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Abstract

Mastering physical phenomena taking place in aircraft engines is a key objective for manufacturers. Contact interfaces with dry
friction in bladed-disks allows decreasing the dynamic response of the structure. Moreover, friction in the interfaces can induce
fretting wear, decreasing even more the dynamic response. Combining harmonic balance method to study the dynamic behaviour,
and a semi-analytical contact simulation method, allows to study the dynamic behaviour of the structure considering wear and
dry friction in the interfaces. Furthermore, this method provides a computationally efficient tool to study the contact interfaces
behaviour with accuracy and the dynamic response of the non-linear system.
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1. Introduction

Precise prediction of vibration levels is a key objective in
order to reach noise and pollution reduction goals for aircraft
engines. Mastering this topic requires to have a better under-
standing and control on physical phenomena taking place in the
engines. Dry friction in bladed-disks contact interfaces allows
decreasing the dynamic response by dissipating energy. Thanks
to numerical [1, 2, 3] and experimental [4, 5, 6] studies this non
linear phenomenon is now better understood. Moreover, a worn
geometry induces a lower vibration level [7]. Simulation of bla-
ded disks dynamic response considering fretting wear can then
have a meaningful impact on the engine design.

This work aims at simulating the non-linear forced response
of an academic bladed disk model made of two different mate-
rials, to determine the wear it induces. The non-linear forced
response of the worn geometry is then re-computed to evaluate
the impact of fretting wear on the vibration amplitudes and on
the stresses over the interface. In order to understand accura-
tely the phenomena taking place in the model, a detailed study
of the contact behaviour is conducted at resonance. This allows
studying the contact forces distribution, the stick-slip behavi-
our and the sliding displacements, to compute wear depth on
contact interfaces.

The structure is represented by its structural matrices extrac-
ted from a commercial finite element solver, considering a fixed
centrifugal preloading [8] and cyclic symmetry properties [9].
Structural matrices are then reduced using Craig-Bampton
fixed-interface component mode synthesis [10], where only
contact and excitation degrees of freedom (DOFs) are kept, al-
ong with the first eigenmodes of the structure. The non-linear
forced response is evaluated using Harmonic Balance Method
(HBM), consisting on a Galerkin procedure to express the equa-
tion of motion as an algebraic system in the frequency dom-
ain. Since contact forces have no expression in the frequency

domain, an alternating frequency-time procedure [11] is used
to express contact forces in the time domain. Different met-
hods to estimate the contact forces have been studied, like pe-
nality contact elements [12]. For this study, the Dynamic La-
grangian Frequency-Time scheme (DLFT) developed by Naci-
vet [1] was used. This method takes Coulomb’s friction law
and non-interpenetration condition into account to determine
contact forces in time domain. Moreover, it has already proved
its validity for bladed disks dynamic analysis considering dry
friction [4].

Despite its accuracy to predict the dynamic behaviour, the
HBM does not allow using a fine mesh at the contact interfaces,
since computation time would become prohibitive. To be able
to study in detail the contact interfaces behaviour, the HBM was
coupled with a semi-analytical contact solver [13, 14, 15].

The non-linear resonance state is then considered to study the
interfaces. Gallego [16] proposed a semi-analytical contact si-
mulation method to study the Low Cycle Fatigue (LCF) of the
system. By coupling this method with the HBM, it is then pos-
sible to study the High Cycle Fatigue (HCF) of the system, with
a vibration dynamic loading. Contact forces and moments are
then extracted from the HBM solver and used as an input for
the semi-analytical contact analysis. The interest of the semi-
analytical contact solver is to discretise finely the interfaces and
have fast computations. Moreover, by considering the coupling
between the normal and tangential contact problems, two diffe-
rent materials in contact can be taken into account. The wear
depth is then computed using a local energy based formula-
tion [17]. Finally, the finite element geometry is updated and
the whole process is re-evaluated to determine the forced re-
sponse of the worn geometry. This loop is done several times
to determine the global wear behaviour of the system. Since
wear have a negligible impact on the structural behaviour after
one dynamic cycle, the structure is updated after an important
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number of cycles. The impact of wear on the stresses over the
interface is then studied.

2. Studied model

2.1. Finite element model
Since the final application of this work is aircraft engines

bladed-disks, this study was conducted on a simplified bladed
disk model, allowing to represent the mechanical properties of
an industrial bladed disk. The model is composed of 24 blades
connected to the disk with dovetails contacts. The materials
constituting the disk and the blades are respectively structural
steel and titanium alloy. Since the 24 sectors of the disk are
considered identical, cyclic symmetry properties can be app-
lied, allowing to compute only 1 sector of the model instead of
24 [9]. Figure 1 shows the full bladed disk model and Figure 2
shows one sector with its boundary conditions.

Figure 1: Full studied model

The disk bore is considered fixed. A centrifugal loading is
applied on the structure by the mean of a rotation speed ωz, le-
ading to a centrifugal preload. The contact due to the preload
is computed using Lagrange method with an explicit scheme.
This centrifugal preload adds two terms to the full structural
stiffness matrix K f : Kω and Kg which correspond respectively
to the centrifugal softening and the geometric stiffening [18].
Those effects, as well as all the structural matrices of the sy-
stem are computed using a commercial finite element (FE) sol-
ver. Two equations of motion are then constructed, one for each
solid l = 1, 2 i.e. the disk and the blade:

Ml
f Ẍl

f + Cl
f Ẋl

f + Kl
f Xl

f + Fl
c f

= Fl
ex f
, l = 1, 2 . (1)

with
Kl

f = Kl
struct −Kl

ω + Kl
g , l = 1, 2 . (2)

The subscript • f in the notations stands for “full model”. M f is
the mass matrix, C f is the damping matrix and K f is the stif-
fness matrix made of the structural stiffness matrix Kstruct, the
centrifugal softening matrix Kω and the geometric stiffening
matrix Kg. The vectors X f , Fc f and Fex f correspond respecti-
vely to the displacements, the contact forces in the dovetail and
the excitation forces used for the following dynamic study. The
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Figure 2: Sector of the studied model with boundary conditions.

damping matrix C f is built using a structural modal damping.
Gyroscopic effects are considered negligible and hence not ta-
ken into account for this study.

2.2. Craig-Bampton reduction

To reduce the size of the matrices, several reduced order
modelling techniques can be used, such as component mode
synthesis [10, 19, 20, 21], standard mode superposition or pro-
per orthogonal decomposition [22]. For this study, the Craig-
Bampton fixed-interface component mode synthesis [10] was
performed, since it has shown its efficiency and it is widely used
for non-linear dynamics problems. This method consists on re-
organising the matrices in two parts: boundary DOFs (index b)
and internal DOFs (index i). For this study, the boundary DOFs
are the contact DOFs, one excitation node (EXC on Figure 2)
and one observation node (OBS on Figure 2), both at the blade’s
tip. These excitation and observation nodes are kept for conve-
nience to simplify the use of this test case even though they are
not strictly required for the simulation They correspond to the
degrees of freedom that are kept physical after the reduction.
All the other DOFs are considered as internal DOFs. The sy-
stem is then reorganised as follows:

K f =

(
Kii Kib

Kbi Kbb

)
, M f =

(
Mii Mib

Mbi Mbb

)
, X f =

(
Xi

Xb

)
(3)

The idea of the Craig-Bampton reduction is to approximate the
solution by expanding it on the eigenmodes basis of several sub-
structures. The Craig-Bampton transformation matrix can then
be expressed as:

T =

(
Φ Ψ

0 I

)
(4)
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where Φ is the fixed-interface modes matrix and Ψ the static
modes matrix. The reduction of the system is made by conside-
ring only the Nm first eigenmodes in the fixed-interface modes
matrixΦ. The system is then reduced by means of the T matrix
which leads to the following reduced matrices, where index •CB

stands for Craig-Bampton reduced matrices:

KCB = TT K f T , MCB = TT M f T , Fex,CB = TT Fex f (5)

For this study, 15 eigenmodes were kept for the disk and
20 for the blade. The FE model was then reduced from
116250 DOFs for the full model to 629 DOFs for the reduced
one. The error on the frequency of the first flexural mode of
the bladed disk (studied thereafter) with bonded interface is
less than 0.3% in comparison with the full finite element model.

In a matter of notation simplification, the subscript •CB indi-
cating the reduced Craig-Bampton model will not be mentioned
thereafter, since all the computations are made on the reduced
model.

3. Non-linear forced response

The dynamic study presented here was conducted on the first
flexural mode of the bladed disk with a 0-diameter excitation,
meaning that the excitation is the same for all blades simulta-
neously. The deformed shape of the mode is given in Figure 3.
The methodology presented here can also be applied to the ot-
her eigenmodes of the structure

Figure 3: First flexural mode of the bladed disk

3.1. Harmonic Balance Method

To compute the non-linear forced response of a structure, an
excitation is applied at the blade’s tip, at the excitation node
(EXC on Figure 2). By applying a periodic excitation on the
system it is possible to look for a periodic solution to study the
steady-state response. Therefore, the Harmonic Balance Met-
hod (HBM) can be used to solve this problem [23]. The HBM
consists in using a Galerkin procedure by expanding the equati-
ons of motion in the trigonometric functions basis, truncated at

the harmonic Nh. This projection leads to an algebraic expres-
sion of the equation of motion in the frequency domain:

Zl X̃l
+ F̃l

c = F̃l
ex , l = 1, 2 . (6)

where X̃l, F̃c
l and F̃l

ex represent respectively the multi-
harmonic vectors of displacements, contact forces in the do-
vetail and excitation forces. Zl is the dynamic stiffness matrix,
which is block-diagonal and defined as:

Zl =


Kl 0 · · · 0

0 Zl
1

...
...

. . . 0
0 · · · 0 Zl

Nh

 , (7)

Zl
k =

[
Kl − (kω)2Ml kωCl

−kωCl Kl − (kω)2Ml

]
, k = 1..Nh . (8)

This transformation changes the unknowns of the
system, which are no longer the physical displace-
ments, but the Fourier coefficients of the displacements
X̃l

=
[
a0

(
Xl

)
, a1

(
Xl

)
, b1

(
Xl

)
, ..., aNh

(
Xl

)
, bNh

(
Xl

)]T
, with

Nh the number of harmonics considered in the Fourier series.
Two additional reductions are then made on the system [1].

The first reduction consists on reorganising the matrices to
keep only the non-linear DOFs, which are the contact DOFs. A
second reduction is conducted to express the system in relative
displacements since a contact problem is studied; leading to
the following equation:

ZrX̃r + λ̃ = F̃r (9)

where Zr is the reduced relative stiffness matrix, X̃r is the multi-
harmonic relative displacements vector, λ̃ is the contact forces
vector and F̃r is the reduced excitation force vector.

3.2. Contact forces evaluation
Solving the previous algebraic system (Equation 9) means

being able to compute the contact forces λ̃. However, there is no
existing expression of the contact forces in the frequency dom-
ain. The alternating frequency-time procedure [11] is then used,
consisting in using a discrete Fourier transform to estimate the
contact forces in the time domain with the expression of the re-
lative displacements, before going back to the frequency dom-
ain to evaluate equation 9. The iterative non-linear solving al-
gorithm iterates over the relative displacement until it reaches
convergence. The alternating frequency time procedure used
for this study is the so called Dynamic Lagrangian Frequency
Time (DLFT) procedure developed by Nacivet [1]. This contact
method was developed on a node-to-node contact. The contact
interfaces in this model are built with linear shape functions.
It consists of adding an unknown vector Ỹr satisfying the con-
tact laws such as Ỹr = X̃r when the convergence is reached.
Nacivet proposed to define the contact forces λ̃ as dynamic La-
grangians, using a penalty term ε in the equation of motion in
the frequency domain:

λ̃ = F̃r − ZrX̃r + ε
(
X̃r − Ỹr

)
(10)

3



The contact force λ̃ is then computed in the time domain after
splitting the equation in two parts:

λ̃ = F̃r − ZrX̃r + ε
(
X̃r − Ỹr

)
= F̃r − ZrX̃r + ε X̃r︸               ︷︷               ︸

λ̃x

− εỸr︸︷︷︸
λ̃y

(11)

where λ̃x is used as a prediction to determine the stick-slip be-
haviour of the system since every terms are known and λ̃y is
used as a correction term. The correction is applied by impo-
sing its value to enforce the validation of the contact laws: uni-
lateral contact, separation and Coulomb’s friction law. More
details on this method are given in [1, 4].

3.3. Dynamic response

Using HBM coupled with the DLFT procedure on the acade-
mic bladed disk model allows to obtain the non-linear dynamic
response, considering dry friction in the dovetail contact. Fi-
gure 4a represents the forced response of the system for several
friction coefficients µ. The discontinuous blue curve represents
the linear response which is the bonded interfaces response,
whereas the continuous curves represent the different non-linear
(considering friction) responses. The non linear forced respon-
ses are lowered compared to the linear one, since friction in the
contact interfaces dissipates energy, hence lowers the dynamic
response. Moreover, the smaller the coefficient of friction µ is,
the more the forced response decreases. This behaviour can
be explained since a lower coefficient of friction fosters sliding
in the interfaces, then more energy is dissipated, which in fine
decreases the dynamic response. Plots in Figure 4 were made
using an excitation amplitude Fe = 0.2.

In addition, by fixing the friction coefficient µ = 0.3, it is pos-
sible to modify the excitation amplitude to study its influence on
the damping induced by the non-linearity. Figure 4b represents
the influence of the excitation amplitude on the damping. The
blue curve represents the linear forced response and the other
curves are the forced responses for different excitation amplitu-
des all normalised by their linear maximum. It can be observed
that a very small amplitude leads to have the same response as
the linear since the displacements are too small to induce sli-
ding. Increasing the excitation amplitude will then encourage
sliding and energy dissipation, increasing the difference bet-
ween the linear and non-linear curves, which corresponds to
the damping induced by the friction dissipated energy.

3.4. Contact behaviour

The two previous influence studies validate the expected be-
haviour of the structure. Moreover, checking the contact for-
ces and sliding computed with the DLFT allows to verify the
physical consistency in the contact interfaces. Figure 6a repre-
sents the tangential load T and the normal load multiplied by
the friction coefficient µN whereas Figure 6b shows the slip as-
sociated to the same nodes. Both Figures 6 correspond to the
contact nodes in the middle of the interface, represented in blue
in Figure 5, at one time step of the vibration period at resonance,
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Figure 4: Influence studies on the dynamic force response

x′

z′
y′

Figure 5: Nodes studied on the blade in blue and local framework (x′, y′, z′)
normal to the interface

where the loads are maximum. The coordinates are expressed
in the local framework (x′, y′, z′) normal to the interface.

Figure 6a shows that the tangential load is equal to the nor-
mal load times the friction coefficient T = µN, which validates
Coulomb’s friction law in the middle of the interface. There-
fore, the corresponding nodes should be sliding, which is con-
firmed by the slip observed in the middle of the interface on
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Figure 6b. Hence, the contact behaviour is validated since the
efforts validate Coulomb’s friction law in a zone where sliding
is observed. Moreover, Figure 6a shows small side effects on
the load, meaning the load increases near the side of the con-
tact, due to the pin-plane like contact between the blade and the
disk. This behaviour is characteristic of this kind of contact.
However, this effect is quite small since a really gross mesh
was used in this model, to keep fast dynamic computations.
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Figure 6: Contact behaviour of the middle nodes of the interface at one time
step of the dynamic period, computed with the DLFT.

A convergence study on the mesh validates that this mesh is
sufficient to obtain the forced response of the system at blade’s
tip. Nevertheless, previous results show that the mesh is not suf-
ficient to study the interfaces’ behaviour accurately, mostly for
the repartition of the effort and slip. Therefore, the interfaces
need to be refined much more to be able to study the interfaces
behaviour and compute wear. The previous dynamic study is
then coupled with a semi-analytical contact solver to be able to
discretise the contact interfaces.

4. Refined contact analysis

To avoid using a refined mesh in the dynamic analysis, which
would increase the computation time and complexity, a semi-
analytical contact resolution method [16] is used at the reso-
nance frequency, where the load is the highest. This method
allows to use a really small mesh while keeping fast computati-
ons.

4.1. Semi-analytical contact solver
The semi-analytical contact simulation method consists in

determining stresses and displacements on the contact zone,
by using known analytical solutions to solve a Boundary Ele-
ment Method (BEM) problem [24, 25]. These solutions are
built from the Green coefficients, giving the contribution of the
pressure p, applied on a rectangular surface, on the elastic dis-
placements ūp

J at the surface of a semi-infinite elastic space in
the direction J such as:

ūp
J

p
= K p

J (x, y) (12)

Both solids are discretised and the contact behaviour is consi-
dered as having no influence on the structural response far from
the contact, which means it can be considered as a semi-infinite
half-space. Therefore, the Green coefficients can be used to de-
termine the contact behaviour between the blade and the disk.
Linear elasticity theory allows to superimpose the solutions for
each discretised element [16]. After discretising the interfaces,
the displacements of the point with (i, j) coordinates due to a
loading on the surface can then be determined by adding all the
contributions in both directions:

ūp
z (i, j) =

Nx∑
l=1

Ny∑
m=1

p(l)K p
z (l − i,m − j) (13)

Similar equations can be expressed in all directions J for the
displacements ūp

J and the stresses σp
IJ , for the pressure p and

the shear forces qx and qy [25]. These double sums (Eq.13)
are convolution products. It can then be transformed in a clas-
sical product by expressing it like wave components in space,
using 2D space Fourier transform [26]. This method is detailed
by Gallego [16]. Using fast Fourier transform to re-express
the convolution product in a classical product in the frequency
domain allows keeping fast computations even if a very fine
mesh is used for the contact interfaces. Taking two different
materials in contact into account implies considering the con-
tributions of the tangential loads on the normal displacement
as shown in [16]. Therefore, the full normal displacement at
position (i, j) can be written as:

ūz(i, j) =

Nx∑
l=1

Ny∑
m=1

p(l)K p
z (l − i,m − j)

+

Nx∑
l=1

Ny∑
m=1

qx(l)Kqx
z (l − i,m − j) (14)

+

Nx∑
l=1

Ny∑
m=1

qy(l)Kqy
z (l − i,m − j)

Where qx and qy are the tangential shear forces in the x and y
directions respectively, and Kqx

z and Kqy
z are the Green coeffi-

cients corresponding to the contribution of the tangential shear
forces in x and y directions.
By expressing the contact problem resolution as the minimisa-
tion of the complementary energy [27], the problem can be sol-
ved with a conjugate gradient algorithm [28], validating contact
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laws such as Coulomb’s friction law. The coupling between
normal and tangential loads is then taken into account by al-
ternating the resolution of normal and tangential problem until
convergence.
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Figure 7: Input data for the semi-analytical contact solver, extracted from the
dynamic analysis in all directions: Z( ), Y( ), X( )

Input data for the semi-analytical contact solver is the dyna-
mic structural behaviour extracted from the HBM computation
made section 3. The input data is then the sum of the contact
loads and moments in the three directions at every time-step
n = 1...Nt of the vibration period:

Pn =
∑

NDOFs

Pn
i , Qn

x =
∑

NDOFs

Qn
xi
, Qn

y =
∑

NDOFs

Qn
yi

(15)

Mn
z =

∑
NDOFs

(
xiQyi − yiQxi

)
, Mn

x =
∑

NDOFs

xiPn
i , Mn

y =
∑

NDOFs

yiPn
i

(16)
where Pn, Qn

x and Qn
y are respectively the total normal and tan-

gential loads in directions x and y at time-step n. Pn
i , Qn

xi
and

Qn
yi

are the local loads at node i of the contact interface in the
dynamic computation. Mn

z , Mn
x and Mn

y are the total moments
on the interface and xi and yi are the coordinates of node i. All
these computations are made in the local frame normal to the
interface (cf Figure 5). Finally, the friction dissipated energy
En

d f in the interface is added as the last input data:

En
d f =

∑
NDoFs

√
Qn

xi
2 + Qn

yi
2 sn

i (17)

where sn
i is the relative displacement between the blade and the

disk at time-step n for the node i, which corresponds to sliding.
Figure 7 represents all these input data. A convergence study
was achieved over these input data showing that they were all
converged with respect to the mesh from the dynamic analysis
since there are integral quantities over the interface.

4.2. Detailed contact behaviour study

Using the semi-analytical contact solver with the global in-
put data from the dynamic analysis, the load distribution over
the interface can be obtained. Figure 8a represents the normal
load distribution at one time-step of the vibration period. It
shows that the mesh used for this calculation is much finer than
the mesh used previously in the dynamic analysis. Moreover,
Figure 8b represents the tangential force T and the normal force
times the friction coefficient µN on the middle nodes of the in-
terface (cf. Figure 5) and Figure 8c represents the sliding on

(a) Normal load repartition over the interface
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Figure 8: Contact behaviour of the full surface (a) and of the middle nodes of
the interface (b) and (c), at one time-step of the dynamic period, computed with
the semi-analytical method.

the same nodes at the same time-step. By comparing Figures 8
with Figures 6 we can observe the same behaviour, which is
stick-slip over the interface, with slip in the middle of the in-
terface and stick in the border, where T , µN. Nevertheless,
the edge effects are much higher with the refined mesh and the
loads and slip are spread over the interface. This can be ex-
plained since the refined mesh distributes more accurately the
loads: decreases the loads in the middle of the interface due to
the distribution and increases it at the edges of the contact.

The computation time for the semi-analytical contact simu-
lation at the resonance frequency is almost instant since it lasts
approximately 2 minutes for a mesh with 51 × 201 nodes re-
spectively in the X’ and Y’ directions of the contact interface.
In comparison, the contact simulation in the HBM solver takes
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approximately 1 minute at each frequency step, with a 5 × 16
nodes mesh.

5. Influence of wear on the dynamic behaviour

5.1. Wear computation

Using the sliding results obtained with the semi-analytical
method at each time-step of the vibration period over the whole
interface, it is then possible to estimate wear with accuracy. To
do so, a local energy based formulation [17] of the Archard’s
law [29] is used to compute the wear volume over one vibration
cycle:

V = αu

∑
N f

δ0(N)Ed(N) (18)

where V is the wear volume over one period, αu is the wear
coefficient estimated experimentally, N f is the considered cy-
cle, δ0 is the tangential displacement and Ed is the dissipated
energy. This equation can then be re-expressed to determine
the wear depth ∆h at every point of the interface after one vi-
bration cycle:

∆h = αu

∑
N f

1
4

∑
1cycle

‖s(t)‖
∑

1cycle

‖q(t)
τ ‖ ‖s

(t)‖

 (19)

where s(t) is the relative displacement between time-steps
(t − 1) and (t) i.e. the sliding and q(t)

τ is the shear load at time-
step (t). The wear depth ∆h is then distributed between both
contact surfaces. Moreover, since wear is too small after one
cycle, an acceleration factor ∆N is applied by multiplying it
with ∆h, considering that ∆N cycles are needed before wear
modifies the contact behaviour.

(a) 109 vibration cycles

(b) 2.109 vibration cycles with geometry update after 109 cycles

Figure 9: Wear depth of a contact interface of the blade in [10−3 mm]

Figure 9 shows the wear depth after 109 vibration cycles (9a)
and after 2.109 vibration cycles (9b) with a contact geometry
update after 109 cycle within the semi-analytical contact solver
(i.e. ∆N = 109). Wear depth after 109 cycles is mainly localised
within the edges and corners of the interface. After one inter-
face update (Figure 9b) edges and corners wear did not increase.
However, wear is more distributed over the whole interface.

(a) Unworn profile

(b) Worn profile after 109 vibration cycles

Figure 10: Normal load distribution over the interface for the unworn profile
(a) and for the worn profile after 109 vibration cycles (b), at one time-step of
the dynamic period, computed with the semi-analytical method.

The localisation of wear on the edges and corners means that
wear is rounding the edges, decreasing the loads localisation at
the same time. Figure 10 represents the normal load distribu-
tion over the interface for the unworn profile, and for the worn
profile after 109 vibration cycles. It can be seen on Figure 10a
that the effort is very high on the top corners of the interface,
where the effort reaches 257N. However, the loads on the worn
profile on Figure 10b are much lower and more distributed over
the contact surface. The maximum load has decreased to 166 N
and is not localised on the edges anymore.

5.2. Worn geometry dynamic behaviour
The worn profiles previously computed can then be used to

update the geometry in the HBM to study the influence of wear
on the dynamic response of the bladed-disk. Wear depth is then
implemented as a gap G and added in the normal contact law of
the DLFT. Hence, the normal part of Equation 10 is reformula-
ted:

λ̃
N

= F̃r
N
− Zr

N X̃r
N

+ ε
(
X̃r

N
− G − Ỹr

N)
, (20)

where the superscript N stands for ”normal” component of the
equation.

Figure 11 shows the forced response for the unworn linear
(bonded) system, the unworn non linear system and the worn
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non-linear responses for the worn profile determined in the pre-
vious section, for 109 cycles and for 2.109 cycles with a geo-
metry update after 109 cycles. Non-linear forced responses for
the worn profiles are lower than the unworn non-linear forced
response. This behaviour can be explained since wear adapts
the interfaces hence facilitating sliding and friction dissipated
energy. Moreover, the amplitude is slightly smaller after 2.109

cycles compared to 109 cycle. Considering even more vibra-
tions cycles would then induce more damping on the forced
response at the blade’s tip.

853.5 854 854.5 855 855.5 856 856.5 857

2
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m
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it
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e
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m

]

lin
nl no wear
nl wear 109

nl wear 2.109

Figure 11: Forced response of the bladed disk for: unworn linear (bonded)
( ), unworn non-linear ( ), non-linear worn profile after 109 cycles ( )
and non linear worn profile after 2.109 ( ).

6. Conclusion

The work presented in this paper provides a methodology to
study the dynamic behaviour of solids in contact, in this case
bladed-disks, considering the effect of friction and wear on the
dynamic response. The Harmonic Balance Method presented
here allows to obtain an accurate dynamic response for the sy-
stem. However, the mesh cannot be fine enough to study the
contact behaviour precisely, which can then be done by using
a semi-analytical contact resolution method. Therefore, it was
possible to study the interfaces behaviour in detail with a refi-
ned mesh and to compute wear with accuracy, while keeping
fast computations. Contact phenomena have an important im-
pact on the dynamic response of the bladed disk. Hence, this
study allows to compute precisely the vibration levels, helping
aircraft engines manufacturers to improve their design.

Several complementary studies are now envisioned to im-
prove and validate this work. First of all, the geometry update
frequency in the wear process must be studied, by computing
more vibration cycles to determine wear depth. Moreover, these
methods must be applied to industrial bladed-disks models to be
validated with respect to experiments.
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