
HAL Id: hal-03336875
https://hal.science/hal-03336875

Submitted on 30 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Deep learning methods to generate synthetic CT from
MRI in radiotherapy: A literature review

M Boulanger, Jean-Claude Nunes, H Chourak, A Largent, S Tahri, O Acosta,
R de Crevoisier, C Lafond, A Barateau

To cite this version:
M Boulanger, Jean-Claude Nunes, H Chourak, A Largent, S Tahri, et al.. Deep learning methods
to generate synthetic CT from MRI in radiotherapy: A literature review. Physica Medica European
Journal of Medical Physics, 2021, 89, pp.265-281. �10.1016/j.ejmp.2021.07.027�. �hal-03336875�

https://hal.science/hal-03336875
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


ACCEPTED MANUSCRIPT - CLEAN COPY 1 

Deep learning methods to generate synthetic CT from MRI 

in radiotherapy: a literature review 

M. Boulanger1, J.-C. Nunes1, H. Chourak1,3, A. Largent2, S. Tahri1, O. Acosta1, R. De Crevoisier1, 

C. Lafond1, A. Barateau1 

1. Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes,

France 

2. Developing Brain Institute, Department of Diagnostic Imaging and Radiology,

Children’s National Hospital, Washington, DC, United States 

3. CSIRO Australian e-Health Research Centre, Herston, Queensland, Australia

Running title: Deep learning sCT generation from MRI 



ACCEPTED MANUSCRIPT - CLEAN COPY 2 
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 Overview and discussion of image and dose metrics for synthetic-CT 
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localization. 

 

 

 

  



ACCEPTED MANUSCRIPT - CLEAN COPY 3 
 

Abstract 

Purpose: In radiotherapy, MRI is used for target volume and organs-at-risk delineation for its superior 

soft-tissue contrast as compared to CT imaging. However, MRI does not provide the electron density 

of tissue necessary for dose calculation. Several methods of synthetic-CT (sCT) generation from MRI 

data have been developed for radiotherapy dose calculation. This work reviewed deep learning (DL) 

sCT generation methods and their associated image and dose evaluation, in the context of MRI-based 

dose calculation. 

Methods: We searched the PubMed and ScienceDirect electronic databases from January 2010 to 

March 2021. For each paper, several items were screened and compile in figures and tables. 

Results: This review included 57 studies. The DL methods were either generator-only based (45% of 

the reviewed studies), or generative adversarial network (GAN) architecture and its variants (55% of 

the reviewed studies). The brain and pelvis were the most commonly investigated anatomical 

localizations (39% and 29% of the reviewed studies, respectively), and more rarely, the head-and-neck 

(H&N) (15%), abdomen (10%), liver (5%) or breast (3%). All the studies performed an image evaluation 

of sCTs with a diversity of metrics, with only 36 studies performing dosimetric evaluations of sCT.  

Conclusions: The median mean absolute errors were around 76 HU for the brain and H&N sCTs and 40 

HU for the pelvis sCTs. For the brain, the mean dose difference between the sCT and the reference CT 

was <2%. For the H&N and pelvis, the mean dose difference was below 1% in most of the studies. 

Recent GAN architectures have advantages compared to generator-only, but no superiority was found 

in term of image or dose sCT uncertainties. Key challenges of DL sCT generation methods from MRI in 

radiotherapy is the management of movement for abdominal and thoracic localizations, the 

standardization of sCT evaluation, and the investigation of multicenter impacts. 

 

 

 

 

 

Keywords: Deep learning, MRI, synthetic-CT, radiation therapy, dose calculation 
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Introduction 

In radiation therapy, computed tomography (CT) is the standard imaging modality for treatment 

planning. Magnetic resonance imaging (MRI) is a complementary modality to CT providing better soft-

tissue contrast without irradiation. MRI improves the delineation accuracy of the target volume and/or 

organs at risk (OARs) in the brain, head-and-neck (H&N), and lung or prostate radiotherapy [1–3]. 

However, MRI does not provide information on the electron density of the tissue, require for accurate 

dose calculation. Most of the literature has proposed the generation of synthetic-CT (sCT) images for 

MRI-based dose planning. sCT (or pseudo-CT) is a synthetic image in Hounsfield Units (HU) generated 

from MRI data.  

The methods for generating sCTs can be divided into three categories: bulk density, atlas-based and 

machine learning (ML) methods (including classical ML methods and deep learning methods [DLMs]). 

The bulk density methods consist of segmenting MRI images into several classes (usually air, soft-

tissue, and bone). Each of these delineated volumes is assigned a homogeneous electron density, and 

the dose can then be calculated. This method has several drawbacks: it is tedious, time-consuming, 

operator-dependent, and does not consider tissue heterogeneity [4–8]. The atlas-based methods 

involve complex, non-rigid registrations of one or several co-registered MRI-CT atlases with a target 

MRI. This registration step is followed by a fusion step to generate the sCT. The drawbacks of this 

method are the lack of robustness in the case of large anatomical variations and the need for 

computationally intensive pairwise registrations [4,5,9,10]. Among the classical ML methods, the 

patch-based methods (such as [4]) can be decomposed into four steps. The first step is interpatient 

rigid and affine registration with MR images. These methods involve inter-patient registration, feature 

extraction, and patch partitioning during the training step. The training patches closest to the patches 

of the target MRI are then selected for aggregation to generate the sCT [4]. The main drawbacks of 

this method are the imprecise interpatient registration and calculation time.  

DLMs are models comprising multiple processing layers that learn multiscale representations of data 

through multiple levels of abstraction [11]. These methods have recently been introduced in 

radiotherapy for applications, including image segmentation, image processing and reconstruction, 

image registration, treatment planning, and radiomics [12–19]. DLMs have been proposed for sCT 

generation from MRI. They were trained to model the relationships between HU CT values and MRI 

intensities. Once the optimal DL parameters are estimated, the model can be applied to a test MRI to 

generate its corresponding sCT. DLMs have the advantage of being fast for sCT generation, and some 

do not require deformable inter-patient registration (only intra-patient registration) such as in [20].  

Two reviews, both published in 2018, have already summarized sCT generation methods from MRI 

[21,22], they focused only on the bulk density, atlas-based, and voxel methods and did not include 
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recent DLMs. Other studies have listed sCT generation methods from MRI in the context of MR-only 

radiotherapy [2,23–25]. More recently, Wang et al. [26] proposed a review on medical imaging 

synthesis using DL and Spadea and Maspero et al. [27] a review on sCT generation with DLM from MR, 

CBCT and PET images. 

This study aimed to review literature studies using DLMs for MRI-based dose calculation in radiation 

therapy. This paper reviews the DL networks (with the loss functions), the image and dose endpoints 

for evaluation and the results per anatomical localization.  

 

Materials and methods 

We searched the PubMed and ScienceDirect electronic databases from January 2010 to March 2021 

(date of first online release) using the following keywords: “deep learning”, “substitute CT” or “pseudo 

CT” or “computed tomography substitute” or “synthetic CT”, “MRI” or “MR” or “magnetic resonance 

imaging”, “radiation therapy” or “radiotherapy”. Mesh terms used in PubMed were: “radiotherapy”, 

“Magnetic Resonance Imaging”, and “deep learning”. The search string on PubMed was: "MRI" AND 

"radiotherapy" AND ("GAN" OR "CNN" OR "deep learning" OR "machine learning" OR "U-Net" OR 

"neural network") NOT "radiomics" NOT "chemotherapy" NOT "brachytherapy" NOT "Positron 

Emission Tomography Computed Tomography" NOT "chemoradiotherapy" NOT "segmentation" NOT 

"reconstruction". We only retained original research papers (no abstract, no review paper) that 

reported data obtained from humans, were written in English, and addressed DL sCT generation from 

MRI in radiotherapy.  

For each paper, we screened: anatomical localization, MR device, MR sequence, pre or post-treatment, 

use of registration, number of patients included in the study, type of DL network, loss functions, 

number of patients for training step, number of patients for evaluation step, main image and dose 

evaluation results. Tables per anatomical localization (brain, H&N, breast-liver-abdomen, and pelvis) 

were created to compile these information.  

 

Results 

Figure 1 summarizes the number of DLM studies for sCT generation from MRI in radiation therapy per 

year and anatomical localization. The first study was published in 2016 [28] and, at the time of 

manuscript submission, a total of 57 articles meeting the selection criteria had been published. Some 

studies investigated sCT generation for several anatomical localizations [29–33].  

 



ACCEPTED MANUSCRIPT - CLEAN COPY 6 
 

 
Figure 1: Numbers of publications on deep learning methods for synthetic-CT generation from MRI 

in radiation therapy per year and anatomical localization. 

*: ongoing year, number of studies at the time of publication 

 

In total, 24 studies were based on brain data, 9 on H&N data, 2 on breast data, 3 on liver data, 6 on 

abdomen data, and 18 on pelvic data. 

 

A. Common deep learning networks for sCT generation from MRI 

 

Deep learning, as a mainstream of machine learning method, uses trainable computational models 

containing multiple processing components with adjustable parameters to learn a representation of 

data. Many DL network architectures have been developed, depending on specific applications or 

learning data. Several reviews have detailed the DL network architectures for radiotherapy or medical 

imaging [12,26,27,34–37]. The DL architecture for sCT generation from MRI can be roughly divided into 

two classes: generator-only and generative adversarial network (GAN) and its variants (such 

conditional-GAN, Least square GAN and cycle-GAN). Figure 2 shows the hierarchy of the DL 

architectures.  
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Figure 2: Hierarchy of deep learning architectures 

Deep learning (DL) architectures can roughly be divided into generator-only and generative adversarial 

network (GAN). In generator-only different DL architectures are included such as deep convolutional 

neural network (DCNN), deep embedding CNN (DECNN), fully CNN (FCNN), U-Net, or atrous spatial 

pyramid pooling (ASPP). GAN family includes GAN, and its most popular variants: Least Square GAN 

(LS-GAN) conditional GAN (cGAN), and cycle-GAN.  

 

1. Generator-only models 

i. Basic concepts of convolutional neural networks (CNN) 

For image applications, a convolutional neural network (CNN, or ConvNet) is a popular class of deep 

neural networks using a set of convolution kernels/filters for detecting image features. A CNN consists 
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of an input layer, multiple hidden layers and an output layer. The hidden layers include layers that 

perform convolutions with trainable kernels. Nonlinear activation functions (Rectified Linear Units 

(ReLU)[38], Leaky-RELU [39], Parametric-ReLU (PreLU) or exponential linear unit (ELU) [40]) play a 

crucial role in discriminative capabilities of the deep neural networks. The ReLU layer preserves the 

input otherwise is the most commonly used activation layer due to its computational simplicity, 

representational sparsity, and linearity. It is commonly to periodically insert a pooling layer between 

successive convolutional layers in a CNN architecture. Pooling layers allow to reduce the dimension 

(subsampling) of the feature maps. These maps are generated by following the convolutional 

operations. The pooling methods performs down-sampling by dividing the input into rectangular 

pooling regions and computing the average, the maximum, or the minimum of each region 

represented by the filter (mean pooling, max-pooling, min-pooling). Batch normalization [41] layers 

are inserted after a convolutional or fully connected layer to improve the convergence of the loss 

function during gradient descent (optimizer). It prevents the problem of vanishing gradient from 

arising and significantly reduces the time required for network convergence. After several convolution 

and pooling layers, the CNN generally ends with several fully connected layers. Dropout is one of the 

most promising techniques for regularization of CNN. Softmax layer is typically the final output layer 

in a neural network that performs multi-class classification (for example: object recognition). 

 

ii. Generator-only models 

The generator model can be considered as representing a complex end-to-end mapping function that 

transforms an input MR image to its corresponding CT image. During the training phase, the generator 

tries to minimize an objective function called a loss function (voxel-wise loss function LG), which is an 

intensity-based similarity measurement between the generated image (sCT) and the corresponding 

ground truth image (real CT). Figure 3 presents the global architecture of generator-only model.  
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Figure 3: Illustration of generator-only model 

*: Generator model varies according to networks.  

The generator models often based on convolution encoder-decoder networks (CED) are trained 

to produce synthetic CTs (sCTs) from MRI. For this purpose, a single loss function LG between 

MRI and registered CT images is computed. In the testing step, for a new given test patient, the 

MRI goes through the trained network to obtain the corresponding sCT. 

 

In sCT generation from MRI, the generator architectures are generally based on convolution encoder-

decoder networks (CED). In the literature, the variants of generator model include deep CED network 

[42], deep embedding CNN (DECNN) or Embedded Net [30], fully convolutional network (FCN) [28], U-

Net [20,42–57] [56,58,59], efficient CNN (eCNN) model [60], ResNet [61], SE-ResNet [61,62], and 

DenseNet [63]. Figure 4 presents some architectures of CED-based generators. 
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Figure 4: Representation of generator architecture for U-Net [64] and adapted implementations of 

DenseNet [63], SE-ResNet [65], and Embedded Net [30].  

The size of the boxes indicates the relative resolutions of the feature maps. The green boxes represent 

convolutional layers and orange boxes represent transposed convolutional layers. Yellow, red and blue 

boxes represent the SE-ResNet, DenseNet, and Embedded blocks. 

 

The CED network consists of a paired encoder and decoder networks. CED have been extensively used 

in DL literatures thanks its excellent performance. In the encoding part, low-level feature maps are 

down-sampled to high-level feature maps. In the decoding part, the high-level feature maps are 

upsampled to low-level feature maps using the transposed convolutional layer to construct the 

prediction image (sCT). 

The encoder network uses a set of combined 2D convolution filtering (no dilated convolutions) for 

detecting image features, followed by normalization (instance [66] or batch normalization [41]), a 

nonlinear activation function (ReLU [38], LeakyRELU [39], or PreLU), and max-pooling.  

The decoder path combines the feature and spatial information through a sequence of symmetrical 

transpose convolutional layers (up-convolutions), up-sampling operators, concatenate layer 

(concatenations with high-resolution features), and convolutional layers with a ReLU activation 

function.  

The most well-known and popular CED variants for biomedical image applications is the U-shaped CNN 

(U-Net) architecture proposed by Ronneberger et al. [67]. The U-Net [67] has a CED structure with 
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direct skip connections between the encoder and decoder. Han et al. were the first to publish a sCT 

study with a U-Net architecture [44] that is similar to Ronneberger’s model. This 2D U-net model 

directly learns a mapping function to convert a 2D MR grayscale image to its corresponding 2D sCT 

image. Han et al. study [44] differs from the original U-net since the three fully connected layers were 

removed. Thus, the number of parameters is reduced by 90%, and the final model is easier to train. In 

Wang et al. [46], the U-net model used batch normalization [41] and leaky ReLU, which was different 

from the classical U-net [67].  

The DECNN model proposed by Xiang et al. [30] is derived by inserting multiple embedding blocks into 

the U-net architecture. This embedding strategy helps to backpropagate the gradients in the CNN and 

also provides easier and more effective training of the end-to-end mapping from MR to CT with faster 

convergence.  

The efficient CNN (eCNN) model [60] was built based on the encoder-decoder networks in the U-Net 

model [67] where the convolutional layers were replaced with the building structures (aiming at 

extracting image features from the input MRI). 

Some generative models use dilated convolutions called “atrous convolution” (rather than 

conventional convolutions) that expands the receptive field without loss of resolution or coverage [68]. 

Wolterink et al. [68] used a dilated CNN capturing larger anatomical context to differentiate between 

tissues with similar intensities on MR.  

The ResNet architecture [61] has three convolutional layers (containing convolution operations, a 

batch normalization layer, a ReLU) activation function, followed by nine residual blocks (containing 

convolutional layers, batch normalization layers, and ReLU activation function) with fully connected 

layers. HighRes-net [69] consists of a CED architecture with residual connections, normalization layers, 

and rectified linear unit (ReLU) activations [38] using high-resolution ground truth (no pooling layers) 

as supervision with few trainable parameters [43]. The atrous spatial pyramid pooling (ASPP) generator 

[56] employs atrous or dilated convolution and is implemented in a similar U-Net architecture. The 

ASPP module permits a reduction in the total number of trainable parameters (almost divided by 4). 

FCN better preserves the neighborhood information in the generated sCT images [28]. Compared to 

the conventional CNN, the pooling layers are not used in this task of image-to-image translation [28]. 

FCNs can simplify and speed network learning and inference and make the learning problem much 

easier. However, Fully connected layers are incredibly computationally expensive. 

The deep CED network [42] consists of a combined encoder network (the popular Visual Geometry 

Group [VGG] 16-layer net model) and a decoder network (reversed VGG16) with multiple symmetrical 

shortcut connections between layers.  
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Twenty-nine state-of-the-art sCT image generation methods have adopted a generator-only network 

[20,28,30,42–57,70–79]. The loss functions LG evaluating sCT and real CTs used in these generative 

models are:  

 the mean square error (MSE), the L2-norm, or the Euclidean norm: only for sCT 

[20,42,46,47,55,57,78], for sCT and embedding blocks [30], 

 the MAE, mean absolute deviation (MAD), or L1-norm [43–45,49,52,53,70,71],  

 a combined MAE and MSE loss [48], 

 perceptual loss [20] based on VGG (the output of the 7th VGG16 convolutional layer). 

 

The use of L2 distance as a loss function tends to produce blurry results. Perceptual loss is used to 

capture the discrepancy between the high frequency components within an image. 

One limitation of generative models based on CNN is that they may lead to blurry results due to 

generally misalignment between MR and CT [80]. 

 

2. Generative adversarial network (GAN)  

The following section summarizes GAN-based architectures to generate sCT from MRI. We introduce 

the GAN architecture and three most popularGAN-based extensions: least squares-GAN, conditional-

GAN, and cycle-GAN. 

 

i) GAN 

The adversarial learning strategy was proposed by Goodfellow et al. [81] to generate better sCT images 

than previous generator-only models. The original way is to simultaneously train two separate neural 

networks, the generator G (one of the generator-only models described in i) and figure 4) and the 

discriminator D. These two neural networks form a two-player min-max game where G tries to produce 

realistic images to fool D while D tries to distinguish between real and synthetic data [82,83]. 

Compared to generator-only models, GAN introduces a data-driven regularizer, the adversarial loss, to 

ensure that the learned distribution approaches the ground truth.  
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Figure 5: Generative adversarial network (GAN) architecture 

GAN consists of two adversarial CNNs. The first CNN, called the generator (such illustrated in figure 3), 

trained to synthetize images that resemble real images (such as real CT). The second CNN, called 

discriminator trained to differentiate fake image (synthetic image) from real images (which is 

considered a binary classification problem). The loss function LD of the discriminator (called adversarial 

loss) is generally the binary cross-entropy. G and D are trained alternatively and share the same 

objective function of adversarial loss. The overall loss function LG combined the adversarial loss and a 

voxel-wise loss function (measuring the similarity between the real CT and synthetic-CT voxels).   

 

In the original version [83], the discriminator and generator are implemented as multilayer 

perceptrons (MLPs) and more recently implemented as CNNs. The architecture of the generator is 

often the conventional U-Net. Another proposed generator architecture in a GAN is ResNet [62] which 

is easy to optimize and can gain accuracy from considerably increased depth. The discriminator of the 

GAN [83] consists of six convolutional layers with different filter sizes but the same kernel sizes and 

strides, followed by five fully connected layers. ReLU was used as the activation function and a batch 

normalization layer for the convolutional layers. The dropout layer was added to the fully connected 

layers, and a sigmoid activation function was used in the last fully connected layer.  

The discriminator used in [64] a convolutional “PatchGAN” classifier (markovian discriminator) models 

high frequency image structure in local patches and only penalizes structure at the scale of image 

patches. 
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Using adversarial loss, the classical GAN model can generate high-quality sCT images with less blurry 

results [29,80] than generator-only models. The discriminator tries to maximize it while the generator 

tries to minimize it.  

In this review, six studies used classical GAN-based architectures to generate sCT from MRI 

[20,29,62,77,84,85]. The adversarial loss functions of the generator evaluating sCT and the original CTs 

used in these GANs are : 

 L2-norm alone [20,85], 

 perceptual loss [20,84] and the multiscale perceptual loss [20]. 

The adversarial loss function LD of the discriminator used in these GANs was generally the binary cross-

entropy [29]. 

Perceptual regularization, used by Largent et al. [20], helps to prevent images over-smoothing and loss 

of structure details. The perceptual loss functions are based on high-level features extracted from pre-

trained VGG network (7th VGG16 in [20]).  

As shown by several studies [29,62,86], (1) the adversarial network prevents the generated images 

from blurring and better preserve details, especially edge features; (2) the accuracy of sCT within the 

bone region is increased; and (3) the discriminator detects patch features in both real and fake images, 

mitigating misregistration problem caused by an imperfect alignment between multi-parametric MRI 

and CT. General convergence in GANs is heavily dependent on hyperparameter tuning to avoid 

vanishing [87] or exploding gradients, and they are prone to mode collapse. To tackle the training 

instability of GANs, a plethora of extensions and subclasses have been proposed.  

 

ii) Least Squares-GAN (LS-GAN) 

Most GANs use the binary cross-entropy as the discriminator loss function. However, this cross-

entropy loss function leads to the saturation problem in GANs learning (the well-known problem of 

vanishing gradients [87]). Least square loss function strongly penalized the fake samples away from 

decision boundary and improve the stability of learning process. Mao et al. [88] adopted the least-

squares loss function for the discriminator and showed that minimizing the objective function of LS-

GAN minimizes the Pearson χ² divergence [89]. Emami et al. [62] replaced the negative log-likelihood 

objective with a least square loss function (L2 loss), which was more stable during training and 

generated better sCT quality.  

 
iii) Conditional-GAN (cGAN) 

Since the original GAN allows no explicit control on the actual data generation, Goodfellow et al. [83] 

proposed the conditional GAN (cGAN) to incorporate additional information such as class labels in the 

synthesis process. cGAN is an extension of the GAN model in which both the generator and the 
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discriminator are conditioned on some additional information. The sCT image output is conditioned on 

the MR image input.  

Different generator architectures in a cGAN have been proposed, including SE-ResNet [61,62], 

DenseNet [63], U-Net [56,58,59], Embedded Net [30], and the atrous spatial pyramid pooling (ASPP) 

method [56]. Fetty et al. [90] evaluated four different generator architectures: SE-ResNet, DenseNet, 

U-Net, and Embedded Net in a cGAN to generate sCT from T2 MRI. Olberg et al. [56] explored two 

generators: the conventional U-Net architecture implemented in the Pix2Pix framework [64] and the 

ASPP method [91,92]. The discriminator of the GAN framework was similar in both implementations. 

Twenty studies used a cGAN architecture to generate sCT from MRI [31,33,50,56–59,89,90,93–102]. 

The overall loss functions LG evaluating sCT and real CTs used in these cGANs were as follows: 

 adversarial loss function (binary cross entropy) [59,102], 

 L1-norm (MAE) [93], 

 least squares loss function (L2 loss) [89,102], 

 mutual information (MI) [58,59],  

 focal regression loss [103] used in [100], 

 the combination of adversarial (binary cross-entropy) and L2-norm [56], 

 the combination of L1-norm and PatchGAN loss (as proposed by Isola et al. [64]) used in 

[50,90,94],  

 the combination of adversarial (binary cross-entropy) and term derived from the log-

likelihood of the Laplace distribution [96], 

 the combination of Lp-norm, adversarial and gradient [33], 

 the combination of multiscale L1-norm, L1 norm and PatchGAN loss [64] used in [89]. 

 

The loss functions LD of the discriminator evaluating sCT and real CTs used in these cGANs areas 

follows: 

 the mostly used adversarial loss (binary cross entropy) [56,58,59,89,94], 

 least squares loss function (L2 loss) [89,95,102], 

 L1-norm [102]. 

 

The L2-based loss function of the generator can cause image blurring. To alleviate blurriness and 

improve the prediction accuracy, the L1 norm [46] makes the learning more robust to outliers in the 

training data, such as noise or other artifacts in the images or due to imperfect matching between MR 

and CT images. The Markovian Discriminator loss or Patch-GAN loss [64], which can be understood as 
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a form of texture/style loss, effectively models the image as a Markov random field, assuming 

independence between pixels separated by more than a patch diameter. 

 

Pix2Pix proposed by Isola et al. [64] is a successful cGAN variant for high-resolution image-to-image 

translation. Pix2Pix model generally uses Unet generator and PatchGAN discriminator. As investigated 

by Isola et al. [64], the use of a loss function based on L1 alone leads to reasonable but blurred results; 

while cGAN alone leads to sharp results but introduces image artifacts. The authors showed that 

training in an adversarial setting together with an L1 norm generated sharp images with few artefacts 

(tissue-classification errors, especially for bone and air differentiation).  

In Hemsley et al. [96], the L1 term in cGAN loss function [64] is replaced by a term derived from the 

log-likelihood of the Laplace distribution to capture data dependent uncertainty.  

To overcome MR/CT registration issues, Kazemifar et al. [58,59] used a generator loss function based 

on the mutual information (MI) in cGAN. The MI loss allows the cGAN to use unregistered data to 

generate sCT and seems to accurately distinguish between air and bone regions. 

Instead of the usual cross-entropy cGAN loss, Mao et al. [88] recommend the quadratic version of the 

least square GAN. Olberg et al. [56] evaluated a Pix2Pix framework with two different generators: the 

conventional U-net and a proposed generator composed of stacked encoders and decoders separated 

by dilated convolutions applied to increase rates in parallel to encode large-scale features. The overall 

loss function was composed of adversarial (sigmoid cross-entropy) and MAE losses.  

Twelve studies used a Pix2Pix architecture [31,50,56,89,90,93–95,98,99,102,104]. Most of these 

Pix2Pix frameworks used only one MRI sequence as input and generated one sCT as output (called 

single-input single-output, SISO). A variant of Pix2Pix architecture proposed by Sharma et al. [104] is 

multi-input and multiple-output (MIMO) combining information from all available MRI sequences and 

synthesizes the missing ones. 

One of the main advantages of cGANs is that the networks learn reasonable image-to-image 

translations even if the training dataset size is small. However, cGANs require coregistered MR-CT 

image pairs for training except with mutual information as loss function [58,59]. 

 

iv) Cycle-GAN 

For image-to-image translations between two modalities, the principles of the cycle-GAN are to extract 

characteristic features of both modalities and discover the underlying relationship between them 

[105]. The cycle-GAN involved two GANs: one to generate sCT from MRI and a second to generate p-

MRI from sCT (the output of the first GAN). These dual GANs learn simultaneously and a cyclic loss 

function minimizes the discrepancy between the original CT and the sCT obtained from the chained 

generators.  
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Cycle GAN-based framework does not require paired MRI/CT images [80,106]. Wolterink et al. [80] 

found that training using unpaired images could, in some cases, outperform a GAN-model on paired 

images.  

 

Eleven studies used a cycle-GAN architecture to generate sCT from MRI [32,33,57,77,80,101,102,106–

109]. The overall loss functions LG comparing the generated sCT and real CTs used in these cycle-GANs 

were: 

 the combination of adversarial loss (cross-entropy) and L1-norm [33,102], 

 the combination of the adversarial loss based on cross-entropy, the cycle consistency loss 

based on L1-norm, and the structural consistency loss based on L1-MIND [106] (the modality-

independent neighborhood descriptor, MIND, introduced in [110]), 

 the combination of L2-norm, adversarial loss (binary cross-entropy), the gradient difference 

loss and cycle consistency loss (based on L1 norm) [80], 

 the combination of Lp-norm (mean P distance, MPD), adversarial loss and gradient loss 

[32,33,77,108]. 

Loss functions LD of the discriminator used in cycle-GAN are: 

 L2-norm (least squares loss) [62] as proposed in [88,111], 

 MAD (L1-norm) [32,77,102,108], 

 Lp-norm (MPD) [109]. 

 

Since L2-based loss functions tend to generate blurry images and L1-based loss functions may 

introduce tissue-classification errors, some authors [32,33,77,108,109] used an lp-norm (p = 1.5) 

distance, the MPD (Mean P distance). Using the MPD-based loss term, the authors also integrated an 

image gradient difference (GD) loss term (proposed in [29]) into the loss function [32,33,77,108,109], 

to retain sharpness in synthetic images, which maintain zones with strong gradients, such as edges. 

Cycle-GAN-based methods use MSE loss as distance loss function, which often leads to blurring and 

over-smoothing. 
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B. Data for sCT generation from MRI 

 

1. MRI/CT image preprocessing and post-processing  

In eighteen studies an MRI bias correction [20,30,32,33,43,44,47,49,78,84,90,93,95,102,106–109] was 

reported. In [30,32,44,47], intensity inhomogeneity (or non-uniformity) correction was performed in 

all MR images using the N3 bias field correction algorithm [112,113] to correct the bias field before 

training or synthesis. In [33,43,78,84,90,93,95,106–109], the authors reported that the intensity 

inhomogeneity of the MRI was corrected using the N4 bias field correction algorithm.  

A 2D or 3D MRI geometry correction provided by the vendor was sometimes reported [49,57,70,106]. 

We can think that most of MR images had a geometry correction, but that it was not mentioned.  

In [30,33,78,84,95], all MR images were normalized using a histogram-based intensity normalization 

[114] to minimize the inter-patient MR intensity variation. Intensity normalization was also used in 

[30,32]. In [44], all MR images were then histogram-matched to a randomly chosen template to help 

standardize image intensities across different patients using the method described by Cox et al. [115]. 

All MR volumes were normalized by aligning the white matter peak identified by fuzzy C-means in 

[106]. In [49,102], histogram standardizations performed using vendor-provided software (CLEAR) 

were applied as provided by the vendor. 

In the study by Maspero et al. [94], the voxel intensity of CT was clipped within the interval HU to avoid 

an excessively large discretization step and the MR images were normalized to their 95% intensity 

interval over the whole patient. All the images were converted to 8-bits to conform to the Pix2Pix 

implementation [64]. Before training, the air cavities were filled in CT images and bulk-assigned (−1000 

HU) as located in MR images using an automated method.  

 

2. Training data characteristics 

 

Compared to 2D CNN, 3D CNN can better model 3D spatial information (neighborhood information) 

owing to the use of 3D convolution operations [28] solving the discontinuity problem across slices, 

which are suffered by 2D CNN. However, the input type to DL models is mainly in 2D because fully 3D 

networks are much more difficult to train due to a large numbers of trainable parameters and requires 

exponentially more (GPU) memory and more data [28,44]. With the 2.5 D approach, Dinkla et al. [70] 

added 3D contextual information while maintaining a manageable number of trainable parameters. 

Furthermore, discontinuities across slices present in 2D methods, were decreased. Besides, the 2.5D 

approaches [45,70,71] include average axial, sagittal, and coronal images as input to train the CNN. In 

3D (patch-based) CNN [28,32], an input MR image is first partitioned into overlapping patches. For 
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each patch, the CNN is used to predict the corresponding CT patch and all predicted CT patches are 

merged into a single CT image by averaging the intensities of overlapping CT regions.  

Most of the reviewed studies used one MRI sequence as input and generated one sCT as output; an 

architecture generally called single-input single-output (SISO). Four studies used several MRI 

sequences as input to generate one sCT in output [50,72,93,104], these architectures referred to as 

multi-input single-output (MISO) [50,72,93,104] or multi-input multiple-output (MIMO) [104]. 

Moreover, most studies used training and evaluation data from one MRI device while eight studies 

used multi-device MRI. One study reported use of MRI data from different centers [97] and two studies 

[89,90] used data from the Gold Atlas Data set [116]. Five studies used low MR field (0.35 T) as input 

images [31,33,56,73,90].  

 

3. Training and evaluation of data size 

The studies included in this review used several training strategies including k-fold cross-validation, 

single-fold validation, or leave-one-out. In k-fold cross-validation, the dataset is divided into k subsets, 

and the holdout method is repeated k times. Each time, one of the k subsets is used as the test set and 

the other k-1 subsets are combined to form a training set. The average error across all k trials is then 

computed. In single-fold validation, the dataset is separated into two sets, the training and testing sets. 

The leave-one out strategy consists on k-fold cross-validation taken to its logical extreme, with k equal 

to N, the number of data patients in the set.  

Data size is a fundamental challenge for DL approaches. There is no reported minimal or optimal data 

size for DL training. In the head area, four studies assessed sCT image quality (with MAE) as a function 

of the number of available images for training, from 15 to 242 patients for Alvares Andres et al. [43], 

from 5 to 47 patients for Gupta [48], from 34 to 135 patients for Peng et al. [101], and from 1 to 40 

patients for Maspero et al. [97]. Better image results were found for higher numbers of available 

images. A minimum of 10 patients seems to be needed since it has shown similar performance than a 

training of 20, 30 or 40 patients. One effective way to improve model robustness is to enhance the 

diversity of the training dataset. Data augmentation is essential to teach the network the desired 

invariance and robustness properties when only a few training samples are available. One common 

augmentation technique [32,44,93] is to apply random translations, rotations, zooms, and elastic 

deformations and adding low-level random noise to training images. 
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C. Evaluation metrics 

 

sCT evaluation can be performed in terms of intensity, geometric fidelity, or dose metrics. A sCT 

evaluation was performed using intensity-based metrics for all reviewed studies and through dose 

criteria in 63% of the reviewed studies. The metrics used in the reviewed studies are listed in Table 1.  



ACCEPTED MANUSCRIPT - CLEAN COPY 21 
 

 

 Type of metrics Metric Definition Ideal value 

Image 
evaluation 

Intensity-based 
metrics 

ME: mean error 𝑀𝐸 =
1

𝑁
∑𝑝𝐶𝑇𝑖 − 𝐶𝑇𝑖

𝑁

𝑖=1

 0 HU 

MAE: mean absolute error 𝑀𝐴𝐸 =
1

𝑁
∑|𝑝𝐶𝑇𝑖 − 𝐶𝑇𝑖|

𝑁

𝑖=1

 0 HU 

PSNR: peak signal to noise ratio 𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
𝑄²

𝑀𝑆𝐸
) Maximum of dB 

SSIM: structural similarity metric 𝑆𝑆𝐼𝑀 =
(2µ𝑥µ𝑦 + 𝐶1)(2𝛿𝑥𝑦 + 𝐶2)

(µ|𝑥2 + µ|𝑦² + 𝐶1)(𝛿|𝑥² + 𝛿|𝑦² + 𝐶2)
 1 

MSE: mean square error 𝑀𝑆𝐸 =
1

𝑁
∑(𝑝𝐶𝑇𝑖 − 𝐶𝑇𝑖)²

𝑁

𝑖=1

 0 

RMSE: rot mean square error 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑝𝐶𝑇𝑖 − 𝐶𝑇𝑖)²

𝑁

𝑖=1

 0 HU  

NCC: normalized cross-correlation 𝑁𝐶𝐶 =
1

𝑁
∑

(𝐼𝐶𝑇(𝑥, 𝑦, 𝑧) − µ𝐶𝑇)(𝐼𝑝𝐶𝑇(𝑥, 𝑦, 𝑧) − µ𝑝𝐶𝑇)

𝜎𝐶𝑇𝜎𝑝𝐶𝑇
𝑥,𝑦,𝑧

  

Geometric 
fidelity metrics 

DSC: dice score coefficient 𝐷𝑆𝐶 =
2(𝑉𝐶𝑇 ∩ 𝑉𝑝𝐶𝑇)

𝑉𝐶𝑇 + 𝑉𝑝𝐶𝑇
 1 

HD: Hausdorff distance 𝐻(𝑝𝐶𝑇, 𝐶𝑇𝑟𝑒𝑓) = 𝑚𝑎𝑥(ℎ(𝑝𝐶𝑇, 𝐶𝑇𝑟𝑒𝑓), ℎ(𝐶𝑇𝑟𝑒𝑓 , 𝑝𝐶𝑇)) 0 mm 

MASD: mean absolute surface 
distance 𝑀𝐴𝑆𝐷(𝐴, 𝑅) =

𝑑𝑎𝑣𝑒(𝑆𝐴, 𝑆𝑅) + 𝑑𝑎𝑣𝑒(𝑆𝑅, 𝑆𝐴)

2
 0 mm 

Dose 
evaluation 

Dose difference 
metrics 

Voxel-to-voxel dose differences 
Difference between the dose distribution computed on the reference CT 

and on the sCT 
0 Gy or 0% 

DVH difference 
Dose differences on DVH specific points (Dmax, D70Gy, etc.), for a given 

structure 
0 Gy or 0% 

Gamma 
analysis metrics 

Mean gamma Value of the mean gamma 0 

Gamma pass-rate Percentage of pixels/voxels with a gamma value lower than 1 100% 

Table 1: Imaging and dose metrics used for the evaluation of synthetic-CT generation from MRI 
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Abbreviations: N: number of voxels; MSE: Mean square error; Q: range of voxel value of sCT and reference CT; x: reference CT; y: sCT; µx: mean value of x; µy: mean value of 

y; δx²: variance of x; δy²; variance of y; C1 and C2 are expressed as (k1Q)² and (k2Q)²; ICT: HU value of the reference CT, IsCT: HU value of the sCT, µCT: mean intensity value of the 

reference CT, µsCT: mean intensity value of the sCT, σCT and σsCT: standard deviation of the reference CT and sCT; V: volume on CT and sCT; dave: absolute Euclidean distance; 

SA: surface of the automated segmentation volume; SR: surface of the reference organ delineation. 
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1. Intensity-based evaluation 1 

Only three studies of sCT generation from MRI did not reported MAE [56,73,99]. Some articles 2 

reported MAE in bone or soft tissue while others reported MAE in anatomical structures such as the 3 

kidneys, bladder, or rectum [20,45,47,76,89]. Figure 6 summarizes the MAEs of the studies on brain, 4 

H&N, liver, abdomen, and pelvis sCT generation from MRI.  5 

 6 

 7 
Figure 6: Mean absolute error (MAE) results for body structure between reference CT and sCT 8 

generated with a deep learning method for studies including the brain, H&N, liver, abdomen, and 9 

pelvis 10 

Each marker represent a study result. Full markers represent generator-only models and empty markers 11 

generative models with adversarial. Results are divided into three categories: studies including less 12 

than 18 patients, studies including 19 to 40 patients and studies including more than 40 patients. 13 

Red dotted lines represent the median values. The median values are: 74.2 HU for the brain, 77.9 HU 14 

for H&N, and 42.4 HU for the pelvis. 15 

The selected values are listed in the Additional tables 1 to 4. 16 

 17 

Eighteen studies reported ME results. Figure 7 details the MEs of the studies on brain, H&N, abdomen, 18 

and pelvis sCT generation from MRI. For the pelvis, three studies provided ME values for the bladder, 19 

rectum and soft tissue [20,47,89]. Some studies have illustrated MAE or ME for one or several slices. 20 
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Such difference maps allow for qualitative comparisons and spatial analyses.  1 

 2 
Figure 7: Mean error (ME) results between reference CT and sCT generated with a deep learning 3 

method for studies including the brain, head and neck, abdomen, and pelvis 4 

Each marker represent a study result. Full markers represent generator-only models and empty markers 5 

generative models with adversarial. Results are divided into three categories: studies including less 6 

than 18 patients, studies including 19 to 40 patients and studies including more than 40 patients. 7 

The selected values are listed in the Additional tables 1 to 4. 8 

 9 

The peak signal to noise ratio (PSNR) is the simplest and most widely used fidelity measure (full-10 

reference quality metric), which is related to the distortion metric, the MSE. Twenty-two studies on 11 

sCT generation from MRI reported PSNR results. Figure 8 details PSNR results for the brain, H&N, and 12 

pelvis sCT generation from MRI studies.  13 
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 1 

Figure 8: Peak signal-to-noise ratio (PSNR) results between reference CT and sCT generated with 2 

deep learning methods in studies on the brain, head and neck, breast, liver, and pelvis 3 

Full markers represent generator-only models and empty markers generative models with adversarial. 4 

Results are divided into three categories: studies including less than 18 patients, studies including 19 to 5 

40 patients and studies including more than 40 patients. 6 

Red dotted lines represent the median values. The median values are: 30.3 dB for the brain, 28.9 dB for 7 

H&N, and 30.2 dB for the pelvis. 8 

The selected values are listed in the Additional tables 1 to 4. 9 

 10 

 11 

Four studies reported MSE values in the brain and pelvis. Only three studies reported the root mean 12 

square error (RMSE) value in the brain [99], the breast [56], and the abdomen [50]. Although the MSE 13 

is an attractive measure due to its simplicity of calculation, MSE/PSNR can be a poor predictor of visual 14 

fidelity in images [117]. 15 

More sophisticated measures have been developed to take advantage of the known characteristics of 16 

the human visual system (HVS). Wang et al. [118] proposed a structural similarity metric (SSIM) to 17 

capture the loss of image structure due to variations in lighting (contrast or brightness changes). The 18 
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SSIM captures image distortion as a combination of three types of distortion: correlation, contrast, and 1 

luminance.  2 

 3 

2. Geometric fidelity evaluation 4 

Geometric fidelity is based on delineated structures. Nineteen articles reported dice score coefficients 5 

(DSCs) between sCT and reference CT for bone, air, or body structures. One study reported DSCs for 6 

the bladder and rectum [47]. DSCs were between 0.85 and 0.99 for body and were higher than 0.68 7 

and up to 0.93 for bone structure.  8 

Only two studies reported Hausdorff distance (HD) values for the H&N area [79] and the pelvis [77]. 9 

Only one study reported mean absolute surface distance (MASD) values for body, bone, bladder, and 10 

rectum volumes [47]. Five studies reported normalized cross-correlation (NCC) values in the brain, 11 

liver, and pelvis [32,77,107–109].  12 

The penultimate columns of Additional tables 1, 2, 3, and 4 list the image results of sCT generated from 13 

MRI.  14 

 15 

3. Dose evaluation 16 

In MRI-only workflows for radiotherapy, a sCT is generated to perform dose calculation. In this context, 17 

studies have proposed dosimetric evaluation of dose calculation from sCT with DVH, voxel-to-voxel 18 

dose differences or gamma index analysis. Most studies evaluated dose calculation with photon 19 

particles, while nine studies investigates sCT dose uncertainties with protons 20 

[45,55,59,71,74,77,97,108,109].  21 

 22 

v) Dose-volume histogram (DVH)  23 

DVH is a widely used tool in routine clinical radiotherapy. All treatment planning systems (TPS) allow 24 

for the analysis of dose distributions through DVHs. Twenty-two sCT studies reported dose differences 25 

at DVH specific points. Eighteen studies reported mean dose differences in selected volume (PTV, CTV, 26 

OAR). 27 

 28 

vi) Voxel-to-voxel dose difference  29 

The dose difference is defined as the difference between the dose distribution computed on the 30 

reference CT and the sCT. The dose difference can be expressed as absolute value (Gy) or relative to 31 

the reference dose (%).  32 

Several studies reported mean absolute dose error to express dose uncertainties and mean dose error 33 

to express systematic dose uncertainties [47,49,50,70,77,97,102]. Some studies have provided dose 34 
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differences using dose thresholds such as doses higher than 90% of the prescribed dose, while others 1 

have illustrated dose difference maps that allow qualitative and spatial analyses. 2 

 3 

vii) Gamma index analysis 4 

Gamma analyses allow spatial analysis (through gamma maps) of dose distributions calculated from 5 

sCT compared to those calculated from a reference CT [119]. Gamma analysis can be performed in two 6 

or three dimensions. This analysis combines dose and spatial criteria. Several parameters need to be 7 

set to perform a gamma analysis, including dose criteria, distance-to-agreement criteria, local or global 8 

analysis, and dose threshold. Interpretation and comparison between studies of gamma index results 9 

are challenging because they depend on the chosen parameters, dose grid size, and voxel resolution 10 

[120]. The gamma results can be expressed as gamma pass-rate (percentage of pixels/voxels with a 11 

gamma value lower than 1) or mean gamma. Twenty-eight articles reported gamma pass-rate results. 12 

Only one study reported mean gamma values in the pelvis [20].  13 

Figure 9 summarizes the gamma pass-rate results between reference dose distribution and sCT dose 14 

distribution for several anatomical localizations. The mean gamma pass rates were above 89% for all 15 

localizations and up to 100%, depending on gamma criteria. 16 
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 1 
Figure 9: Gamma pass-rate results between reference CT and sCT dose distributions with deep 2 

learning methods for studies including the brain, breast, liver, abdomen, and pelvis 3 

Full markers represent generator-only models and empty markers generative models with adversarial. 4 

The selected values are listed in the Additional tables 1 to 4. 5 

 6 

viii) Specific metrics for proton dose calculation 7 

Proton ranges along the beam paths were compared for dose distributions on the reference CT and 8 

sCT. In protontherapy, the range of the proton beam strongly depends on the stopping power ratio 9 

(SPR) of a given tissue relative to water, which can be determined using the electron density and 10 

effective atomic number through the Bethe-Bloch equation. The range is defined as at the 80% distal 11 

dose falloff along each beam direction. Several studies have reported the results of range shift or range 12 

difference (in mm) per beam [45,55,71,109]. 13 

The last columns of Additional tables 1, 2, 3, and 4 summarize the dose results of the DL sCT generation 14 

studies for MRI dose calculation. 15 

 16 
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D. Image and dose results per anatomical localization 1 

 2 

1. Brain 3 

Twenty-four studies of the brain were performed between 2017 and 2021. Additional table 1 4 

summarizes the DL networks and the image and dose metrics results of these studies on brain sCT 5 

generation from MRI in radiotherapy. T1-weighted (T1w) sequences were mostly used for generating 6 

sCTs 88% of the reviewed studies).  7 

For sCT evaluation, all brain studies reported MAEs, which varied from 44 to 129 HU for the whole 8 

brain (Figure 6). For the brain, the MAEs for bone structure were above 174 HU and up to 399 HU in 9 

one study. Koike et al. [93] trained a cGAN network with only a T1 sequence or a combination of several 10 

sequences (T1w, T2w and FLAIR). The multi-sequence training showed a decrease in MAEs results for 11 

the body, soft tissue and bone (between -8 and -33 HU) [93]. Alvarez Andres et al. reported MAE values 12 

for CNN and U-Net networks, with higher values for the U-Net network than for the CNN network for 13 

the head (an increase of 9 HU) [43]. They also investigated the influence of several sequences (T1, T1-14 

Gd, and T2 FLAIR images) as input in the CNN network. The MAE values were higher with a FLAIR 15 

sequence as input in the CNN network than those with T1 sequence (increase of 34 HU). The MAEs 16 

were also higher with contrast-enhanced T1-weighted MRI (T1-Gd) than those for T1w MRI (from +3 17 

to +32 HU). Only four studies reported ME values [44,45,55,70], which ranged between -4 HU and 13 18 

HU for the whole brain (Figure 7). The PSNR values were above 24 dB for all brain studies 19 

[29,30,32,57,62,72,80,97,98,106] (Figure 8). The DSCs were above 0.96 for the body, 0.69 for bone, 20 

and 0.70 for air structures [42,45,58,70,72]. For SSIM, values varied from 0.63 to 0.94 21 

[57,62,72,97,106]. For NCC, two studies reported values of 0.96 [32,109]. Massa et al. [72] trained 22 

models on four different MR sequence: CUBE-FLAIR, T1, T1 post contrast and T2 fatsat. No sequence 23 

was statistically better on all the metrics (MAE, PSNR, SSIM, DSC).  24 

Among the 24 brain studies, only 14 reported a dose evaluation [42,43,45,48,55,58,59,70,85,93,97–25 

99,109]. Five studies reported results for proton dose planning [45,55,59,97,109]. All reported DVH 26 

mean dose differences were below 2% [42,45,48,59,70,85,93,97–99,109].  27 

For most of the studies, gamma pass-rates were above 89% with the most restrictive criterion (1%/1 28 

mm), and except for one study above 95% for other criteria (Figure 9). One study [55] reported a mean 29 

gamma pass rate of 89% with 2%/2 mm criteria. With the multi-sequence training, Koike et al. showed 30 

an increase in gamma pass-rates (between 0.1% and 1.1%), compared to single sequence training [93].  31 

 32 
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2. Head and Neck (H&N) 1 

Nine DL sCT generation studies were performed in H&N radiotherapy. Additional table 2 summarizes 2 

the DL networks and the image and dose metrics results of these studies. The MRI sequences used in 3 

the H&N sCT studies were T1 and T2. Four studies used the Dixon reconstruction [49,50,79,102].  4 

MAE and ME metrics have been widely reported in the literature. MAEs varied from 65 to 131 HU for 5 

the body or head structures (Figure 6). For the H&N, the MAEs for bone were above 166 HU and up to 6 

357 HU in one study [46]. Qi et al. [50] used multi-sequence input (T1w, T2w, contrast-enhanced T1, 7 

and contrast-enhanced T1 Dixon water) images to train a cGAN. The multi-sequence training showed 8 

a decrease in MAE for the body, soft tissue, and bone and an increase in PSNR, SSIM, and DSC. They 9 

also compared cGAN and U-Net networks. With cGAN and single-sequence input, the MAE, PSNR, and 10 

DSC were higher than those obtained using U-Net. For the body, the MEs were mostly around 0 HU, 11 

above -6 HU and up to 37 HU (Figure 7). Five studies reported ME for air, bone, or soft tissue 12 

[9,46,49,79,101]. For bone structure, MEs were higher up to 247 HU. PSNR and SSIM were only 13 

reported in two studies [50,95]. The PSNR results were approximately 28 dB (Figure 8). The SSIMs were 14 

between 0.78 and 0.92. For bone structure, DSC values were between 0.70 and 0.89 [50,70,71,79,95].  15 

DVH dose difference was performed in nine studies, with a mean difference < 1.6%. Klages et al. 16 

reported a mean dose (Dmean) to the parotid glands below 1% and the maximum dose (Dmax) to the 17 

spinal cord below 1.5% [102]. In the only one protontherapy study, the dose differences reached 8% 18 

for some OARs [71].  19 

The gamma pass rates were above 95% for the most restrictive criterion (2%/2mm) and above 98% for 20 

the other criterion (3%/3 mm). With the multi-sequence training, Qi et al. showed non-significant 21 

gamma pass-rate results [50]. In the same study, they also found higher gamma pass-rates for cGAN 22 

than for U-Net architectures.  23 

 24 

3. Breast 25 

Two DL sCT generation studies were carried out for breast radiotherapy. Additional table 3 summarizes 26 

the DL networks and the image and dose metrics results of the studies for breast sCT generation from 27 

MRI in radiotherapy. These two studies were based on MR images from a low field (0.35 T) MRI device. 28 

Jeon et al. [73] only reported DSC values for two patients. Olberg et al. reported a PSNR of 72 dB, an 29 

SSIM of 0.999, and an RMSE of 17 HU [56]. For dose results, they reported gamma passrate higher than 30 

98% with 2%/2 mm criteria.  31 

 32 

 33 
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4. Liver 1 

Three DL sCT generation studies were carried out for liver radiotherapy. Additional table 3 summarizes 2 

the DL networks and the image and dose metrics results of the studies for liver sCT generation from 3 

MRI in radiotherapy.  4 

Two of the three liver studies used T1 sequence. The MAEs varied from 72 to 94 HU for body structure 5 

between studies. Fu et al. [33] compared cGAN and cycle-GAN DLMs for data from three patients. The 6 

MAEs were higher for cycle-GAN than for cGAN. The PNSR values were above 22 dB. The NCC values 7 

were 0.92 in two liver studies [107,108]. 8 

DVH dose difference were calculated in the three liver studies, with the mean differences below 1%. 9 

In one study, the dose difference in OARs was less than 0.6% [33]. The dose difference in PTV (D95%) 10 

was less than 1.1% [107,108]. The gamma pass rates were above 90% for the most restrictive criterion 11 

(1%/1mm) and above 95% for the other criteria (Figure 9). In the study by Fu et al. [33], the gamma 12 

pass-rates were higher for a cGAN DLM than those for a cycle-GAN DLM.  13 

 14 

 15 

5. Abdomen 16 

Six DL sCT generation studies were carried out for abdomen radiotherapy. Additional table 3 17 

summarizes the DL networks and the image and dose metrics results of the studies for abdomen sCT 18 

generation from MRI in radiotherapy.  19 

Acquisitions were performed in breath hold inspiration for two studies on 0.35 T MRI device [31,121].  20 

The MAEs varied from 55 to 94 HU for body structure between abdomen studies. MAEs in lungs were 21 

105 HU in two studies [74,76]. In Florkow et al. [74] PSNR value was 30 dB and DSC values were 0,76 22 

for bone and 0.92 for lungs. Mean dose differences were lower than 1% and gamma passrate above 23 

98% in 2%/2mm.  24 

 25 

6. Pelvis 26 

Eighteen DL sCT generation studies for the pelvis were performed between 2016 and 2020. Additional 27 

table 4 summarizes the DL networks and the image and dose metrics results of these studies.  28 

Most MRI sequences in these pelvis studies were T2 sequences. T1 sequences [30,53,78] or Dixon 29 

reconstruction [52,54,94] were also used to generate sCT from MRI in the pelvis.  30 

The reported MAEs were 27-65 HU for body structure (Figure 6) and around 120 HU and up to 250 HU 31 

for bone [20,31,47,51,53,78,100]. Fu et al. compared training in 2D and 3D in four patients [78], 32 

reporting higher MAEs for 2D than for 3D training (+2-5 HU). Largent et al. compared U-Net and GAN 33 
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networks with different loss functions [20]. With the L2 loss function, U-Net showed lower MAEs than 1 

those for GAN. For all studies, the MEs were generally near to 0 HU for the whole body structure (Figure 2 

7). One multicenter study reported an ME of -18 HU [89]. For the pelvis, the MEs in the bone were up 3 

to 141 HU in one study [31]. The reported PSNRs were between 24 and 34 dB (Figure 8). Only one study 4 

reported SSIM in the pelvic area [75]. Only two studies reported DSC for the body (0.85 and 0.99) 5 

[47,77]. The DSCs for bone ranged between 0.70 and 0.93 [47,52,53,75,78]. Only one study reported a 6 

DSC for the bladder and rectum of 0.9 [47].  7 

Among the 18 pelvic studies, only nine reported dose evaluations. Liu et al. [108] performed proton 8 

dose planning. Most studies reported dose differences below 1.5% for target volumes and OARs. Arabi 9 

et al. reported maximum dose differences below 0.5% for the bladder and rectum between 1.1% and 10 

2.9% for the CTV and PTV. Some studies reported a very low dose difference (<0.6%) for PTV, bladder, 11 

rectum, and femoral heads [20,51]. However, Liu et al. reported dose differences up to 5% in the 12 

rectum and up to 11% in the bladder [77]. 13 

The gamma pass-rates were above 89% for the most restrictive criterion and generally above 95% for 14 

the other criteria (Figure 9). In a study using prostate data in training to generate sCT of the rectum 15 

and cervix [94], the gamma pass-rates were around 91% for gamma criteria of 2%/2 mm.  16 

 17 

Discussion  18 

 19 

This article reviewed deep learning methods used to generate sCT from MRI in radiation therapy, and 20 

their associated image and dose uncertainties. Two types of DL architectures are widely used; 21 

generator-only, and GAN. The most recent DLMs were cGAN and cycle-GAN. A variety of metrics for 22 

image evaluation (image intensity and geometric fidelity) has been proposed. All sCT studies include 23 

in this review reported MAE values. The median MAE results were 76 HU for head localization (brain 24 

and H&N) and liver, and 42 HU for the pelvic area. Dose evaluations consisted in DVH comparisons, 25 

voxel-to-voxel dose differences, or gamma index analyses. The mean dose differences were below 1% 26 

in the H&N, liver, breast, and pelvis sCT studies. In brain sCT studies, the mean dose difference was 27 

below 2%. For most of the studies, the gamma pass-rates were above 95% (with 2%/2 mm and 3%/3 28 

mm criteria) (Figure 9).  29 

In radiotherapy, the first sCT generation methods from MRI were bulk density and atlas-based. Other 30 

machine learning methods (non-DLM) have also been investigated, including patch-based or random 31 

forest [10,122]. This review focused on DLMs which are the most recent methods with the first study 32 

in the pelvic area reported in 2016. Different neural network architectures have been used in the 33 

literature with multiple parameters to be set. Compared to other sCT generation methods, DLMs have 34 
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fast computation times, and do not necessarily require deformable inter-patient registration. sCT 1 

generation DLMs have just been commercially available for a clinical use [79,123]. To our knowledge, 2 

no open source software is available for sCT generation from MRI with a DLM. Each research team has 3 

developed his own DLM with hyperparameter tuning. This review was not able to identify the most 4 

“accurate” DL architecture. Although GAN DLMs are the most recent, for now they do not outperform 5 

generator-only DLMs (Figures 6, 7, 8, and 9). Moreover, we acknowledge that studies are not directly 6 

comparable due to the great disparities in input data (imaging protocol, scanner parameters, etc.), 7 

training cohort sizes, evaluation cohort sizes, and methods of evaluation. Same data should be used to 8 

directly compare the results, such as data in open access from the Gold Atlas Project [116]. Two studies 9 

used these data [89,90]. Some studies directly compared several DLMs with the same data (Additional 10 

table 1, 2, 3, and 4). Size of patient cohort (training + evaluation) varied according to study and 11 

anatomical localization (Additional table 1, 2, 3, and 4). The median number of patients were 45 for 12 

the brain, 33 for H&N and 23 for pelvic localization. Studies including few patients (less than 19) did 13 

not show the better results (Figures 6, 7, and 8). But studies with more than 40 patients did not 14 

outperform compared with studies with 19 to 40 patients (Figure 6). Training strategy depends on the 15 

number of available data. If you have few data (less than 20 patient data), a leave-one-out strategy is 16 

recommended. Image quality of data training is important. Image with artefacts must be removed of 17 

the training. A first step of quality image optimization (MR sequence or CT acquisition parameters) can 18 

be useful.  19 

Although cycle-GAN or other networks do not require paired data for training step, paired data are 20 

required for the evaluation step. For the brain a rigid registration can be sufficient [32] but not for H&N 21 

or pelvis area. Few studies used unpaired data in training, even with cycle-GAN [80,106] and with 22 

Mutual Information as loss function in GAN [58,59]. To have paired data, a deformable registration is 23 

needed, with additional uncertainties. Florkow et al. [52] quantified the uncertainties due to MRI-CT 24 

registration. 25 

To perform the evaluation, sCTs generated from MRI are compared to reference CT. Even if the time 26 

between acquisitions is kept as short as possible, MRI acquisition and reference CT can differ even 27 

after non-rigid registration, due to gas volatility and bowel loops displacement in the abdomen, 28 

artifacts (teeth, hip prosthesis, fiducials, contrast agent, etc.) or internal movements (bladder and 29 

rectum filling) between CT and MR images. Maspero et al. [94] proposed to override gas in the rectum 30 

as in the reference CT and performed the imaging evaluation in the intersection volume of the body 31 

contours (reference CT ∩ sCT). Cusumaro et al. excluded some patients from their studies because of 32 

artifacts (artificial implants) or difference of air pocket locations between CT and MR images [31].  33 

Most of studies reported global imaging evaluation metrics, without local or spatial analysis. Hemsley 34 

et al. [96] proposed a detailed sCT evaluation with uncertainty heatmaps. Models were proposed to 35 
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spatially quantify intrinsic and parameter sCT uncertainties [124]. With this method, uncertainty maps 1 

are a second output of the DL network [125]. Moreover, an analysis based on image gradient could be 2 

performed.  3 

Reviewed articles aimed to show accuracy of sCT generation from MRI compared to a reference CT. In 4 

the future, we can imagine an MRI-only workflow without any CT acquisition. In this case, image 5 

evaluation metrics without reference need to be developed. Before any use in clinical practice, 6 

commissioning and quality assurance process must be implemented [126]. Practical guidelines on the 7 

use of MRI for external radiotherapy treatment planning were recently proposed by a multidisciplinary 8 

working group of the Institute of Physics and Engineering in Medicine (IPEM) [127]. This document 9 

overviews all the aspects of MRI implementation for radiotherapy are described (MR safety, training 10 

and education, patient set-up, MRI sequence, MR quality assurance, etc.).  11 

To date, few DL studies have been carried out on abdomen, liver, breast, or H&N radiotherapy. This 12 

limited number may be due to the small number of patients undergoing MRI for liver or abdomen 13 

radiotherapy compared to brain or prostate radiotherapy. Moreover, standard acquisition of breast 14 

MRI is not in radiotherapy treatment position. Number of breast studies are increasing with the 15 

availably of MR acquisitions from MRI-linac device. The lack of sCT generation from H&N and abdomen 16 

MRI may be due to the complexity of these anatomical localizations with the large part of 17 

heterogeneities. MRI in the treatment position can be challenging for H&N acquisitions because 18 

specific coils are used [84]. An image quality optimization must be carried out to obtain better 19 

acquisition parameters. No study has yet investigated lung sCT generation from MRI with DLM. 20 

Movement is a huge challenge for MR imaging.  21 

Several MRI sequences have been used to generate sCT from MRI in radiotherapy, with T2w sequences 22 

the most common. Some studies used specific reconstruction techniques such as mDixon or FLAIR. The 23 

FLAIR sequence is an inversion-recovery sequence. This sequence improves the detection of lesions of 24 

the cerebral parenchyma and enables visualization of edemas. It also facilitates the detection of white 25 

matter pathologies (softening, demyelination process), which appear as hypersignals. 26 

Three studies investigated the impact of MISO, compared to a SISO [50,93,104]. MISO has the 27 

advantage of better tissue description. Koike et al. reported that MISO decreased the MAE and 28 

improved gamma pass-rate results compared to SISO [93]. Qi et al. used four sequences individually 29 

and combined them as input. The combination of sequences improved the sCT accuracy and 30 

robustness [50]. Sharma et al. [104] proposed a MIMO method generalizing to any combination of 31 

available and missing MRI sequence. 32 

Moreover, three studies evaluated the impact of generating a sCT from a device other than the one 33 

used during training [89,90,97]. Such “multidevice” or “multicenter” impact is a key challenge to a 34 

commercial development.  35 
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The emergence of linacs combining MRI in the treatment room (MRI-linacs) increase the willingness of 1 

MRI-only workflow radiotherapy [128]. Some reviewed studies already used DLM for sCT generation 2 

from this device [31,33,56,73]. In this context, dose planning need to consider the presence of 3 

magnetic field, with the electron return effect [129,130]. Moreover, on MRI-linac, an MR image is 4 

acquired for each fraction. This image could be used to perform dose monitoring or replanning with 5 

the use of a DLM, in the context of MR-guided adaptive radiotherapy [131].  6 

 7 

Conclusions  8 

The emergence of DL allows the fast and accurate generation of sCT from MRI in radiotherapy. In the 9 

literature, a variety of DLMs have been applied, mainly for brain and pelvis cancer and also for H&N 10 

and liver. In each study, DLM has showed particularities in terms of hyperparameters or loss functions. 11 

Different MRI sequences are used depending on the anatomical location. Many metrics are used for 12 

image (voxel intensity and geometric fidelity) evaluation of the generated sCT. The MAE results were 13 

around 76 HU for head localization (brain and H&N) and liver, and 40 HU for pelvis. Dosimetric 14 

evaluation showed uncertainties below 2% for brain radiotherapy and lower than 1% for H&N, liver, 15 

abdomen, and pelvic areas. A better sCT quality was obtained with multiple inputs compared to single 16 

input of a DLM. Key challenges of the sCT generation for MRI in radiotherapy with DLMs is the 17 

standardization of sCT evaluation, and multicentrer impact. 18 

 19 
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Image and geometry fidelity results Dose results 
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/ 3D T1 

N3 bias field 
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algorithm, 
histogram 
matching 

DCNN: U-Net 
/ RR 
/ 2D 

L1 loss - 

15 (6-fold 
cross 

validation)/ 
18  

MAE [HU] 
 

84.8 ± 17.3 

ME [HU] 
 

-3.1 ± 21.6 

MSE 
[HU²] 

 
188.6 ± 

33.7 

/ 

Nie et al., 2017 
[2] 

16  
3 T Siemens / 

❖ 
/ 

GAN (with 
FCN for 

generator and 
CNN for 

discriminator) 

/ ❖/ 3D 

L2 loss + 
gradient loss 
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adversarial 

loss 

Binary cross 
entropy 

15 (leave-
one-out) / 

16  

MAE [HU] 
 

92.5 ± 13.9  

PSNR [dB] 
 

27.6 ± 1.3 
/ 

Wolterink et al., 
2017 [3] 
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adversarial 
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Dinkla et al., 
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± 3 
Bone = 174 ± 

29  
Air = 159 ± 22  
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Air = -71 ± 27  

DSC 
Body 

contour 
= 0.98 ± 

0.01 
Bone = 
0.85 ± 
0.04 

Mean dose difference 
< 1% 

γ⁎ = 91.1% 

γ⁑ = 95.8% 

γ⁂ = 99.3% 
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Emami et al., 
2018 [5] 

15 
1 T Philips / 

Post-
Gadolinium T1 

/ 
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129 
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24.2 
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0.78 
 

/ 

Gupta et al., 
2019 [8] 
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3T Siemens / 
T1 with Dixon 

/ 
U-Net / RR 

/ 2D 

Combination 
of L1 loss: 

MAE + MSE 
- 47 / 13 

MAE [HU] 
 

All voxels = 81.0 ± 14.6 
Soft tissue = 17.6 ± 3.4 

Bone = 193.1 ± 38.3 
Air = 233.8 ± 28.0 

For 7 patients: 
Dmean PTV difference = 

2.3% 
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1.5 T ❖ / Post-
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T1 

/ 
cGAN / RR 

/ 2D 

Mutual 
information Binary 

Cross 
entropy 

 
70% of 77 
/ 1% of 77 

Average MAE over 
cross validation sets 

[HU] 
 

47.2 ± 11.0 

DSC 
 

Head = 0.96 ± 
0.02 

Bone = 0.80 ± 
0.06 

Air = 0.70 ± 0.07 

Dose differences < 
2.4% for PTV and 

OARs 
 

γ⁎ = 94.6% 

γ⁑ = 99.2% 

MAE 60.2 ± 22.0 / / 

Koike et al., 
2019 [10] 

15 

❖ Philips, GE 

and Siemens / 
T1, T2 and 

FLAIR 
 

N4 bias field 
correction 
algorithm 

cGAN / DR / 
2D 

 

Adversarial 
loss + L1 

loss 

Binary cross 
entropy 

12 (5-fold 
cross 

validation) 
/ 15 

MAE [HU] 
 

T1w sequence 
 Body = 120.1 ± 20.4 

Soft tissue = 46.3 ± 9.3 
Bone = 399.4 ± 51.8 

 
All sequences 

Body = 108.1 ± 24.0  
Soft tissue = 38.9 ± 10.7 

Bone = 366.2 ± 62.0  

Dose difference < 1% 
T1w sequence 

 γ⁎ = 94.2% 

γ⁑ = 98.9% 

γ⁂ = 99.7% 

 
All sequences  

γ⁎ = 95.3% 

γ⁑ = 99.2% 

γ⁂ = 99.8% 

Lei et al., 2019 
[11] 

24 
❖ GE / T1- 

BRAVO 

N3 bias field 
correction 

algorithm + 
intensity 

normalization 

Cycle-GAN / 
RR 
/ 3D 

Adversarial 
loss + 

distance 
loss 

(combination 
of Mean P 
Distance 

and 
Gradient 

Difference) 

MAD 

23 (leave-
one-out) / 

24 

MAE [HU] 
 

55.7 ± 9.4  

PSNR 
[dB] 

 
26.6 ± 

2.3 
 

NCC 
 

0.96 ± 
0.01 

DSC 
 

Air = 0.90 
± 0.12 
Bone = 
0.83 ± 
0.06  

  

/ 

24/10 57.7 ± 8.4 
27.0 ± 

2.8 
0.96 ± 
0.01 

/ 

Liu et al., 2019 
[12] 

50 

1.5 T GE / 3D 
T1 BRAVO 
+ 1,5 T GE / 
post-contrast 

T1  

/ 
DCNN / DR / 

2D 
 

MSE - 40 / 10 

MAE [HU] 
 

75 ± 23 

DSC 
 

Soft tissue = 
0.94 ± 0.02 

Bone = 0.85 ± 
0.02 

Absolute mean dose 
difference < 1.5% 

γ⁂ = 99.2% 
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Air = 0.95 ± 0.01 

Neppl et al., 
2019 [13] 

89 
1.5 T Siemens 
/ T1 MPRAGE 

/ 

U-Net / RR / 
2D 

❖ - 57 / 4 

MAE [HU] 
 

55 ± 10 

ME [HU] 
 

-1 ± 4 

γ⁎ = 95% 

γ⁑ = 98% 

 
 Protontherapy: 

Range difference of 3 
mm < 5% of the 

profiles 

γ ⁑ = 91.7% 

U-Net / RR/ 
/ 3D 

90 ± 20 11 ± 9  

γ⁎ = 95% 

γ⁑ = 98% 

 
Protontherapy: 

Range difference of 3 
mm < 5% of the 

profiles 

 

γ⁑ = 89.3% 

Shafai-Erfani et 
al., 2019 [14] 

50 
1.5 T Siemens 

/ 3D T1 

N4 bias 
correction 

filter 

Cycle-GAN / 
RR 
/ 3D 

Adversarial 
loss, MAD 
(L1 norm), 

Mean P 
distance and 

gradient-
difference 

loss 

Mean P 
distance : lp 

norm 
25 / 25 

MAE [HU] 
 

54.6 ± 6.8  

NCC 
 

0.96 ± 0.01 

Protontherapy: 
Dose difference < 

0.5% 
Mean distal range: 1.1 

± 0.9 mm 

γ⁎ = 89.2% 

γ⁑ = 98.1% 

γ⁂ = 99.9% 

Spadea and 
Maspero et al., 

2019  
[15] 

15 
3 T Siemens / 

3D T1 
/ 

DCNN: U-Net 
/ RR / 2.5D 

L1 loss - 
14 (leave-
one-out) / 

15 

MAE [HU] 
 

Body = 54 ± 7  
Cerebrospinal 
fluid = 10 ± 3  
Gray matter = 

8 ± 2  
White matter = 

6 ± 2  

ME [HU] 
 

Body = -4 ± 17 
Cerebrospinal 
fluid = 0 ± 9 

Gray matter = 
0 ± 6 

White matter = 
0 ± 4 

DSC 
 

Bone = 0.93 
± 0.02 

Air = 0.92 ± 
0.03  

Protontherapy: 
PTV dose difference < 

0.1 Gy 
 

Relative range shift: 
0.14 ± 1.11% 
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Air = 53 ± 32  Air = -37 ± 39 

Alvarez Andres 
et al., 2020 [16] 

402 
1.5 T + 3 T GE 
/ T1 and FLAIR 

N4 filter 

CNN 
(HighResNet)/ 

RR / 2D 
- 

242 / 79 

MAE [HU] 
 

Head = 81 ± 22 
Water = 38 ± 11 
Bone = 228 ± 63 
Air = 274 ± 63  

Dose differences:  
PTV (D2%, D50%, D95%, 

D98%) < 0.3% 

γ⁎ = 97.9% 

γ⁑ = 99.6% 

γ⁂ = 99.8% 

U-Net / RR / 
3D 

MAE - 
MAE [HU] 

 
Head = 90 ± 21 

γ⁂ = 99.7% 

Hemsley et al., 
2020 [17] 

105 
1.5 T Philips / 
T1 and FLAIR 

MR 
normalization 

cGAN 
(pix2pix)/ RR / 

2D 

adversarial 
+ log-

likelihood of 
the Laplace 
distribution 

Binary cross 
entropy 

85 / 20 

MAE [HU] 
 

Normal soft tissue = 6 ± 3 
Air-bone interface = 237 ± 31 

/ 

Kazemifar et al., 
2020 [18] 

77 
1.5 T ❖ / 2D 

T1 
/ 

cGAN / no 
registration 

/ 2D 

Mutual 
information 

Binary cross 
entropy 

54 / 11 

 Average MAE over all-cross validation 
sets [HU] 

 
47.2 ± 11.0 

Protontherapy: 
Mean dose difference 

< 1.8% 
Up to 5.1% for 
brainstem D2%  

Li et al., 2020 
[19]  

 
34 

1.5 T Siemens 
/ T2 

Distorsion 
correction 

U-Net / RR / 
2D  

L1 

- 

28 / 6 

MAE [HU] 
 
75.5 ± 7.9 

PSNR [dB] 
 

25.4 ± 0.6  

SSIM 
 

0.94 ± 
0.01 

MSE 
[HU] 

 

4.9∙104 ± 

7.7.103  

/ 

L2 75.5 ± 11.7 32.2 ± 1.1 
0.94 ± 
0.01 

1.1∙104 ± 

3.1.103 

L1 + L2 74.2 ± 12.8 32.4 ± 1.2 
0.94 ± 
0.01 

1.0∙104 ± 

3.1∙103 

cGAN 
(pix2pix) / RR 

/ 2D 
❖ ❖ 94.6 ± 17.2 30.3 ± 1.2 

0.91 ± 
0.01 

1.6∙104 ± 

4.9∙103 

Paired Cycle-
Gan / RR / 2D 

❖ ❖ 87.7 ± 7.9 30.9 ± 0.6 
0.92 ± 
0.00 

1.4∙104 ± 

2.1∙103 
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Unpaired 
Cycle-Gan 

❖ ❖ 98.7 ± 12.7 29.9 ± 0.9 
0.91 ± 
0.01 

1.7∙104 ± 

3.3∙103 

Liu et al.,  
2020 [20] 

15 
1.0 T Philips / 

Postgadolinium 
T1 

 / 

GAN (ResNet 
for generator 
and CNN for 
discriminator) 

/ RR / 2D 

L1 loss + 
adversarial 

loss 
L2 loss 

 12 / 3 (5-
fold cross 
validation) 

Emami et al., 2018 [5] 

Dose differences:  
PTV and OARs 

< 0.13 Gy 
 

γ⁎= 99.0% 

γ⁑= 99.9% 

Maspero et al., 
2020 [21] 

60  
(paediatric 
patients) 

1.5 T and 3 T 
Philips / 3D T1 

MRI was 
normalised 

and clipped to 
their 

99th percentile 
intensity over 

the whole 
volume 

cGAN / RR / 
2D 

L1 loss ❖ 

30 / 20 (4-
fold cross-
validation) 

MAE [HU] 
 

61.0 ± 14.1 

 PSNR 
[dB] 

 
26.7± 
1.9 dB 

 

SSIM 
 

0.86±0.03 

DSC 
 

Body = 
0.984 ± 
0.004 

Bone = 

0.92 ± 

0.05 

Photontherapy: 
Dose differences < 

0.9% 

γ⁑ > 93.9% 

γ⁂ >98.4% 
Protontherapy: 

Dose differences < 1% 

γ⁑ > 92.6% 

γ⁂ >97.2% 

Massa et al., 
2020 [22] 

92 

1.5 T GE / 
T1w, T2-

FatSat, T1 
Post contrast, 

T2 CUBE 
FLAIR 

 / 

U-net with 
Inception V3 

inspired 
blocks / DR / 

2D 

❖ - 81 / 11 

MAE [HU] 
 

T1w: Brain 
= 51.2 ± 

4.5  
Bone = 

31.1 ± 7.0 
 

T2-FatSat: 
Brain = 

45.7 ± 8.8  
Bone = 

30.3 ± 7.1 
 

T1 Post 
contrast:  
Brain = 

44.6 ± 7.5  
Bone = 

30.2 ± 6.0 

PSNR 
[dB] 

 
T1w:  

Brain = 
43.0 ± 

2.0  
Bone = 
43.2 ± 

1.9 
 

T2-
FatSat:  
Brain = 
43.4 ± 

1.2  
Bone = 
43.7 ± 

1.2 
 

SSIM  
 

T1w:  
Brain = 
0.65 ± 
0.05 

Bone = 
0.87 ± 
0.03 

 
T2-

FatSat: 
Brain = 
0.63 ± 
0.03   

Bone = 
0.86 ± 
0.02 

 

DSC 
 

T1w:  
Soft 

tissue = 
0.91 ± 
0.03  

Bone = 
0.76 ± 
0.12 

 
T2-

FatSat: 
Soft 

tissue = 
0.91 ± 
0.02   

Bone = 
0.77 ± 
0.07 

/ 
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T2 CUBE 
FLAIR: 
Brain = 

51.2 ± 4.5  
Bone = 

36.1 ± 3.3 

T1 Post 
contrast: 
Brain = 
43.4 ± 

1.2   
Bone = 
43.7 ± 

1.2 
 

T2 
CUBE 
FLAIR: 
Brain = 
44.9 ± 

1.2  
Bone = 
45.2 ± 

1.1 

T1 Post 
contrast: 
Brain = 
0.64 ± 
0.03   

Bone = 
0.86 ± 
0.03 

 
T2 CUBE 
FLAIR: 
Brain = 
0.61 ± 
0.04  

Bone = 
0.84 ± 
0.02 

  
T1 Post 
contrast: 

Soft 
tissue = 
0.90 ± 
0.02   

Bone = 
0.75 ± 
0.07 

 
T2 CUBE 
FLAIR: 

Soft 
tissue = 
0.88 ± 
0.03  

Bone = 
0.69 ± 
0.07 

Tang et al., 2020 
[23] 

37 
3 T Siemens / 

T1 TIRM 
 / 

cGAN 
(pix2pix)/ RR / 

❖   

MAE + 
adversarial 

loss 

Least 
square loss 

27 (5 fold 
cross-

validation) 
/ 10 

MAE [HU] 
 

60.5 ± 13.3 

PSNR [dB] 
 

49.2 ± 1.9 

Dose differences:  
PTV < 0.13% 

Brainstem, optic 
chiasma, optic nerve < 

0.77% 
 

γ⁑ = 97.3% 

γ⁂ = 99.8% 

Bourbonne et 
al., 2021 [24] 

184 

1.5 T Siemens 
/ T2 and post 

gadolinium 3D 
T1  

MRI voxel 
intensities 

were clipped 
to be inside 
the [1-99%] 

quantile 
range. 

cGAN 

(pix2pix) / ❖ / 

2D 

Adversarial 
loss and 
MAD (L1 

norm) 

PatchGAN 20 / 164 

RMSE [HU] 
 

Soft-tissue = 13.54 ± 1.96 
Bone = 175.50 ± 63.15 

Dose differences:  
PTV < 0.4 Gy 

 

Local γ⁑ = 99.1% 

Additional table 1: Synthetic-CT generation from brain MRI in the literature: summary of data, deep learning architecture, and image and dose evaluations 

γ⁎ = 1%/1 mm gamma pass-rate 1%/1mm; γ⁑ = 2%/2 mm gamma pass-rate; γ⁂ = 3%/3 mm gamma pass-rate; ❖ = not specified in the study 
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Abbreviations: GAN = generative adversarial network, MAD = mean absolute distance, MAE = Mean Absolute Error; ME = Mean Error; DSC = Dice Similarity 

Coefficient; PSNR = Peak Signal-to-Noise Ratio; SSIM = Structural Similarity; NCC = Normalized Cross-Correlation; MSE = Mean Square Error; RR = Rigid 

Registration; DR = Deformable Registration; DECNN = Deep Embedding Convolutional Neural Network; DCNN = Deep CNN.  
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First author, 

year 

[reference] 

No. of 

patients 

Magnetic 

field, 

system / 

MRI 

sequence 

Preproces

sing of 

MRI 

images 

Deep 

learning 

method / RR 

or DR / 2D or 

2.5D or 3D 

training 

Overall loss 
function (for 
GANs) or 

generator  loss 
function  

Adversaria
l loss used 

by 
discriminat

or (for 
GANs) 

No. of 

patients in 

training / 

evaluation 

Image and geometric fidelity results Dose results 

Dinkla et al., 

2019 [25] 
34 

3 T 

Philips / 

T2 - 

Dixon 

2D 

geometry 

correction

+ 

uniformity 

correction 

(CLEAR) 

U-Net / DR 
/ 3D 

L1 - 

22 (3-fold 

cross 

validation) 

/ 34 

MAE 
[HU] 

 
Body = 
75 ± 9 

 

ME [HU] 
 

Body = 9 ± 11 

 

DSC 
 

Bone = 0.70 
± 0.07 

Air = 0.79 ± 

0.08 

Dose 
difference < 

1% 
 

γ⁑ = 95.6% 

γ⁂ = 98.7% 

Klages et 

al., 2019  

[26] 
20 

3 T 

Philips / 

mDixon 

T1 Fast 

Field 

Echo 

(FFE) 

Intensity 

inhomoge

neity 

correction 

(CLEAR) 

cGAN 
(Pix2Pix) / 

DR 
/ 2D 

Adversarial loss 
+ 

Absolute 

differences (L1) 

Binary 

cross 

entropy 

10 / 10 

MAE [HU] 
 

Body = 92.4 ± 13.5 
 

ME [HU] 
 

Body = 21 ± 11.8 
 

Dose 
differences: 
PTV70Gy < 

0.8% 
OARs < 2% 

Dose 
differences: 
PTV70Gy< 

1.6% 
OARs < 

1.7% 

cycle-Gan / 
DR 
/ 2D 

Body = 100.7 ± 14.6 

 
Body = 37.5 ± 14.9 

Wang et al., 

2019 [27] 
33 

1.5 T 

Siemens / 

T2 TSE 

Histogram 

matching 

DCNN: U-

Net / RR and 

DR / 2D 

L2: MSE - 23 / 10 
MAE [HU] 

Body = 131 ± 24 

ME [HU] 

Body = −6 ± 13 
For one 

patient: PTV 

D98% 

difference < 

1% 
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Largent et 

al., 2020 [28] 
8 

1.5 T GE / 

3D T2 

N4 bias-

field 

correction 

and 

histogram 

matching 

GAN / RR 
and DR 

/ 2D 
Perceptual loss 

Cross 

entropy 

7 (leave-

one-out) / 

8 

MAE [HU] 
 

82.8 ± 48.6 

ME [HU] 
 

-3.9 ± 12.8 
/ 

Peng et al., 
2020 [29] 

173 

3 T 

Philips / 

T1 

Intensity 

of each 

MR 

volume 

image 

was 

normalize

d as zero 

mean and 

unit 

variance 

and then 

scaled to 

a similar 

numeric 

range 

cGAN 

(registered 

pairs) / DR / 

2D 

Adversarial loss 
+ L1 loss 

Least 

square 

loss 

135 pairs / 

28 pairs 

MAE [HU] 
 

Body = 69.7 ± 9.3 
 

ME [HU] 
 

Body = 18.4 ± 16.4 
 

 

Dose 
differences: 
PTV (D95%) < 

0.7% 
Parotids 
(Dmean) < 

0.9% 
Mandible 
(Dmax) < 

1.5% 
 

γ⁑ = 98.7% 

γ⁂ = 99.6% 

cycle-Gan 

(unregistered 

pairs) / - / 2D 

Cycle- 

consistency 

loss (MAE loss) 

+ adversarial 

loss + L1 loss 

PatchGAN 

loss 

Body = 100.6 ± 7.7 
 

Body = 6.7 ± 19.4 
 

Dose 
differences: 
PTV (D95%) < 

0.9% 
OARs 

(Dmean) < 
1.2% 

Mandible 
(Dmax) < 

1.6% 
 

γ⁑ = 98.5% 

γ⁂ = 99.6% 

Qi et al., 

2020 [30] 
45 

3 T 

Philips / 

T1, T2, 

contrast-

Normaliza
tion to [-1, 
1] based 
on the 

minimum 

cGAN / RR 
/ 2D 

Adversarial loss 

+ L1 loss 

PatchGAN 

loss 
30 / 15 

MAE 
[HU] 

Body : 

ME 
[HU] 

Body : 

PSNR 
[dB] 

 
T1 = 28.9 

± 1.1 

SSIM 
 

T1 = 
0.84 ± 
0.02 

DSC 
 

Bone: 

Dose 
difference < 

1% 
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enhanced 

T1 (T1C) 

and 

contrast-

enhanced 

T1 with 

Dixon 

(T1Dixon

C) 

and 
maximum 
intensity 
values 

 

T1 = 
75.2 ± 
11.5 
T2 = 

87.0 ± 
10.8 

T1C = 
80.0 ± 
10.9 

T1Dix
onC = 
86.3 ± 
10.8 

 
Multis

eq. = 

70.0 ± 

12.0 

T1 = 
1.3 ± 
14.9 
T2 = 

12.3 ± 
16.2 

T1C = 
5.0 ± 
16.0 

T1Dixo

nC = 

6.4 ± 

16.7 

T2 = 27.5 
± 0.9 
T1C = 
28.4 ± 

1.1 
T1Dixon
C = 27.7 

± 0.9 
 

Multiseq. 

= 29.4 ± 

1.3 

T2 = 
0.78 ± 
0.03 

T1C = 
0.82 ± 
0.03 

T1Dixo
nC = 

0.79 ± 
0.03 

 
Multise

q. = 

0.85 ± 

0.03 

T1 = 
0.74 ± 
0.05 
T2 = 

0.68 ± 
0.05 

T1C = 
0.72 ± 
0.05 

T1Dixo
nC = 

0.69 ± 
0.06 

 
Multise

q. = 

0.77 ± 

0.05 

T1: γ⁑ = 
97.4% 

T2: γ⁑ = 
95.8% 

T1C: γ⁑ = 
96.7% 

T1DixonC: 

γ⁑ = 96.2% 

Multiseq.: γ⁑ 

= 97.8% 

U-Net / RR 
/ 2D 

L1 loss - 
71.3 ± 

12.4 
/ 

29.2 ± 

1.3 

 

/ 
0.76 

± 

0.05 

Dose 
difference < 

0.9% 

γ⁑ = 97.6% 

Thummerer 
et al., 2020 

[31] 
27 

3 T 

Siemens / 

3D 

spoiled 

gradient 

recalled 

echo 

/ 
DCNN / DR / 

2.5D 
L1 loss - 

18 (3-fold 

cross 

validation) 

/ 27 

MAE [HU] 
 

Body = 65.4 ± 3.6 

ME [HU] 
 

Body = 2.9 ± 9.4 

Protontherap
y: 

Range errors 
> 3% 

γ⁑ = 97.6% 

Tie et al., 

2020 [32] 
32 

1.5 T 

Siemens / 

T1 

precontra

st + T1 

postcontr

N4 bias correction 

algorithm + 

histogram 

normalization 

cGAN 
(Pix2Pi
x) / RR 

/ 2D 

Combination of 
Pearson f-

divergence + 
adversarial loss 

+ L1 loss 
 

Least 

square 

loss 

28 (8-fold 

cross 

validation)

/ 32 

MAE 
[HU] 

 
Head = 

75.7 ± 

14.6 

PSNR [dB] 
 

29.1 ± 1.6 

DSC 
 

Bone = 
0.86 ± 
0.03 

SSIM 
 

0.92 

± 

0.02 

/ 
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ast and 

T2 

Palmér et 

al., 2021 [33] 
44 

1.5 T 

Siemens / 

T1w 

Dixon 

Vibe 

❖ 

Deep 

CNN / 

RR + 

DR / 

2D 

❖ - 

80 

(multicent

er 

database) 

/ 44 

MAE [HU] 
 

Body = 67 ± 
14 

 

ME [HU] 
 

Body = -5 
± 10 

 

 

DSC 
 

Bones 
= 0.80 
± 0.07 

Air 
=0.81 
± 0.1 

 

HD 
[mm] 

 
Bones = 
4.6 ± 1.2 
Air = 2.8 

± 0.8 

Mean dose 
differences 
PTV and 
OARs < 

0.3% 
 

γ (2%/1 

mm)=99.4% 

Additional table 2: Synthetic-CT generation from head and neck MRI in the literature: summary of data, deep learning architecture, and image and dose 

evaluations 

γ ⁑ = 2%/2 mm gamma pass-rate; γ ⁂ = 3%/3 mm gamma pass-rate; ❖ = not specified in the study. 

Abbreviations: GAN = generative adversarial network, MAE = Mean Absolute Error; ME = Mean Error; HD = Hausdorff distance, DSC = Dice Similarity 

Coefficient; PSNR = Peak Signal-to-Noise Ratio; SSIM = Structural Similarity; RR = Rigid Registration; DR = Deformable Registration; MSE = mean square error, 

DCNN = Deep Convolutional Neural Network.  
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First author, 
year 

[reference] 
Anatomical site 

No. of 
patients 

Magnetic 
field, 

system / 
MRI 

sequence 

Preprocessing 
of MRI images 

Deep learning 
method / RR 

or DR / 2D or 
2.5D or 3D 

training 

Overall loss 
function (for 
GANs) or 
generator  

loss function  

Adversarial 
loss used by 
discriminator 
(for GANs) 

No. of patients 
in training / 
evaluation 

Image and geometric fidelity 
results 

Dose results 

Jeon et al., 
2019 [34] 

Breast 16 

0.35 T, 
MRIdian 

(Viewray) / 

❖ 

 / 
U-Net / DR / 

2D 
Binary cross-

entropy 
- 14/2 

DSC (%) 
Patient 1 = 76.4 
Patient 2 = 73.5 

/ 

Liu et al., 
2019 [35] 

Liver 21 

3 T Skyra / 
3D T1 + 3 
T TrioTim 
Siemens / 
T1 VIBE 
and 1.5 T 
GE / 2D 

T1 

N4 bias field 
correction 
algorithm 

cycle-GAN / 
DR 
/ 3D 

Weighted 
summation of 

adversarial 
loss and 
mean p 

distance (lp 
norm) + 
gradient 

difference  

MAD  
20 (leave-one-

out) / 21 

MAE [HU] 
 

Body = 72.9 
± 18.2 

 

PSNR [dB] 
 

22.4 ± 3.6  

Protontherapy: 
 

PTV45Gy and 
bowel dose 

difference < 1 
Gy 

PTV D95% < 
1.1% 

 
Mean of 
absolute 

maximum range 
shift: 1.86 ± 

1.55 mm 
 

γ⁎ = 90.8% 

γ⁑ = 97.0% 

γ⁂ = 99.4% 

Liu et al., 
2019 [36] 

Liver 21 

3 T Skyra/ 
3D T1 + 3 
T TrioTim 
Siemens / 
T1 VIBE 
and 1.5 T 
GE / 2D 

T1 

N4 bias field 
correction 

filter 

cycle-GAN / 
RR and DR 

/ 3D 
 

Weighted 
summation of 

MAD 
(adversarial 

loss) and 
mean p 

distance (lp 
norm) + 

MAD  
20 (leave-one-

out) / 21 

MAE [HU] 
 

Body = 72.9 
± 18.2 

PSNR [dB] 
 

22.7 ± 3.6  

Mean dose 
difference: 
PTV D95% = 

0.2% 
 

Dose difference 
to OARs < 0.06 

Gy 
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gradient 
difference  

γ⁎ = 99.0% 

Olberg et al., 
2019 [37] 

Breast 48 
0.35 T 

Viewray / 
T1 

Histogram 
matching 

U-Net and 
ASPP / DR / 

2D 

Adversarial 
(Cross 

entropy loss) 
+ MAE 

Cross 
entropy loss 

48 / 12 

RMSE 
[HU] 

 
17.7 ± 

4.3   

PSNR 
[dB] 

 
71.7 ± 2.3 

SSIM 
 

0.9995 ± 
0.0003 

For 4 patients 

PTV D95% < 
0.9% 

 
γ⁑ ≥ 98.0% 

Xu et al., 
2019[38] 

Abdomen 10 
❖ / 

mDixon 
❖ 

MCRcGAN 
(ResNet + 

multichannel 
cGAN) / DR / 

2D 

 L1 loss + 
cGAN loss 

(cross 
entropy loss) 

Cross 
entropy loss 

9 (leave-one-
out) / 10 

MAE [HU] 
 

60.4 / 

Cusumano 
et al., 2020 

[39] 

Pelvis and 
abdomen 

60 pelvis / 
60 

abdominal 
 

0.35 T 
MRIdian 

(Viewray) / 
T2/T1 

❖ 

cGAN 
(pix2pix) / DR / 

2D 

LGAN+λ·L1 
with λ = 100 

LGAN : 
adversarial 

loss function 

❖ 

40 pelvis, 40 
abdomen/20 

abdomen 

MAE [HU] 
Body = 78.7 ± 

18.5 
 

ME (HU) 
Body = 10.8 

± 12.9   
 

γ⁎ = 90.8% 

γ⁑ = 98.7% 

γ⁂ = 99.8% 

Florkow et 
al., 2020 [40] 

Wilms’ tumour 
(24) and 

Neuroblastoma 
(42) 

66 

1.5 T 
Philips / 

3D T1 and 
3D T2 

Intensities 
clipped 

beyond the 
95th 

percentile + 
resulting 

intensities 
linearly 

mapped to [-1; 
1]. 

 

U-Net / DR / 
3D 

L1 - 

54/12 (3- fold 
cross 

validation) 
 

MAE 
[HU] 

 
Body 
= 57 ± 

12 
Lungs 
= 105 
± 34 

ME 
[HU] 

 
Body 
= -5 ± 

12 
Lungs 
= -9 ± 

67 

PSNR 
(dB) 

 
Body = 
30.3 ± 

1.6 
 

DSC 
(%) 

 
Bones 
= 76 ± 

8 
Lungs 
= 92 ± 

9 

Photontherapy: 
Mean dose 
difference 

<0.5% 
 

γ⁑ > 99% 

 
Protontherapy:  

γ⁑ > 96% 

 

Fu et al., 
2020 [41] 

Liver + 
Abdomen 

12 (8 liver 
+ 1 

pancreas + 
1 adrenal 
gland + 2 

middle 
abdomen 
tumors ) 

0.35 T, 
MRIdian 

(Viewray) / 
True-FISP 

N4 bias field 
correction 

algorithm + 
histogram 

normalization 

cGAN / DR / 
2D 

cGAN + L1 
Binary Cross 
entropy loss 

9 (4-fold cross 
validation)/ 12 

MAE [HU] 
 

Body = 89.8 ± 
18.7 

PSNR [dB] 
 

27.4 ± 1.6 

For 8 liver 
patients 
 Dose 

difference:< 
0.6% 

 

γ⁑ = 97.4% 

γ⁂ = 99.5% 
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cycle-GAN / 
DR / 2D 

Adversarial 
loss + cycle 
consistency 

Binary Cross 
entropy loss  

Body = 94.1 ± 30  27.2 ± 2.2 

For 8 liver 
patients 

Dose difference 
< 1% 

 

γ⁑ = 95.6% 

γ⁂ = 99.3% 

Liu et al., 
2020 [42] 

Abdomen 46 

3 T Skyra 
Siemens/ 

3D T1 
ECHO 

N4 Intensity 
inhomogeneity 

correction 

U-Net / RR / 
2.5D 

❖ - 
31/46 (3 fold 

cross 
validation) 

MAE [HU] 
Liver = 24.1 ± 11.5 
Kidneys = 47.1 ± 15 

Spinal Cord = 29.8 ± 9.4 
Lungs = 105.7 ± 35.0 

Mean dose 
difference < 

0.15 Gy 

Qian et al., 
2020 [43] 

Abdomen 10 
❖ / 

mDixon 
❖ 

RU-ACGAN : 
hybrid network 

associated 
with AC-GAN 

and cGAN and 
combined with 
ResNet and U-

Net 
simultaneously 

/ DR / 

L1 loss + 
adversarial 

loss 

Binary cross 
entropy loss 
+ Softmax 

loss 

9/10 (leave-
one-out) 

MAE [HU] 
 

55.6 ± 5.6 

RMSE [HU] 
 

106.4 ± 
12.2 

/ 

Additional table 3: Synthetic-CT generation from breast, liver, and abdomen MRI in the literature: summary of data, deep learning architecture, and 

image and dose evaluations 

γ ⁎ = 1%/1 mm gamma pass-rate 1%/1mm, γ ⁑ = 2%/2 mm gamma pass-rate, γ ⁂ = 3%/3 mm gamma pass-rate, ❖ = not specified in the study 

Abbreviations: MAE = Mean Absolute Error, PSNR = Peak to Signal-to-Noise Ratio, SSIM = Structural Similarity, NCC = Normalized Cross-Correlation, RMSE = 

Root Mean Square Error, MAD = mean absolute distance, GAN = generative adversarial network, ASPP = atrous spatial pyramid pooling, RU-ACGAN = 

Auxiliary classifier-augmented GAN. 
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First author, 

year 

[reference] 

Anatomic

al site 

No. of 

patients 

Magnetic 

field, 

system / 

MRI 

sequence 

Preprocessing 

of MRI 

images 

Deep learning 

method / RR 

or DR / 2D or 

2.5D or 3D 

training 

Overall loss 
function (for 
GANs) or 
generator  

loss function  

Adversarial 
loss used by 
discriminator 
(for GANs) 

No. of 

patients 

in 

training / 

evaluatio

n 

Image and geometric fidelity 

results 
Dose results 

Nie et al., 

2016 [44] 
Pelvis 22 ❖ / 

FCN / Manual 
alignment 

/ 3D 
❖ - 

21 

(leave-

one-out) 

/ 22 

MAE [HU] 
 
 

Body = 42.4 ± 

5.1 

PSNR [dB] 
 
 

Body = 33.4 ± 

1.1 

/ 

Nie et al., 

2017 [2] 
Pelvis 22 

❖ 

 
❖ 

GAN (with 
FCN for 

generator and 
CNN for 

discriminator)/ 
Manual 

alignment 
/ 3D 

L2 loss + 

gradient loss 

+ adversarial 

loss 

Binary cross 

entropy 

21 

(leave-

one-out) 

/ 22 

MAE [HU] 
 

Body = 39.0 ± 

4.6 

PSNR [dB] 
 

Body = 34.1 ± 

1.0 
/ 

Arabi et al., 

2018 [45] 
Prostate 39 

3 T 

Siemens 

/ 3D T2 

SPACE 

N3 bias field 

correction 

algorithm 

DCNN: U-Net 
/ RR and DR 

/ 2D 
MAE - 

(4-fold 
cross 

validatio
n) 

¾ of 39 / 

39 

MAE 
[HU] 

 
Body = 
32.7 ± 

7.9 
 

 

ME 
[HU] 

 
Body 
= 3.5 

± 
11.7 

 

 

DSC 
 
 

Bone 
= 

0.93 
± 

0.02 
 
 

MASD 
[mm] 

 
Body 
= 1.8 
± 0.6 

 

 

Mean dose 
difference < 

0.5% 
Dose 

difference: 
CTV (Dmax) = 

2.9% 
OARs 

(Dmax)= 0.5% 
 

γ⁎ = 94.6% 

γ⁑ = 98.5% 

γ⁂ = 99.2% 



ACCEPTED MANUSCRIPT - CLEAN COPY

Chen et al., 

2018 [46] 
Prostate 51 

3 T 

Philips / 

T2 TSE 

No bias field 

correction and 

MR intensity 

histogram 

normalization 

U-Net / DR / 

2D 
MAE - 36 / 15 

MAE [HU] 
 

Body = 30.0 ± 
4.9 

 

 

ME [HU] 
 

Body = 6.7 ± 
5.4 

 

Dose 
differences: 

0.2% 
(PTV/OARs) 

 

γ⁎ = 98.0% 

γ⁑ = 99.4% 

γ⁂ = 99.8% 

Maspero et 
al., 2018 

[47] 
 

Prostate 59 

3 T 

Philips / 

3D Echo 

with 

Dixon 

Normalized to 
their 95% 
intensity 

interval over 
the whole 
patient + 

converted to 
8-bits 

 

cGAN / RR 
/ 2D 

Adversarial 
loss +λ·L1 

with λ = 100 

 

PatchGAN 

loss 

32 / 27 

MAE [HU] 
 
 

Body = 65 ± 10 

ME [HU] 
 
 

Body = 1 ± 6 

For 10 
patients /27 

Dose 
difference: 

PTV (D98%)< 
1% 

 

γ⁑ = 95.0% 

γ⁂ = 98.1% 

Rectum 18 

3 T 

Philips / 

3D Echo 

with 

Dixon 

32 

(prostate 

patients) 

/ 18 

MAE [HU] 
 

Body = 56 ± 5 

ME [HU] 
 

Body = 2 ± 9 

For 10 
patients /18 

Dose 
difference: 

PTV (D98%)< 
1.2% 

 

γ⁑ = 91.6% 

γ⁂ = 97.1% 

Cervix 14 

❖ / 3D 

Echo with 

Dixon 

32 

(prostate 

patients) 

/ 14 

MAE [HU] 
 

Body = 59 ± 6 

ME [HU] 
 

Body = 4 ± 10 

For 10 
patients /14 

Dose 
difference: 

PTV (D98%) < 
1% 

 

γ ⁑ = 90.6% 

γ ⁂ = 

97.1% 
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Xiang et al., 

2018 [6] 
Prostate 22 

1.5 T 

Siemens 

/ T1 

N3 correction 

algorithm + 

histogram 

matching + 

intensity 

normalization 

DECNN/ DR 
and RR 

/ 2D 
L2 - 

21 

(Leave-

one-out) 

/ 22 

MAE [HU] 
 

Body = 42.5 ± 

3.1 

PSNR [dB] 
 

Body = 33.5 ± 
0.8 

 

/ 

Florkow et 

al., 2019 

[48] 

Prostate 23 

3 T 

Philips / 

T1 

/ 
U-Net / DR / 

2D 

 
L1 - 

16 (3-

fold 

cross-

validatio

n) / 23 

MAE 
[HU] 

 
Body = 

34.1 ± 

7.9 

ME 
[HU] 

 
Body 

= -

1.2 ± 

4.6 

PSNR 
[dB] 

 
Body 

= 

34.7 ± 

1.7 

DSC 
 

Bone 

= 

0.78 ± 

0.10 

/ 

Florkow et 

al., 2019 

[49] 

Pelvis 24 

3 T 

Philips / 

echo 

sequence 

with 

Dixon 

/ 
U-Net / RR 

and DR / 2D 

 
L1 - 

11 (3-

fold 

cross-

validatio

n) / 24 

MAE [HU] 
 

Body = 27.6 ± 

2.6 

DSC 
 

Bone = 0.89 ± 

0.02 / 

Fu et al., 

2019 [50] 
Prostate 20 

1.5 T 

Siemens 

/ 2D T1 

TSE 

N4 bias field 

correction 

algorithm + 

histogram 

normalization 

CNN / DR 
/ 2D 

MAE - 16 / 4 

MAE [HU] 
 

Body = 40.5 ± 

5.4 

DSC 
 

Bone = 0.81 ± 

0.04 
/ 

CNN / DR 
/ 3D 

Body = 37.6 ± 

5.1 

Bone = 0.82 ± 

0.04 

Han’s model 

[1] 

Body = 41.9 ± 

6;5 

Bone = 0.80 ± 

0.05 

Largent et 

al., 2019 

[51] 

Prostate 39 

3 T 
Siemens 
/ 3D T2 
SPACE 

 

Normalization 

and correction 

of image 

nonuniformity 

U-Net / 
RR and DR 

/ 2D 
L2 - 

25 (3-

fold 

cross-

validatio

n) / 39 

MAE [HU] 
 

Body = 34.4 ± 
7.7 

 

ME [HU] 
 

Body = -1.0 ± 
14.2 

 

Mean dose 
difference < 
0.6% (PTV 
and OARs) 

 

γ⁎ = 99.2% 
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GAN / 
RR and DR 

/ 2D 

L2 + 

adversarial 

loss 

Binary cross 

entropy 

Body = 34.1 ± 
7.5 

 

Body = -1.1 ± 
13.7 

 

Mean dose 
difference < 
0.6% (PTV 
and OARs) 

 

γ⁎ = 99.1% 

Lei et al., 

2019 [11] 
Prostate 20 

❖ 

Siemens 

/ 3D T2 

SPACE 

N3 correction 

algorithm + 

intensity 

normalization 

Cycle-GAN / 
RR 
/ 3D 

Combination 
mean P 
distance 

of adversarial 

loss and 

distance loss 

gradient 

difference 

MAD 

19 

(Leave-

one-out) 

/ 20 

MAE [HU] 
 

50.8 ± 15.5 

 

PSNR 
[dB] 

 

24.5 ± 

2.6 

DSC 
 

Air = 
0.75 ± 
0.06 

 
Bone = 

0.81 ± 

0.05 

/ 

20/10 42.3 ± 15.5 
23.9 ± 

2.0 
/ 

Liu et al., 
2019 

[52] 
Prostate 17 

1.5 T 

Siemens 

/ T2 

/ 

DCNN / RR 
/ 3D 

Combination 
mean P 
distance 

of adversarial 

loss and 

distance loss 

gradient 

difference 

MAD 

16 

(Leave-

one-out) 

/ 17 

MAE 
[HU] 

 
Body = 

59.0 
± 18.6 

 

PSNR 
[dB] 

 
Body 

= 
23.7 ± 

3.0 

 

DSC 
 

Bone 
= 0.81 
± 0.06 

 

HD 
95% 
[mm] 
Bone 
= 4.9 
±1.5 

Protontherap
y 
 

Mean 
absolute 

dose 
difference = 

0.23% 
 

PTV DVH 
points 

difference < 
1.5% 

 
Rectum 

DVH 
difference < 

5% 
 

Bladder 
DVH 

GAN / RR 
/ 3D 

Combination 
mean P 
distance 

of adversarial 

loss and 

distance loss 

gradient 

difference 

Body = 
74.7 

± 20.0 
 

 

Body 

= 

22.1 ± 

2.7 

Bone 

= 0.81 

± 0.06 

Bone 

= 4.7 ± 

1.4 

mm 

cycle-GAN / 
RR / 3D 

 

Combination 

of mean P 

distance 

16 

(leave 

 
Body = 

51.3 
   



ACCEPTED MANUSCRIPT - CLEAN COPY

(MPS: lp 

norm) and 

gradient 

difference 

one out) 

/ 17 

± 16.9 
HU 

 

24.2 ± 

2.46 

dB 

Bone 

= 0.85 

± 0.05 

4.2 ± 

1.0 

mm 

difference < 
11% 

 
Mean of 
absolute 

maximum 
range shift: 
2.3 ± 2.5 

mm 
 

γ⁎ = 92.4% 

γ⁑ = 98.0% 

γ⁂ = 99.0% 

Stadelmann 
et al., 2019 

[53] 
Pelvis 42 

3 T 

Philips / 

3D FFE 

mDixon 

/ 

U-Net and 

LinkNet / RR / 

2D 

L1 loss - 27 / 15 

MAE [HU] 
 

41.4 / 

Bahrami et 

al., 2020 

[54] 

Male 

Pelvis 

15 (+4 

additional 

patient for 

evaluation) 

3 T 

Siemens 

Skyra / 

3D T2 

N4 correction 

algorithm + 

intensity 

normalization 

eCNN / DR / 

2D 
MAE 

 

15 (5-

fold 

cross 

validatio

n) / 4 

MAE 
[HU] 

 
Body 
= 38 
± 5.6 

 

ME 
[HU] 

 
Body 
= 6 ± 
13.4 

 

PS
NR 
[dB

] 
 

Bo
dy 
= 

29.
5  ± 
1.3 

 

SSIM 
 

Body 
=  

0.96 

 

DS
C 
 

Bon

e = 

0.77 

± 

0.03 

/ 

U-Net MAE 

MAE 
[HU] 

 
Body 
= 46 
± 5.7 

 

ME 
[HU] 

 
Body 
= 6.2 

± 
17.9 

 

PS
NR 
[dB

] 
 

Bo
dy 
=  

27.

SSI
M 
 

Bod
y =  

0.95 
 

DSC 
 

Bon

e = 

0.7 ± 

0.09 

/ 
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4 ± 
0.6 

 

Bird et al., 

2020 [55] 

Ano-

rectal 

90 (73 

rectum 

and 17 

anus) 

1.5 T 

Siemens 

/ T2 

SPACE 

CT & MR 
voxels outside 

the patient 
external 

contour set to 
an intensity of 

1024 and 0 
respectively 

 

cGAN / DR 

and RR / 2D 

Focal 

regression 

loss 

Focal 

regression 

loss 

46 / 44 

MAE [HU] 
 

Deformable 
registration: 
Body = 35.1 

 
Rigid 

registration: 
Body = 44.5 

 

ME [HU] 
 

Deformable 
registration: 
Body = 0.4 

Bone = -95.5 
 

Rigid 
registration: 
Body = 0.8 

 

Dose 
differences: 
PTV Rectum 
(D95%, D50% 

and D2%) < 
0.7% 

PTV Anus 
(D95%, D50% 

and D2%) < 
0.5% 

γ⁎ = 99.5% 

γ⁑ = 99.8% 

γ⁂ = 100% 

Brou Boni 

et al., 2020 

[56] 

Male 

pelvis 

19 male 

pelvis from 

Gold Atlas 

data set 

[57] 

1.5 T 

Siemens 

/ T2 TSE, 

3 T GE 

Discover

y / T2 

FRFSE + 

3 T Signa 

GE / T2 

FRFSE 

/ 
cGAN 

/ DR / 2D 

L1+ Pearson 

divergence + 

adversarial 

loss 

Least 

square loss 

From 
Gold 
Atlas 

data set 
11 / 8 

MAE [HU] 
 

Body = 48.5 ± 6 
 

ME [HU] 
 

Body = -18.3 

 

DVH points 

difference 

for PTV, 

rectum wall, 

bladder wall, 

femoral 

heads < 

1.4% 

Cusumano 

et al., 2020 

[39] 

Pelvis 

and 

abdomen 

60 pelvis / 

60 

abdominal 

0.35 T 

MRIdian / 

T2/T1 

image: 

TrueFISP 

/ 

cGAN 

(pix2pix) / DR 

/ 2D 

adversarial 

loss +λ·L1 

with λ = 100 

PatchGAN 

loss 
80/20 

MAE [HU] 
 

Body = 54.3 ± 
11.9 

 

 

ME [HU] 
 

Body = 1.4 ± 
8.6 

 

Dose 
difference: 

PTV 
(D98%,D50%, 
D2%) < 0.07 

Gy 
Rectum  

(D98%,D50%, 
D2%) < 0.05 

Gy 

γ⁎ = 89.3% 
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γ⁑ = 99.0% 

γ⁂ = 99.9% 

Fetty et al., 

2020 [58] 

Pelvis 

(male 

pelvis + 

cervix) 

40 
prostate + 
11 cervix + 

19 male 

pelvis from 

Gold Atlas 

data set 

[57] 

0.35 T 

Siemens 

Magneto

m / 2D 

T2 TSE + 

1.5 T 

Siemens 

/ T2 TSE, 

3 T GE 

Discover

y / T2 

FRFSE + 

3 T Signa 

GE / T2 

FRFSE 

N4 bias field 

correction 

algorithm 

cGan 
(Pix2Pix): 4 

tested 
networks: SE-

ResNet, 
DenseNet, U-

Net, 
Embedded 

Net 
 

/ RR and DR 
/ 2D 

L1 + 

adversarial 

loss 

PatchGAN 

loss 

25 / 10 

+18 (19 

with 1 

patient 

excluded

) from 

Gold 

Atlas 

data set 

[57] 

MAE [HU] 
 

4 tested 
networks 

0.35 T 
Body = 

41.2 ± 3.7 
 

1.5 T 
Body = 

52.0 ± 5.5 
 

3 T 
Discovery 

Body = 
43.7 ± 6.2 

 
 

3 T Signa 
Body = 

48.2 ± 4.9 

PSNR 
[dB] 

 
4 tested 
networks 

 
0.35 T 
Body = 
31.4 ± 1 

 
1.5 T 

Body = 
29.3 ± 

1.0 
 

3 T 
Discover

y 
Body = 
31.1 ± 

1.1 
 

3 T 
Signa 

Body = 

30.8 ± 

1.2 

MSE 
[100 
HU²] 

 
4 tested 
networks 

 
0.35 T 
Body = 
124.9 ± 

29.6 
 

1.5 T 
Body = 
201.4 ± 

53.3 
 

3 T 
Discover
y Body = 
133.1 ± 

35.0 
 

3 T 
Signa 

Body = 

146.2 ± 

45.9 

DVH points 
difference: 
D98%, D50%, 

D2% for PTV, 
rectum, 

bladder and 
femoral 
heads < 

1.5% 
 

 

Additional table 4: Synthetic-CT generation from pelvis MRI in the literature: summary of data, deep learning architecture, and image and dose evaluations 

γ⁎ = 1%/1 mm gamma pass-rate 1%/1mm; γ⁑ = 2%/2 mm gamma pass-rate; γ⁂ = 3%/3 mm gamma pass-rate; ❖ = not specified in the study 

Abbreviations: LF = Loss Function; MAE = Mean Absolute Error; ME = Mean Error; DSC = Dice Similarity Coefficient; PSNR = Peak to Signal-to-Noise Ratio; NCC 

= Normalized Cross-Correlation; MSE = Mean Square Error; MASD = Mean Absolute Surface Distance; HD = Hausdorff Distance; MAD = mean absolute distance, 

RR = Rigid Registration; DR = Deformable Registration; DCNN = Deep CNN ; FCN = Fully convolution network.
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