quite 

completely eliminated. Note that the definition of the initial support used with the ER-algorithm is the 

sole difference between the reconstructions of figures 10(a) and 11(c). 

It is important to identify the cases where the twin image problem appears. To illustrate the 

identification of a case with possible confusion between two twin images, figure 12(a) reproduces the 

reconstructed particle (similar to figure 10(a)) while figure 12(b) gives its two-dimensional 

autocorrelation. Figure 12(b) shows main branches in the directions of the directions of the six 

reconstructed branches of the figure 12(a). This shape of figure 12(b) does not match the 2D-

autocorrelation of the exact initial object : the shape should look like the one of figure 10(b) (with six 

branches whose directions are not the ones of the three branches of the initial particle). 

 

Fig. 8 : particle programmed on the DMD (a), the section of its interferometric image considered for 

reconstruction (b) and the reconstructed particle. 
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Fig. 9 : binarized 2D-Fourier transform of the interferometric image of Fig. 7(b) (a); initial support used 

for reconstruction (obtained after tri-intersection) (b). 

 

 
Fig. 10 : best-reconstructed particle (a); and reconstruction using a very low threshold in the ER algorithm: the 

2D autocorrelation of the particle is obtained (b)  
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Fig. 11 : binarized 2D-Fourier transform of the interferometric image of Fig. 7(b) with better 

definition of the sharp extremities (a); initial support used for reconstruction (obtained after tri-

intersection) (b), and best-reconstructed particle (c); 

 

 

 
Fig. 12 : best-reconstructed particle in presence of its twin image (a); and 2D autocorrelation of the false 

particle obtained (b)  

 

 

To confirm the efficiency of the algorithm with non-centrosymmetric particles, we have tested other 

shapes of particles as a L-like and a T-like particle. The results are presented in figures 13, 14 and 15. 

They all show the particle programmed on the DMD (subfigure (a)), and the best-reconstructed particle 

using the ER-algorithm (subfigure (b)). The results appear quantitatively very satisfactory. The twin-

image could be eliminated in the three cases. The sticks forming the branches of the particles can be 

slightly thicker than the sticks of the initial programmed objects, but the lengths of the different 

branches are well respected. The difference between the programmed particle and the size estimation 

can reach here 15% (vertical branch of the T-like particle). In the case of this T-like particle (figure 

15(b)), a small part of the twin image is still present on the top of the vertical branch indicating that it 

could not be perfectly eliminated. 
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Fig. 13 : L-like particle programmed on the DMD (a), and best-reconstructed particle (b); 

 
Fig. 14 : L-like particle programmed on the DMD (a), and best-reconstructed particle (b); 

 

Fig. 15 : T-like particle programmed on the DMD (a), and best-reconstructed particle (b); 
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V – Conclusion 

The Error-Reduction algorithm can thus be used to reconstruct the exact 2D-shape of irregular 

rough particles from their experimental interferometric images. All interferograms tested in this paper 

are original experimental data. The particles are “programmable” particles generated with a digital 

micromirror device. In the case of non-centrosymmetric particles, the twin image problem brings an 

important difficulty that can be addressed with a very careful definition of the initial support. This kind 

of reconstructions should be very powerful to realize the 3D-tomography of rough particles in a flow 

without shape’s ambiguity [13]. 
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