
First author, year 
[reference] 

No. of 
patients 

Magnetic field, 
system / MRI 

sequence 

Preprocessing 
of MRI 
images 

Deep learning 
method / RR 

or DR / 2D or 
2.5D or 3D 

training 

Overall loss 
function (for 
GANs) or 
generator  

loss function  

Adversarial 
loss used by 
discriminator 
(for GANs) 

No. of 
patients in 
training / 

evaluation 

Image and geometry fidelity results Dose results 

Han et al., 2017 
[1]  

18 
1.5 T Siemens 

/ 3D T1 

N3 bias field 
correction 
algorithm, 
histogram 
matching 

DCNN: U-Net 
/ RR 
/ 2D 

L1 loss - 

15 (6-fold 
cross 

validation)/ 
18  

MAE [HU] 
 

84.8 ± 17.3 

ME [HU] 
 

-3.1 ± 21.6 

MSE 
[HU²] 

 
188.6 ± 

33.7 

/ 

Nie et al., 2017 
[2] 

16  
3 T Siemens / 

❖ 
/ 

GAN (with 
FCN for 

generator and 
CNN for 

discriminator) 

/ ❖/ 3D 

L2 loss + 
gradient loss 

+ 
adversarial 

loss 

Binary cross 
entropy 

15 (leave-
one-out) / 

16  

MAE [HU] 
 

92.5 ± 13.9  

PSNR [dB] 
 

27.6 ± 1.3 
/ 

Wolterink et al., 
2017 [3] 

24 
1.5 T Philips / 

3D T1 
/ 

Cycle-GAN / 
RR / 2D 

 Least 
squares loss 

+ 
adversarial 

loss + 
gradient 

difference 
loss + cycle 
consistency 
loss (based 
on L1 norm) 

Binary cross 
entropy 

18 / 6 

MAE [HU] 
 

73.7 ± 2.3 

PSNR [dB] 
 

32.5 ± 0.7 

/ 

Dinkla et al., 
2018 [4] 

52 
1.5 T Philips / 

pre contrast 3D 
T1 

3D geometry 
correction 

provided by 
the vendor + 

intensity 
normalization 

Dilated CNN / 
RR 

2.5D 
L1 loss  

26 (two-
fold cross 
validation)/ 

52 

MAE [HU] 
 

Body = 67 ± 11  
Soft tissue = 22 

± 3 
Bone = 174 ± 

29  
Air = 159 ± 22  

ME [HU] 
 

Body = 13 ± 9  
Soft tissue = -2 ± 

3 
Bone = 75 ± 41  
Air = -71 ± 27  

DSC 
Body 

contour 
= 0.98 ± 

0.01 
Bone = 
0.85 ± 
0.04 
Air = 

0.71 ± 

Mean dose difference 
< 1% 

γ⁎ = 91.1% 

γ⁑ = 95.8% 

γ⁂ = 99.3% 



0.07 

Emami et al., 
2018 [5] 

15 
1 T Philips / 

Post-
Gadolinium T1 

/ 

GAN (ResNet 
for generator 
and CNN for 
discriminator) 

/ RR / 2D 

L1 loss + 
adversarial 

loss 

Least 
square loss 

12 (5-fold 
cross 

validation) 
/ 15 

MAE [HU] 
 

Head = 89.3 ± 
10.3 

Soft tissue = 
41.9 ± 8.6 

Bone = 255.2 
± 47.7 

Air = 240.9 ± 
60.2  

PSNR [dB] 
 

 
 Head = 26.6 ± 

1.2  

SSIM 
 

 
Head = 0.83 

± 0.03 
/ 

Xiang et al., 
2018 [6] 

16 
3T Siemens / 

T1 

N3 bias field 
correction 
algorithm, 
intensity 

histogram 
matching, 
intensity 

normalization 

DECNN / RR 
/ 3D 

L2 norm + 
L2-norm of 
embedding 

blocks 

- 
15 (leave-
one-out) / 

16 

MAE [HU] 
 

85.4 ± 9.2  

PSNR [dB] 
 

27.3 ± 1.1  

/  

Yang et al., 2018 
[7] 

45 
1.5 T Siemens 

/ ❖ 

3D distortion 
correction 
algorithm 

(vendor) + N4 
correction + 

intensity 
normalization  

Cycle-GAN / 

❖ / 

2D 

Adversarial 
loss, cycle-
consistency 

loss (L1 
norm), 

structure 
consistency 

loss (L1 
based on 

MIND)  

Binary cross 
entropy 

27 / 15 

MAE [HU] 
 

129 

PSNR [dB] 
 

24.2 

SSIM 
 

0.78 
 

/ 

Gupta et al., 
2019 [8] 

60 
3T Siemens / 
T1 with Dixon 

/ 
U-Net / RR 

/ 2D 

Combination 
of L1 loss: 

MAE + MSE 
- 47 / 13 

MAE [HU] 
 

All voxels = 81.0 ± 14.6 
Soft tissue = 17.6 ± 3.4 

Bone = 193.1 ± 38.3 
Air = 233.8 ± 28.0 

For 7 patients: 
Dmean PTV difference = 

2.3% 



Kazemifar et al., 
2019 [9] 

77 
1.5 T ❖ / Post-

Gadolinium 2D 
T1 

/ 
cGAN / RR 

/ 2D 

Mutual 
information Binary 

Cross 
entropy 

 
70% of 77 
/ 1% of 77 

Average MAE over 
cross validation sets 

[HU] 
 

47.2 ± 11.0 

DSC 
 

Head = 0.96 ± 
0.02 

Bone = 0.80 ± 
0.06 

Air = 0.70 ± 0.07 

Dose differences < 
2.4% for PTV and 

OARs 
 

γ⁎ = 94.6% 

γ⁑ = 99.2% 

MAE 60.2 ± 22.0 / / 

Koike et al., 
2019 [10] 

15 

❖ Philips, GE 

and Siemens / 
T1, T2 and 

FLAIR 
 

N4 bias field 
correction 
algorithm 

cGAN / DR / 
2D 

 

Adversarial 
loss + L1 

loss 

Binary cross 
entropy 

12 (5-fold 
cross 

validation) 
/ 15 

MAE [HU] 
 

T1w sequence 
 Body = 120.1 ± 20.4 

Soft tissue = 46.3 ± 9.3 
Bone = 399.4 ± 51.8 

 
All sequences 

Body = 108.1 ± 24.0  
Soft tissue = 38.9 ± 10.7 

Bone = 366.2 ± 62.0  

Dose difference < 1% 
T1w sequence 

 γ⁎ = 94.2% 

γ⁑ = 98.9% 

γ⁂ = 99.7% 

 
All sequences  

γ⁎ = 95.3% 

γ⁑ = 99.2% 

γ⁂ = 99.8% 

Lei et al., 2019 
[11] 

24 
❖ GE / T1- 

BRAVO 

N3 bias field 
correction 

algorithm + 
intensity 

normalization 

Cycle-GAN / 
RR 
/ 3D 

Adversarial 
loss + 

distance 
loss 

(combination 
of Mean P 
Distance 

and 
Gradient 

Difference) 

MAD 

23 (leave-
one-out) / 

24 

MAE [HU] 
 

55.7 ± 9.4  

PSNR 
[dB] 

 
26.6 ± 

2.3 
 

NCC 
 

0.96 ± 
0.01 

DSC 
 

Air = 0.90 
± 0.12 
Bone = 
0.83 ± 
0.06  

  

/ 

24/10 57.7 ± 8.4 
27.0 ± 

2.8 
0.96 ± 
0.01 

/ 

Liu et al., 2019 
[12] 

50 

1.5 T GE / 3D 
T1 BRAVO 
+ 1,5 T GE / 
post-contrast 

T1  

/ 
DCNN / DR / 

2D 
 

MSE - 40 / 10 

MAE [HU] 
 

75 ± 23 

DSC 
 

Soft tissue = 
0.94 ± 0.02 

Bone = 0.85 ± 
0.02 

Absolute mean dose 
difference < 1.5% 

γ⁂ = 99.2% 



Air = 0.95 ± 0.01 

Neppl et al., 
2019 [13] 

89 
1.5 T Siemens 
/ T1 MPRAGE 

/ 

U-Net / RR / 
2D 

❖ - 57 / 4 

MAE [HU] 
 

55 ± 10 

ME [HU] 
 

-1 ± 4 

γ⁎ = 95% 

γ⁑ = 98% 

 
 Protontherapy: 

Range difference of 3 
mm < 5% of the 

profiles 

γ ⁑ = 91.7% 

U-Net / RR/ 
/ 3D 

90 ± 20 11 ± 9  

γ⁎ = 95% 

γ⁑ = 98% 

 
Protontherapy: 

Range difference of 3 
mm < 5% of the 

profiles 

 

γ⁑ = 89.3% 

Shafai-Erfani et 
al., 2019 [14] 

50 
1.5 T Siemens 

/ 3D T1 

N4 bias 
correction 

filter 

Cycle-GAN / 
RR 
/ 3D 

Adversarial 
loss, MAD 
(L1 norm), 

Mean P 
distance and 

gradient-
difference 

loss 

Mean P 
distance : lp 

norm 
25 / 25 

MAE [HU] 
 

54.6 ± 6.8  

NCC 
 

0.96 ± 0.01 

Protontherapy: 
Dose difference < 

0.5% 
Mean distal range: 1.1 

± 0.9 mm 

γ⁎ = 89.2% 

γ⁑ = 98.1% 

γ⁂ = 99.9% 

Spadea and 
Maspero et al., 

2019  
[15] 

15 
3 T Siemens / 

3D T1 
/ 

DCNN: U-Net 
/ RR / 2.5D 

L1 loss - 
14 (leave-
one-out) / 

15 

MAE [HU] 
 

Body = 54 ± 7  
Cerebrospinal 
fluid = 10 ± 3  
Gray matter = 

8 ± 2  
White matter = 

6 ± 2  

ME [HU] 
 

Body = -4 ± 17 
Cerebrospinal 
fluid = 0 ± 9 

Gray matter = 
0 ± 6 

White matter = 
0 ± 4 

DSC 
 

Bone = 0.93 
± 0.02 

Air = 0.92 ± 
0.03  

Protontherapy: 

PTV dose difference < 
0.1 Gy 

 
Relative range shift: 

0.14 ± 1.11% 



Air = 53 ± 32  Air = -37 ± 39 

Alvarez Andres 
et al., 2020 [16] 

402 
1.5 T + 3 T GE 
/ T1 and FLAIR 

N4 filter 

CNN 
(HighResNet)/ 

RR / 2D 
- 

242 / 79 

MAE [HU] 
 

Head = 81 ± 22 
Water = 38 ± 11 
Bone = 228 ± 63 
Air = 274 ± 63  

Dose differences:  
PTV (D2%, D50%, D95%, 

D98%) < 0.3% 

γ⁎ = 97.9% 

γ⁑ = 99.6% 

γ⁂ = 99.8% 

U-Net / RR / 
3D 

MAE - 
MAE [HU] 

 
Head = 90 ± 21 

γ⁂ = 99.7% 

Hemsley et al., 
2020 [17] 

105 
1.5 T Philips / 
T1 and FLAIR 

MR 
normalization 

cGAN 
(pix2pix)/ RR / 

2D 

adversarial 
+ log-

likelihood of 
the Laplace 
distribution 

Binary cross 
entropy 

85 / 20 

MAE [HU] 
 

Normal soft tissue = 6 ± 3 
Air-bone interface = 237 ± 31 

/ 

Kazemifar et al., 
2020 [18] 

77 
1.5 T ❖ / 2D 

T1 
/ 

cGAN / no 
registration 

/ 2D 

Mutual 
information 

Binary cross 
entropy 

54 / 11 

 Average MAE over all-cross validation 
sets [HU] 

 
47.2 ± 11.0 

Protontherapy: 
Mean dose difference 

< 1.8% 
Up to 5.1% for 
brainstem D2%  

Li et al., 2020 
[19]  

 
34 

1.5 T Siemens 
/ T2 

Distorsion 
correction 

U-Net / RR / 
2D  

L1 

- 

28 / 6 

MAE [HU] 
 
75.5 ± 7.9 

PSNR [dB] 
 

25.4 ± 0.6  

SSIM 
 

0.94 ± 
0.01 

MSE 
[HU] 

 

4.9∙10
4
 ± 

7.7.10
3
  

/ 

L2 75.5 ± 11.7 32.2 ± 1.1 
0.94 ± 
0.01 

1.1∙10
4
 ± 

3.1.10
3
 

L1 + L2 74.2 ± 12.8 32.4 ± 1.2 
0.94 ± 
0.01 

1.0∙10
4
 ± 

3.1∙10
3
 

cGAN 
(pix2pix) / RR 

/ 2D 
❖ ❖ 94.6 ± 17.2 30.3 ± 1.2 

0.91 ± 
0.01 

1.6∙10
4
 ± 

4.9∙10
3
 

Paired Cycle-
Gan / RR / 2D 

❖ ❖ 87.7 ± 7.9 30.9 ± 0.6 
0.92 ± 
0.00 

1.4∙10
4
 ± 

2.1∙10
3
 



Unpaired 
Cycle-Gan 

❖ ❖ 98.7 ± 12.7 29.9 ± 0.9 
0.91 ± 
0.01 

1.7∙10
4
 ± 

3.3∙10
3
 

Liu et al.,  
2020 [20] 

15 
1.0 T Philips / 

Postgadolinium 
T1 

 / 

GAN (ResNet 
for generator 
and CNN for 
discriminator) 

/ RR / 2D 

L1 loss + 
adversarial 

loss 
L2 loss 

 12 / 3 (5-
fold cross 
validation) 

Emami et al., 2018 [5] 

Dose differences:  
PTV and OARs 

< 0.13 Gy 
 

γ⁎= 99.0% 

γ⁑= 99.9% 

Maspero et al., 
2020 [21] 

60  
(paediatric 
patients) 

1.5 T and 3 T 
Philips / 3D T1 

MRI was 
normalised 

and clipped to 
their 

99
th
 percentile 

intensity over 
the whole 
volume 

cGAN / RR / 
2D 

L1 loss ❖ 

30 / 20 (4-
fold cross-
validation) 

MAE [HU] 
 

61.0 ± 14.1 

 PSNR 
[dB] 

 
26.7± 
1.9 dB 

 

SSIM 
 

0.86±0.03 

DSC 
 

Body = 
0.984 ± 
0.004 

Bone = 

0.92 ± 

0.05 

Photontherapy: 

Dose differences < 
0.9% 

γ⁑ > 93.9% 

γ⁂ >98.4% 
Protontherapy: 

Dose differences < 1% 

γ⁑ > 92.6% 

γ⁂ >97.2% 

Massa et al., 
2020 [22] 

92 

1.5 T GE / 
T1w, T2-

FatSat, T1 
Post contrast, 

T2 CUBE 
FLAIR 

 / 

U-net with 
Inception V3 

inspired 
blocks / DR / 

2D 

❖ - 81 / 11 

MAE [HU] 
 

T1w: Brain 
= 51.2 ± 

4.5  
Bone = 

31.1 ± 7.0 
 

T2-FatSat: 
Brain = 

45.7 ± 8.8  
Bone = 

30.3 ± 7.1 
 

T1 Post 
contrast:  
Brain = 

44.6 ± 7.5  
Bone = 

30.2 ± 6.0 

PSNR 
[dB] 

 
T1w:  

Brain = 
43.0 ± 

2.0  
Bone = 
43.2 ± 

1.9 
 

T2-
FatSat:  
Brain = 
43.4 ± 

1.2  
Bone = 
43.7 ± 

1.2 
 

SSIM  
 

T1w:  
Brain = 
0.65 ± 
0.05 

Bone = 
0.87 ± 
0.03 

 
T2-

FatSat: 
Brain = 
0.63 ± 
0.03   

Bone = 
0.86 ± 
0.02 

 
T1 Post 

DSC 
 

T1w:  
Soft 

tissue = 
0.91 ± 
0.03  

Bone = 
0.76 ± 
0.12 

 
T2-

FatSat: 
Soft 

tissue = 
0.91 ± 
0.02   

Bone = 
0.77 ± 
0.07 

/ 



 
T2 CUBE 
FLAIR: 
Brain = 

51.2 ± 4.5  
Bone = 

36.1 ± 3.3 

T1 Post 
contrast: 
Brain = 
43.4 ± 

1.2   
Bone = 
43.7 ± 

1.2 
 

T2 
CUBE 
FLAIR: 
Brain = 
44.9 ± 

1.2  
Bone = 
45.2 ± 

1.1 

contrast: 
Brain = 
0.64 ± 
0.03   

Bone = 
0.86 ± 
0.03 

 
T2 CUBE 
FLAIR: 
Brain = 
0.61 ± 
0.04  

Bone = 
0.84 ± 
0.02 

  
T1 Post 
contrast: 

Soft 
tissue = 
0.90 ± 
0.02   

Bone = 
0.75 ± 
0.07 

 
T2 CUBE 
FLAIR: 

Soft 
tissue = 
0.88 ± 
0.03  

Bone = 
0.69 ± 
0.07 

Tang et al., 2020 
[23] 

37 
3 T Siemens / 

T1 TIRM 
 / 

cGAN 
(pix2pix)/ RR / 

❖   

MAE + 
adversarial 

loss 

Least 
square loss 

27 (5 fold 
cross-

validation) 
/ 10 

MAE [HU] 
 

60.5 ± 13.3 

PSNR [dB] 
 

49.2 ± 1.9 

Dose differences:  
PTV < 0.13% 

Brainstem, optic 
chiasma, optic nerve < 

0.77% 
 

γ⁑ = 97.3% 

γ⁂ = 99.8% 

Bourbonne et 
al., 2021 [24] 

184 

1.5 T Siemens 
/ T2 and post 

gadolinium 3D 
T1  

MRI voxel 
intensities 

were clipped 
to be inside 
the [1-99%] 

quantile 
range. 

cGAN 

(pix2pix) / ❖ / 

2D 

Adversarial 
loss and 
MAD (L1 

norm) 

PatchGAN 20 / 164 

RMSE [HU] 
 

Soft-tissue = 13.54 ± 1.96 
Bone = 175.50 ± 63.15 

Dose differences:  
PTV < 0.4 Gy 

 

Local γ⁑ = 99.1% 

Additional table 1: Synthetic-CT generation from brain MRI in the literature: summary of data, deep learning architecture, and image and dose 

evaluations 



γ⁎ = 1%/1 mm gamma pass-rate 1%/1mm; γ⁑ = 2%/2 mm gamma pass-rate; γ⁂ = 3%/3 mm gamma pass-rate; ❖ = not specified in the study 

Abbreviations: GAN = generative adversarial network, MAD = mean absolute distance, MAE = Mean Absolute Error; ME = Mean Error; DSC = Dice Similarity 

Coefficient; PSNR = Peak Signal-to-Noise Ratio; SSIM = Structural Similarity; NCC = Normalized Cross-Correlation; MSE = Mean Square Error; RR = Rigid 

Registration; DR = Deformable Registration; DECNN = Deep Embedding Convolutional Neural Network; DCNN = Deep CNN.  

 

  



First author, 

year 

[reference] 

No. of 

patients 

Magnetic 

field, 

system / 

MRI 

sequence 

Preproces

sing of 

MRI 

images 

Deep 

learning 

method / RR 

or DR / 2D or 

2.5D or 3D 

training 

Overall loss 
function (for 
GANs) or 

generator  loss 
function  

Adversaria
l loss used 

by 
discriminat

or (for 
GANs) 

No. of 

patients in 

training / 

evaluation 

Image and geometric fidelity results Dose results 

Dinkla et al., 

2019 [25] 
34 

3 T 

Philips / 

T2 - 

Dixon 

2D 

geometry 

correction

+ 

uniformity 

correction 

(CLEAR) 

U-Net / DR 
/ 3D 

L1 - 

22 (3-fold 

cross 

validation) 

/ 34 

MAE 
[HU] 

 
Body = 
75 ± 9 

 

ME [HU] 
 

Body = 9 ± 11 

 

DSC 
 

Bone = 0.70 
± 0.07 

Air = 0.79 ± 

0.08 

Dose 
difference < 

1% 
 

γ⁑ = 95.6% 

γ⁂ = 98.7% 

Klages et 

al., 2019  

[26] 
20 

3 T 

Philips / 

mDixon 

T1 Fast 

Field 

Echo 

(FFE) 

Intensity 

inhomoge

neity 

correction 

(CLEAR) 

cGAN 
(Pix2Pix) / 

DR 
/ 2D 

Adversarial loss 
+ 

Absolute 

differences (L1) 

Binary 

cross 

entropy 

10 / 10 

MAE [HU] 
 

Body = 92.4 ± 13.5 
 

ME [HU] 
 

Body = 21 ± 11.8 
 

Dose 
differences: 
PTV70Gy < 

0.8% 
OARs < 2% 

Dose 
differences: 
PTV70Gy< 

1.6% 
OARs < 

1.7% 

cycle-Gan / 
DR 
/ 2D 

Body = 100.7 ± 14.6 

 
Body = 37.5 ± 14.9 

Wang et al., 

2019 [27] 
33 

1.5 T 

Siemens / 

T2 TSE 

Histogram 

matching 

DCNN: U-

Net / RR and 

DR / 2D 

L2: MSE - 23 / 10 
MAE [HU] 

Body = 131 ± 24 

ME [HU] 

Body = −6 ± 13 
For one 

patient: PTV 

D98% 

difference < 

1% 



Largent et 

al., 2020 [28] 
8 

1.5 T GE / 

3D T2 

N4 bias-

field 

correction 

and 

histogram 

matching 

GAN / RR 
and DR 

/ 2D 
Perceptual loss 

Cross 

entropy 

7 (leave-

one-out) / 

8 

MAE [HU] 
 

82.8 ± 48.6 

ME [HU] 
 

-3.9 ± 12.8 
/ 

Peng et al., 
2020 [29] 

173 

3 T 

Philips / 

T1 

Intensity 

of each 

MR 

volume 

image 

was 

normalize

d as zero 

mean and 

unit 

variance 

and then 

scaled to 

a similar 

numeric 

range 

cGAN 

(registered 

pairs) / DR / 

2D 

Adversarial loss 
+ L1 loss 

Least 

square 

loss 

135 pairs / 

28 pairs 

MAE [HU] 
 

Body = 69.7 ± 9.3 
 

ME [HU] 
 

Body = 18.4 ± 16.4 
 

 

Dose 
differences: 
PTV (D95%) < 

0.7% 
Parotids 
(Dmean) < 

0.9% 
Mandible 
(Dmax) < 

1.5% 
 

γ⁑ = 98.7% 

γ⁂ = 99.6% 

cycle-Gan 

(unregistered 

pairs) / - / 2D 

Cycle- 

consistency 

loss (MAE loss) 

+ adversarial 

loss + L1 loss 

PatchGAN 

loss 

Body = 100.6 ± 7.7 
 

Body = 6.7 ± 19.4 
 

Dose 
differences: 
PTV (D95%) < 

0.9% 
OARs 

(Dmean) < 
1.2% 

Mandible 
(Dmax) < 

1.6% 
 

γ⁑ = 98.5% 

γ⁂ = 99.6% 

Qi et al., 

2020 [30] 
45 

3 T 

Philips / 

T1, T2, 

contrast-

Normaliza
tion to [-1, 
1] based 
on the 

minimum 

cGAN / RR 
/ 2D 

Adversarial loss 

+ L1 loss 

PatchGAN 

loss 
30 / 15 

MAE 
[HU] 

Body : 
T1 = 

75.2 ± 

ME 
[HU] 

Body : 
T1 = 
1.3 ± 

PSNR 
[dB] 

 
T1 = 28.9 

± 1.1 

SSIM 
 

T1 = 
0.84 ± 
0.02 

DSC 
 

Bone: 
T1 = 

0.74 ± 

Dose 
difference < 

1% 
 

T1: γ⁑ = 



enhanced 

T1 (T1C) 

and 

contrast-

enhanced 

T1 with 

Dixon 

(T1Dixon

C) 

and 
maximum 
intensity 
values 

 

11.5 
T2 = 

87.0 ± 
10.8 

T1C = 
80.0 ± 
10.9 

T1Dix
onC = 
86.3 ± 
10.8 

 
Multis

eq. = 

70.0 ± 

12.0 

14.9 
T2 = 

12.3 ± 
16.2 

T1C = 
5.0 ± 
16.0 

T1Dixo

nC = 

6.4 ± 

16.7 

T2 = 27.5 
± 0.9 
T1C = 
28.4 ± 

1.1 
T1Dixon
C = 27.7 

± 0.9 
 

Multiseq. 

= 29.4 ± 

1.3 

T2 = 
0.78 ± 
0.03 

T1C = 
0.82 ± 
0.03 

T1Dixo
nC = 

0.79 ± 
0.03 

 
Multise

q. = 

0.85 ± 

0.03 

0.05 
T2 = 

0.68 ± 
0.05 

T1C = 
0.72 ± 
0.05 

T1Dixo
nC = 

0.69 ± 
0.06 

 
Multise

q. = 

0.77 ± 

0.05 

97.4% 

T2: γ⁑ = 

95.8% 

T1C: γ⁑ = 
96.7% 

T1DixonC: 

γ⁑ = 96.2% 

Multiseq.: 

γ⁑ = 97.8% 

U-Net / RR 
/ 2D 

L1 loss - 
71.3 ± 

12.4 
/ 

29.2 ± 

1.3 

 

/ 
0.76 

± 

0.05 

Dose 
difference < 

0.9% 

γ⁑ = 97.6% 

Thummerer 
et al., 2020 

[31] 
27 

3 T 

Siemens / 

3D 

spoiled 

gradient 

recalled 

echo 

/ 
DCNN / DR / 

2.5D 
L1 loss - 

18 (3-fold 

cross 

validation) 

/ 27 

MAE [HU] 
 

Body = 65.4 ± 3.6 

ME [HU] 
 

Body = 2.9 ± 9.4 

Protontherap
y: 

Range errors 
> 3% 

γ⁑ = 97.6% 

Tie et al., 

2020 [32] 
32 

1.5 T 

Siemens / 

T1 

precontra

st + T1 

postcontr

ast and 

T2 

N4 bias correction 

algorithm + 

histogram 

normalization 

cGAN 
(Pix2Pi
x) / RR 

/ 2D 

Combination of 
Pearson f-

divergence + 
adversarial loss 

+ L1 loss 

 

Least 

square 

loss 

28 (8-fold 

cross 

validation)

/ 32 

MAE 
[HU] 

 
Head = 

75.7 ± 

14.6 

PSNR [dB] 
 

29.1 ± 1.6 

DSC 
 

Bone = 
0.86 ± 
0.03 

SSIM 
 

0.92 

± 

0.02 / 



Palmér et 

al., 2021 [33] 
44 

1.5 T 

Siemens / 

T1w 

Dixon 

Vibe 

❖ 

Deep 

CNN / 

RR + 

DR / 

2D 

❖ - 

80 

(multicent

er 

database) 

/ 44 

MAE [HU] 
 

Body = 67 ± 
14 

 

ME [HU] 
 

Body = -5 
± 10 

 

 

DSC 
 

Bones 
= 0.80 
± 0.07 

Air 
=0.81 
± 0.1 

 

HD 
[mm] 

 
Bones = 
4.6 ± 1.2 
Air = 2.8 

± 0.8 

Mean dose 
differences 
PTV and 
OARs < 

0.3% 
 

γ (2%/1 

mm)=99.4% 

Additional table 2: Synthetic-CT generation from head and neck MRI in the literature: summary of data, deep learning architecture, and image and dose 

evaluations 

γ ⁑ = 2%/2 mm gamma pass-rate; γ ⁂ = 3%/3 mm gamma pass-rate; ❖ = not specified in the study. 

Abbreviations: GAN = generative adversarial network, MAE = Mean Absolute Error; ME = Mean Error; HD = Hausdorff distance, DSC = Dice Similarity 

Coefficient; PSNR = Peak Signal-to-Noise Ratio; SSIM = Structural Similarity; RR = Rigid Registration; DR = Deformable Registration; MSE = mean square error, 

DCNN = Deep Convolutional Neural Network.  



 

First author, 
year 

[reference] 
Anatomical site 

No. of 
patients 

Magnetic 
field, 

system / 
MRI 

sequence 

Preprocessing 
of MRI images 

Deep learning 
method / RR 

or DR / 2D or 
2.5D or 3D 

training 

Overall loss 
function (for 
GANs) or 
generator  

loss function  

Adversarial 
loss used by 
discriminator 
(for GANs) 

No. of patients 
in training / 
evaluation 

Image and geometric fidelity 
results 

Dose results 

Jeon et al., 
2019 [34] 

Breast 16 

0.35 T, 
MRIdian 

(Viewray) / 

❖ 

 / 
U-Net / DR / 

2D 
Binary cross-

entropy 
- 14/2 

DSC (%) 
Patient 1 = 76.4 
Patient 2 = 73.5 

/ 

Liu et al., 
2019 [35] 

Liver 21 

3 T Skyra / 
3D T1 + 3 
T TrioTim 
Siemens / 
T1 VIBE 
and 1.5 T 
GE / 2D 

T1 

N4 bias field 
correction 
algorithm 

cycle-GAN / 
DR 
/ 3D 

Weighted 
summation of 

adversarial 
loss and 
mean p 

distance (lp 
norm) + 
gradient 

difference  

MAD  
20 (leave-one-

out) / 21 

MAE [HU] 
 

Body = 72.9 
± 18.2 

 

PSNR [dB] 
 

22.4 ± 3.6  

Protontherapy: 
 

PTV45Gy and 
bowel dose 

difference < 1 
Gy 

PTV D95% < 
1.1% 

 
Mean of 
absolute 

maximum range 
shift: 1.86 ± 

1.55 mm 
 

γ⁎ = 90.8% 

γ⁑ = 97.0% 

γ⁂ = 99.4% 

Liu et al., 
2019 [36] 

Liver 21 

3 T Skyra/ 
3D T1 + 3 
T TrioTim 
Siemens / 
T1 VIBE 
and 1.5 T 
GE / 2D 

T1 

N4 bias field 
correction 

filter 

cycle-GAN / 
RR and DR 

/ 3D 
 

Weighted 
summation of 

MAD 
(adversarial 

loss) and 
mean p 

distance (lp 
norm) + 
gradient 

MAD  
20 (leave-one-

out) / 21 

MAE [HU] 
 

Body = 72.9 
± 18.2 

PSNR [dB] 
 

22.7 ± 3.6  

Mean dose 
difference: 
PTV D95% = 

0.2% 
 

Dose difference 
to OARs < 0.06 

Gy 

 



difference  γ⁎ = 99.0% 

Olberg et al., 
2019 [37] 

Breast 48 
0.35 T 

Viewray / 
T1 

Histogram 
matching 

U-Net and 
ASPP / DR / 

2D 

Adversarial 
(Cross 

entropy loss) 
+ MAE 

Cross 
entropy loss 

48 / 12 

RMSE 
[HU] 

 
17.7 ± 

4.3   

PSNR 
[dB] 

 
71.7 ± 2.3 

SSIM 
 

0.9995 ± 
0.0003 

For 4 patients 

PTV D95% < 

0.9% 
 

γ⁑ ≥ 98.0% 

Xu et al., 
2019[38] 

Abdomen 10 
❖ / 

mDixon 
❖ 

MCRcGAN 
(ResNet + 

multichannel 
cGAN) / DR / 

2D 

 L1 loss + 
cGAN loss 

(cross 
entropy loss) 

Cross 
entropy loss 

9 (leave-one-
out) / 10 

MAE [HU] 
 

60.4 / 

Cusumano 
et al., 2020 

[39] 

Pelvis and 
abdomen 

60 pelvis / 
60 

abdominal 
 

0.35 T 
MRIdian 

(Viewray) / 
T2/T1 

❖ 

cGAN 
(pix2pix) / DR / 

2D 

LGAN+λ·L1 
with λ = 100 

LGAN : 
adversarial 

loss function 

❖ 

40 pelvis, 40 
abdomen/20 

abdomen 

MAE [HU] 
Body = 78.7 ± 

18.5 
 

ME (HU) 
Body = 10.8 

± 12.9   
 

γ⁎ = 90.8% 

γ⁑ = 98.7% 

γ⁂ = 99.8% 

Florkow et 
al., 2020 [40] 

Wilms’ tumour 
(24) and 

Neuroblastoma 
(42) 

66 

1.5 T 
Philips / 

3D T1 and 
3D T2 

Intensities 
clipped 

beyond the 
95th 

percentile + 
resulting 

intensities 
linearly 

mapped to [-1; 
1]. 

 

U-Net / DR / 
3D 

L1 - 

54/12 (3- fold 
cross 

validation) 
 

MAE 
[HU] 

 
Body 
= 57 ± 

12 
Lungs 
= 105 
± 34 

ME 
[HU] 

 
Body 
= -5 ± 

12 
Lungs 
= -9 ± 

67 

PSNR 
(dB) 

 
Body = 
30.3 ± 

1.6 
 

DSC 
(%) 

 
Bones 
= 76 ± 

8 
Lungs 
= 92 ± 

9 

Photontherapy: 
Mean dose 
difference 

<0.5% 
 

γ⁑ > 99% 

 
Protontherapy:  

γ⁑ > 96% 

 

Fu et al., 
2020 [41] 

Liver + 
Abdomen 

12 (8 liver 
+ 1 

pancreas + 
1 adrenal 
gland + 2 

middle 
abdomen 
tumors ) 

0.35 T, 
MRIdian 

(Viewray) / 
True-FISP 

N4 bias field 
correction 

algorithm + 
histogram 

normalization 

cGAN / DR / 
2D 

cGAN + L1 
Binary Cross 
entropy loss 

9 (4-fold cross 
validation)/ 12 

MAE [HU] 
 

Body = 89.8 ± 
18.7 

PSNR [dB] 
 

27.4 ± 1.6 

For 8 liver 
patients 
 Dose 

difference:< 
0.6% 

 

γ⁑ = 97.4% 

γ⁂ = 99.5% 



cycle-GAN / 
DR / 2D 

Adversarial 
loss + cycle 
consistency 

Binary Cross 
entropy loss  

Body = 94.1 ± 30  27.2 ± 2.2 

For 8 liver 
patients 

Dose difference 
< 1% 

 

γ⁑ = 95.6% 

γ⁂ = 99.3% 

Liu et al., 
2020 [42] 

Abdomen 46 

3 T Skyra 
Siemens/ 

3D T1 
ECHO 

N4 Intensity 
inhomogeneity 

correction 

U-Net / RR / 
2.5D 

❖ - 
31/46 (3 fold 

cross 
validation) 

MAE [HU] 
Liver = 24.1 ± 11.5 
Kidneys = 47.1 ± 15 

Spinal Cord = 29.8 ± 9.4 
Lungs = 105.7 ± 35.0 

Mean dose 
difference < 

0.15 Gy 

Qian et al., 
2020 [43] 

Abdomen 10 
❖ / 

mDixon 
❖ 

RU-ACGAN : 
hybrid network 

associated 
with AC-GAN 

and cGAN and 
combined with 
ResNet and U-

Net 
simultaneously 

/ DR / 

L1 loss + 
adversarial 

loss 

Binary cross 
entropy loss 
+ Softmax 

loss 

9/10 (leave-
one-out) 

MAE [HU] 
 

55.6 ± 5.6 

RMSE [HU] 
 

106.4 ± 
12.2 

/ 

Additional table 3: Synthetic-CT generation from breast, liver, and abdomen MRI in the literature: summary of data, deep learning architecture, and 

image and dose evaluations 

γ ⁎ = 1%/1 mm gamma pass-rate 1%/1mm, γ ⁑ = 2%/2 mm gamma pass-rate, γ ⁂ = 3%/3 mm gamma pass-rate, ❖ = not specified in the study 

Abbreviations: MAE = Mean Absolute Error, PSNR = Peak to Signal-to-Noise Ratio, SSIM = Structural Similarity, NCC = Normalized Cross-Correlation, RMSE = 

Root Mean Square Error, MAD = mean absolute distance, GAN = generative adversarial network, ASPP = atrous spatial pyramid pooling, RU-ACGAN = 

Auxiliary classifier-augmented GAN. 

 



 

First author, 

year 

[reference] 

Anatomic

al site 

No. of 

patients 

Magnetic 

field, 

system / 

MRI 

sequence 

Preprocessing 

of MRI 

images 

Deep learning 

method / RR 

or DR / 2D or 

2.5D or 3D 

training 

Overall loss 
function (for 
GANs) or 
generator  

loss function  

Adversarial 
loss used by 
discriminator 
(for GANs) 

No. of 

patients 

in 

training / 

evaluatio

n 

Image and geometric fidelity 

results 
Dose results 

Nie et al., 

2016 [44] 
Pelvis 22 ❖ / 

FCN / Manual 
alignment 

/ 3D 
❖ - 

21 

(leave-

one-out) 

/ 22 

MAE [HU] 
 
 

Body = 42.4 ± 

5.1 

PSNR [dB] 
 
 

Body = 33.4 ± 

1.1 

/ 

Nie et al., 

2017 [2] 
Pelvis 22 

❖ 

 
❖ 

GAN (with 
FCN for 

generator and 
CNN for 

discriminator)/ 
Manual 

alignment 
/ 3D 

L2 loss + 

gradient loss 

+ adversarial 

loss 

Binary cross 

entropy 

21 

(leave-

one-out) 

/ 22 

MAE [HU] 
 

Body = 39.0 ± 

4.6 

PSNR [dB] 
 

Body = 34.1 ± 

1.0 
/ 

Arabi et al., 

2018 [45] 
Prostate 39 

3 T 

Siemens 

/ 3D T2 

SPACE 

N3 bias field 

correction 

algorithm 

DCNN: U-Net 
/ RR and DR 

/ 2D 
MAE - 

(4-fold 
cross 

validatio
n) 

¾ of 39 / 

39 

MAE 
[HU] 

 
Body = 
32.7 ± 

7.9 
 

 

ME 
[HU] 

 
Body 
= 3.5 

± 
11.7 

 

 

DSC 
 
 

Bone 
= 

0.93 
± 

0.02 
 
 

MASD 
[mm] 

 
Body 
= 1.8 
± 0.6 

 

 

Mean dose 
difference < 

0.5% 
Dose 

difference: 
CTV (Dmax) = 

2.9% 
OARs 

(Dmax)= 0.5% 
 

γ⁎ = 94.6% 

γ⁑ = 98.5% 

γ⁂ = 99.2% 



Chen et al., 

2018 [46] 
Prostate 51 

3 T 

Philips / 

T2 TSE 

No bias field 

correction and 

MR intensity 

histogram 

normalization 

U-Net / DR / 

2D 
MAE - 36 / 15 

MAE [HU] 
 

Body = 30.0 ± 
4.9 

 

 

ME [HU] 
 

Body = 6.7 ± 
5.4 

 

Dose 
differences: 

0.2% 
(PTV/OARs) 

 

γ⁎ = 98.0% 

γ⁑ = 99.4% 

γ⁂ = 99.8% 

Maspero et 
al., 2018 

[47] 
 

Prostate 59 

3 T 

Philips / 

3D Echo 

with 

Dixon 

Normalized to 
their 95% 
intensity 

interval over 
the whole 
patient + 

converted to 
8-bits 

 

cGAN / RR 
/ 2D 

Adversarial 
loss +λ·L1 

with λ = 100 

 

PatchGAN 

loss 

32 / 27 

MAE [HU] 
 
 

Body = 65 ± 10 

ME [HU] 
 
 

Body = 1 ± 6 

For 10 
patients /27 

Dose 
difference: 

PTV (D98%)< 
1% 

 

γ⁑ = 95.0% 

γ⁂ = 98.1% 

Rectum 18 

3 T 

Philips / 

3D Echo 

with 

Dixon 

32 

(prostate 

patients) 

/ 18 

MAE [HU] 
 

Body = 56 ± 5 

ME [HU] 
 

Body = 2 ± 9 

For 10 
patients /18 

Dose 
difference: 

PTV (D98%)< 
1.2% 

 

γ⁑ = 91.6% 

γ⁂ = 97.1% 

Cervix 14 

❖ / 3D 

Echo with 

Dixon 

32 

(prostate 

patients) 

/ 14 

MAE [HU] 
 

Body = 59 ± 6 

ME [HU] 
 

Body = 4 ± 10 

For 10 
patients /14 

Dose 
difference: 

PTV (D98%) < 
1% 

 

γ ⁑ = 90.6% 

γ ⁂ = 97.1% 



Xiang et al., 

2018 [6] 
Prostate 22 

1.5 T 

Siemens 

/ T1 

N3 correction 

algorithm + 

histogram 

matching + 

intensity 

normalization 

DECNN/ DR 
and RR 

/ 2D 
L2 - 

21 

(Leave-

one-out) 

/ 22 

MAE [HU] 
 

Body = 42.5 ± 

3.1 

PSNR [dB] 
 

Body = 33.5 ± 
0.8 

 

/ 

Florkow et 

al., 2019 

[48] 

Prostate 23 

3 T 

Philips / 

T1 

/ 
U-Net / DR / 

2D 

 
L1 - 

16 (3-

fold 

cross-

validatio

n) / 23 

MAE 
[HU] 

 
Body = 

34.1 ± 

7.9 

ME 
[HU] 

 
Body 

= -

1.2 ± 

4.6 

PSNR 
[dB] 

 
Body 

= 

34.7 ± 

1.7 

DSC 
 

Bone 

= 

0.78 ± 

0.10 

/ 

Florkow et 

al., 2019 

[49] 

Pelvis 24 

3 T 

Philips / 

echo 

sequence 

with 

Dixon 

/ 
U-Net / RR 

and DR / 2D 

 
L1 - 

11 (3-

fold 

cross-

validatio

n) / 24 

MAE [HU] 
 

Body = 27.6 ± 

2.6 

DSC 
 

Bone = 0.89 ± 

0.02 / 

Fu et al., 

2019 [50] 
Prostate 20 

1.5 T 

Siemens 

/ 2D T1 

TSE 

N4 bias field 

correction 

algorithm + 

histogram 

normalization 

CNN / DR 
/ 2D 

MAE - 16 / 4 

MAE [HU] 
 

Body = 40.5 ± 

5.4 

DSC 
 

Bone = 0.81 ± 

0.04 
/ 

CNN / DR 
/ 3D 

Body = 37.6 ± 

5.1 

Bone = 0.82 ± 

0.04 

Han’s model 

[1] 

Body = 41.9 ± 

6;5 

Bone = 0.80 ± 

0.05 

Largent et 

al., 2019 

[51] 

Prostate 39 

3 T 
Siemens 
/ 3D T2 
SPACE 

 

Normalization 

and correction 

of image 

nonuniformity 

U-Net / 
RR and DR 

/ 2D 
L2 - 

25 (3-

fold 

cross-

validatio

n) / 39 

MAE [HU] 
 

Body = 34.4 ± 
7.7 

 

ME [HU] 
 

Body = -1.0 ± 
14.2 

 

Mean dose 
difference < 
0.6% (PTV 
and OARs) 

 

γ
⁎ = 99.2% 



GAN / 
RR and DR 

/ 2D 

L2 + 

adversarial 

loss 

Binary cross 

entropy 

Body = 34.1 ± 
7.5 

 

Body = -1.1 ± 
13.7 

 

Mean dose 
difference < 
0.6% (PTV 
and OARs) 

 

γ
⁎ = 99.1% 

Lei et al., 

2019 [11] 
Prostate 20 

❖ 

Siemens 

/ 3D T2 

SPACE 

N3 correction 

algorithm + 

intensity 

normalization 

Cycle-GAN / 
RR 
/ 3D 

Combination 
mean P 
distance 

of adversarial 

loss and 

distance loss 

gradient 

difference 

MAD 

19 

(Leave-

one-out) 

/ 20 

MAE [HU] 
 

50.8 ± 15.5 

 

PSNR 
[dB] 

 

24.5 ± 

2.6 

DSC 
 

Air = 
0.75 ± 
0.06 

 
Bone = 

0.81 ± 

0.05 

/ 

20/10 42.3 ± 15.5 
23.9 ± 

2.0 
/ 

Liu et al., 
2019 

[52] 
Prostate 17 

1.5 T 

Siemens 

/ T2 

/ 

DCNN / RR 
/ 3D 

Combination 
mean P 
distance 

of adversarial 

loss and 

distance loss 

gradient 

difference 

MAD 

16 

(Leave-

one-out) 

/ 17 

MAE 
[HU] 

 
Body = 

59.0 
± 18.6 

 

PSNR 
[dB] 

 
Body 

= 
23.7 ± 

3.0 

 

DSC 
 

Bone 
= 0.81 
± 0.06 

 

HD 
95% 
[mm] 
Bone 
= 4.9 
±1.5 

Protontherap
y 
 

Mean 
absolute 

dose 
difference = 

0.23% 
 

PTV DVH 
points 

difference < 
1.5% 

 
Rectum 

DVH 
difference < 

5% 
 

Bladder 
DVH 

GAN / RR 
/ 3D 

Combination 
mean P 
distance 

of adversarial 

loss and 

distance loss 

gradient 

difference 

Body = 
74.7 

± 20.0 
 

 

Body 

= 

22.1 ± 

2.7 

Bone 

= 0.81 

± 0.06 

Bone 

= 4.7 ± 

1.4 

mm 

cycle-GAN / 
RR / 3D 

 

Combination 

of mean P 

distance 

16 

(leave 

one out) 

 
Body = 

51.3 

 

24.2 ± 

2.46 

 

Bone 

= 0.85 

 

4.2 ± 

1.0 



(MPS: lp 

norm) and 

gradient 

difference 

/ 17 ± 16.9 
HU 

 

dB ± 0.05 mm difference < 
11% 

 
Mean of 
absolute 

maximum 
range shift: 
2.3 ± 2.5 

mm 
 

γ⁎ = 92.4% 

γ⁑ = 98.0% 

γ⁂ = 99.0% 

Stadelmann 
et al., 2019 

[53] 
Pelvis 42 

3 T 

Philips / 

3D FFE 

mDixon 

/ 

U-Net and 

LinkNet / RR / 

2D 

L1 loss - 27 / 15 

MAE [HU] 
 

41.4 / 

Bahrami et 

al., 2020 

[54] 

Male 

Pelvis 

15 (+4 

additional 

patient for 

evaluation) 

3 T 

Siemens 

Skyra / 

3D T2 

N4 correction 

algorithm + 

intensity 

normalization 

eCNN / DR / 

2D 
MAE 

 

15 (5-

fold 

cross 

validatio

n) / 4 

MAE 
[HU] 

 
Body 
= 38 
± 5.6 

 

ME 
[HU] 

 
Body 
= 6 ± 
13.4 

 

PS
NR 
[dB

] 
 

Bo
dy 
= 

29.
5  ± 
1.3 

 

SSIM 
 

Body 
=  

0.96 

 

DS
C 
 

Bon

e = 

0.77 

± 

0.03 

/ 

U-Net MAE 

MAE 
[HU] 

 
Body 
= 46 
± 5.7 

 

ME 
[HU] 

 
Body 
= 6.2 

± 
17.9 

 

PS
NR 
[dB

] 
 

Bo
dy 
=  

27.

SSI
M 
 

Bod
y =  

0.95 
 

DSC 
 

Bon

e = 

0.7 ± 

0.09 

/ 



4 ± 
0.6 

 

Bird et al., 

2020 [55] 

Ano-

rectal 

90 (73 

rectum 

and 17 

anus) 

1.5 T 

Siemens 

/ T2 

SPACE 

CT & MR 
voxels outside 

the patient 
external 

contour set to 
an intensity of 

1024 and 0 
respectively 

 

cGAN / DR 

and RR / 2D 

Focal 

regression 

loss 

Focal 

regression 

loss 

46 / 44 

MAE [HU] 
 

Deformable 
registration: 
Body = 35.1 

 
Rigid 

registration: 
Body = 44.5 

 

ME [HU] 
 

Deformable 
registration: 
Body = 0.4 

Bone = -95.5 
 

Rigid 
registration: 
Body = 0.8 

 

Dose 
differences: 
PTV Rectum 
(D95%, D50% 

and D2%) < 
0.7% 

PTV Anus 
(D95%, D50% 

and D2%) < 
0.5% 

γ⁎ = 99.5% 

γ⁑ = 99.8% 

γ⁂ = 100% 

Brou Boni 

et al., 2020 

[56] 

Male 

pelvis 

19 male 

pelvis from 

Gold Atlas 

data set 

[57] 

1.5 T 

Siemens 

/ T2 TSE, 

3 T GE 

Discover

y / T2 

FRFSE + 

3 T Signa 

GE / T2 

FRFSE 

/ 
cGAN 

/ DR / 2D 

L1+ Pearson 

divergence + 

adversarial 

loss 

Least 

square loss 

From 
Gold 
Atlas 

data set 
11 / 8 

MAE [HU] 
 

Body = 48.5 ± 6 
 

ME [HU] 
 

Body = -18.3 

 

DVH points 

difference 

for PTV, 

rectum wall, 

bladder wall, 

femoral 

heads < 

1.4% 

Cusumano 

et al., 2020 

[39] 

Pelvis 

and 

abdomen 

60 pelvis / 

60 

abdominal 

0.35 T 

MRIdian / 

T2/T1 

image: 

TrueFISP 

/ 

cGAN 

(pix2pix) / DR 

/ 2D 

adversarial 

loss +λ·L1 

with λ = 100 

PatchGAN 

loss 
80/20 

MAE [HU] 
 

Body = 54.3 ± 
11.9 

 

 

ME [HU] 
 

Body = 1.4 ± 
8.6 

 

Dose 
difference: 

PTV 
(D98%,D50%, 
D2%) < 0.07 

Gy 
Rectum  

(D98%,D50%, 
D2%) < 0.05 

Gy 

γ⁎ = 89.3% 



γ⁑ = 99.0% 

γ⁂ = 99.9% 

Fetty et al., 

2020 [58] 

Pelvis 

(male 

pelvis + 

cervix) 

40 
prostate + 
11 cervix + 

19 male 

pelvis from 

Gold Atlas 

data set 

[57] 

0.35 T 

Siemens 

Magneto

m / 2D 

T2 TSE + 

1.5 T 

Siemens 

/ T2 TSE, 

3 T GE 

Discover

y / T2 

FRFSE + 

3 T Signa 

GE / T2 

FRFSE 

N4 bias field 

correction 

algorithm 

cGan 
(Pix2Pix): 4 

tested 
networks: SE-

ResNet, 
DenseNet, U-

Net, 
Embedded 

Net 
 

/ RR and DR 
/ 2D 

L1 + 

adversarial 

loss 

PatchGAN 

loss 

25 / 10 

+18 (19 

with 1 

patient 

excluded

) from 

Gold 

Atlas 

data set 

[57] 

MAE [HU] 
 

4 tested 
networks 

0.35 T 
Body = 

41.2 ± 3.7 
 

1.5 T 
Body = 

52.0 ± 5.5 
 

3 T 
Discovery 

Body = 
43.7 ± 6.2 

 
 

3 T Signa 
Body = 

48.2 ± 4.9 

PSNR 
[dB] 

 
4 tested 
networks 

 
0.35 T 
Body = 
31.4 ± 1 

 
1.5 T 

Body = 
29.3 ± 

1.0 
 

3 T 
Discover

y 
Body = 
31.1 ± 

1.1 
 

3 T 
Signa 

Body = 

30.8 ± 

1.2 

MSE 
[100 
HU²] 

 
4 tested 
networks 

 
0.35 T 
Body = 
124.9 ± 

29.6 
 

1.5 T 
Body = 
201.4 ± 

53.3 
 

3 T 
Discover
y Body = 
133.1 ± 

35.0 
 

3 T 
Signa 

Body = 

146.2 ± 

45.9 

DVH points 
difference: 
D98%, D50%, 

D2% for PTV, 
rectum, 

bladder and 
femoral 
heads < 

1.5% 
 

 

Additional table 4: Synthetic-CT generation from pelvis MRI in the literature: summary of data, deep learning architecture, and image and dose 

evaluations γ⁎ = 1%/1 mm gamma pass-rate 1%/1mm; γ⁑ = 2%/2 mm gamma pass-rate; γ⁂ = 3%/3 mm gamma pass-rate; ❖ = not specified in the 

study 



Abbreviations: LF = Loss Function; MAE = Mean Absolute Error; ME = Mean Error; DSC = Dice Similarity Coefficient; PSNR = Peak to Signal-to-Noise Ratio; 

NCC = Normalized Cross-Correlation; MSE = Mean Square Error; MASD = Mean Absolute Surface Distance; HD = Hausdorff Distance; MAD = mean absolute 

distance, RR = Rigid Registration; DR = Deformable Registration; DCNN = Deep CNN ; FCN = Fully convolution network.
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