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Abstract

In this paper we consider the design of least costly experiments for the identification of one module in a given network of
locally controlled systems. The identification experiment will be designed in such a way that we obtain a sufficiently accurate
model of the to-be-identified module with the smallest identification cost i.e. with the least perturbation of the network.
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1 Introduction

This paper contributes to the efforts of developing
techniques for the identification of large-scale or inter-
connected systems when the topology of the network is
known. In many papers, the problem is seen as a mul-
tivariable identification problem and structural proper-
ties of the system are then used to simplify this complex
problem (see e.g. [7]). The identifiability of the multi-
variable structure is studied in a prediction error context
in [18] while this multivariable structure is exploited in
other papers to reduce the variance of a given module
in the network (see [8,4]). In other contributions, condi-
tions are derived for the consistent estimation of a given
module in a dynamic network (see e.g. [3,6]).

While many different problems have thus been exten-
sively studied in the dynamical network context, this is
not the case for optimal experiment design (i.e. the prob-
lem of designing the excitation signal of an identification
experiment to guarantee a certain model accuracy under
some constraints on this excitation signal). In our pre-
vious contribution [1], we made the first steps towards
optimal experiment design in a dynamical network con-
text. In [1], we considered the case of a network made
up of locally controlled systems, i.e. modules, whose in-
terconnection is realized by exchanging their measured
output between neighbouring modules (this type of net-
works is usual in the literature on multi-agent systems
(see e.g. [5,11])). For this particular type of dynamical

networks, we showed how to design the excitation sig-
nals that have to be added to each module in order to
identify models of these different modules that are suffi-
ciently accurate to enhance the network performance by
a redesign of the local controllers. The accuracy of each
model can be measured by the inverse of the covariance
matrix of the identified parameter vector of each mod-
ule. In [1], we have derived an expression for the inverse
of this covariance matrix as an affine function of the ex-
citation signal spectra.

Note that [10] illustrates the identification methodol-
ogy introduced in [1] via a realistic simulation example
(i.e. a platoon of autonomous cars).

In this paper, like in [1], we will consider the optimal
experiment design problem for a network of locally con-
trolled systems. However, unlike in [1], we will do that
for the case where we are only interested in the accurate
identification of one specific module l of the network.
Like in [1], to maintain the network performance, this
identification will be performed in the original network
configuration via the application of an excitation sig-
nal to module l. The contribution of the present paper
is the extension of the least costly identification frame-
work (see [2]) to this particular dynamic network identi-
fication problem. In particular, we design the spectrum
of the excitation signal applied to l in such a way that
the accuracy of the identified model (measured via the
inverse of the covariance matrix) is larger than a given
threshold while entailing the smallest perturbation on
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the network. The perturbation (i.e. the cost of the iden-
tification) will be measured by the sum of the effects of
the excitation signal on the input and output of each
system in the network.

With respect to the least costly framework introduced
in [2] for a single closed loop, the cost of the identifi-
cation experiment in the network context thus not only
contains the perturbation induced by the excitation sig-
nal in the closed loop where the system has to be iden-
tified, but also the perturbation induced in other loops
by this excitation signal. This propagation of the effect
of the excitation signal is due to the fact that the output
signal of the to-be-identified loop (which is perturbed
by the excitation signal) is transmitted to neighbouring
modules. In this paper, in order to reduce this propaga-
tion, we propose an approach where the signal transmit-
ted to the neighbouring modules is no longer the actual
output signal, but a sanitized version of this output sig-
nal where the contribution of the excitation signal has
been (partially) removed. Indeed, using an initial esti-
mate of the to-be-identified system, we derive an esti-
mate of this contribution and we subtract this estimate
from the measured output signal before the transmission
to the neighbouring modules.

This new configuration is inspired by the concept of
stealth identification that we introduced in [15] for a
single closed loop and that we here extend to the net-
work case. The use of the stealth identification in this
paper is also a new application of this concept since, in
[15], it was introduced as a tool to enable classical opti-
mal experiment design in a loop where the controller is
not Linear Time Invariant (LTI). With respect to [15],
we also analyze which accuracy condition the initial es-
timate used to compute the sanitized version of the out-
put signal must respect for the stealth configuration to
be effective (i.e., to yield a smaller identification cost).

Notations: The matrix In denotes the identity matrix of
dimension n. The matrix of dimension N ×N


X1 0 0

0
. . . 0

0 0 XN


will be denoted diag(X1, ..., XN ). For a matrix A, AT

denotes the transpose of A and A∗ its conjugate trans-
pose. For a vector of transfer functions R(z), Ri(z) de-
notes the ith entry ofR(z). In addition, the symbol z will
not only represent the Z-transform variable, but also the
shift operator. Finally,⊗ denotes the Kronecker product
and E the expectation operator.

2 Description of the network configuration

We consider a network made up of Nmod single-input
single-output (SISO) systems Si (i = 1, . . . , Nmod) oper-
ated in closed loop with a SISO decentralized controller

Ki (i = 1, . . . , Nmod):

Si : yi(t) = Gi(z, θ0,i)ui(t) + vi(t) (1)

ui(t) = Ki(z)(yref,i(t)− yi(t)) (2)

where the signal ui is the input applied to the system
Si and yi is the measured output. This output is made
up of a contribution of the input ui and of a distur-
bance term vi(t) = Hi(z, θ0,i)ei(t) that represents both
process and measurement noises. The different systems
Si (i = 1, . . . , Nmod) are thus described by two stable
transfer functions G0,i(z) = Gi(z, θ0,i) and H0,i(z) =
Hi(z, θ0,i), the latter being also minimum-phase and
monic. These transfer functions are parametrized by an
unknown true parameter vector θ0,i ∈ Rnθi . For each i
(i = 1, . . . , Nmod), the signal ei (i = 1, . . . , Nmod) defin-
ing vi is a zero mean white noise signal of variance σ2

ei .

The variances σ2
ei (i = 1, . . . , Nmod) are thus the diag-

onal elements of the covariance matrix Σ of the vector
ē = (e1, e2, ..., eNmod)T that is assumed strictly positive
definite (i.e., Eē(t)ē(t)T = Σ > 0). We further assume
that Eē(t)ē(t − τ)T = 0 for all τ 6= 0. Finally, in (2),
yref,i is a reference signal that will be computed based
on the measured outputs of neighbouring modules (see
later). We can rewrite the above equations as follows:

ȳ(t) = Ḡ(z, θ0)ū(t) + H̄(z, θ0)ē(t) (3)

ū(t) = K̄(z)(ȳref (t)− ȳ(t)) (4)

where ȳ, ū, ȳref are defined in a similar way as ē
and where θ0 = (θT0,1, . . . , θ

T
0,Nmod

)T ∈ Rnθ concate-

nates the true parameter vectors θ0,i (i = 1, ..., Nmod).
In these equations, we also use the notation Ḡ =
diag(G1, . . . , GNmod) (H̄ and K̄ are defined in a similar
way).

The closed-loop systems described in (3)-(4) are in-
terconnected via the following equation:

ȳref (t) = A ȳ(t) + B refext(t) (5)

where the matrix A and the vector B represent the flow
of information in the network and refext is a (scalar)
external reference signal that should be followed by all
outputs yi and that is generally only available at one
node of the network. This type of interconnections is
typical in formation control or multi-agent systems (see
e.g. [5,11]).

To illustrate (5), let us consider the network repre-
sented in Figure 1. In this network, we have Nmod = 6
systems/modules, all of the form (1) and all operated as
in (2) with a decentralized controller Ki (see Figure 2).
These local closed loops are represented by a circle/node
in Figure 1. The objective of this network is that the out-
puts yi of all modules follow the external reference refext
even though this reference is only available at Node 1.
For this purpose, a number of nodes are allowed to ex-
change information (i.e. their measured output) with
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some other neighbouring nodes. The arrows between the
nodes in Figure 1 indicate the flow of information.

1 2 3

4 5 6

refext

y2

y3

y2
y4

y1

y5

y4

y5 y6
y5y3

Fig. 1. Example of graph representation of the network, each
circle represents a node i and the edges represent the com-
munication link between the nodes

Ki(z) G0;i(z)
yi(t)

vi(t)

−+
+

yref;i(t)

To the network

From the network

ui(t)

Fig. 2. Representation of a single module/node i

For example, Node 5 receives the output of two nodes
(i.e. Nodes 3 and 4) and sends its output (i.e. y5) to three
nodes (Nodes 3, 4, and 6). The reference signal yref,i of
Node i will be computed as a linear combination of the
received information at Node i. For Node 5, yref,5 will
thus be a linear combination of y3 and y4. More pre-
cisely, for all outputs yi to be able to follow the external
reference refext, A and B in (5) are generally chosen as
[5,11]:

A =



0 0 0 0 0 0

1/3 0 1/3 1/3 0 0

0 0.5 0 0 0.5 0

0 0.5 0 0 0.5 0

0 0 0.5 0.5 0 0

0 0 0 0 1 0


B = (1, 0, ..., 0)T .

The matrix A is called the normalized adjacency ma-
trix in the literature [5]. Using (5), we, e.g., see that
the tracking error signals yref,1 − y1 and yref,2 − y2

of Nodes 1 and 2 are respectively given by refext − y1

and 1/3 ((y1 − y2) + (y3 − y2) + (y4 − y2)). Similar re-
lations can be found for all the other nodes. If the differ-
ent loops [Ki Gi] are designed to make the tracking er-
ror yref,i− yi as small as possible, it can be proven that
such an interconnection allows good tracking of refext
at all nodes [11,5]. A normalized adjacency matrix can
be defined for any information flow using the following

rules. Row i of A is zero if no output is sent to Node i.
If yi is sent to Node j, Aji (i.e., the entry (j, i) of A)
will be nonzero. Finally, all nonzero entries in a row of
(A,B) are equal and sum up to one.

We also need to introduce the notion of (directed) path
between two nodes. There exists a path from Node i to
Node j if Aji 6= 0 or we can find a set of ζ intermediary
nodes described by the indexes {n1, ..., nζ} such that
An1i 6= 0, An2n1

6= 0, ... , Ajnζ 6= 0. Using this notion
of path, Definition 1 introduces a set of indexes for each
node of the network:
Definition 1 Consider an arbitrary node of a network
containing Nmod nodes, say Node j (j = 1, ..., Nmod).
For this node, we define the set Pj as the set of indexes
i 6= j such that there is a path from Node j to Node i.
As an example, P5 = {2, 3, 4, 6} for the network of
Figure 1. For the sequel, it is important to note the
following fact. If an external signal (e.g., an excitation
signal r) is added to Node j, this external signal will
also influence all nodes i with i ∈ Pj .

Remark. Among the networks of the type described
above, a special, but frequent situation is the homoge-
nous network situation where the systems Si in (1) are all
identical i.e., the parameter vectors θ0,i (i = 1, ..., Nmod)
are all equal. The network of autonomous cars con-
sidered in [10] or the network of Phase-Locked Loops
(PLL’s) considered in [11] are examples of such homoge-
nous networks.

3 Identification of one module in the network
and cost of the experiment

3.1 Objective

In this paper, we wish to obtain, via prediction error
identification, an accurate estimate of a single node in
the network, say Node l. In other words, we wish to ob-
tain an accurate estimate of the parameter vector θ0,l de-
scribing Node l (we will precisely define the desired level
of accuracy in Section 3.3). We may be interested by an
accurate model of this single node for different reasons.
Node l can for example be critical for the performance of
the network and it is therefore important to monitor its
dynamics via frequent re-identification to be able to up-
date the control strategy if this dynamics has changed.
Another case where this problem can occur is the case
where we wish to improve the control performance of an
homogenous network. In this case, identifying one node
with sufficient accuracy is equivalent to identifying all
the nodes with sufficient accuracy and therefore allows
to redesign the local controllers to improve the control
performance of the network.

We can obtain an accurate estimate of θ0,l in different
ways. A possible way would be to disconnect Node l from
the network and perform the identification using clas-
sical open-loop or closed-loop identification. However,
Node l may be essential for the network performance
and taking such an action may strongly affect this per-
formance and, if not done with care, even destabilize the
network. Disconnecting Node l indeed means changing
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A so that the interconnection (3)-(4)-(5) may become
unstable. Therefore, in this contribution, we will keep
the interconnection structure (3)-(4)-(5) intact. By this,
we mean that the transfer functions between refext and
the node signals yi and ui (i = 1, ..., Nmod) will not be
modified, therefore maintaining the tracking ability of
the network and we also mean that we will not modify
the transfer functions between the disturbances vi and
the node signals yi and ui (i = 1, ..., Nmod), thus leaving
the disturbance rejection performance of the network in-
tact. In order to obtain informative data for the iden-
tification of an accurate estimate of θ0,l while, at the
same time, keeping these transfer functions unaltered,
we can inject external/exogenous excitation signals at
well-chosen locations (similarly as what is done in closed-
loop identification [13]). Consequently, with respect to
the normal operation (3)-(4)-(5), the only perturbation
during the identification experiment will be the pertur-
bation induced by these external excitation signals and
this perturbation (the cost of the experiment) will be
minimized by an appropriate design of these excitation
signals.

In the sequel, we will suppose that an initial estimate
θinit,l of θ0,l is available, but that this initial estimate
is not sufficiently accurate (otherwise, the identification
described above would be useless). This initial estimate
θinit,l of θ0,l defines initial estimates Gl(z, θinit,l) and
Hl(z, θinit,l) of Gl(z, θ0,l) and Hl(z, θ0,l), respectively.
More details on how this initial estimate is obtained will
be given in Section 5.

3.2 Cost of an experiment in the stealth and non-stealth
configurations

Kl(z) G0;l(z)
yl(t)

vl(t)

r(t)

+
−+

+
yref;l(t) To the network

From the network

ul(t)

x(t)

−

+

~yl(t)

Fig. 3. To-be-identified node (i.e. Node l) during the identifi-
cation experiment. In the stealth setting, x(t) is given by (6).
In the non-stealth setting, x(t) = 0.

During the identification experiment, we will apply
for a duration N (i.e. from t = 1 till t = N) an external
excitation signal r(t) of spectrum Φr at the output of
the controller Kl of Node l (see Figure 3). This external
excitation (that we assume uncorrelated with refext and
ē) will allow to obtain sufficiently informative data ul(t)
and yl(t) (t = 1, . . . , N) for an accurate identification
of Sl (see Section 3.3). In Figure 3, we also observe the
signal x(t). In this paper, we will consider two choices for
x(t) corresponding to two settings: the stealth and the
non-stealth configurations. In the non-stealth setting,
the signal x(t) will be chosen equal to zero. This choice
corresponds to the classical setting for an identification
experiment in a closed-loop/network context (see e.g.
[1]). In the stealth setting, the signal x(t) is chosen as

the following estimate of the contribution of r to yl:

x(t) =
Gl(z, θinit,l)

1 +Kl(z)Gl(z, θinit,l)︸ ︷︷ ︸
=Tinit,l(z)

r(t) (t = 1, . . . , N) (6)

where θinit,l is the initial estimate of θ0,l (see Section
3.1). Note that (6) can be easily computed since both r
and Tinit,l(z) are known.

As shown in Figure 3, the signal x(t) is subtracted
from the measured output yl(t) to give ỹl(t) = yl(t) −
x(t) which will be the signal that will be transmitted
to compute ȳref . Consequently, during the identification
experiment, the equations (4)-(5) become:

ū(t) = m̄l r(t) + K̄(z) (ȳref (t)− ȳ(t)) (7)

ȳref (t) = A (ȳ(t)− m̄lx(t)) + B refext(t) (8)

where m̄i (i = 1, . . . , Nmod) denotes a unit (column)
vector of dimensionNmod for which the ith entry is equal
to 1 and the other entries are equal to zero.

We will show, in the sequel, the advantage of the
stealth setting in order to reduce the cost of the iden-
tification experiment. In the stealth setting, the output
vector ȳ and the input vector ū in the network configura-
tion (3)-(7)-(8) can be rewritten as follows as a function
of the external signals r, refext and ē:

ȳ(t) =Ry(z, θ0)r(t) +Ryext(z, θ0)refext(t) + Sy(z, θ0)ē(t)
(9)

ū(t) =Ru(z, θ0)r(t) +Ruext(z, θ0)refext(t) + Su(z, θ0)ē(t)
(10)

for some vectors of transfer functions Ryext, R
u
ext, some

matrices of transfer functions Sy, Su and

Ru(z, θ0) = m̄l S0,l(z) +N (z, θ0) (T0,l(z)− Tinit,l(z))
(11)

Ry(z, θ0) = Ḡ(z, θ0) Ru(z, θ0) (12)

where S0,l(z) = 1/(1 + Kl(z)Gl(z, θ0,l)) and T0,l(z) =
Gl(z, θ0,l)/(1+Kl(z)Gl(z, θ0,l)) are scalar transfer func-
tions and N (z, θ0) is a vector of transfer functions:

N (z, θ0) = K̄(z)S̄(z, θ0)Λ(z, θ0)A m̄l (13)

with S̄(z, θ0) =
(
INmod + Ḡ(z, θ0)K̄(z)

)−1
and

Λ(z, θ0) =
(
INmod −AS̄(z, θ0)Ḡ(z, θ0)K̄(z)

)−1
. For the

sequel, it is important to note that Tinit,l(z) (see (6)) is
the initial model of T0,l(z) that corresponds to the initial
estimate θinit,l. Consequently, in (11), T0,l(z)−Tinit,l(z)
is the modeling error of this initial model Tinit,l(z).

In the normal operation described by (3)-(4)-(5), the
vector ȳ (resp. ū) is given by (9) (resp. (10)) with r =
0. Consequently, the tracking property of the network
(measured by the transfer vectorsRyext andRuext) and its
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disturbance rejection property (measured by the trans-
fer matrices Sy and Su) are maintained during the iden-
tification experiment. The proposed experiment thus re-
spects the objectives presented in Section 3.1 and we
see that, with respect to the normal operation, the only
perturbation of the vectors ȳ and ū during the identi-
fication experiment is Ry(z)r(t) and Ru(z)r(t), respec-
tively. Consequently, it makes sense to define the cost of
the identification experiment as the following function
of the spectrum Φr of the excitation signal r:

J(Φr, θ0) =
1

2π

∫ π

−π
R∗η(ejω, θ0)Rη(ejω, θ0) Φr(ω) dω

(14)
whereRη(z, θ0) is a vector of transfer functions given by
Rη(z, θ0) = (Ry(z, θ0)T ,

√
η Ru(z, θ0)T )T with η > 0

a user-chosen weighting factor. The cost J(Φr, θ0) can

be rewritten as J(Φr, θ0) =
∑Nmod
i=1 Ji(Φr, θ0) where

Ji(Φr, θ0) (i = 1, ..., Nmod) are the individual costs in
each module:

Ji(Φr, θ0) = ...

... 1
2π

∫ π
−π

(
|Gi(ejω, θ0,i)|2 + η

)
|Rui (ejω, θ0)|2Φr(ω) dω

(15)
with Rui being the ith entry of Ru.

In the non-stealth setting, the cost J(Φr, θ0) of
an identification experiment and the individual costs
Ji(Φr, θ0) can be defined in a very similar way. However,
the expressions for Ry and Ru that are used in (14)
and (15) have a different expression:

Ru,NS(z, θ0) = m̄l S0,l(z) +N (z, θ0) T0,l(z) (16)

Ry,NS(z, θ0) = Ḡ(z, θ0) Ru,NS(z, θ0) (17)

By comparing (16) and (11), we observe that the model-
ing error T0,l(z)− Tinit,l(z) is replaced by T0,l(z) in the
expression of Ru,NS .

For both the stealth and non-stealth settings, the indi-
vidual costs Ji(Φr, θ0) for nodes to which there is a path
from Node l (i.e. those in Pl) will be nonzero whereas,
for nodes i 6= l which are not in Pl, the cost will be zero.
Consequently, the excitation signal r will not have an
influence only on Node l (where it is applied and where
it is necessary for the identification of Sl), but also on
all nodes i with i ∈ Pl. For the network in Figure 1,
if the excitation signal r is applied in Node 5, besides
J5(Φr, θ0) , the individual costs Ji(Φr, θ0) for i = 2, 3, 4,
and 6 will also be non-zero. This result is equivalent to
the fact that Ni(z, θ0) (i.e. the ith entry of N (z, θ0)) is
a nonzero transfer function for all i ∈ Pl and is equal to
zero for all i 6= l, i 6∈ Pl.

The role of the stealth compensation x(t) is to reduce
this propagation of the excitation r (applied in Node l)
to the nodes in Pl. Before explaining this in more details,
let us make the following assumptions on Node l and the
considered network:

Assumption 1 Consider the set Pl (see Definition 1)
corresponding to the to-be-identified Node l. We assume
that Pl is a non-empty set.
Assumption 2 Consider the set Pl (see Definition 1)
corresponding to the to-be-identified Node l and the vec-
tor of transfer functions N (z, θ0) (see (13)). We assume
that, for all i ∈ Pl, the ith entry Ni(z, θ0) of N (z, θ0) is
such that Ni(ejω, θ0) 6= 0 for (almost) all frequencies.
If Pl would be empty, there is of course no need for the
stealth setting since the signal r will not be propagated
to other nodes. Assumption 2 will in fact always hold,
except in pathological cases that we here want to for-
mally exclude.

We can now explain the role of the stealth compensa-
tion in reducing the propagation of the influence of the
excitation r towards the nodes i ∈ Pl. Let us first con-
sider the ideal case i.e. when Tinit,l = T0,l. This choice
does not change the situation in the non-stealth setting

i.e. Ji(Φr, θ0) remains nonzero for all i ∈ Pl since Ru,NSi
remains the same nonzero transfer function for all these i
(it is not function of Tinit,l). However, in the stealth set-
ting, for all i 6= l, the transfer function Rui is identically
zero when Tinit,l = T0,l. Consequently, in this ideal case,
the effect of the excitation r(t) will only be tangible in the
to-be-identified module i.e. Ji(Φr, θ0) = 0 for all i 6= l.

In practice, Tinit,l will of course always be different
from T0,l, but, as shown in the following proposition,
the stealth configuration will remain beneficial under the
mild condition that the relative error between Tinit,l and
T0,l is less than 100%.
Proposition 1 Consider that, following the procedure
described in this section, an excitation signal r(t) of spec-
trum Φr is applied to Node l of a network like the one de-
scribed in Section 2 and satisfying Assumptions 1 and 2.
Let us for this spectrum Φr compute the individual costs
Ji(Φr, θ0) (i = 1, ..., Nmod) in the stealth setting and in
the non-stealth setting using the respective expression for
these costs in the two settings (see Section 3.2). Suppose
finally that the initial model Tinit,l(z) of T0,l(z) satis-
fies the following accuracy constraint at the frequencies ω
where Φr(ω) 6= 0:

|T0,l(e
jω)− Tinit,l(ejω)|
|T0,l(ejω)|

< 1. (18)

Then, for all i ∈ Pl (see Definition 1), the individual cost
Ji(Φr, θ0) in the stealth configuration is strictly smaller
than the one in the non-stealth configuration. Recall also
that, for the nodes i with i 6= l and i 6∈ Pl, Ji(Φr, θ0) = 0
in both configurations.

Proof. See Appendix A.

The advantage of the stealth configuration will be fur-
ther discussed in Section 4.
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3.3 Identification of one given module

Let us now show how we can derive an estimate of θ0,l

using a model structureMl = {Gl(z, θl), Hl(z, θl) | θl ∈
Rnθl } for the nodeSl and a data setZNl = {yl(t), ul(t)|t =
1, . . . , N} collected as shown in Figure 3 in the stealth or
the non-stealth setting. Let us first make the following
assumptions:
Assumption 3 We suppose that Ml is a full order
model structure that is globally identifiable at θ0,l i.e.,
θl = θ0,l is the only parameter vector for which Gl(z, θl)
and Hl(z, θl) corresponds to Sl. We also suppose that
Kl(z)Gl(z, θ0,l) contains at least one delay, that refext(t)
is a stationary signal and finally that refext(t), r(t) and
ē are mutually uncorrelated.

Then, using ZNl andMl, an estimate θ̂N,l of θ0,l can be
obtained via single-input single-output (SISO) predic-
tion error identification [13]:

θ̂N,l = arg min
θl

1

N

N∑
t=1

ε2l (t, θl) (19)

with εl(t, θl) = H−1
l (z, θl) (yl(t)−Gl(z, θl)ul(t)). The

consistency of (19) can be proven using a similar reason-
ing as in Theorem 1 of [1]. Since the noises ei of nodes i
having a path to Node l contribute to the excitation of Sl
through the signal ul used in (19) (see (10)), θ̂N,l is con-
sistent even if r = refext = 0 when Assumption 3 holds.

If there is no path from any other node to Node l, θ̂N,l
is also consistent under Assumption 3, provided a sim-
ple condition on the support of the spectrum Φr(ω) of r
is also respected (see [1,14] for more details). Note also
that the derivation of (19) does not require any infor-
mation on the order and the value of the plant transfer
functions Gi(z, θ0,i) and Hi(z, θ0,i) for i 6= l.

Furthermore, θ̂N,l is also (asymptotically) normally
distributed around θ0,l with a covariance matrix Pθl that

can be estimated using ZNl and θ̂N,l and whose inverse
has the following expression [13]:

P−1
θl

(Φr, θ0) = M(θ0) + ...

...+
N

2πσ2
el

∫ π

−π
MF (ejω, θ0,l)|Rul (ejω, θ0)|2Φr(ω)dω

(20)

where Rul is the lth entry of Ru, σ2
el

is the variance

of el, MF (ejω, θl) = Fl(e
jω, θl)F

∗
l (ejω, θl) (Fl(z, θl) =

H−1
l (z, θl)

∂Gl(z,θl)
∂θl

) and M(θ0) is the joint contribution

of ē and refext to the accuracy of the estimate (see
Appendix B). We observe that P−1

θl
(Φr, θ0) is an affine

function of the power spectrum Φr of the excitation
signal r (and a more complex function of θ0). Equa-
tion (20) pertains to the stealth configuration. In the
non-stealth configuration, we can use the same expres-

sion for Pθl(Φr, θ0), but we have to replace Rul by Ru,NSl
(see (16)).

The inverse of Pθl(Φr, θ0) is a measure of the accu-

racy of the estimate θ̂N,l of θ0,l. In this paper, we will
suppose that this accuracy will be deemed satisfactory if
the following accuracy constraint P−1

θl
(Φr, θ0) ≥ Radm

is satisfied. The matrix Radm is a given strictly positive-
definite and symmetric matrix that reflects the desired
accuracy.
Remark. For (20) to be a measure of the accuracy of

θ̂N,l, it is crucial that θ̂N,l be identified in a full-order
model structureMl (see Assumption 3). The latter can
seem a strong assumption. Note however that there exist
techniques based on the analysis of the prediction error
to build such a full order model structure (see Section
16.6 in [13]).

4 Optimal experiment design problem

As mentioned in the introduction, we will design the
spectrum Φr of the excitation signal r of the identifica-
tion experiment described in the previous section in such
a way that the accuracy constraint P−1

θl
(Φr, θ0) ≥ Radm

is satisfied with the smallest cost J(Φr, θ0) (see (14)).
This optimization problem can thus be formulated as
follows:

min
Φr

J(Φr, θ0) subject to (21)

P−1
θl

(Φr, θ0) ≥ Radm (22)

This optimization problem can be considered both in
the stealth and in the non-stealth setting by using the
respective expressions for J(Φr, θ0) and for P−1

θl
(Φr, θ0)

in both cases. Before discussing how this optimization
problem can be solved in practice, let us formulate the
following result that illustrates the advantage of the
stealth configuration. For this purpose, let us here also
exclude some pathological cases:
Assumption 4 Consider the notations introduced in
Section 3 for the identification of Node l and in partic-

ular the lth entries Rul (z, θ0) and Ru,NSl (z, θ0) of the
vectors of transfer functions Ru(z, θ0) and Ru,NS(z, θ0)
defined in (11) and in (16), respectively. We assume

that Rul (ejω, θ0) and Ru,NSl (ejω, θ0) are equal to zero
only at those frequencies ω where the frequency response
Kl(e

jω) of the controller present in Node l is infinite 1

(due to an integrator or a resonator).
Proposition 2 Consider an identification experiment
in Node l of a network satisfying Assumptions 1, 2, and 4.
Consider, for this identification experiment, the optimal
experiment design problem (21)-(22) in the stealth and in
the non-stealth setting (i.e. using the respective expres-
sions for J(Φr, θ0) and for P−1

θl
(Φr, θ0) in both cases)

and let us denote by ΦSr,opt and ΦNSr,opt the optimal spec-
tra obtained in these two settings. Then, we have that the
optimal cost J(ΦSr,opt, θ0) in the stealth setting is strictly

1 At those frequencies ω where Kl(e
jω) is infinite, we have

indeed that S0,l(e
jω) = T0,l(e

jω) = Tinit,l(e
jω) = 0.
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smaller than the cost J(ΦNSr,opt, θ0) in the non-stealth set-
ting if the model Tinit,l of T0,l used in the stealth com-
pensation (6) has the following property for all ω where
ΦNSr,opt(ω) 6= 0:

|T0,l(e
jω)− Tinit,l(ejω)|
|T0,l(ejω)|

<
|Rul (ejω, θ0)|
|Ru,NSl (ejω, θ0)|

(23)

where Rul (resp. Ru,NSl ) is the lth entry of Ru (resp.
Ru,NS) defined in (11) (resp. (16)).
Proof. See Appendix C.

As shown in Proposition 2, we thus see that the stealth
configuration, which can be very easily implemented in
a multi-agent network, will be, in many cases, advanta-
geous to obtain the required accuracy for the model of Sl
with the smallest possible identification cost. The con-
dition (23) on Tinit,l is more complex than (18). How-
ever, (23) will be respected if Tinit,l is not a too poor
estimate of T0,l.

Let us now turn to the problem of solving the opti-
mal experiment design problem (21)-(22). If θ0 would be
known, this optimization problem could be solved using
convex optimization since J(Φr, θ0) and P−1

θl
(Φr, θ0) are

affine function of the to-be-designed spectrum Φr(ω).
Different spectrum parametrizations can be considered
for this purpose: the moment approach 2 [19,17], finite
dimensional expansions of the spectrum resulting in fil-
tered white noise [9,2] or sum-of-sinusoids (multisine)
solutions [9,2]. Note that the last two parametrizations
restrict the class of spectra in which the optimum spec-
trum is determined, whereas the moment approach can-
not handle frequency-wise constraints.

Let us now deal with the fact that θ0 is unknown, i.e.
the classical chicken-and-egg issue in optimal experiment
design.

5 Dealing with the chicken-and-egg issue

5.1 Approach based on θinit,l
A commonly used approach to circumvent this so-

called chicked-and-egg problem is to replace θ0 by an
initial estimate θinit = (θTinit,1, . . . , θ

T
init,Nmod

)T . In this

paper, we have until now assumed (see Section 3.1) that
we have an initial estimate θinit,l of the to-be-identified
parameter vector θ0,l (and thus not of the whole parame-
ter vector θ0). This initial estimate θinit,l (e.g., obtained
via a previous identification experiment in a full order
model structure Ml for Sl) will be crucial to deal with
the chicken-and-egg issue of (21)-(22).

Let us first consider the case of an homogenous net-
work. In this case, the initial estimate θinit,l for θ0,l

is also an initial estimate for θ0,i (i 6= l) and thus
we can use θinit = (θTinit,l, . . . , θ

T
init,l)

T as initial esti-
mate for θ0. Consequently, the optimal spectrum can

2 which is also known as the partial correlation expansion
approach [9]

thus be determined by minimizing J(Φr, θinit) sub-
ject to P−1

θl
(Φr, θinit) ≥ Radm. In the expression of

P−1
θl

(Φr, θinit) (see Appendix B), Σ is approximated by

the sample covariance of H̄−1(z, θinit)
(
ȳ − Ḡ(z, θinit)ū

)
computed e.g. with normal operation data. The above
optimization problem can be solved in the non-stealth
setting and in the stealth setting. In the stealth setting,
since θinit,l is also used to compute x(t) (see (6)), the
cost J(Φr, θinit) reduces to Jl(Φr, θinit).

In the case of a non-homogenous network, the ini-
tial estimate θinit,l for θ0,l is not an initial estimate for
θ0,i (i 6= l), but the stealth configuration will never-
theless allow one to deal with the chicken-and-egg is-
sue even if we do not have initial estimates for θ0,i (i 6=
l). To show this, let us replace θ0,l by θinit,l in the
expression for Ru(z, θ0) (see (11)). When we do this,
Ru(z, θ0) reduces to m̄lSinit,l(z) with Sinit,l(z) = (1 +
Kl(z)Gl(z, θinit,l))

−1 and the cost J reduces to the in-
dividual cost Jl (see (15)). Consequently, if, in the ex-
pression (20) for P−1

θ , we neglect 3 the positive-definite
term M(θ0) which cannot be approximated with only
θinit,l, the optimal experiment design problem can be
tackled using the following optimization problem which
does not require initial estimates of θ0,i for i 6= l:

min
Φr

1

2π

∫ π

−π

(
|Gl(ejω, θinit,l)|2 + η

)
|Sinit,l(ejω)|2Φr(ω) dω

s.t.
N

2πσ2
el

∫ π

−π
MF (ejω, θinit,l)|Sinit,l(ejω)|2Φr(ω)dω ≥ Radm

where σ2
el

can be approximated by the sample vari-

ance of H−1
l (z, θinit,l) (yl −Gl(z, θinit,l)ul) computed

e.g. with normal operation data. It is to be noted that
this optimization problem can only be considered in
the stealth stetting (unlike Ru(z, θ0), Ru,NS(z, θ0) does
indeed not reduce to m̄lSinit,l(z) when we replace θ0,l

by θinit,l).
Note that the three spectrum parametrizations dis-

cussed at the end of Section 4 can be used to tackle the
optimization problems presented in this subsection.

5.2 Robust approach

As we will see in the sequel, if we have more informa-
tion about the network, we will be able to deal with the
chicken-and-egg issue in a more robust way. This will
be possible if we have a parametric uncertainty region
Uinit containing the true parameter vector θ0. Such
information about the network can e.g., be available
if the different systems Si (i = 1, ..., Nmod) that make
up the network have previously been identified in full
order model structures Mi using the prediction error
method of Section 3.3. In this case, the correspond-
ing identified parameter vectors θinit,i are all normally
distributed around θ0,i (i = 1, ..., Nmod) and an ellip-
soidal uncertainty region Uinit,i containing θ0,i modulo

3 An alternative is to estimate M(θ0) using an identification
of Sl with normal operation data (see [15]).
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a user-chosen probability level can be built based on
the covariance matrix Pinit,i of θinit,i i.e., Uinit,i :={
θi ∈ Rnθi | (θi − θinit,i)TP−1

init,i(θi − θinit,i) < χ
}

where χ depends on the chosen probability level [13]. The
ellipsoidal uncertainty regions Uinit,i (i = 1, ..., Nmod)
obtained in these successive identification experi-
ments can be regrouped to yield Uinit = {θ =
(θT1 , ..., θ

T
Nmod

)T | θi ∈ Uinit,i (i = 1, ..., Nmod)}. In the
case of an homogenous network, the uncertainty region
Uinit can obviously be obtained based on the initial
identification of one single module.

If the uncertainty set Uinit is available, we can then
robustify our optimal experiment design as follows:

min
Φr,γ

γ subject to (24)

J(Φr, θ) ≤ γ ∀θ ∈ Uinit and (25)

P−1
θl

(Φr, θ) ≥ Radm ∀θ ∈ Uinit (26)

Besides the classical advantages of a robustified optimal
experiment design problem [16], the cost J will, in the
above formulation, no longer reduce to Jl in the stealth
setting (since we do no longer replace θ0,l by θinit,l in the
expression of the cost). Consequently, the robustified for-
mulation will favour spectra Φr yielding, for all θ ∈ Uinit,
small perturbations Ryi (z, θ)r(t) and Rui (z, θ)r(t) not
only for i = l, but also for all i ∈ Pl (see (9)-(10)).
For nodes i ∈ Pl, this e.g. means that the power of

Rui (z, θ)r(t) = Ni(z, θ)
(

Gl(z,θ)
1+Kl(z)Gl(z,θ)

− Tinit,l(z)
)
r(t)

has to be made small for all θ ∈ Uinit. Consequently,
the robustified optimal experiment design problem will
generally and among other considerations favour spectra
Φr(ω) with more contributions in the frequency ranges
where the stealth compensation will be more effective
due to a small uncertainty of Tinit,l(z) (thereby robusti-
fying the stealth configuration).

Finding a tractable approach to deal with the robus-
tified optimal experiment design problem (24)-(26) is a
complex issue. Given the complexity of the network, the
general approach would be to replace the initial uncer-
tainty set (containing an infinite number of elements)
by a number ng of grid points of this uncertainty set
Uinit (see e.g. [9,2,16]). In this approach, the cost con-
straint (25) and the accuracy constraint (26) are replaced
each by ng constraints (one for each grid point). This so-
called gridding approach of course entails an approxima-
tion since ensuring these ng constraints does not imply
ensuring (25) and (26).

In this paper, we will use this gridding approach for
the accuracy constraint i.e., (26) is replaced by the ng
constraints P−1

θl
(Φr, θ

j) ≥ Radm (j = 1, ..., ng) where

θj ∈ Uinit (j = 1, ..., ng).
For the cost constraint (25), we will propose a better

approach than the gridding approach. Indeed, we will
replace (25) by an alternative constraint that is linear
in γ and Φr and that implies (25). In order to derive
such a tractable constraint implying (25), we will need to
restrict attention to a multisine parametrization for the

to-be-determined spectrum (see the end of Section 4):

Φr(ω) = π

L∑
m=1

cm (δ(ω − ωm) + δ(ω + ωm)) ≥ 0 ∀ω (27)

where cm ≥ 0 (m = 1, . . . , L) will be the decision vari-
ables of the optimization problem and where the fre-
quencies ωm (m = 1, . . . , L) are fixed by the user (as e.g.
a fine grid of the frequency range [0 π]). We have then
the following result:
Proposition 3 Consider the robust cost constraint (25)
and a spectrum of the type (27). Then, the constraint (25)
holds for a given γ if the following inequality linear in the
decision variables cm (m = 1, . . . , L) holds:

L∑
m=1

cm α(ωm) ≤ γ (28)

where α(ω) (m = 1, ..., L) is an upper bound for J (ω) =
supθ∈Uinit

(
R∗η(ejω, θ)Rη(ejω, θ)

)
Proof. Using (27) and (14), the robust cost con-
straint (25) can be rewritten as follows:

L∑
m=1

cm
(
R∗
η(ejωm , θ)Rη(ejωm , θ)

)
≤ γ ∀θ ∈ Uinit (29)

Since, for any frequency ωm, we have that(
R∗η(ejωm , θ)Rη(ejωm , θ)

)
≤ α(ωm) ∀θ ∈ Uinit, it is

clear that (29) holds if (28) holds.

Let us observe that, at each ω, an upper bound α(ω)
for J (ω) can be computed by following the hierarchical
approach introduced in [1] (see [14] for more details).
Let us also observe that (28) is an inequality constraint
linear in the coefficients cm (m = 1, . . . , L). Moreover,
since Φr is affine in cm (m = 1, . . . , L), the ng accuracy
constraints replacing (26) are also linear in these coef-
ficients. Consequently, the optimization problem (24)-
(26) can be tackled by the LMI optimization problem
consisting of determining the coefficients cm ≥ 0 (m =
1, . . . , L) minimizing the value of γ subject to (28) and
to P−1

θl
(Φr, θ

j) ≥ Radm (j = 1, ..., ng).

Let us denote by cm,opt (m = 1, . . . , L) and by γopt
the solution of this LMI optimization problem and let us
also denote by Φr,opt the spectrum corresponding to the
coefficients cm,opt. Then, due to Proposition 3, we have
that γopt is an upper bound of supθ∈Uinit J(Φr,opt, θ) and
thus of J(Φr,opt, θ0).

This property is a clear advantage of the proposed ap-
proach to robustify the cost constraint with respect to
the gridding approach. Note however that (28) implies,
but is not equivalent to the original constraint (25)/(29).
Consequently, using (28) instead of (25) comes with a
dose of conservatism. We have first to restrict attention
to (27) and there are also two sources of conservatism

8



when we replace (29) by (28). The first source consists

in going from (29) to
∑L
m=1 cmJ (ωm) ≤ γ and the sec-

ond one in going from
∑L
m=1 cmJ (ωm) ≤ γ to (28). Let

us explain these sources of conservatism in more details.
In the first source of conservatism, we consider the op-
timization problem leading to J (ωm) independently at
each ωm (m = 1, ..., L). Consequently, the parameter θ
at which the supremum J (ωm) is obtained can be dif-
ferent at each frequency ωm (unlike in the original con-
straint (29)). In the second source of conservatism, we
replace the quantity J (ωm) by an upper bound α(ωm)
computed via the hierarchical approach.

6 Numerical illustration

Let us illustrate our results with a numerical exam-
ple. We consider the network of Figure 1 made up of
Nmod = 6 homogenous nodes. In other words, the true
systems Si (i = 1, ..., 6) are all identical and given by the
following ARX system [12] with two resonance peaks:
yi(t) = (z−3B0(z))/(A0(z))ui(t)+(1)/(A0(z))ei(t) with
B0(z) = 0.10276+0.18123z−1,A0(z) = 1−1.99185z−1+
2.20265z−2 − 1.84083z−3 + 0.89413z−4. The variances
of the white noises ei will also all be chosen equal to 0.5
and Σ = 0.5INmod . We further suppose that these true
systems are all controlled by the same local controller

K(z) = KB(z)
KA(z) with KB(z) = 0.03742 − 0.06719z−1 +

0.06995z−2 − 0.03814z−3 − 0.02546z−4 + 0.06323z−5 −
0.04707z−6 + 0.03222z−7 and KA(z) = 1− 3.348z−1 +
5.953z−2−7.163z−3 +6.143z−4−3.705z−5 +1.368z−6−
0.2482z−7.

For simplicity, the initial information needed to
deal with the chicken-and-egg issue is determined
from one (cheap) open-loop experiment on the ARX
system (disconnected from the network) with a
white input signal of variance 1.9 and of dura-
tion N = 1000. This open-loop experiment yields

the following identified parameter vector θ̂mod =
(−1.9949, 2.1871,−1.8042, 0.8764, 0.0807, 0.1671)T of
the true parameter vector θ0,mod of the ARX sys-

tem. Using the covariance matrix Pmod of θ̂mod,
we derive the following uncertainty set Umod :={
θmod | (θmod − θ̂mod)TP−1

mod(θmod − θ̂mod) < 12.6
}

that is guaranteed to contain θ0,mod with a probability
level of 95% and that here effectively contains θ0,mod.
Since the network is homogenous, an initial estimate
for θ0 = (θT0,mod, θ

T
0,mod, ..., θ

T
0,mod)

T ∈ R36 is given

by θinit = (θ̂Tmod, θ̂
T
mod, ..., θ̂

T
mod)

T and the uncertainty
set Uinit has the expression given in Section 5.2 with
Uinit,i = Umod (i = 1, ..., 6)

Our objective will be to design the spectrum Φr(ω)
of the excitation signal r that has to be added to
Node 5 (i.e. l = 5) during an identification experiment
of duration N = 1000 to improve the accuracy of the
model of S5 in such a way that the following accu-
racy constraint is satisfied P−1

θ5
(Φr, θ0) > Radm where

Radm is chosen as the inverse of the diagonal matrix
(diag(0.0199, 0.022, 0.018, 0.009, 0.005, 0.009))2. We

will furthermore suppose that refext(t) = 0 during the
identification experiment. In addition, we define the cost
of the identification experiment as in (14) with η = 1
and we parametrize Φr(ω) as in (27) with L = 20 fre-
quencies distributed in the frequency range

[
10−2, π

]
.

In the stealth setting, the stealth compensation is im-
plemented using (6) with the transfer function Tinit,5
that can be constructed based on θinit,5 = θ̂mod. More-
over, for the robustification of the accuracy constraint,
we consider 20 grid points in Uinit (one of these 20 grid
points is θinit).

Let first consider the robustified approach of Sec-
tion 5.2 in the stealth setting and let us solve the LMI
optimization given at the end of this section. This yields
γSopt = 179.92 and an optimal spectrum ΦSr,opt having
only contributions at three frequencies i.e., ω = 0.45,
ω = 1.35 and ω = 1.65. As discussed in Section 5.2, the
value γSopt is an upper bound for supθ∈Uinit J(ΦSr,opt, θ)
and thus also an upper bound for the a-priori unknown
cost J(ΦSr,opt, θ0) which is here equal to 130.22. The

individual costs Ji(Φ
S
r,opt, θ0) for i = 5 and for all

i ∈ P5 = {2, 3, 4, 6} are given in Table 1.
Let us compare these results with what is obtained in

the non-stealth setting. Let us for this purpose solve the
LMI optimization given at the end of Section 5.2 for this
setting. This yields γNSopt = 228.35 and the optimal spec-

trum ΦNSr,opt has only contributions at four frequencies
i.e., ω = 0.45, ω = 1.35, ω = 1.65 and ω = 3. The actual
cost J(ΦNSr,opt, θ0) of an experiment with ΦNSr,opt is equal to
151.29. This is 15% larger than in the stealth case where
J(ΦSr,opt, θ0) = 130.22. Moreover, as shown in Table 1,
the individual costs Ji for i ∈ P5 are approximatively
100 times larger than when the stealth configuration is
implemented. This clearly shows the advantage of the
stealth configuration.

As mentioned in Section 5.2, we only partially robus-
tify the accuracy constraint since we replace the infinite
set Uinit by 20 grid points. Despite this approximation,
the constraint (22) is respected both in the stealth set-
ting and in the non-stealth setting (i.e. with ΦSr,opt and

ΦNSr,opt). The robustification of the cost constraint is not
based on an approximation, but entails a certain con-
servatism. Let us thus check the extent of this conser-
vatism; e.g. in the stealth setting. For this purpose, we
compute a lower bound J lb for supθ∈Uinit J(ΦSr,opt, θ) by

considering the maximal value of J(ΦSr,opt, θ
i) over a set

of 1000 grid points θi ∈ Uinit. This procedure yields
J lb = 167.60. Consequently, the conservatism of our pro-
cedure remains limited in this example since there is
only 7% of difference between J lb and the upper bound
Jub for this quantity obtained via our approach i.e.,
Jub = γSopt = 179.92.

Let us now consider the non-robustified approach of
Section 5.1 and let us focus on the stealth setting for the
sake of brevity. Since the network is homogenous, we re-

place the whole vector θ0 by θinit and we determine Φnr,Sr,opt

by minimizing J(Φr, θinit) subject to P−1
θl

(Φr, θinit) ≥
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Radm. The optimal spectrum Φnr,Sr,opt has only contribu-

tions at the same three frequencies as ΦSr,opt. While the

constraint (22) is respected with Φnr,Sr,opt, the predicted

cost J(Φnr,Sr,opt, θinit) = 119.22 underestimates the ac-

tual cost J(Φnr,Sr,opt, θ0) = 126.32. The non-robustified ap-
proach does indeed not give the same guarantee as the
robustified one. In Table 1, we also observe that, for
i ∈ P5 = {2, 3, 4, 6}, the individual costs Ji(Φ

S
r,opt, θ0)

in the robustified case are all 25% smaller than the in-
dividual costs Ji(Φ

nr,S
r,opt, θ0) in the non-robustified case.

This shows the advantage of the achieved robustifica-
tion of the stealth configuration discussed in Section 5.2.

Note finally that the total cost J(Φnr,Sr,opt, θ0) = 126.32
obtained with this non-robustified approach is slightly
smaller that the total cost J(ΦSr,opt, θ0) = 130.22 ob-

tained in the robustified version. Since ΦSr,opt has to sat-
isfy the accuracy and the cost constraints for more θ
than just θinit, this spectrum will indeed generally be

larger than Φnr,Sr,opt.

Table 1
Individual costs Ji (i = 2, ..., 6) obtained using the optimal

spectra ΦSr,opt and ΦNSr,opt Φnr,Sr,opt

J2 J3 J4 J5 J6

ΦSr,opt 0.0023 0.0178 0.0178 130.0957 0.0853

ΦNSr,opt 0.2197 1.7196 1.7196 139.3723 8.2553

Φnr,Sr,opt 0.0029 0.0230 0.0230 126.1607 0.1104

7 Alternative to the stealth configuration

As mentioned in Section 3, the stealth configuration
allows to reduce the propagation of r(t) to the other
nodes of the network while maintaining the tracking per-
formance and the disturbance rejection performance of
the network intact. This is achieved by choosing, for
Node l, the signal ỹl(t) (i.e., the signal that is transmit-
ted to compute ȳref (t)) as ỹl(t) = yl(t)−x(t) with x(t) as
given in (6). A valid alternative to the stealth approach
would be an approach that entirely cancels the propaga-
tion of r(t) to the other nodes and that would maintain
a satisfactory tracking and disturbance rejection perfor-
mance. One could attempt to achieve this objective by
choosing ỹl(t) = yref,l(t) or, as proposed by anonymous
reviewers, ỹl(t) = Kl(z)Tinit,l(z)yref,l(t). With these
choices for ỹl(t), the direct advantage is to entirely cancel
the propagation of r(t) (and of vl(t)) to the other nodes
while only slightly changing the conditions for the ex-
periment design in Node l (Rul (z, θ0) = S0,l(z) in these
configurations, but that is also approximately the case
in the stealth configuration). It is also clear that these
choices for ỹl(t) modifies the transfer vectors Ryext and
Ruext (measuring the tracking performance of the net-
work) and the transfer matrices Sy and Su (measuring
the disturbance rejection performance of the network).
Consequently, what is gained by canceling the propaga-
tion of r(t) to the other nodes could be easily lost via an

eventual stronger decrease of the tracking performance
or via a control input becoming excessive (remember in-
deed that the stealth configuration allows to strongly re-
duce this propagation of r(t) to the other nodes). Note
also that these alternative choices for ỹl(t) may even
lead to the instability of the network in some unfortu-
nate cases. This said, if a robustness analysis can be per-
formed to analyze the modification of the tracking and
disturbance rejection performance, it is certainly useful
to compare these approaches with the stealth approach
to determine which one leads to the smaller perturbation
of the network performance during the identification ex-
periment. However, the a-priori information about the
unknown dynamics (i.e. about the unknown θ0) may be
insufficient to perform this robustness analysis. This is
clearly the case when the only a-priori information we
have on the network is an initial estimate θinit,l of θ0,l

(see Section 5.1). In this case, it is our opinion that the
stealth approach has to be preferred due to its guarantee
of maintaining the network stability and its guarantee
of maintaining the tracking performance and the distur-
bance rejection performance of the network intact.

8 Conclusions

This paper extends the least costly identification ex-
periment design framework to the case of the identifica-
tion of one module in a network of locally controlled sys-
tems. The cost of the identification experiment (that is
minimized under a certain accuracy constraint) is here
defined as a function of the perturbations induced by the
excitation signal on the input and output signals of each
module. The propagation of the influence of the excita-
tion signal can be further reduced by an extension of the
stealth identification paradigm or using the alternatives
presented in Section 7.
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A Proof of Proposition 1

Let us consider the expression (15) for the individual
costs Ji(Φr, θ0) (i = 1, ..., Nmod) and introduce the fol-
lowing notations to distinguish them in the stealth (su-
perscript S) and non-stealth case (superscript NS):

JSi (Φr, θ0) = . . .

1
2π

∫ π
−π
(
|Gi(ejω, θ0,i)|2 + η

)
|Rui (ejω, θ0)|2Φr(ω) dω

(A.1)

JNSi (Φr, θ0) = . . .

1
2π

∫ π
−π
(
|Gi(ejω, θ0,i)|2 + η

)
|Ru,NSi (ejω, θ0)|2Φr(ω) dω

(A.2)

where Ru is given by (11) and Ru,NS is given by (16).
Let us now observe that, for i 6= l, we have that:

|Rui (ejω, θ0)|2Φr(ω) = . . .

. . . |Ni(ejω, θ0)|2|T0,l(e
jω)− Tinit,l(ejω)|2Φr(ω)

|Ru,NSi (ejω, θ0)|2Φr(ω) = |Ni(ejω, θ0)|2|T0,l(e
jω)|2Φr(ω)

Let us first consider the indexes i ∈ Pl and recall
Assumption 2. In this case, if Tinit,l satisfies (18)
for all frequencies ω where Φr(ω) 6= 0, we have for

all these frequencies that |Ru,NSi (ejω, θ0)|2Φr(ω) >
|Rui (ejω, θ0)|2Φr(ω). Consequently, for all i ∈ Pl, we
have that JSi (Φr, θ0) < JNSi (Φr, θ0). Finally, for the in-
dexes i 6= l, i 6∈ Pl, JSi (Φr, θ0) = JNSi (Φr, θ0) = 0 since
Ni(z, θ0) = 0 in this case.

B Covariance matrix Pθl of θ̂N,l

Since θ̂N,l is a consistent estimate and εl(t, θ0,l) =

el(t), Chapter 9 of [13] shows that θ̂N,l is (asymp-
totically) normally distributed around θ0,l and the

inverse of the covariance matrix of θ̂N,l is given

by P−1
θl

= N
σ2
el

Ēψl(t, θ0,l)ψ
T
l (t, θ0,l) with ψl(t, θl) =

−∂εl(t,θl)
∂θl

[13]. It is easy to show (see e.g. [2]) that

ψl(t, θ0,l) = Fl(z, θ0,l)ul(t) + Ll(z, θ0,l)el(t) with Fl(θl)

as defined below (20) and with Ll(θl) = H−1
l (θl)

∂Hl(θl)
∂θl

.

Replacing the expression (10) for ul into the above ex-
pression for ψl(t, θ0,l) and recalling that r, refext and ē
are mutually independent, we obtain the expression (20)
with M(θ0) = Mē(θ0) +Mrefext(θ0):

Mrefext =
N

2πσ2
el

∫ π

−π
MF (ejω, θ0,l)|Ruext,l(ejω, θ0)|2Φrefext(ω) dω

Mē =
N

2πσ2
el

∫ π

−π
Zl(ejω, θ0) Σ Z∗

l (ejω, θ0)dω

with Σ = Eē(t)ē(t)T ,Ruext,l the lth entry ofRuext, Φrefext
the spectrum of refext, and Zl(z) a matrix of transfer
functions of dimension nθl ×Nmod whose lth column is
Ll+FlS

u
ll and whose kth column (k 6= l) is equal to FlS

u
lk

(Sulk is the entry l × k of Su in (10)).

C Proof of Proposition 2

Let us introduce the following notations to distinguish
the covariance matrice Pθl(Φr, θ0) in the stealth and
non-stealth case and let us also consider the notations
introduced in (A.1)-(A.2) to distinguish the individual
costs in those two cases.

P−1
θl,S

(ΦSr , θ0) = M(θ0) + . . .

· · ·+ N
2πσ2

el

∫ π
−πMF (ejω, θ0,l)|Rul (ejω, θ0)|2ΦSr (ω) dω
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P−1
θl,NS

(ΦNSr , θ0) = M(θ0) + . . .

· · ·+ N
2πσ2

el

∫ π
−πMF (ejω, θ0,l)|Ru,NSl (ejω, θ0)|2ΦNSr (ω) dω

Using the optimal spectrum ΦNSr,opt in the non-stealth
case, let us define the following spectrum:

ΦSr (ω) =
|Ru,NSl (ejω, θ0)|2

|Rul (ejω, θ0)|2
ΦNSr,opt(ω) (C.1)

Let us note that the ratio in the right hand side of (C.1)
can neither be infinite nor zero due to Assumption 4 (in
particular, this ratio is equal to one at the frequencies ω
where Kl(e

jω) is infinite). Consequently, the spectrum
ΦSr (ω) is well defined at all frequencies ω and is equal to
zero at the same frequencies ω as ΦNSr,opt(ω) is equal to
zero.

If an excitation signal r having the spectrum ΦSr
(see (C.1)) is used during an experiment where the
stealth configuration is implemented, it is clear that the
obtained covariance matrix Pθl,S(ΦSr , θ0) will be equal
to the one obtained in the non-stealth case with ΦNSr,opt
(i.e. Pθl,NS(ΦNSr,opt, θ0)). Consequently, an experiment

with this spectrum ΦSr will satisfy the accuracy con-
straint (22). Due to (C.1), (A.1) and (A.2), we have also
that JSl (ΦSr , θ0) = JNSl (ΦNSr,opt, θ0) for the individual
cost at Node l. Moreover, for i 6= l, we have that:

|Rui (ejω, θ0)|2ΦSr (ω) = . . .

. . . |Ni(ejω, θ0)|2|T0,l(e
jω)− Tinit,l(ejω)|2ΦSr (ω)

|Ru,NSi (ejω, θ0)|2ΦNSr,opt(ω) = . . .

. . . |Ni(ejω, θ0)|2|T0,l(e
jω)|2 |Rul (ejω,θ0)|2

|Ru,NS
l

(ejω,θ0)|2
ΦSr (ω)

Consequently, due to Assumption 1, for i ∈ Pl, we have
that JSi (ΦSr , θ0) < JNSi (ΦNSr,opt, θ0) if Tinit,l satisfies (23)

for all frequencies ω where ΦSr (ω) 6= 0 (and thus for all
frequencies ω where ΦNSr,opt(ω) 6= 0). Moreover, for i 6= l

and i 6∈ Pl, we have that JSi (ΦSr , θ0) = JNSi (ΦNSr,opt, θ0) =
0. Since J is the sum of the individual costs Ji (see Sec-
tion 3.2), we have thus shown that, in the stealth case,
we can find a spectrum ΦSr leading to the same accuracy
as with ΦNSr,opt, but with a strictly smaller cost. The re-
sult of the proposition is therefore proven since, by def-
inition, JS(ΦSr , θ0) ≥ JS(ΦSr,opt, θ0)
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