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Abstract—The advent of omics technologies have enabled
the generation of huge, complex, heterogeneous, and high-
dimensional omics data. Imposing numerous challenges in data
integration, these data could lead to a better understanding
of the organism’s cellular system. Omics data are typically
represented as networks to study relations between biological
entities, such as protein-protein interaction, gene regulation, and
signal transduction. To this end, network embedding approaches
allow us to learn latent feature representations for nodes of a
graph structure. In this study, we propose a new methodology to
learn embeddings by modeling the underlying interactions among
biological entities (nodes) with exponential family distributions
from a well chosen set of omics modalities. We evaluate our
proposed method based on the gene regulatory network (GRN)
inference problem. As the ground truth for evaluation, we use
GRN available in public databases and demonstrate its effective-
ness by comparing to other network integration approaches.

Index Terms—omics data integration, multilayer network,
random walks, network embedding, representation learning

I. INTRODUCTION

The organism’s cellular system is composed of multiple
interacting entities like genes, proteins, and metabolites that
are associated with different biological mechanisms. The ad-
vent of high throughput technologies has enabled us to study
the relationships of these entities by analyzing huge omics
data. Yet, independent analysis of such data is limited to
correlations, mostly reflecting reactive processes rather than
causative ones. Integration of different omics data types is
often expected to elucidate potential causative changes such
as gene regulation or signal transduction that lead to specific
phenotypes or treatment targets. To this direction, networks are
widely used to represent biological relations (edges) between
individual entities (nodes) [1], [2]. The primary challenge here
is to properly represent these networks in a way that they can
effectively be used as input to machine learning models to
perform downstream prediction tasks. In this paper, we are
inspired by graph representation learning (GRL) algorithms
that allow us to encode the graph structure into compact
embedding vectors [3]. As a target application, we focus on
the task of GRN inference, which will be described in detail in
Sec. II. In particular, we aim to embed graph-based multiomic

information in a lower-dimensional space towards inferring
edges of GRN.

Although there is a plethora of graph representation learning
approaches based on random walks [4], [5], matrix factor-
ization, and neural networks [3], they have mostly been
introduced for single-layer networks [6]. Nevertheless, for
biological networks there are only a few existing network
integration strategies that leverage GRL. As one of the first
proposed models, MASHUP [7] is a network integration frame-
work based on matrix factorization that builds compact low-
dimensional vector representation of proteins. More recently,
DEEPNF [8] is a network fusion method based on multi-
modal deep autoencoders. Both approaches consider a set of
input networks and for each network they construct vector
representations of proteins. Yet, they lack to extract features
that represent the relationships of entities in a network and
across all networks which could be essential while dealing
with multiomics data, where information naturally flows from
one layer to another. In such cases, it is necessary to obtain
an informative representation of the nodes and their proximity
that is not fully captured by features that are extracted directly
from single input network.

Motivated by the aforementioned limitation of current net-
work integration models, in this paper we consider expressive
conditional probability models to relate nodes within random
walk sequences, towards extracting informative latent node
representations. We capitalize on exponential family distribu-
tions to capture interactions between nodes in random walks
that traverse nodes within and across input network layers.
More precisely, we introduce network integration with the
concept of exponential family graph embeddings [9], that
generalizes multilayer random walk-based GRL methods to
an instance of exponential family conditional distribution. Our
method has the following conceptual advances: (i) it preserves
both the intra-layer and inter-layer interactions, thereby learn-
ing rich features; (ii) it is an effective and scalable method
as it uses the conditional probability distribution model to
learn low-dimensional node features from all input networks.
Besides, we define the objective function of the proposed



model in a way that is independent of downstream machine
learning tasks, and the embeddings are learned in a purely
unsupervised way. Although in this paper we aim to study the
problem of gene regulation, the learned embeddings could be
leveraged across a wide variety of omics integration tasks.
Source code: The source code and datasets are available at:
https://github.com/Surabhivj/BRANE-EXP.

II. PROBLEM STATEMENT

Gene regulatory networks (GRN) impart how signals prop-
agate through biomolecule pathways and result in transcrip-
tomic modifications. These regulatory networks are computa-
tional modules of a biological system that carry out decision-
making processes. They enable us to determine the ultimate
response of an organism to a stimulus. Although there is
an intense research effort on GRN inference using gene
expression for more than a decade and much progress has
been made, it remains a challenging problem [10], [11]. Even
the most sophisticated inference techniques are far from the
perfect. Mainly by leveraging gene co-expression networks
with the relationships between regulators, such as transcription
factors (TFs) and the target genes they control, one can achieve
a better understanding of regulatory interactions, providing
us the access points to modulate such responses [12], [13].
However, it is a challenging task to effectively combine this in-
formation in such a way that the rich and relevant features from
the input datasets are preserved. Indeed, recent breakthroughs
in graph representation learning have inspired us to solve this
GRN inference task by modeling heterogeneous datasets as a
multilayer graph and encode latent representations for them.

Here, we propose a novel GRN inference framework by
integrating gene co-expression and TF-target networks. We
formally define the task as a network embedding problem.
Given a set of networks based on omics data, we aim
to learn low-dimensional latent node representations (i.e.,
embeddings) so that the structure of the input networks is
properly integrated and preserved in the new space. In other
words, we aim to learn representations such that functionally
related genes or co-regulated genes are placed close enough
in the embedding space. Further, we define a similarity score
for these embedding vectors in order to infer an integrated
network. More formally, let G = (Vi, Ei)

L
i=1 be a multilayer

graph, where Vi and Ei are the set of nodes and edges at
layer i respectively, and L is the number of layers. Our model
encodes |V| nodes, where V is defined as V1 ∩ V2 ∩ · · · ∩ VL.
We first explore the multilayer neighborhood by simulating
random walks per node. Based on the obtained node contexts,
we learn a d-dimensional feature vector of each node, where
d� |V|.

III. PROPOSED METHOD

In this section, we first describe how relevant node pairs are
sampled with random walks—a key step towards multiomics
data integration. Then, we explain the methodology employed
to learn node representations by modeling the underlying in-
teractions among nodes with exponential family distributions.
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Fig. 1: The overall workflow of multinetwork integration for
GRN inference using graph representation learning.

A general overview of the proposed methodology is depicted
in Figure 1.

A. Context sampling using multilayer biased random walks

A multi-layer network can consist of various layers showing
diverse characteristics so that each layer might possess a
completely different topological structure. Our goal is to learn
representations in a lower-dimensional space so that their
embeddings reflect the underlying patterns commonly shared
by these network layers. Therefore, we leverage random walks
to sample nodes sharing similar characteristics across different
omics layers. Although random walks have been used before
in representation learning [14], here we introduce a flexible
approach for multilayer network structures.

To extract nodes’ context in a multilayer graph, we propose
a random walk-based sampling procedure that can explore
local and global structures in the graph. Local exploration
helps in discovering the clustering structure around the node
of interest, whereas global exploration contributes in capturing
global associations within nodes in the graph [15]. This point
is particularly important within the biological context of our
application domain. For instance, the relationship between
a TF and its target is a local structure, while functional
relationships among the co-expressed genes are more related
to global structure in the graph (see also Figure 2).

To capture such local and global associations, we propose a
biased version of random walks adapted to multilayer graphs
[15]. It combines both types of exploration (i.e., local and
global) with a decay parameter α to control the importance
of nodes with respect to their distance from the node of
interest. More formally, for each node vi ∈ V , a proximity
score τvi is computed to estimate how far the candidate node
vi is from the source node. When the i-th node in the walk
is discovered, the proximity score of every node adjacent to
that is increased by αi−1 and ᾱi−1, for nodes in the same
and different layer respectively, where α, ᾱ ∈ [0, 1]. Then,
the probability distribution of selecting the next node for the
current walk is computed based on the proximity scores of
the neighborhood nodes of the most recently visited node. For
local explorations, the probability of a node being the next
one in the random walk sequence should be proportional to its
proximity score, i.e., pvi =

τvi∑
w∈V(u)

τw
. In the case of global

exploration, the probability is set to be inversely proportional

https://github.com/Surabhivj/BRANE-EXP
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Fig. 2: Context sampling for a multilayer graph adapted to
explore local and global structures in a graph.

to that score, i.e., pvi =
1/τvi∑

w∈V(u)
1/τw

, where u is the most

recently visited node, and V(u) defines the set of neighbors of
u. Thus, given a desired exploration strategy, the context set
for each node w(n,i) ∈ V is given by Cγ(w(n,i)) := {w(n,j) ∈
V : −max{1, i− γ} ≤ j 6= i ≤ min{i+ γ, l}}, where w(n,j)

indicates the node appearing at the j-th position of the n-th
random walk, and γ is the window size. We call each element
of Cγ(w(n,i)) as the context of a center node w(n,i).

B. Learning embeddings with exponential family distributions

Random walk-based methods generate node sequences and
learn node representations by maximizing the co-occurrence
probability of nodes within a certain distance [4], [5], [15].
Similarly, we define our objective function as follows:

O (α, β) := arg max
Ω=(α,β)

N∑
n=1

l∑
i=1

∑
u∈V

log p(xun,i; Ω), (1)

where xun,i is the observed variable indicating the relationship
between the pair of nodes (w(n,i), u) ∈ V2, and Ω = (α, β)
are the parameters of the model, which correspond to the
node embedding vectors. Note that, we obtain two differ-
ent representations for each node. Here, α[v] indicates the
embedding of node v if it is considered as context, and
β[v] denotes its representation if it is interpreted as center
node. Although the conventional choice for modeling node
relationships is the softmax function [4], it limits capturing
possible intricate patterns in node interactions across the layers
of the network structure. Therefore, here we extend it with
a general framework based on exponential families, which
is a set of parametric probability distributions satisfying the
following form:

p(x) = h(x) exp
(
ηT (x)−A(η)

)
, (2)

where h(x) is the base measure, T (x) is the sufficient statistic,
and A(η) is the log-normalizer function. Note that, many

widely used distributions, such as the ones of Bernoulli,
Dirichlet, and Normal, are actually exponential families. The
main benefit of this generic formulation is that it provides an
elegant and flexible way to model the complex interactions
between center and context nodes in random walk sequences
[9], [16]. By plugging the exponential form into the objective
function provided in Eq. (1), we obtain the following:

arg max
Ω=(α,β)

N∑
n=1

l∑
i=1

∑
u∈V

log h
(
xun,i

)
+ηuw(n,i)

T
(
xun,i

)
−A
(
ηuw(n,i)

)
.

Here, we define the natural parameter ηuw(n,i)
as the product

of embeddings, α[u]> · β[w(n,i)].
In our approach, we employ the Bernoulli distribution to

model node co-occurrences, by setting h(x) = 1, T (x) = x
and A(η) = log(1 + eη). Let Xu

n,i be a Bernoulli random
variable indicating the occurrence of u in the context of node
w(n,i). Note that, this is equal to 1 if node u appears at any
position index i + j, for −γ ≤ j 6= 0 ≤ γ. Then, we can
rewrite our objective function as follows:

arg max
Ω=(α,β)

N∑
n=1

l∑
i=1

∑
|j|≤γ

(
log p

(
y
w(n,i+j)

n,i+j

)
︸ ︷︷ ︸

positive instances

+
∑

u∈V\{w(n,l+j)}

log p
(
yun,i+j

)
︸ ︷︷ ︸
negative instances

)
,

where yun,i+j indicates the occurrence of node u at the (i+j)-
th position of the n-th walk. However, the optimization step
is very costly due to the size of the negative instances. There-
fore, we approximate it by leveraging the negative sampling
approach [17]:

arg max
Ω=(α,β)

N∑
n=1

l∑
i=1

∑
|j|≤γ

(
log p

(
y
w(n,i+j)

n,i+j

)
+kE
u∼p−

[
log p

(
yun,i+j

)])
where k indicates the number of negative instances sam-
pled from the noise distribution p−. We employ the strategy
described in [17] and negative instances are sampled from
the whole vertex set with respect to the their number of
occurrences in the generated walks raised to the power of 0.75.
In the experimental evaluation, we generate k = 5 negative
samples for each positive instance.

IV. RESULTS

A. Experimental setup

Gene regulation could be examined by two major evidences.
First, co-expression of genes and second, binding of TF to the
TF binding site (TFBS) on the promoter of genes. The overall
workflow of GRN inference is shown in Figure 1. We test
our framework with the well-studied organism, Saccharomyces
cerevisiae S288c. First, we build a gene co-expression network
from (61) microarray experiments [18] using correlation infor-
mation. Two genes are connected by an edge if the correlation
between them is greater than 0.9 [19]. Then, we infer TF-target
relationships by using TFBS deposited in JASPAR database
[20] and promoter sequences of genes [21]. We scan the TFBS
in the promoters using the matrix-scan tool in RSAT [22],
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Fig. 3: Integrating networks outperform GRN inference when
compared to individual ones. (a) Precision@k for the inte-
grated network inferred by our approach (Proposed), TF-target,
and co-expression network. (b) For the top 1, 000 edges from
each network, we show the comparison of truly inferred edges.

and we infer the edges based on the presence of binding
sites in the promoter of the gene. For the same set of nodes,
a multilayer network is constructed from the co-expression
and TF-target networks. Considering it as input to our model,
we learn node embeddings using the methodology described
in Sec. III (Figure 1). The random walk parameters, such
as the walk length, number of walks, and proximity score
are set to 10, 20, and 1, respectively. The rest parameters
for computing embeddings, i.e., the learning rate, window
size, and embedding dimension are set to 0.025, 5, and 128,
respectively. The same pipeline and embedding dimension size
are used for the baselines MASHUP and DEEPNF. To infer
regulatory interaction from the learned embeddings, we define
the similarity between the embedding vectors by computing
the scalar product for each TF-gene interaction.

B. Evaluation

We investigate the ability of our model to infer regulatory
interactions by reconstructing the GRN for Sacharomyces
cerevsiae [23]. In practice, biological networks show small-
world properties, where nodes are linked by a short chain
of acquaintances. These properties could be extracted by
focusing on important edges in the graph. In our context of
binary inference, the precision metric computes the accuracy
to retrieve correctly inferred edges. Therefore, to evaluate the
performance of graph inference and to retrieve such relevant
information, we measure the precision at top k inferred edges
(Precision@k), that corresponds to the number of correctly
inferred edges among the top k ones [24]. We choose to study
the top 1, 000 edges of the inferred GRN.

Our evaluation strategy aims to demonstrate the added value
of multiomics data integration in the problem of GRN infer-
ence, and the performance of multilayer network integration
with respect to state-of-art methods. Firstly, to show the added
value of integrating co-expression and TF-target networks in
GRN inference, we compare the reconstruction performance of
our method applied on individual networks. We have observed
that integration outperforms the reconstruction for the top
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Fig. 4: Performance of our method in inferring the GRN, mea-
sured by the Precision@k for the top 1, 000 edges, compared
to MASHUP and DEEPNF.

1, 000 edges when compared to individual ones, as shown in
Figure 3a. Moreover, from the top 1, 000 inferred edges after
integration with the proposed model and from those inferred
from individual networks, we observe that the integration
process inferred 807 true edges whereas TF-target and co-
expression networks alone inferred 727 and 714 true edges,
respectively (Figure 3b). From these 807 correctly inferred
edges, 52 are novel (i.e., not present in the input networks).
This implies that during integration relevant and rich features
are captured that are not directly seen in the individual input
graphs. The visualization [25] of these truly inferred 807 edges
is shown in Figure 5.

Second, we compare the performance of our model to two
state-of-the-art network integration methods, namely MASHUP
and DEEPNF. As shown in Figure 4, our method is able
to outperform DEEPNF, inferring a larger number of actual
edges than both state-of-the-art integration methods for the
selected network size. Although we are mainly interested to
study the most important edges, we withdraw the network
size bias and further measure the performance of our model
for all edges. To do this, we have computed the area under
the Precision-Recall curve (AUPR), observing that the AUPR
of the proposed model (0.734) is very similar to the one of
MASHUP (0.735), and it outperforms DEEPNF (0.641).

To summarize the empirical analysis, the performance of
our model (Figures 3 and 4) is especially appealing mainly
because of three reasons. First, our approach shows that it
can generate meaningful embeddings by preserving the inter-
and across-layer interactions. Second, its objective function
is independent of the downstream task (i.e., GRN inference),
thereby our method is adaptable to various omics data analysis
tasks. Third, it is a simple method and requires less parameter
tuning as compared to other neural network-based embedding
methods, which could reduce overfitting.

V. CONCLUSION

The recent wide application of high-throughput experimen-
tal techniques has provided complex, high-dimensional, and
heterogeneous data. Their wide availability has, in turn, driven
a need for integrative methods which could be utilized to
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Fig. 5: Top 1, 000 true inferred edges (also in the reference
network). Nodes in red correspond to genes, while TFs are
indicated with green. The edges in blue are the newly inferred
52 true edges, which are not present in the input networks.

explore them effectively. In this paper, we have presented a
graph embedding-based network integration method for GRN
inference, by constructing a compact low-dimensional gene
feature representation from the selected omics modalities.
We have performed an empirical analysis of the proposed
approach, comparing it to state-of-art baseline methods, and
showing its ability to infer important edges for gene regulation.

Our method is not limited to only GRN inference. There
are several directions for future work with focus on extending
the integration to include other data types, such as protein
sequences, protein structures, and epigentic marks, toward
making more accurate predictions of gene regulations, TF
targets, and protein functions.
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