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In this paper, the contact problem between a cylinder and a half-space with a crystalline anisotropic behavior is solved. The model is based on semi-analytical methods to solve a three dimensional contact problem. A numerical technique based on a Voronoi tessellation is implemented using the Eshelby's equivalent inclusion method to account for the effect of the material microstructure on the contact pressure distribution and subsurface stresses. Fast Fourier Transforms (3D and 2D) are used to reduce the computation cost of the simulations. An application of this method to compute the scatter in fatigue life of rolling element bearings is also presented. Three different critical stresses are used in the Lundberg-Palmgren equation and results are compared in term of Weibull plot slope.

Introduction

Life of rolling element bearings, used to transmit load between machine components, is mainly limited by a phenomenon called rolling contact fatigue 1 corresponding author, daniel.nelias@insa-lyon.fr (RCF) [START_REF] Harris | Rolling bearing analysis[END_REF]. The main differences between classical fatigue and RCF are the multiaxial state of stress and the moving load during the rolling cycles.

RCF results in two main kind of failure : Surface originated failure called pitting and subsurface originated failure called spalling [START_REF] Littmann | Propagation of contact fatigue from surface and subsurface origins[END_REF][START_REF] Nelias | Role of inclusions, surface roughness and operating conditions on rolling contact fatigue[END_REF]. Moreover, subsurface cracks have been found to initiate at a depth corresponding to the region of the maximum shear stress reversal [START_REF] Nelias | Experimental and theoretical investigation on rolling contact fatigue of 52100 and M50 steels under EHL or micro-EHL conditions[END_REF][START_REF] Sadeghi | A review of rolling contact fatigue[END_REF].

Based on the work of Weibull [START_REF] Weibull | A statistical theory of the strength of materials[END_REF], Lundberg and Palmgren [START_REF] Lundberg | Dynamic capacity of rolling bearings[END_REF] proposed one of the first theories to estimate bearing life. This theory is based on the assumption that the most probable event leading to the bearing failure is subsurface crack initiation mainly due to the presence of a weak point in a volume of material. They hypothesized that the shear stress reversal coming from the contact loading is the main factor of bearing failure. The weak points are assumed to be randomly distributed in the material and the probability of survival of the volume was experimentally found to follow a Weibull distribution [START_REF] Sadeghi | A review of rolling contact fatigue[END_REF].

For a bearing under repeated rolling contact loading, the probability of survival S is expressed in the following equation:

ln 1 S = A N e τ c V z h (1) 
With N the number of repeated loading cycles, τ the maximum value of the shear stress reversal over the stressed volume V and z the corresponding depth.

The Weibull slope e, c and h are material dependent parameters and A is an empirical constant.

Modifications of the Lundberg-Palmgren equation have been proposed by several authors in the literature [START_REF] Zhou | Surface topography and fatigue life of rolling contact bearings[END_REF][START_REF] Zaretsky | Design for life, plan for death[END_REF][START_REF] Cheng | Semi-analytical modeling of crack initiation dominant contact fatigue for roller bearings[END_REF][START_REF] Harris | Lundberg-palmgren fatigue theory: Considerations of failure stress and stressed volume[END_REF][START_REF] Morales-Espejel | A model for gear life with surface and subsurface survival: Tribological effects[END_REF]. In all these models, the critical stress and its depth are supposed constant to determine the bearing life. But several authors [START_REF] Chen | Study on initiation and propagation angles of sub-surface cracks in GCr15 bearing steel under rolling contact[END_REF][START_REF] Yoshioka | Detection of rolling contact sub-surface fatigue cracks using acoustic emission technique[END_REF] found that, under the same experimental conditions, cracks appear at different depths. The microstructure of steel used in roller bearings, like AISI 52100, is composed of an aggregate of grains (of Ferrite, Austenite, Martensite etc.). The polycrystalline microstructure of 52100 steel can be observed on a fracture surface in Fig. 1. It is important to note that fracture seems to happen at the grain boundaries [START_REF] Sadeghi | A review of rolling contact fatigue[END_REF]. These phenomena can not be taken into account in numerical simulations when considering materials as homogeneous.

Raje et al. [START_REF] Raje | A statistical damage mechanics model for subsurface initiatied spalling in rolling contacts[END_REF] proposed an opposite viewpoint by considering that the variation in the critical stress and depth due to the material microstructure are responsible for the dispersion in bearing life. Instead of assuming a Weibull distribution, they simulated randomly generated microstructure topology using a Voronoi tessellation. Moreover, simulating a large number of microstructures allows to reproduce scatter in rolling bearing life. In Raje et al. [START_REF] Raje | A statistical damage mechanics model for subsurface initiatied spalling in rolling contacts[END_REF] formulation, the probability of survival and the bearing geometry are considered constant allowing to write a modified bearing life equation:

N ∝ z r τ q (2) 
with r = 2.33 and q = 10.33 as in Lundberg-Palmgren theory.

The Voronoi tessellation method allows to accurately simulate crystalline material microstructure [START_REF] Ito | Computer modelling of anisotropic grain microstructure in two dimensions[END_REF] and has been extensively used to account for microstructure typology randomness in materials for computational homogenization [START_REF] Kumar | Simulation of material microstructure using a 3D voronoi tessellation: Calculation of effective thermal expansion coefficient of polycrystalline materials[END_REF][START_REF] Nygårds | Three-dimensional periodic voronoi grain models and micromechanical fe-simulations of a two-phase steel[END_REF]. Raje et al. [START_REF] Raje | A numerical model for life scatter in rolling element bearings[END_REF] applied the Voronoi tessellation to rolling contact fatigue life scatter using the finite element method. This model was later extended to 3D simulation [START_REF] Weinzapfel | An approach for modeling material grain structure in investigations of hertzian subsurface stresses and rolling contact fatigue[END_REF], crystal elasticity in 2D [START_REF] Paulson | Effects of crystal elasticity on rolling contact fatigue[END_REF] and in 3D [START_REF] Vijay | A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[END_REF]. Moreover, Paulson et al. [START_REF] Paulson | EHL modeling of nonhomogeneous materials: The effects of polycristalline anisotropy on RCF[END_REF] coupled the FE Voronoi model with an EHL contact resolution. The same method has been applied to fretting contact [START_REF] Dick | Fretting modelling with a crystal plasticity model of Ti6Al4V[END_REF][START_REF] Zhang | Microstructure-sensitive modeling: Application to fretting contacts[END_REF][START_REF] Ashton | Statistical grain size effects in fretting crack initiation[END_REF] and coupled with damage model for fretting fatigue [START_REF] Warhadpande | A new finite element fatigue modeling approach for life scatter in tensile steel specimens[END_REF] and fretting wear [START_REF] Ghosh | A stress based damage mechanics model to simulate fretting wear of hertzian line contact in partial slip[END_REF][START_REF] Ghosh | An elastic-plastic investigation of third body effects on fretting contact in partial slip[END_REF].

The same approach with multigrid methods based on the work of Brandt [START_REF] Brandt | Multilevel matrix multiplication and fast solution of integral equations[END_REF] and using finite difference technique has been applied for heterogenenous materials by Boffy et al. [START_REF] Boffy | Multigrid solution of 3D stress field in strongly hetergeneous materials[END_REF][START_REF] Boffy | Multigrid numerical simulation of contact mechanics of elastic materials with 3D heterogeneous subsurface topology[END_REF]. Recently, Vijay et al. [START_REF] Vijay | A continuum damage mechanics framework for modeling the effect of crystalline anisotropy on rolling contact fatigue[END_REF] coupled a cohesive elements Voronoi model with a damage model to compute both the initiation and propagation life of bearings. Ghodrati et al. [START_REF] Ghodrati | Three-dimensional study of rolling contact fatigue using crystal plasticity and cohesive zone method[END_REF] also presented an approach with cohesive elements and using a crystal plasticity model. Singh et al. [START_REF] Singh | A microstructure based approach to model effects of surface roughness on tensile fatigue[END_REF] applied the same method to determine the effect of surface roughness on tension fatigue. A similar technique have been used to simulate the influence of microstructure and inclusions in gears [START_REF] Vouaillat | From hertzian contact to spur gears : analyses of stresses and rolling contact fatigue[END_REF][START_REF] Zhou | Roles of microstructure, inclusions and surface roughness on rolling contact fatigue of a wind turbine gear[END_REF] and in nitrided mechanical parts [START_REF] Bossy | Competition between surface and subsurface rolling contact fatigue failures of nitrided parts: A dang van approach[END_REF].

Fast and accurate computation of 3D heterogeneous contact problem with a moving load has been allowed through the recent progresses in the development of semi-analytical methods by Nelias and co-workers [START_REF] Jacq | Development of a threedimensional semi-analytical elastic-plastic contact code[END_REF][START_REF] Boucly | Contact analyses for bodies with frictional heating and plastic behavior[END_REF][START_REF] Gallego | A comprehensive method to predict wear and to define the optimum geometry of fretting surfaces[END_REF][START_REF] Nelias | Rolling of an elastic ellipsoid upon an elastic-plastic flat[END_REF][START_REF] Gallego | Modeling of fretting wear under gross slip and partial slip conditions[END_REF][START_REF] Gallego | A fast and efficient contact algorithm for fretting problems applied to fretting modes i, ii and iii[END_REF][START_REF] Done | Semi analytical fretting wear simulation including wear debris[END_REF] and by the group of Prof. Wang at Northwestern [START_REF] Wang | Numerical simulation for three-dimensional elasticplastic conact with hardening behavior[END_REF][START_REF] Chen | Three-dimensional repeated elasto-plastic point contacts, rolling, and sliding[END_REF]. The Eshelby's formalism has also been implemented to allow the modeling of heterogeneous materials [START_REF] Zhou | A fast method for solving threedimensional arbitrarily shaped inclusions in a half space[END_REF][START_REF] Fulleringer | On the tangential displacement of a surface point due to a cuboid of uniform plastic strain in a half-space[END_REF][START_REF] Zhou | Multiple 3D inhomogeneous inclusions in a half space under contact loading[END_REF][START_REF] Zhou | Semi-analytic solution for multiple interacting three-dimensional inhomogeneous inclusions of arbitrary shape in an infinite space[END_REF][START_REF] Zhou | Interaction of multiple inhomogeneous inclusions beneath surface[END_REF][START_REF] Leroux | Contact analysis in presence of spherical inhomogeneities within a half-space[END_REF][START_REF] Leroux | Stick-slip analysis of a circular point contact between a rigid sphere and a flat unidirectional composite with cylindrical fibers[END_REF][START_REF] Koumi | Modeling of the contact between a rigid indenter and a heteregeneous viscoelastic material[END_REF][START_REF] Koumi | Contact analysis in the presence of an ellipsoidal inhomogeneity within a half space[END_REF].

Moreover, the method has been extended to heterogeneous viscoelastic behavior [START_REF] Koumi | Modeling of the contact between a rigid indenter and a heteregeneous viscoelastic material[END_REF][START_REF] Koumi | Rolling contact of a rigid sphere/sliding of a spherical indenter upon a viscoelastic half-space containing an ellipsoidal inhomogeneity[END_REF] and heterogeneous elastoplastic behavior [START_REF] Amuzuga | Fully coupled resolution of heterogeneous elastic-plastic contact problem[END_REF][START_REF] Dong | Partial slip contact modeling of heterogeneous elasto-plastic materials[END_REF]. Applications to impact [START_REF] Chaise | Contact pressure and residual strain in 3D elastoplastic rolling contact for a circular or elliptical point contact[END_REF][START_REF] Chaise | Modelling of multiple impacts for the prediction of distortions and residual stresses induced by ultrasonic shot peening (USP)[END_REF], repeated rolling [START_REF] Nelias | Rolling of an elastic ellipsoid upon an elastic-plastic flat[END_REF][START_REF] Chen | Three-dimensional repeated elasto-plastic point contacts, rolling, and sliding[END_REF][START_REF] Chaise | On the effect of isotropic hardening on the coeffcient of restitution for single or repeated impacts using a semianalytical method[END_REF], and anisotropic homogeneous or layered materials [START_REF] Bagault | Contact analyses for anisotropic half space: Effect of the anisotropy on the pressure distribution and contact area[END_REF][START_REF] Bagault | Contact analyses for anisotropic half-space coated with an anisotropic layer: Effect of the anisotropy on the pressure distribution and contact area[END_REF][START_REF] Gao | Elastic coupling between layers in two-dimensional materials[END_REF] have been also proposed.

Recently, development of solutions for thermal inclusion [START_REF] Li | Explicit analytical solutions for elastic fields in two imperfectly bonded half-spaces with a thermal inclusion[END_REF] and application to functionally graded thin film [START_REF] Zhang | Contact involving a functionally graded elastic thin film and considering surface effects[END_REF] and imperfect interface conditions [START_REF] Li | Elastic fields caused by eigenstrains in two joined half-spaces with an interface of coupled imperfections: Dislocationlike and force-like conditions[END_REF] have been presented. A method to take into account damage occurring during fretting and butterfly wings formation around inclusion can be found in [START_REF] Beyer | A damage model for fretting contact between a sphere and a half space using semi-analytical method[END_REF][START_REF] Beyer | A coupled damage model and a semi-analytical contact solver to simulate butterly wing formation around nonmetallic inclusions[END_REF]. Some application to lubricated contact for rough contact have been proposed in [START_REF] Ren | A three-dimensional deterministic model for rough surface line-contact EHL problems[END_REF] and a coupled heterogeneous EHL solver in [START_REF] Wang | Elastohydrodynamic lubrication of inhomogeneous materials using the equivalent inclusion method[END_REF][START_REF] Shengguang | Elastohydrodynamic lubrication analysis of point contact with consideration of material inhomogeneity[END_REF][START_REF] Zhou | A three-dimensional model of line-contact elastohydrodynamic lubrication for heterogeneous materials with inclusions[END_REF].

The purpose of the present work is to use a voxel technique to model the microstructure of steels generated by a Voronoi tessellation with the semianalytical method. Grains are discretized in multiple cuboidal inclusions with cubic elastic properties. Eigenstrains of those multiple cuboidal inclusions are generating a disturbance stress field called eigenstress. Effect of eingenstresses close to the top surface on the pressure distribution has been highlighted in [START_REF] Leroux | Contact analysis in presence of spherical inhomogeneities within a half-space[END_REF].

A similar enrichment technique has been proposed and validated in [START_REF] Koumi | Modeling of the contact between a rigid indenter and a heteregeneous viscoelastic material[END_REF][START_REF] Koumi | Contact analysis in the presence of an ellipsoidal inhomogeneity within a half space[END_REF][START_REF] Beyer | A damage model for fretting contact between a sphere and a half space using semi-analytical method[END_REF][START_REF] Beyer | A coupled damage model and a semi-analytical contact solver to simulate butterly wing formation around nonmetallic inclusions[END_REF]. Rolling contact simulations have been performed and scatter in fatigue life is estimated. The emphasis is put on the effect of local stress gradient appearing at grain boundaries on the scatter of the maximum critical stress depth. The main difference with the models in the literature [START_REF] Raje | A statistical damage mechanics model for subsurface initiatied spalling in rolling contacts[END_REF][START_REF] Weinzapfel | An approach for modeling material grain structure in investigations of hertzian subsurface stresses and rolling contact fatigue[END_REF][START_REF] Vijay | A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[END_REF] is the coupling between the contact problem and the heterogeneous material model.

Theoretical Background and model description

Contribution of subsurface problem in the contact resolution

The three-dimensional contact solution depends on the contact load, the contacting bodies geometry and on the contacting bodies subsurface behavior.

Thus, the presence of heterogeneous inclusions inside the material is modifying the contact solution and can be taken into account by using the Eshelby's equivalent inclusion formalism as presented in [START_REF] Jacq | Development of a threedimensional semi-analytical elastic-plastic contact code[END_REF][START_REF] Leroux | Contact analysis in presence of spherical inhomogeneities within a half-space[END_REF][START_REF] Leroux | Stick-slip analysis of a circular point contact between a rigid sphere and a flat unidirectional composite with cylindrical fibers[END_REF][START_REF] Koumi | Contact analysis in the presence of an ellipsoidal inhomogeneity within a half space[END_REF][START_REF] Amuzuga | Fully coupled resolution of heterogeneous elastic-plastic contact problem[END_REF][START_REF] Beyer | A damage model for fretting contact between a sphere and a half space using semi-analytical method[END_REF]. The disturbed stress field due to the presence of inclusions inside the material can be converted into eigen-displacements u * z induced by these inhomogeneities in the surface separation equation (Eq. ( 3)) :

h(x, y) = h i (x, y) + δ + u z (x, y) + u * z (x, y) (3) 
The following section presents the Eshelby's equivalent inclusion framework and its application to the calculation of Eshelby's eigenstrain ε * and the corresponding eigendisplacements u * z in the case of an elastic half-space containing elastic inhomogeneities. The different steps leading to the computation of the effect of the presence of multiple inclusions inside one of the contacting body have already been presented in [START_REF] Beyer | A damage model for fretting contact between a sphere and a half space using semi-analytical method[END_REF][START_REF] Beyer | A coupled damage model and a semi-analytical contact solver to simulate butterly wing formation around nonmetallic inclusions[END_REF] and are briefly recalled in Section 2.2.

Eshelby's equivalent inclusion method in Contact Mechanics

According to Eshelby's framework, an infinite body having an heterogeneity called Ω with elastic properties C I ijkl is equivalent to an homogeneous body with an homogeneous inclusion having the elastic properties of the matrix C M ijkl but subjected to some misfit strains called eigenstrains (ε * ). Those eigenstrains come from the incompatibility of strains between the two different bodies when an external load is applied. Applying the Eshelby's equivalent inclusion method to an elastic isotropic material is giving the consistency equation:

C I ijkl (ε 0 kl + ε kl ) = C M ijkl (ε 0 kl + ε kl -ε * kl ) in Ω (4) 
Eshelby's solution has been extended to multiple interacting inclusions by Moschovidis and Mura [START_REF] Moschovidis | Two-ellipsoidal inhomogeneities by the equivalent inclusion method[END_REF] and have already been solved by several authors [START_REF] Zhou | Multiple 3D inhomogeneous inclusions in a half space under contact loading[END_REF][START_REF] Zhou | Semi-analytic solution for multiple interacting three-dimensional inhomogeneous inclusions of arbitrary shape in an infinite space[END_REF][START_REF] Leroux | Contact analysis in presence of spherical inhomogeneities within a half-space[END_REF][START_REF] Beyer | A damage model for fretting contact between a sphere and a half space using semi-analytical method[END_REF][START_REF] Beyer | A coupled damage model and a semi-analytical contact solver to simulate butterly wing formation around nonmetallic inclusions[END_REF] using a conjugate gradient algorithm (CGM) to take into account for the mutual influence between close inclusions.

Eshelby's inclusion method (EIM) has been developped under the assumption of an infinite space. But EIM can be also be applied to an half-space problem by using Chiu's decomposition as proposed by Jacq et al. [START_REF] Jacq | Development of a threedimensional semi-analytical elastic-plastic contact code[END_REF] and later Zhou et al. [START_REF] Zhou | A fast method for solving threedimensional arbitrarily shaped inclusions in a half space[END_REF].

In order to determine the stress fields caused by the presence of inhomogeneities, the computational domain is meshed into n x × n y × n z cuboids. The stress field is related to the eigenstrains through the equation 5 using the influence coefficients B ijkl and M ij that can be found in Appendix B.

σ ij (x, y, z) = nx-1 x I =0 ny-1 y I =0 nz-1 z I =0 B ijkl (x -x I , y -y I , z -z I )ε * kl (x I , y I , z I ) + nz-1 z I =0 ny-1 y I =0 nx-1 x I =0 B ijkl (x -x I , y -y I , z + z I )ε * skl (x I , y I , -z I ) - ny-1 y I =0 nx-1 x I =0 M ij (x -x I , y -y I , z)σ n (x I , y I , 0) (5) 
The computation of the stress field can be accelerated using numerical technique (3D-FFT and 2D-FFT) as proposed by [START_REF] Liu | A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses[END_REF][START_REF] Liu | Studying contact stress fields caused by surface tractions with a discrete convolution and fast fourier transform algorithm[END_REF].

The stress field σ n generated at the free surface by the presence of het-erogeneities is modifying the normal displacement at the free surface of the half-space. Using K n , the influence coefficients relating the normal pressure to the normal displacement of a rectangular area (see Appendix C), one can find the normal eigen-displacement of the half-space free surface:

u * z (x, y) = ny-1 y =0 nx-1 x =0 K n (x -x , y -y )σ n (x , y ) (6) 
Chiu [START_REF] Chiu | On the stress field and surface deformation in a half space with a cuboidal zone in which initial strains are uniform[END_REF] extended Eshelby's work for ellipsoidal geometry to cuboidal inclusions. The present work is using multiple cuboidal inclusions in the half-space as an enrichment technique as already used by the authors in [START_REF] Beyer | A damage model for fretting contact between a sphere and a half space using semi-analytical method[END_REF][START_REF] Beyer | A coupled damage model and a semi-analytical contact solver to simulate butterly wing formation around nonmetallic inclusions[END_REF].

The proposed heterogeneous semi-analytical contact solver is presented in Fig. 2. The initial conditions are defined by the two contacting bodies geometry and material properties. The loading conditions are imposed through a defined load or displacement. The contact pressure and stress field is found using a conjugate gradient algorithm. The elastic stress field is used as an input to solve Eshelby's equivalent inclusion method and find the eingenstrains. The corresponding eigen-displacements are modifying the contact geometry and the elastic contact solution needs to be updated. This loop is repeated until convergence is obtained on the eigen-displacements. 
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Modeling polycrystalline anisotropy with SAM

Voronoi tessellation 145

The Voronoi tessellation is a numerical technique to divide a continuous space into regions following some principles detailed in Okabe and Boots [START_REF] Okabe | Spatial Tessellations: Concepts and Applications of Voronoi Diagrams[END_REF] and recalled here: • a set of not coinciding seed points γ = {p 1 , p 2 , ..., p n } are randomly placed in a three dimensional volume V ∈ R 3 .

• The volume V is divided into regions V {pi} , volume of influence associated with a seed point p i . Each region is composed of every point closer (using euclidian distance) to the seed point p i than to any other seed points of γ. This condition can be expressed for each point x ∈ V :

V {pi} = {d(p i , x) ≤ d(p j , x), j ∈ [1, n] , ∀x ∈ V } (7) 
• Grain boundaries are the planes formed by the points equidistant from two seed points. Therefore Voronoi cells are convex close polyhedra covering the entire volume V and forming the Voronoi diagram.

The distribution of seed points in the volume allows to capture the randomness in the microstructure topology. Moreover, the density of seed points and their distribution is controlling the average grain size and shapes. A Poisson process is often used to place the seed points because of its ability to accurately reproduce polycrystalline microstructures [START_REF] Weinzapfel | An approach for modeling material grain structure in investigations of hertzian subsurface stresses and rolling contact fatigue[END_REF].

The representation of microstructure is limited to the volume where the gradient of stresses from the contact is significant regarding the characteristic length 

Mesh building 170

In finite element approach, the mesh of the Voronoi diagram is often unstructured and divides Voronoi cells into tetrahedral elements to obtain a fine discretization of the grain boundaries [START_REF] Vijay | A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[END_REF]. Another technique consists in using a structured mesh with cubic elements (also called voxel) [START_REF] Zhang | Microstructure-sensitive modeling: Application to fretting contacts[END_REF][START_REF] Ashton | Statistical grain size effects in fretting crack initiation[END_REF]. Due to the discretization used in the semi-analytical solver, this kind of method is chosen here.

The discretization grid of the semi analytical solver is superimposed on the Voronoi diagram (see Fig. 5). Each grid point is then labelled with the Voronoi cell it belongs to. The labelization process is done from the calculation of the minimum distance between the point of the grid and one of the seed points.

This process is creating a cubic volume with smooth surfaces at the edges and with each grid point assigned to only one Voronoi cell.

Polycrystalline anisotropy

Most of the microstructure models in the literature are simulating isotropic materials but on the microstructural scale, steel is made of randomly oriented anisotropic crystal grains. If the loading conditions allow to consider the macroscale response of the material, then the local anisotropy of the grains is resulting in an isotropic global material behavior and stiffness. But considering the high stress gradient in contact loading, the grain orientation needs to be taken into account. A cubic anisotropy model is adopted here to simulate the crystalline elasticity of the material as in Vijay et al. [START_REF] Vijay | A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[END_REF]. A single crystal structure is assumed here for sake of simplicity and each grain has the same elastic stiffness constants as recalled in Eq. [START_REF] Zhou | Surface topography and fatigue life of rolling contact bearings[END_REF]. Each grain has the same stiffness in its local coordinate system but the macroscopic response of the material is evaluated in the global cartesian reference frame. It is then necessary to rotate the local grain stiffness matrix C local into the reference frame C ref erence following Eq. ( 9). Thus, the stiffness of each grain produces different values in the reference frame.

              σ 11 σ 22 σ 33 σ 23 σ 31 σ 12               =               C 11 C 12 C 12 0 0 0 C 12 C 11 C 12 0 0 0 C 12 C 12 C 11 0 0 0 0 0 0 C 44 0 0 0 0 0 0 C 44 0 0 0 0 0 0 C 44                             ε 11 ε 22 ε 33 2ε 23 2ε 31 2ε 12               (8) 
C ref erence = R Z R X R Z C local R T Z R T X R T Z (9) 
In the simulation, random Euler angles are assigned to each cell of the Voronoi diagram. The regular grid is superimposed on the Voronoi diagram and each point of the discretization grid is assigned to a Voronoi cell (see section 3.2). Therefore each grain is discretized in small cuboid. One should note that multiple cuboids are representing a grain (see Fig. 5). Each grain is filled with small cuboidal inclusions having the same size than the discretization size.

All the inclusions inside one single grain have the same cubic elastic properties but rotated accordingly with the assigned angles of the grain. Thus all the inclusions belonging to a specific grain have the same rotation angles. A flow chart summing up the creation of the polycrystalline domain is presented in Fig.

6.

Vitos et al. [START_REF] Vitos | Stainless steel optimization from quantum mechanical calculations[END_REF] determined cubic material constant for stainless steel from quantum mechanical calculations and his results are used in the simulations (see

Table 1).

A measure of anisotropy is defined through the parameter A [START_REF] Paulson | Effects of crystal elasticity on rolling contact fatigue[END_REF] and is 

A = 2C 44 C 11 -C 12 (10) 
In Fig. 7, the Voronoi diagram is voxelized and random Euler angles are assigned to each grain. It should be noted that this method is also able to simulate textured alloys by giving a principal orientation for every grain of the material. and the maximum pressure P 0 is equal to 2 GPa. In this part, the effect of friction was neglected.

One should note that the problem solved here is 3D. The cylinder length in the Y-direction is chosen to be larger than 3b and the computation volume is 230 restricted to a size of 2b in this direction in order to avoid any side effect from the cylinder geometry.

In order to represent the crystalline microstructure of the material, a Voronoi tesselation is realized following the steps described in Fig. 6. The average grain size in the Voronoi tessellation is around 10 µm [START_REF] Bomidi | Experimental and numerical investigation of torsion fatigue of bearing steel[END_REF]. The half-space is then 235 filled with cubic elastic inclusions having the same size as the discretization size (Fig. 8). The microstructure volume is created with smooth free surfaces and no roughness is defined at the interface between the two contacting bodies.

-a* Note that the computation being elastic and without friction, only the randomly oriented microstructure has an influence on the results. The microstructure is made of around 600 000 inclusions. The half-space is discretized in 225 × 115 × 59 computation points such that the space between each points is 2∆x = 2∆y = 2∆z = 0.04b. The proposed method allows to compute a rolling cycle in around 10 hours with 8 processors at 2.40 GHz and 8 GB RAM. The loading and material parameters used in this section are consistent with the ones from Vijay et al. [START_REF] Vijay | A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[END_REF]. The elastic constants of the inclusions are chosen to represent the same steel.

Stress field and contact pressure in the anisotropic domain

The stress field under the contact is strongly affected by the mismatch in the orientation of the cubic structure. The microstructure affects the depth and the amplitude of the maximum stress in the material during a loading cycle. The von Mises stress in the plane y = 0 is plotted in Fig. 9b and shows the stress rising effect of inclusion mismatch. The von Mises stress in the anisotropic and in the isotropic domain is plotted along the depth (z > 0) in (x = 0; y = 0). The von Mises stress amplitude in the anisotropic domain is locally higher than the one in the isotropic domain. The effect of the microstructure can also be observed on the contact pressure in Fig. 10. The presence of local eigenstresses below the surface is modifiying the surface separation equation (Eq. 3) as explained in section 2.2. Theses changes in the surface geometry result in modifications of the contact pressure distribution. One may note that the maximum pressure is lower in the anisotropic domain than in the isotropic domain and the area of contact is larger in order to conserve the load equilibrium. This may come from the material orientation of the inclusions at the contact surface. The main difference with the work of Vijay et al. [START_REF] Vijay | A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[END_REF] is the coupling between the contact solution and the heterogeneous material solver. Vijay et al. [START_REF] Vijay | A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[END_REF] used an unstructured meshing of the 3D Voronoi cells and a four point Gauss quadrature scheme. Their Voronoi diagramm is 4b long in every direction and the model was solved using the commercial sofware Abaqus. In Vijay et al. [START_REF] Vijay | A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[END_REF], the contact pressure is imposed and assumed Hertzian. In the present results, and with the same imposed normal load, the contact pressure is influenced by the microstructure resulting in a larger contact area and a lower maximum pressure.

This larger distribution of pressure on the surface is responsible for a slightly lower stress distribution in the subsurface (see Fig. 9) than what can be observed in Vijay et al. [START_REF] Vijay | A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[END_REF]. Finally, the results in Fig. 9 show that the maximum von Mises stress in the anisotropic domain is resulting from the mismatch between the orientation of two grains but is not strongly affecting the contact pressure if it is localized far enough from the top surface.

Application to fatigue life of rolling bearings

Fatigue is a process of damage accumulation manifesting through decreasing material properties in the solid. It can be decomposed in three steps: initiation of cracks, propagation of the cracks and final rupture of the material. Each step is acting at different speeds depending on the material. The present work is focusing on the initiation of cracks because it is particularly affected by the random distribution of material properties and defects inside the material microstructure [START_REF] Zhao | On the fracture of multi-crystalline silicon wafer[END_REF]. The difference in elastic properties between the crystal acts as a stress riser in solid and in particular at the grain boundaries [START_REF] Peralta | Elastic stresses in anisotropic bicrystals[END_REF]. The previous microstructure model is used to predict the location of crack initiation in the material and its fatigue life under contact loading.

Life scatter in rolling element bearings due to microstructure

The critical stress and the corresponding depth are the variable parameters from Eq. 2 that need to be determined in order to calculate the bearing life.

Several microstructure simulations are giving life predictions and allow to determine the Weibull slope parameter e. The same approach has already been used with 2D [START_REF] Paulson | Effects of crystal elasticity on rolling contact fatigue[END_REF][START_REF] Jalalahmadi | A voronoi finite element study of fatigue life scatter in rolling contacts[END_REF] and 3D [START_REF] Vijay | A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[END_REF][START_REF] Weinzapfel | A 3D finite element study of fatigue life dispersion in rolling line contacts[END_REF] finite element models. The same method has also been applied to the study of plasticity in rolling contact [START_REF] Warhadpande | Effects of plasticity on subsurface initiated spalling in rolling contact fatigue[END_REF][START_REF] Golmohammadi | A 3D efficient finite element model to simulate rolling contact fatigue under high loading conditions[END_REF], fretting [START_REF] Ghosh | A stress based damage mechanics model to simulate fretting wear of hertzian line contact in partial slip[END_REF] and formation of butterfly wings [START_REF] Moghaddam | A 3D numerical and experimental investigation of microstructural alterations around non-metallic inclusions in bearing steel[END_REF].

Critical stress computation

As in Vijay et al. [START_REF] Vijay | A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[END_REF], numerical simulations have been performed on 30 crystalline domains in order to guarantee a good accuracy in the Weibull distribution [START_REF] Thoman | Maximum likelihood estimation, exact confidence intervals for reliability and tolerance limits in the weibull distribution[END_REF]. The Voronoi tessellation is the same in every domain and only the orientation angles of each crystal are changing. Effect of material orientation on the RCF life scatter is analyzed with three different critical stresses: maximum shear stress reversal, maximum Tresca stress and maximum von Mises stress. Amplitude and depth of the maximum critical stress in every domain are compared with the results obtained with an isotropic domain. Results for the maximum shear stress reversal are presented in Fig. 11, for the maximum Tresca stress in Fig. 12 and for the maximum von Mises stress in Fig. 13. For every simulation, the maximum critical stress amplitude found is higher in the anisotropic domain than in the isotropic domain while the corresponding depth is varying around the reference homogeneous isotropic domain value. The mean amplitude of the shear stress reversal is found to be 0.658P 0 and their depth locations are found to vary between 0.36b and 0.68b. The mean amplitude of the maximum Tresca stress is evaluated at 0.475P 0 and their depth locations are found to vary between 0.52b and 1.04b. Finally, the mean amplitude of the maximum von Mises stress is found to be 0.849P 0 and their depth locations are found to vary between 0.56b and 1.04b. For all three critical stresses, results presented here are showing a scatter in the localization of the critical stress between the different anisotropic domains.

Fatigue criterion

According to Raje et al. [START_REF] Raje | A statistical damage mechanics model for subsurface initiatied spalling in rolling contacts[END_REF] hypothesis, it is the variation in magnitude and depth of the critical stress that is responsible for the scatter in bearing life.

The scatter in the results obtained with 30 different material microstructures is used to create a Weibull plot of the probability of failure. One should note that no Weibull distribution of the fatigue lives is explicitly assumed here. 2 and 3 parameters Weibull plots are realized with the three different critical stresses and are presented in Figs. 14, 15 and 16. The corresponding Weibull slopes and scale parameters can be found in Table 2. The slope of the Weibull plot is giving information about the scatter of the estimated fatigue life (the lower the Weibull slope, the higher is the scatter in the fatigue life) while the scale parameter is giving information about the distribution of the probability density over time, representing the characteristic life. One can observe that the maximum shear stress is showing the higher slope resulting in a lower scatter than the two other critical stresses. The scale paramater associated with the maximum shear stress is also the lower. The slope of the different Weibull parameters are in the same range. The scale parameter of the maximum Tresca stress is much larger than the scale associated with the two other critical stresses meaning that the estimated life is higher. It is in good agreement with the fact that the mean maximum Tresca stress was found lower than the two other mean critical stresses (see section 3.5.2). Also a vertical distribution of points at the beginning of the Weibull plot as shown in Fig. 15 is giving an indication about a possible minimum fatigue life. Therefore, the numerical data seems to better fit with the 3-Parameters Weibull plot. One should recall that no Weibull distribution was assumed here. The results of the simulations are plotted and fitted with a Weibull plot. These results are confirming the influence of the material microstructure in the life scatter of parts under RCF loading. range than the results obtained with finite element models for isotropic and anisotropic materials. The slopes presented here are lower than the ones found by Raje et al. [START_REF] Raje | A statistical damage mechanics model for subsurface initiatied spalling in rolling contacts[END_REF] and Weinzapfel et al. [START_REF] Weinzapfel | A 3D finite element study of fatigue life dispersion in rolling line contacts[END_REF] who only studied the effect of the microstructure topology without taking into account the effect of material orientation in the grains. The scatter due to the variation in both the topology and the grain orientations have been modeled in 2D by Paulson et al. [START_REF] Paulson | Effects of crystal elasticity on rolling contact fatigue[END_REF] and in 3D by Vijay et al. [START_REF] Vijay | A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[END_REF]. Their results are logically showing an higher scatter. The results presented in Table 2 are in good agreement with the slopes found experimentally by Lundberg and Palmgren [START_REF] Lundberg | Dynamic capacity of rolling bearings[END_REF] and with a finite element approach by Vijay et al. [START_REF] Vijay | A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[END_REF]. Using the maximum shear stress reversal, Weibull slopes obtained with the semi-analytical solver exhibit a higher slope than the one found with finite element by Vijay et al. [START_REF] Vijay | A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[END_REF]. One reason is that the voxelization of the microstructure doesn't allow to accurately reproduce the smooth grain boundaries [START_REF] Doitrand | Comparison between voxel and consistent meso-scale models of woven composites[END_REF]. Moreover, the computational discretization of the semi-analytical solver is only able to compute the stress field on a regular grid of Gaussian points while the finite element model allow to mesh the grains to compute the shear stress reversal on the geometric grain boundary. This difference can be observed in the lower amplitude of the shear stress reversal in Fig. 11a than in Vijay et al. [START_REF] Vijay | A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[END_REF].

Furthermore, the coupling between the contact problem and the subsurface 370 problem is also affecting the results in the present work. Finally, the methodology presented here is showing the ability of the semi-analytical solver to capture the life scatter in rolling contact fatigue.

Conclusion

A numerical method has been proposed to model the effect of crystalline 375 anisotropy in the rolling contact problem between a rigid cylinder and an heterogeneous half-space. A three dimensional heterogeneous elastic contact solver is used based on the Eshelby's equivalent inclusion method. A method of space 
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 1 Figure 1: Fracture surface of AISI 52100 steel austenized at 800 • [16].
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 2 Figure 2: Flow chart for processing the semi-analytical model for elastic contact in presence of inclusions.
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 3 Figure 3: The Voronoi tessellation process: space partition from a 2D seed distribution.
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 4 Figure 4: Example of a 3D Voronoi tessellation
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 5 Figure 5: Voxelization of the Voronoi tessellation
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 6 Figure 6: Flow chart for creating a Voronoi tessellation in the semi-analytical model.
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 417 Figure 7: Voxelization of the domain accordingly to the Voronoi tessellation. Amplitudes correspond to the sum of the Euler angles.
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 8 Figure 8: 3D view of a cylinder rolling on a elastic half-space with multiple cuboidal inclusions superposition.
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 9 Figure 9: Dimensionless von Mises stress in the plane y = 0 (a) in an isotropic domain (b) in an anisotropic polycrystalline domain. (c) von Mises stress along z direction in the anisotropic domain and in the isotropic domain.
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 10 Figure 10: Contact pressure between the rigid cylinder and the isotropic domain and with the anisotropic domain.

Figure 11 :

 11 Figure 11: (a) Variation of magnitude in the maximum shear stress reversal (b) Variation of the corresponding depth in the 30 anisotropic domains.
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 1213 Figure 12: (a) Variation of magnitude in the maximum Tresca stress (b) Variation of the corresponding depth in the 30 anisotropic domains.

Figure 14 :

 14 Figure 14: 2 and 3 parameters Weibull plots superimposed on the data from the model for the maximum shear stress reversal criterion.

Figure 15 :

 15 Figure 15: 2 and 3 parameters Weibull plots superimposed on the data from the model for the maximum Tresca stress criterion.

Figure 16 :

 16 Figure 16: 2 and 3 parameters Weibull plots superimposed on the data from the model for the maximum von Mises stress criterion.
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 1212 relating the stress σ ij at point (x, y, z) to the constant eigenstrain at the point (x k , y k , z k ) C M ijkl , C I ijkl elastic constants of the matrix and the inhomogeneity E I Young's modulus of the inhomogeneity H hardness of the material h distance between the two surfaces of the contacting bodies I ijkl the fourth-order identity tensor K n coefficients in the normal displacement at the contact surface due to the contact pressure M ij influence coefficients relating the stress σ ij at the point (x, y, z) to the normal traction σ n within a discretized area centered at (x k 1 , x k 2 , 0) n x , n y , n z grid sizes in the half-space along the Cartesian directions x, y, z, the infinite applied strain ε 0 ij u i disturbed contribution of the displacements x I = (x I , y I , z I ) cartesian coordinates of the inclusion center N number of cycles N i number of inclusions in the enrichment along direction i. Greek letters ε 0 ij infinite applied strain ε ij strain due to eigenstrains ε * ij eigenstrain due to the presence of inhomogeneities σ 0 ij stress corresponding to the infinite applied strain ε 0 ij σ ij disturbed contribution of the stresses δ ij kronecker symbol σ n normal pressure due to the summution of both symmetric inclusions where ξ 1 = x -x .ξ 2 = y -y .ξ 3 = z -z .The functions h ij () in Eq.(B1) are defined byh 11 (x, y, z) = 2ν tan -1 y 2 + z 2 -ρy xz + 2(1 -ν) tan -1 ρ -y + z x + xyz ρ(x 2 + z 2 ) , h 22 (x, y, z) = h 11 (y, x, z), h 33 (x, y, z) = tan -1 y 2 + z 2 -ρy xz z 2 , h12(x, y, z) = -z ρ -(1 -2ν) log(ρ + z), h 13 (x, y, z) = -yz 2 ρ(x 3 + z 2 ) , h 23 (x, y, z) = h 13 (y, x, z), where rho = x 2 + y 2 + z 2 .

Table 1 :

 1 Cubic elasticity constants for steel[START_REF] Vitos | Stainless steel optimization from quantum mechanical calculations[END_REF] 

	Elastic Constants (GPa)
	C11	204.6
	C12	137.7
	C44	126.2
	calculated to be 3.78 here:	

Table 2 :

 2 Weibull slopes and scales for different stress criteria.The Weibull slopes obtained with our results are compared with the Weibull slopes found in the literature in Table3. The presented results are in the same

	Stress Criterion Parameter 2-Param. Weibull plot 3-Param. Weibull plot
		Slope	6.5587	2.2899
	∆τ xz	Scale	0.8188	1.6255
		Slope	2.4998	1.3268
	τ T resca	Scale	1.15 × 10 3	3.0 × 10 3
		Slope	2.4039	1.5534
	τ V M	Scale	3.5349	6.6421
	3.5.4. Comparison with Weibull slope parameters from finite element simula-
	tions			
	350			
			22	

Table 3 :

 3 Weibull slopes from models in literature.

Authors

Weibull Slope

Lundberg-Palmgren [START_REF] Lundberg | Dynamic capacity of rolling bearings[END_REF] 1.125

Raje et al. [START_REF] Raje | A statistical damage mechanics model for subsurface initiatied spalling in rolling contacts[END_REF] 3.36

Paulson et al. [START_REF] Paulson | Effects of crystal elasticity on rolling contact fatigue[END_REF] 1. [START_REF] Kumar | Simulation of material microstructure using a 3D voronoi tessellation: Calculation of effective thermal expansion coefficient of polycrystalline materials[END_REF] Weinzapfel et al. [START_REF] Weinzapfel | A 3D finite element study of fatigue life dispersion in rolling line contacts[END_REF] 4. [START_REF] Leroux | Stick-slip analysis of a circular point contact between a rigid sphere and a flat unidirectional composite with cylindrical fibers[END_REF] Vijay et al. [START_REF] Vijay | A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[END_REF] 0.95 partition based on the voxelization of a Voronoi tesselation of the half-space is proposed. The half-space is then filled with multiple cuboidal inclusions having the same cubic elastic properties but random material orientations. The model allow to take into account the microstructure of the material on the contact pressure distribution and the subsurface stress fields during repeated rolling cycles. The main advantage of this method is the coupled resolution of both the contact problem and the heterogeneous subsurface problem. One of the limitation of the method is the non smooth representation of grain boundaries due to the voxelization technique. It can lead to some numerical stress gradients [START_REF] Doitrand | Comparison between voxel and consistent meso-scale models of woven composites[END_REF]. The proposed model is applied to investigate the scatter in fatigue life of rolling elements bearings and compared to results obtained with Finite Elements simulations.
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Appendix A. Stress in a half-space due to a concentrated unit normal force at the surface origin(F ij )

where

with ν, the Poisson's ratio of the isotropic half-space.

Appendix B. Stresses in a half-space subject to normal pressure (M ij )

An isotropic half-space is submitted a uniform normal pressure σ n in a discretized surface area of 2∆x × 2∆y at the center point P (x , y , 0). The stress at an observation point Q(x, y, z) is given in [START_REF] Zhou | A fast method for solving threedimensional arbitrarily shaped inclusions in a half space[END_REF] and [START_REF] Johnson | Contact Mechanics, Press syndicate of the university of Cambridge[END_REF]:

Appendix C. Normal displacement at the surface subject to normal

The contact between a sphere and an elastic half-space having respectively elastic constants (E 1 , ν 1 ) and (E 2 , ν 2 ), where the surface z = 0 is discretized into rectangular surface area of 2∆ 1 × 2∆ 2 , is now considered. The initial contact point coincides with the origin of the Cartesian coordinate system ((x, y, z).
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The relationship between the normal displacement at an observation point P (ξ 1 , ξ 2 , 0) and the pressure field at the center Q(ξ 1 , ξ 2 , 0) is built using the function K n .