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Abstract

In this paper, the contact problem between a cylinder and a half-space with a

crystalline anisotropic behavior is solved. The model is based on semi-analytical

methods to solve a three dimensional contact problem. A numerical technique

based on a Voronoi tessellation is implemented using the Eshelby’s equivalent

inclusion method to account for the effect of the material microstructure on the

contact pressure distribution and subsurface stresses. Fast Fourier Transforms

(3D and 2D) are used to reduce the computation cost of the simulations. An

application of this method to compute the scatter in fatigue life of rolling ele-

ment bearings is also presented. Three different critical stresses are used in the

Lundberg-Palmgren equation and results are compared in term of Weibull plot

slope.

Keywords: Contact Mechanics, Semi-Analytical Methods (SAM), Voronoi

tessellation, Rolling Contact Fatigue (RCF), Eshelby’s Equivalent Inclusion

Method (EIM), Inhomogeneity, Eigenstrain

1. Introduction

Life of rolling element bearings, used to transmit load between machine

components, is mainly limited by a phenomenon called rolling contact fatigue
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(RCF) [1]. The main differences between classical fatigue and RCF are the

multiaxial state of stress and the moving load during the rolling cycles.5

RCF results in two main kind of failure : Surface originated failure called

pitting and subsurface originated failure called spalling [2, 3]. Moreover, subsur-

face cracks have been found to initiate at a depth corresponding to the region

of the maximum shear stress reversal [4, 5].

Based on the work of Weibull [6], Lundberg and Palmgren [7] proposed one10

of the first theories to estimate bearing life. This theory is based on the assump-

tion that the most probable event leading to the bearing failure is subsurface

crack initiation mainly due to the presence of a weak point in a volume of mate-

rial. They hypothesized that the shear stress reversal coming from the contact

loading is the main factor of bearing failure. The weak points are assumed to15

be randomly distributed in the material and the probability of survival of the

volume was experimentally found to follow a Weibull distribution [5].

For a bearing under repeated rolling contact loading, the probability of sur-

vival S is expressed in the following equation:

ln

(
1

S

)
= A

Neτ cV

zh
(1)

With N the number of repeated loading cycles, τ the maximum value of the20

shear stress reversal over the stressed volume V and z the corresponding depth.

The Weibull slope e, c and h are material dependent parameters and A is an

empirical constant.

Modifications of the Lundberg-Palmgren equation have been proposed by

several authors in the literature [8–12]. In all these models, the critical stress25

and its depth are supposed constant to determine the bearing life. But several

authors [13, 14] found that, under the same experimental conditions, cracks

appear at different depths. The microstructure of steel used in roller bearings,

like AISI 52100, is composed of an aggregate of grains (of Ferrite, Austenite,

Martensite etc.). The polycrystalline microstructure of 52100 steel can be ob-30

served on a fracture surface in Fig. 1. It is important to note that fracture seems
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Figure 1: Fracture surface of AISI 52100 steel austenized at 800◦ [16].

to happen at the grain boundaries [5]. These phenomena can not be taken into

account in numerical simulations when considering materials as homogeneous.

Raje et al. [15] proposed an opposite viewpoint by considering that the

variation in the critical stress and depth due to the material microstructure are35

responsible for the dispersion in bearing life. Instead of assuming a Weibull

distribution, they simulated randomly generated microstructure topology using

a Voronoi tessellation. Moreover, simulating a large number of microstructures

allows to reproduce scatter in rolling bearing life. In Raje et al. [15] formulation,

the probability of survival and the bearing geometry are considered constant40

allowing to write a modified bearing life equation:

N ∝ zr

τ q
(2)

with r = 2.33 and q = 10.33 as in Lundberg-Palmgren theory.

The Voronoi tessellation method allows to accurately simulate crystalline

material microstructure [17] and has been extensively used to account for mi-

crostructure typology randomness in materials for computational homogeniza-45

tion [18, 19]. Raje et al. [20] applied the Voronoi tessellation to rolling contact

fatigue life scatter using the finite element method. This model was later ex-

tended to 3D simulation [21], crystal elasticity in 2D [22] and in 3D [23]. More-

over, Paulson et al. [24] coupled the FE Voronoi model with an EHL contact

resolution. The same method has been applied to fretting contact [25–27] and50
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coupled with damage model for fretting fatigue [28] and fretting wear [29, 30].

The same approach with multigrid methods based on the work of Brandt [31]

and using finite difference technique has been applied for heterogenenous ma-

terials by Boffy et al. [32, 33]. Recently, Vijay et al. [34] coupled a cohesive

elements Voronoi model with a damage model to compute both the initiation55

and propagation life of bearings. Ghodrati et al. [35] also presented an ap-

proach with cohesive elements and using a crystal plasticity model. Singh et al.

[36] applied the same method to determine the effect of surface roughness on

tension fatigue. A similar technique have been used to simulate the influence of

microstructure and inclusions in gears [37, 38] and in nitrided mechanical parts60

[39].

Fast and accurate computation of 3D heterogeneous contact problem with

a moving load has been allowed through the recent progresses in the develop-

ment of semi-analytical methods by Nelias and co-workers [40–46] and by the

group of Prof. Wang at Northwestern [47, 48]. The Eshelby’s formalism has65

also been implemented to allow the modeling of heterogeneous materials [49–57].

Moreover, the method has been extended to heterogeneous viscoelastic behav-

ior [56, 58] and heterogeneous elastoplastic behavior [59, 60]. Applications to

impact [61, 62], repeated rolling [43, 48, 63], and anisotropic homogeneous or

layered materials [64–66] have been also proposed.70

Recently, development of solutions for thermal inclusion [67] and application

to functionally graded thin film [68] and imperfect interface conditions [69] have

been presented. A method to take into account damage occurring during fretting

and butterfly wings formation around inclusion can be found in [70, 71]. Some

application to lubricated contact for rough contact have been proposed in [72]75

and a coupled heterogeneous EHL solver in [73–75].

The purpose of the present work is to use a voxel technique to model the

microstructure of steels generated by a Voronoi tessellation with the semi-

analytical method. Grains are discretized in multiple cuboidal inclusions with

cubic elastic properties. Eigenstrains of those multiple cuboidal inclusions are80

generating a disturbance stress field called eigenstress. Effect of eingenstresses
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close to the top surface on the pressure distribution has been highlighted in [54].

A similar enrichment technique has been proposed and validated in [56, 57, 70,

71]. Rolling contact simulations have been performed and scatter in fatigue life

is estimated. The emphasis is put on the effect of local stress gradient appearing85

at grain boundaries on the scatter of the maximum critical stress depth. The

main difference with the models in the literature [15, 21, 23] is the coupling

between the contact problem and the heterogeneous material model.

2. Theoretical Background and model description

2.1. Contribution of subsurface problem in the contact resolution90

The three-dimensional contact solution depends on the contact load, the

contacting bodies geometry and on the contacting bodies subsurface behavior.

Thus, the presence of heterogeneous inclusions inside the material is modify-

ing the contact solution and can be taken into account by using the Eshelby’s

equivalent inclusion formalism as presented in [40, 54, 55, 57, 59, 70]. The dis-95

turbed stress field due to the presence of inclusions inside the material can be

converted into eigen-displacements u∗z induced by these inhomogeneities in the

surface separation equation (Eq. (3)) :

h(x, y) = hi(x, y) + δ + uz(x, y) + u∗z(x, y) (3)

The following section presents the Eshelby’s equivalent inclusion framework

and its application to the calculation of Eshelby’s eigenstrain ε∗ and the corre-100

sponding eigendisplacements u∗z in the case of an elastic half-space containing

elastic inhomogeneities. The different steps leading to the computation of the

effect of the presence of multiple inclusions inside one of the contacting body

have already been presented in [70, 71] and are briefly recalled in Section 2.2.

2.2. Eshelby’s equivalent inclusion method in Contact Mechanics105

According to Eshelby’s framework, an infinite body having an heterogeneity

called Ω with elastic properties CI
ijkl is equivalent to an homogeneous body
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with an homogeneous inclusion having the elastic properties of the matrix CM
ijkl

but subjected to some misfit strains called eigenstrains (ε∗). Those eigenstrains

come from the incompatibility of strains between the two different bodies when110

an external load is applied. Applying the Eshelby’s equivalent inclusion method

to an elastic isotropic material is giving the consistency equation:

CI
ijkl(ε

0
kl + εkl) = CM

ijkl(ε
0
kl + εkl − ε∗kl) in Ω (4)

Eshelby’s solution has been extended to multiple interacting inclusions by

Moschovidis and Mura [76] and have already been solved by several authors

[51, 52, 54, 70, 71] using a conjugate gradient algorithm (CGM) to take into115

account for the mutual influence between close inclusions.

Eshelby’s inclusion method (EIM) has been developped under the assump-

tion of an infinite space. But EIM can be also be applied to an half-space

problem by using Chiu’s decomposition as proposed by Jacq et al. [40] and

later Zhou et al. [49].120

In order to determine the stress fields caused by the presence of inhomo-

geneities, the computational domain is meshed into nx × ny × nz cuboids. The

stress field is related to the eigenstrains through the equation 5 using the influ-

ence coefficients Bijkl and Mij that can be found in Appendix B.

σij(x, y, z) =

nx−1∑
xI=0

ny−1∑
yI=0

nz−1∑
zI=0

Bijkl(x− xI , y − yI , z − zI)ε∗kl(x
I , yI , zI)

+

nz−1∑
zI=0

ny−1∑
yI=0

nx−1∑
xI=0

Bijkl(x− xI , y − yI , z + zI)ε∗skl(x
I , yI ,−zI)

−
ny−1∑
yI=0

nx−1∑
xI=0

Mij(x− xI , y − yI , z)σn(xI , yI , 0)

(5)

The computation of the stress field can be accelerated using numerical tech-125

nique (3D-FFT and 2D-FFT) as proposed by [77, 78].

The stress field σn generated at the free surface by the presence of het-
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erogeneities is modifying the normal displacement at the free surface of the

half-space. Using Kn, the influence coefficients relating the normal pressure to

the normal displacement of a rectangular area (see Appendix C), one can find130

the normal eigen-displacement of the half-space free surface:

u∗z(x, y) =

ny−1∑
y′=0

nx−1∑
x′=0

Kn(x− x′, y − y′)σn(x′, y′) (6)

Chiu [79] extended Eshelby’s work for ellipsoidal geometry to cuboidal inclu-

sions. The present work is using multiple cuboidal inclusions in the half-space

as an enrichment technique as already used by the authors in [70, 71].

The proposed heterogeneous semi-analytical contact solver is presented in135

Fig. 2. The initial conditions are defined by the two contacting bodies geom-

etry and material properties. The loading conditions are imposed through a

defined load or displacement. The contact pressure and stress field is found

using a conjugate gradient algorithm. The elastic stress field is used as an input

to solve Eshelby’s equivalent inclusion method and find the eingenstrains. The140

corresponding eigen-displacements are modifying the contact geometry and the

elastic contact solution needs to be updated. This loop is repeated until con-

vergence is obtained on the eigen-displacements.
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Normal Contact Tangential Contact

Elastic Contact

Figure 2: Flow chart for processing the semi-analytical model for elastic contact in presence

of inclusions.

3. Modeling polycrystalline anisotropy with SAM

3.1. Voronoi tessellation145

The Voronoi tessellation is a numerical technique to divide a continuous

space into regions following some principles detailed in Okabe and Boots [80]

and recalled here:
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Figure 3: The Voronoi tessellation process: space partition from a 2D seed distribution.

• a set of not coinciding seed points γ = {p1, p2, ..., pn} are randomly placed

in a three dimensional volume V ∈ R3.150

• The volume V is divided into regions V{pi}, volume of influence associated

with a seed point pi. Each region is composed of every point closer (using

euclidian distance) to the seed point pi than to any other seed points of

γ. This condition can be expressed for each point x ∈ V :

V{pi} = {d(pi, x) ≤ d(pj , x), j ∈ [1, n] ,∀x ∈ V } (7)

• Grain boundaries are the planes formed by the points equidistant from two155

seed points. Therefore Voronoi cells are convex close polyhedra covering

the entire volume V and forming the Voronoi diagram.

The distribution of seed points in the volume allows to capture the random-

ness in the microstructure topology. Moreover, the density of seed points and

their distribution is controlling the average grain size and shapes. A Poisson160

process is often used to place the seed points because of its ability to accurately

reproduce polycrystalline microstructures [21].

The representation of microstructure is limited to the volume where the gra-

dient of stresses from the contact is significant regarding the characteristic length
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Figure 4: Example of a 3D Voronoi tessellation

of the microstructure. The grain diameter is an input of the algorithm to place165

the seed points of the Voronoi diagram and using the MATLAB’s Voronoi algo-

rithm based on the software QHULL [81]. All the Voronoi diagrams presented

in this paper have been generated using a MATLAB’s algorithm developed at

the METL laboratory of Purdue University.

3.2. Mesh building170

In finite element approach, the mesh of the Voronoi diagram is often un-

structured and divides Voronoi cells into tetrahedral elements to obtain a fine

discretization of the grain boundaries [23]. Another technique consists in using

a structured mesh with cubic elements (also called voxel) [26, 27]. Due to the
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Figure 5: Voxelization of the Voronoi tessellation

discretization used in the semi-analytical solver, this kind of method is chosen175

here.

The discretization grid of the semi analytical solver is superimposed on the

Voronoi diagram (see Fig. 5). Each grid point is then labelled with the Voronoi

cell it belongs to. The labelization process is done from the calculation of the

minimum distance between the point of the grid and one of the seed points.180

This process is creating a cubic volume with smooth surfaces at the edges and

with each grid point assigned to only one Voronoi cell.

3.3. Polycrystalline anisotropy

Most of the microstructure models in the literature are simulating isotropic

materials but on the microstructural scale, steel is made of randomly oriented185

anisotropic crystal grains. If the loading conditions allow to consider the macroscale

response of the material, then the local anisotropy of the grains is resulting in

an isotropic global material behavior and stiffness. But considering the high

stress gradient in contact loading, the grain orientation needs to be taken into

account. A cubic anisotropy model is adopted here to simulate the crystalline190

elasticity of the material as in Vijay et al. [23]. A single crystal structure is

assumed here for sake of simplicity and each grain has the same elastic stiffness

constants as recalled in Eq. (8). Each grain has the same stiffness in its local
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coordinate system but the macroscopic response of the material is evaluated in

the global cartesian reference frame. It is then necessary to rotate the local195

grain stiffness matrix Clocal into the reference frame Creference following Eq.

(9). Thus, the stiffness of each grain produces different values in the reference

frame.



σ11

σ22

σ33

σ23

σ31

σ12


=



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44





ε11

ε22

ε33

2ε23

2ε31

2ε12


(8)

Creference = RZ′′RX′RZClocalR
T
ZR

T
X′RT

Z′′ (9)

In the simulation, random Euler angles are assigned to each cell of the

Voronoi diagram. The regular grid is superimposed on the Voronoi diagram200

and each point of the discretization grid is assigned to a Voronoi cell (see sec-

tion 3.2). Therefore each grain is discretized in small cuboid. One should note

that multiple cuboids are representing a grain (see Fig. 5). Each grain is filled

with small cuboidal inclusions having the same size than the discretization size.

All the inclusions inside one single grain have the same cubic elastic properties205

but rotated accordingly with the assigned angles of the grain. Thus all the

inclusions belonging to a specific grain have the same rotation angles. A flow

chart summing up the creation of the polycrystalline domain is presented in Fig.

6.

Vitos et al. [82] determined cubic material constant for stainless steel from210

quantum mechanical calculations and his results are used in the simulations (see

Table 1).

A measure of anisotropy is defined through the parameter A [22] and is
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Figure 6: Flow chart for creating a Voronoi tessellation in the semi-analytical model.

Table 1: Cubic elasticity constants for steel [82]

Elastic Constants (GPa)

C11 204.6

C12 137.7

C44 126.2

calculated to be 3.78 here:

A =
2C44

C11 − C12
(10)

In Fig. 7, the Voronoi diagram is voxelized and random Euler angles are215

assigned to each grain. It should be noted that this method is also able to

simulate textured alloys by giving a principal orientation for every grain of the

material.

3.4. Contact stress field in polycrystalline materials220

3.4.1. Description of the parameters of the simulation

In this section the rolling contact between a rigid cylinder of radius R = 2.78

mm and an heterogeneous half-space is considered. The applied normal load

is W = 25.5 N and is moving from X = −b to X = +b in 21 increments of

distance δX = 0.1b. With a Young’s modulus E0 = 200 GPa and a Poisson225

ratio ν0 = 0.3, the contact half width b is equal to 0.05 mm in the X-direction
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Figure 7: Voxelization of the domain accordingly to the Voronoi tessellation. Amplitudes

correspond to the sum of the Euler angles.

and the maximum pressure P0 is equal to 2 GPa. In this part, the effect of

friction was neglected.

One should note that the problem solved here is 3D. The cylinder length in

the Y-direction is chosen to be larger than 3b and the computation volume is230

restricted to a size of 2b in this direction in order to avoid any side effect from

the cylinder geometry.

In order to represent the crystalline microstructure of the material, a Voronoi

tesselation is realized following the steps described in Fig. 6. The average grain

size in the Voronoi tessellation is around 10 µm [83]. The half-space is then235

filled with cubic elastic inclusions having the same size as the discretization size

(Fig. 8). The microstructure volume is created with smooth free surfaces and

no roughness is defined at the interface between the two contacting bodies.
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-a*

Figure 8: 3D view of a cylinder rolling on a elastic half-space with multiple cuboidal inclusions

superposition.

Note that the computation being elastic and without friction, only the ran-

domly oriented microstructure has an influence on the results. The microstruc-240

ture is made of around 600 000 inclusions. The half-space is discretized in

225 × 115 × 59 computation points such that the space between each points is

2∆x = 2∆y = 2∆z = 0.04b. The proposed method allows to compute a rolling

cycle in around 10 hours with 8 processors at 2.40 GHz and 8 GB RAM. The

loading and material parameters used in this section are consistent with the245

ones from Vijay et al. [23]. The elastic constants of the inclusions are chosen

to represent the same steel.

3.4.2. Stress field and contact pressure in the anisotropic domain

The stress field under the contact is strongly affected by the mismatch in the

orientation of the cubic structure. The microstructure affects the depth and the250

amplitude of the maximum stress in the material during a loading cycle. The von

Mises stress in the plane y = 0 is plotted in Fig. 9b and shows the stress rising

effect of inclusion mismatch. The von Mises stress in the anisotropic and in the

isotropic domain is plotted along the depth (z > 0) in (x = 0; y = 0). The von

Mises stress amplitude in the anisotropic domain is locally higher than the one255

in the isotropic domain. The effect of the microstructure can also be observed
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on the contact pressure in Fig. 10. The presence of local eigenstresses below

the surface is modifiying the surface separation equation (Eq. 3) as explained

in section 2.2. Theses changes in the surface geometry result in modifications

of the contact pressure distribution. One may note that the maximum pressure260

is lower in the anisotropic domain than in the isotropic domain and the area

of contact is larger in order to conserve the load equilibrium. This may come

from the material orientation of the inclusions at the contact surface. The

main difference with the work of Vijay et al. [23] is the coupling between the

contact solution and the heterogeneous material solver. Vijay et al. [23] used an265

unstructured meshing of the 3D Voronoi cells and a four point Gauss quadrature

scheme. Their Voronoi diagramm is 4b long in every direction and the model

was solved using the commercial sofware Abaqus. In Vijay et al. [23], the

contact pressure is imposed and assumed Hertzian. In the present results, and

with the same imposed normal load, the contact pressure is influenced by the270

microstructure resulting in a larger contact area and a lower maximum pressure.

This larger distribution of pressure on the surface is responsible for a slightly

lower stress distribution in the subsurface (see Fig. 9) than what can be observed

in Vijay et al. [23]. Finally, the results in Fig. 9 show that the maximum von

Mises stress in the anisotropic domain is resulting from the mismatch between275

the orientation of two grains but is not strongly affecting the contact pressure

if it is localized far enough from the top surface.

3.5. Application to fatigue life of rolling bearings

Fatigue is a process of damage accumulation manifesting through decreasing280

material properties in the solid. It can be decomposed in three steps: initiation

of cracks, propagation of the cracks and final rupture of the material. Each

step is acting at different speeds depending on the material. The present work

is focusing on the initiation of cracks because it is particularly affected by the

random distribution of material properties and defects inside the material mi-285

crostructure [84]. The difference in elastic properties between the crystal acts
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as a stress riser in solid and in particular at the grain boundaries [85]. The

previous microstructure model is used to predict the location of crack initiation

in the material and its fatigue life under contact loading.

3.5.1. Life scatter in rolling element bearings due to microstructure290

The critical stress and the corresponding depth are the variable parameters

from Eq. 2 that need to be determined in order to calculate the bearing life.

Several microstructure simulations are giving life predictions and allow to deter-

mine the Weibull slope parameter e. The same approach has already been used

with 2D [22, 86] and 3D [23, 87] finite element models. The same method has295

also been applied to the study of plasticity in rolling contact [88, 89], fretting

[29] and formation of butterfly wings [90].

3.5.2. Critical stress computation

As in Vijay et al. [23], numerical simulations have been performed on 30

crystalline domains in order to guarantee a good accuracy in the Weibull distri-300

bution [91]. The Voronoi tessellation is the same in every domain and only the

18



orientation angles of each crystal are changing. Effect of material orientation

on the RCF life scatter is analyzed with three different critical stresses: max-

imum shear stress reversal, maximum Tresca stress and maximum von Mises

stress. Amplitude and depth of the maximum critical stress in every domain305

are compared with the results obtained with an isotropic domain. Results for

the maximum shear stress reversal are presented in Fig. 11, for the maximum

Tresca stress in Fig. 12 and for the maximum von Mises stress in Fig. 13. For

every simulation, the maximum critical stress amplitude found is higher in the

anisotropic domain than in the isotropic domain while the corresponding depth310

is varying around the reference homogeneous isotropic domain value. The mean

amplitude of the shear stress reversal is found to be 0.658P0 and their depth

locations are found to vary between 0.36b and 0.68b. The mean amplitude of

the maximum Tresca stress is evaluated at 0.475P0 and their depth locations

are found to vary between 0.52b and 1.04b. Finally, the mean amplitude of the315

maximum von Mises stress is found to be 0.849P0 and their depth locations are

found to vary between 0.56b and 1.04b. For all three critical stresses, results

presented here are showing a scatter in the localization of the critical stress

between the different anisotropic domains.

3.5.3. Fatigue criterion320

According to Raje et al. [15] hypothesis, it is the variation in magnitude

and depth of the critical stress that is responsible for the scatter in bearing life.

The scatter in the results obtained with 30 different material microstructures

is used to create a Weibull plot of the probability of failure. One should note

that no Weibull distribution of the fatigue lives is explicitly assumed here. 2325

and 3 parameters Weibull plots are realized with the three different critical

stresses and are presented in Figs. 14, 15 and 16. The corresponding Weibull

slopes and scale parameters can be found in Table 2. The slope of the Weibull

plot is giving information about the scatter of the estimated fatigue life (the

lower the Weibull slope, the higher is the scatter in the fatigue life) while the330

scale parameter is giving information about the distribution of the probability
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Figure 11: (a) Variation of magnitude in the maximum shear stress reversal (b) Variation of

the corresponding depth in the 30 anisotropic domains.
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Figure 12: (a) Variation of magnitude in the maximum Tresca stress (b) Variation of the

corresponding depth in the 30 anisotropic domains.
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Figure 13: (a) Variation of magnitude in the maximum von Mises stress (b) Variation of the

corresponding depth in the 30 anisotropic domains.

density over time, representing the characteristic life. One can observe that the

maximum shear stress is showing the higher slope resulting in a lower scatter

than the two other critical stresses. The scale paramater associated with the

maximum shear stress is also the lower. The slope of the different Weibull335

parameters are in the same range. The scale parameter of the maximum Tresca

stress is much larger than the scale associated with the two other critical stresses

meaning that the estimated life is higher. It is in good agreement with the fact

that the mean maximum Tresca stress was found lower than the two other

mean critical stresses (see section 3.5.2). Also a vertical distribution of points340

at the beginning of the Weibull plot as shown in Fig. 15 is giving an indication

about a possible minimum fatigue life. Therefore, the numerical data seems to

better fit with the 3-Parameters Weibull plot. One should recall that no Weibull

distribution was assumed here. The results of the simulations are plotted and

fitted with a Weibull plot. These results are confirming the influence of the345

material microstructure in the life scatter of parts under RCF loading.
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Figure 14: 2 and 3 parameters Weibull plots superimposed on the data from the model for

the maximum shear stress reversal criterion.

Table 2: Weibull slopes and scales for different stress criteria.

Stress Criterion Parameter 2-Param. Weibull plot 3-Param. Weibull plot

∆τxz
Slope 6.5587 2.2899

Scale 0.8188 1.6255

τTresca

Slope 2.4998 1.3268

Scale 1.15× 103 3.0× 103

τVM

Slope 2.4039 1.5534

Scale 3.5349 6.6421

3.5.4. Comparison with Weibull slope parameters from finite element simula-

tions

The Weibull slopes obtained with our results are compared with the Weibull

slopes found in the literature in Table 3. The presented results are in the same350
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Figure 15: 2 and 3 parameters Weibull plots superimposed on the data from the model for

the maximum Tresca stress criterion.

range than the results obtained with finite element models for isotropic and

anisotropic materials. The slopes presented here are lower than the ones found

by Raje et al. [15] and Weinzapfel et al. [87] who only studied the effect of

the microstructure topology without taking into account the effect of material

orientation in the grains. The scatter due to the variation in both the topology355

and the grain orientations have been modeled in 2D by Paulson et al. [22]

and in 3D by Vijay et al. [23]. Their results are logically showing an higher

scatter. The results presented in Table 2 are in good agreement with the slopes

found experimentally by Lundberg and Palmgren [7] and with a finite element

approach by Vijay et al.[23]. Using the maximum shear stress reversal, Weibull360

slopes obtained with the semi-analytical solver exhibit a higher slope than the

one found with finite element by Vijay et al. [23]. One reason is that the

voxelization of the microstructure doesn’t allow to accurately reproduce the

smooth grain boundaries [92]. Moreover, the computational discretization of

the semi-analytical solver is only able to compute the stress field on a regular365
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Figure 16: 2 and 3 parameters Weibull plots superimposed on the data from the model for

the maximum von Mises stress criterion.

grid of Gaussian points while the finite element model allow to mesh the grains

to compute the shear stress reversal on the geometric grain boundary. This

difference can be observed in the lower amplitude of the shear stress reversal in

Fig. 11a than in Vijay et al. [23].

Furthermore, the coupling between the contact problem and the subsurface370

problem is also affecting the results in the present work. Finally, the methodol-

ogy presented here is showing the ability of the semi-analytical solver to capture

the life scatter in rolling contact fatigue.

4. Conclusion

A numerical method has been proposed to model the effect of crystalline375

anisotropy in the rolling contact problem between a rigid cylinder and an het-

erogeneous half-space. A three dimensional heterogeneous elastic contact solver

is used based on the Eshelby’s equivalent inclusion method. A method of space
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Table 3: Weibull slopes from models in literature.

Authors Weibull Slope

Lundberg-Palmgren [7] 1.125

Raje et al. [15] 3.36

Paulson et al. [22] 1.18

Weinzapfel et al. [87] 4.55

Vijay et al. [23] 0.95

partition based on the voxelization of a Voronoi tesselation of the half-space is

proposed. The half-space is then filled with multiple cuboidal inclusions having380

the same cubic elastic properties but random material orientations. The model

allow to take into account the microstructure of the material on the contact

pressure distribution and the subsurface stress fields during repeated rolling cy-

cles. The main advantage of this method is the coupled resolution of both the

contact problem and the heterogeneous subsurface problem. One of the limi-385

tation of the method is the non smooth representation of grain boundaries due

to the voxelization technique. It can lead to some numerical stress gradients

[92]. The proposed model is applied to investigate the scatter in fatigue life of

rolling elements bearings and compared to results obtained with Finite Elements

simulations.390
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Appendix A. Stress in a half-space due to a concentrated unit normal

force at the surface origin(Fij)

F11(x, y, z) =
1

2π

[
1− 2ν

r2
(1− z

ρ
)
x2 − y2

r2
+
zy2

ρ3
− 3zx2

ρ5

]
,

F22(x, y, z) = F11(y, x, z),

F33(x, y, z) = − 3

2π

z3

ρ5
,

F12(x, y, z) =
1

2π

[
1− 2ν

r2
(1− z

ρ
)
xy

r2
+
zyx

ρ3
− 3zyx

ρ5

]
,

F13(x, y, z) = − 3

2π

xz2

ρ5
,

F23(x, y, z) = F12(y, x, z),

where

r2 = x2 + y2, ρ =
√
x2 + y2 + z2,

with ν, the Poisson’s ratio of the isotropic half-space.670

Appendix B. Stresses in a half-space subject to normal pressure (Mij)

An isotropic half-space is submitted a uniform normal pressure σn in a dis-

cretized surface area of 2∆x × 2∆y at the center point P (x′, y′, 0). The stress

at an observation point Q(x, y, z) is given in [49] and [93]:

σij(x, y, z) = Mij(x− x′, y − y′, z)σn(x, y)

σij(x, y, z) =
σn

2π
[hij(ξ1 + ∆x, ξ2 + ∆y, ξ3)− hij(ξ1 + ∆x, ξ2 −∆y, ξ3)

+ hij(ξ1 −∆x, ξ2 −∆y, ξ3)− hij(ξ1 −∆x, ξ2 + ∆y, ξ3)]
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where

ξ1 = x− x′.ξ2 = y − y′.ξ3 = z − z′.

The functions hij() in Eq.(B1) are defined by

h11(x, y, z) = 2ν tan−1
y2 + z2 − ρy

xz
+ 2(1− ν) tan−1

ρ− y + z

x
+

xyz

ρ(x2 + z2)
,

h22(x, y, z) = h11(y, x, z),

h33(x, y, z) = tan−1
y2 + z2 − ρy

xz
− xyz

ρ

(
1

x2 + z2
+

1

y2 + z2

)
,

h12(x, y, z) = −z
ρ
− (1− 2ν) log(ρ+ z),

h13(x, y, z) = − yz2

ρ(x3 + z2)
,

h23(x, y, z) = h13(y, x, z),

where

rho =
√
x2 + y2 + z2.

Appendix C. Normal displacement at the surface subject to normal675

pressure (Kn)

The contact between a sphere and an elastic half-space having respectively

elastic constants (E1, ν1) and (E2, ν2), where the surface z = 0 is discretized into

rectangular surface area of 2∆1 × 2∆2, is now considered. The initial contact

point coincides with the origin of the Cartesian coordinate system ((x, y, z).680

The relationship between the normal displacement at an observation point

P (ξ1, ξ2, 0) and the pressure field at the center Q(ξ′1, ξ
′
2, 0) is built using the

function Kn.

Kn(c1, c2) =

[
1− ν21
πE1

+
1− ν22
πE2

] 4∑
p=1

Kn
p (c1, c2),

Kn
1 (c1, c2) = (c1 + ∆1) log

(
(c2 + ∆2) +

√
(c2 + ∆2)2 + (c1 + ∆1)2

(c2 −∆2) +
√

(c2 −∆2)2 + (c1 + ∆1)2

)
,
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Kn
2 (c1, c2) = (c2 + ∆2) log

(
(c1 + ∆1) +

√
(c2 + ∆2)2 + (c1 + ∆1)2

(c1 −∆1) +
√

(c2 + ∆2)2 + (c1 −∆1)2

)
,

Kn
3 (c1, c2) = (c1 −∆1) log

(
(c2 −∆2) +

√
(c2 −∆2)2 + (c1 −∆1)2

(c2 + ∆2) +
√

(c2 + ∆2)2 + (c1 −∆1)2

)
,

Kn
4 (c1, c2) = (c2 −∆2) log

(
(c1 −∆1) +

√
(c2 −∆2)2 + (c1 −∆1)2

(c1 + ∆1) +
√

(c2 −∆2)2 + (c1 + ∆1)2

)
,

where

c1 = ξ1 − ξ′1 and c2 = ξ2 − ξ′2
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