
HAL Id: hal-03336832
https://hal.science/hal-03336832

Submitted on 7 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A GA-guided Trial-based Heuristic Tree Search
Approach for Multi-Agent Package Delivery Planning

Bernardo Sata, Jérôme Lacan, Caroline Ponzoni Carvalho Chanel

To cite this version:
Bernardo Sata, Jérôme Lacan, Caroline Ponzoni Carvalho Chanel. A GA-guided Trial-based Heuris-
tic Tree Search Approach for Multi-Agent Package Delivery Planning. Scheduling and Planning
Applications Wokrshop (SPARK) at the 2021 International Conference on Automated Planning and
Scheduling (ICAPS 2021), Aug 2021, Guangzhou (Virtual event), China. �hal-03336832�

https://hal.science/hal-03336832
https://hal.archives-ouvertes.fr


�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� 
��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/28184

Sata, Bernardo and Lacan, Jérôme and Ponzoni Carvalho Chanel, Caroline A GA-guided Trial-based Heuristic Tree

Search Approach for Multi-Agent Package Delivery Planning. (2021) In: Scheduling and Planning Applications

Wokrshop (SPARK) at ICAPS, 4 August 2021 (Virtual event, China). (Unpublished)



A GA-guided Trial-based Heuristic Tree Search Approach
for Multi-Agent Package Delivery Planning

Bernardo Sata, Jérôme Lacan, Caroline P. C. Chanel
ISAE-SUPAERO, Université de Toulouse, France
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Abstract

A multitude of planning and scheduling applications have to
face constrained time deadlines while proposing appropri-
ate policy solutions under uncertainty. An example of that,
is the last mile delivery problem, in which a large fleet of
drones needs to be managed in a broad urban area to effi-
ciently deliver packages in response of immediate known re-
quests and future likely requests. This application case can be
seen as a sequential decision-making problem under uncer-
tainty asking for a good solution in a constrained time dead-
line. In this context, this work proposes to approach a deliv-
ery policy using a combination of the Trial-based Heuristic
Tree Search (THTS) and a Genetic Algorithm (GA). Specif-
ically, during policy search trials, the GA is used as a meta-
heuristic function inside the THTS paradigm to suggest the
most cost-promising actions concerning drone-request imme-
diate allocation given the current set of requests. Then, the
THTS algorithm exploits the GA suggested actions and likely
requests arrivals to generate only relevant branches in the
tree. It enables to concentrate the search around those actions,
breaking-out the inherent combinatorial nature of this plan-
ning problem. To evaluate the proposed approach a full size
implementation of the aforementioned structure was built for
different problem sizes, and compared to a non GA-guided
THTS algorithm in order to assess its execution time and ex-
pected value performance. The results suggest this simple yet
effective approach is a promising venue to fast achieve sub-
optimal but reasonable cost solutions.

Introduction
In several planning and scheduling applications the time to
produce solutions is constrained. In the particular case of
the management of a network of small companies work-
ing in the last mile delivery such time-constraint applies.
They would share their resources (such as the their vehi-
cles) in order to increase their efficiency and serve a wider
range of customers. The particular problem of managing a
swarm of vehicles for last mile delivery can be described as
a multi-agent planning problem (Choudhury et al. 2020). In
this problem, we are looking for the most promising way to
allocate each received delivery request to a specific vehicle
and perform these deliveries within a certain order.

On the other hand, the planning paradigm changes when
one needs to take into account future and uncertain requests

in a given time horizon and to choose the most efficient
way to allocate and deliver the packets with the available
resources. This can be seen as a sequential decision mak-
ing under uncertainty problem. This planning problem can
be modeled as a Markov Decision Process (MDP) (Kolobov
2012). In a such sequential decision-making problem, effi-
cient allocation choices should be done with the aim of min-
imizing the sum of the time needed to deliver actual requests
and the expected sum of the time to deliver likely new future
requests. The main difficulty lies in the need of finding a
solution with limited time budget for a problem whose com-
plexity grows factorial with number of likely requests and
available vehicles.

In order to target such a challenge, we propose an algo-
rithm to approach a delivery policy using a combination of
the Trial-based Heuristic Tree Search (THTS) (Keller and
Helmert 2013) and a Genetic Algorithm (GA). The GA gen-
erates candidate actions reflecting drone-request immediate
allocations for the THTS multi-agent planning, which in turn
reasons under uncertainty regarding future requests arrivals.
The GA can be seen as a meta-heuristic function that pro-
poses only cost-promising actions to the THTS algorithm.
This way, THTS only explores (greedy) relevant branches in
the tree. Interestingly, the MDP branching factor, inherent
to the considered application case, is dramatically limited.
It reduces both memory and the amount of trials needed to
compute a relevant solution despite an increase on execution
time observed in particular on small size problems.

The paper is organized as follows. In next section, related
work is reviewed. After, background section presents funda-
mental tools and models on which this work is based. Next,
the Multi-Agent Package Delivery problem is presented.
The algorithm architecture section follows presenting the
proposed planning approach. Experimental results are then
presented and discussed. Finally, the paper concludes recall-
ing contributions and proposing future work directions.

Related work
In the literature, some works proposed to solve the Vehicle
Routing Problem (VRP) (Peng et al. 2019) and Traveling
Salesman Problem (TSP) using Genetic Algorithms. Inter-
estingly, (Peng et al. 2019) proposed an Hybrid Genetic Al-



gorithm for routing and scheduling vehicle-assisted multi-
drone parcel delivery. Their algorithm is able to coordinate
the complexity and the performance by jumping out of local
optima with the use of Low Visit Cost Crossover algorithm
(LVC). GA was shown in (Alaia et al. 2013) to be efficient
for solution search in a multi-depot and multi-vehicle pickup
and delivery problem even when precedence constraints are
needed (e.g. trucks can load multiple packets before needing
to deliver one). Even if those approaches propose reasonable
solutions, they are not able to deal with uncertainty concern-
ing new requests arrivals.

After the successful experience of AlphaGo, researchers
have started investigating the use of Monte-Carlo Tree
Search (MCTS) outside of the game sector, in order to solve
real-life sequential decision-making problems (Edelkamp et
al. 2016) under uncertainty. In the context of allocation, (Luo
et al. 2019) proposed a MCTS-based pilot allocation scheme
for massive MIMO networked systems where the pilot and
power allocation problem was treated as a Markov Decision
Process (MDP). In turn, (Li, Fu, and Xu 2019) presented
a new Optimal Computing Budget Allocation (OCBA) tree
policy for MCTS, where, unlike bandit-based tree policies
(e.g. Upper-Confident bounds applied to Trees (UCT) (Koc-
sis and Szepesvári 2006)), the new policy maximizes Prob-
ability of Correct Selection (PCS) at the root.

(Runarsson, Schoenauer, and Sebag 2012) demonstrate
the feasibility of using MCTS to address job-shop schedul-
ing problems, demonstrating the great scalability of this al-
gorithmic solution. On the other hand, (Trunda and Barták
2013) suggested an ad-hoc MCTS planner for transportation
planning domains using templates of three typical operations
(loading, moving, unloading). Such modelling choice is par-
ticularly useful for cargo planes in a real-life transportation
planning problem. In the same year, (Keller and Helmert
2013) proposed THTS, a tree search algorithmic framework
for solving Finite Horizon MDPs. They were able to extend
Upper-Confident bounds applied to Trees (UCT, a MCTS-
based algorithm) (Kocsis and Szepesvári 2006) to handle
Full Bellman and Monte-Carlo backup functions to Partial
Bellman backups. It was shown that such improvements en-
able THTS to achieve fast good policy solutions.

As far as the authors notice, only (Kim and Ahn 2018)
suggested to join Genetic Algorithm and MCTS-based al-
gorithm. They proposed a hierarchical GA-MCTS solution
to tackle real-time video game problem. However, from their
paper, it is not clear whether GA is used to propose actions to
MCTS, or just to select some initial promising states. Thus,
different from previous approaches, the present work pro-
poses a hybrid THTS-like algorithm for very large branching
factor MDPs, where the action space is restricted by a GA.
More specifically, GA can be seen as a meta-heuristic func-
tion that proposes few promising actions to the THTS-based
planner. THTS reasons under uncertainty concerning new
requests arrivals. As far as the authors know, this kind of hy-
brid approach has never been proposed for a THTS-based al-
gorithm to handle Multi-Agent Package Delivery Planning.

Background
Genetic Algorithms
Genetic Algorithm (GA) (Holland and others 1992) is a fam-
ily of meta-heuristics based on natural genetic optimization
mechanisms. GA starts by generating a set of random solu-
tions, called chromosomes, forming a population or genera-
tion. Each chromosome in each generation is evaluated and
ranked using a fitness function. As a consequence, the best
solutions have higher chance to be selected to form the new
population, by the process of crossover. In fact, crossover
is a recombination procedure in which segments are ex-
changed between two pairs of chromosomes called parents,
so generating a new individual. Some chromosomes also re-
ceive random mutations in order to avoid premature conver-
gence and better explore the space of solutions. This process
continues until the optimal solution is found or until a termi-
nation criteria set by the user is met.

Markov Decision Process
A finite-horizon MDP is a n-uplet {S,A, T , R,N} where:
• S is a finite space of states,
• A is a finite space of actions,
• N is a finite sequence of integers (0, 1, ..., N), represent-

ing the set of decision steps,
• T : S×A×S → [0, 1] is a transition function specifying

the probability value of the transition to the state s′ ∈ S
from the state s ∈ S and by using the action a ∈ A, such
that T (s′, a, s) = P (s′|s, a),

• C : S × A → R is a stationary cost function r(s, a) that
defines the costs when the agent uses the action a ∈ A in
the state s ∈ S

A Markov policy π : S × N → A is a function that maps
states and decision steps to actions in the finite horizon case.
The utility of a policy is defined as the expectation of the
sum of the future rewards:

V π(s) = E

[
N∑
t=0

c(st, π(st)) | s = s0

]
(1)

Solving a finite-horizon MDP stands for searching the pol-
icy π∗ ∈ Π that minimizes (resp. maximizes) the expected
sum of costs (resp. rewards) for a given planning horizon
(Kolobov 2012).

π∗(s) = arg min
π∈Π

E

[
N∑
t=0

c(st, π(st)) | s = s0

]
(2)

Recent MDP planning algorithms perform Trial-based
Heuristic Tree Search (THTS) in order to evaluate only
reachable states following some action selection strategy,
that allows to achieve relevant policy solutions in con-
strained time. (Keller and Helmert 2013) extends UCT to
handle Full Bellman and Monte-Carlo backup functions to
Partial Bellman backups. Therefore, they propose DP-UCT
and UCT∗. DP-UCT combines attributes and theoretical
properties from RTDP (Barto, Bradtke, and Singh 1995) and
UCT, whereas UCT∗ adds a limited trial length to DP-UCT
that ensures that parts of the state space that are closer to the
root are investigated more thoroughly.



MDP Model for Multi-Agent Package Delivery
In the Multi-Agent Package Delivery allocation problem
each s ∈ S is characterized by the list of current packet
requests k ∈ K, and, of available vehicles d ∈ D, (s =
s(D,K)). In particular each request k is described by its
source’s kS and destination’s position kD on the map and by
its weight kW and volume kV . Similarly each vehicle d is
fully determined by its current position dPOS , by the maxi-
mum payload dMP and maximum volume dMV it can carry,
by its nominal speed dS , its average needed time to set up
the package dSUT and to drop it off dDOT .

From each state s ∈ S a set of possible actions a ∈ A
is available. Each a ∈ A corresponds to a possible allo-
cation, where each request is assigned to a certain vehicle
which performs the tasks in a defined order. Moreover, from
each action a, various futures states with their probability
can be considered. In fact, while the vehicles perform their
tasks, different possible sets of requests K can be received,
so identifying different possible future states s′ ∈ S. There-
fore the successor state s′ will be characterized by vehicles
with different positions and battery level and, by the new
set of received requests K ′. As a consequence, for each ac-
tion a, multiple successor states are present, which can hap-
pen with a specific probability P (s′|a, s). For instance, such
probabilities can be learnt from a history, being non station-
ary, and strongly dependent on time (e.g. holiday/weekday,
lunchtime/nighttime). In this work, it is assumed that such a
request arrival probability function is given (interested read-
ers can find useful learning methods addressing this topic in
(Swanson 2019)). In addition to this assumption, it is also as-
sumed that the appearance of future packet requests forming
K ′ is completely independent from the current allocation
(action). Thus, future states probabilities depend only on the
probability of the setK ′ that is a function of the previous set
K, as:

P (s′|s, a) = P (D′|D, a) · P (K ′|K, a) =

= P (K ′|K, a) = P (K ′|K),

as P (D′|D, a) = 1 (it is assumed as deterministic).
The cost function is related to the overall cost of the allo-

cation a ∈ A at state s ∈ S. Specifically, it is set as the cost
of the slowest vehicle to complete the task assigned to it:

c(s, a) = max
d∈D

c(d, kd) (3)

with,

c(d, kd) =
∑
kd∈Kd

L(d,kd)
ds

+ dSUT + dDOT

L(d, kd)

ds
= ||
−−−−−→
dPOSkS ||+ ||

−−−→
kDkS ||

Note, Kd ⊆ K is the subset of requests assigned to vehicle
d ∈ D and L(d, kd) is the total travel distance that vehicle d
takes to complete the delivery of kd.

Solving such a planning problem refers to finding the al-
location policy that minimizes the expected sum of costs in
a given planning horizon (see Eq. 2).

Discussion on the cardinality of the action set A
The amount of possible actions a for every state s can in-
credibly grow with the amount of vehicles available |D| and
requests to be fulfilled |K|. Although, the proposed alloca-
tion must satisfy the following property:

A =
{

(d,Kd) : d ∈ D ∧
⋃
d∈D

Kd = K
}

As a matter of fact, the problem of assigning a certain num-
ber of tasks to a set of vehicles leads to a total of:

|D|−1∏
l=1

|K|+ l

l

possible combinations. However, in the application case at
hands, also the order of allocation plays a fundamental role.
To take it into account, all possible permutations of the re-
quests present in the set K must be considered for every
assignment:

|K|! ·
|D|−1∏
l=1

|K|+ l

l
=

=
(|K|+ |D| − 1)!

(|D| − 1)!

As shown in the Tables 1 and 2, this leads to an incredi-
bly large cardinality of A. As a consequence the MDP will
have a huge branching factor, so an enormous amount of leaf
nodes even if only few epochs are considered when plan-
ning. Such a tree requires a lot of memory and time in order
to be explored, therefore an hierarchical approach has been
proposed.

|D|
3 4 5

|K| 2 12 20 30
3 60 120 210
4 360 840 1680
5 2520 6720 15120
6 20160 60480 151200
7 181440 604800 1663200
8 1814400 6652800 19958400

Table 1: The number |A| in function of the number of vehi-
cles |D| and requests |K|.

In this sense, a meta-heuristic which is able to return a cer-
tain number of greedy actions (e.g. promising allocations)
can be used to reduce the complexity of the problem while
maintaining a certain quality of solution. In the following,
the proposed GA-guided THTS-like algorithm is presented.

Algorithm Architecture
The GA-guided THTS-like algorithm can be seen as a cas-
cade approach, where a global N-step planning algorithm
explores the MDP tree by calling a one-step allocation al-
gorithm to get the most promising actions (e.g. greedy ac-
tions) in every reachable state. The Figure 1 schematizes the
algorithm architecture.



Figure 1: GA-guided THTS-like algorithm architecture. The GA (on the right) is used to generate greedy actions regarding
allocation costs. Based on those actions, DP-UCT (on the left) minimizes the long-term (N-steps) cost expectation to define the
best allocation policy.

|D|
3 4 5

|K| 3 1.12E+07 1.15E+08 7.74E+08
4 3.11E+09 4.95E+10 4.86E+11
5 1.34E+12 3.11E+13 4.27E+14
6 8.40E+14 2.73E+16 5.06E+17
7 7.37E+17 3.24E+19 7.88E+20

Table 2: Number of leaf nodes considering 3 steps and 3
possible future sets. |K| decreases by 1, remains the same,
and increases by 1.

One-Step Allocation
In order to compute the most promising allocations a Ge-
netic Algorithm (GA) is used. At this level, no uncertainty is
considered as the current requests and available vehicles are
given as inputs from the current state s. The GA will build
a list of chromosomes, called population, which encode the
allocations.

In particular, during initialisation, each chromosome is a
vector of zeros of size |D| × |K|. Each request k ∈ K is
linked to a number (from 1 to |K|), and is randomly written
instead of a zero in a chromosome. Then each chromosome
can be processed by the GA as |D| consecutive sub-vectors
of size |K|, representing each vehicle d ∈ D. This allows
to read the non zero values as specific requests assigned to
a specific vehicle. For example, a possible chromosome for
|D| = 2 and |K| = 3 is [2, 0, 1, 0, 3, 0] representing the
case where the first vehicle should first perform the second
request and then the first one, while the second vehicle just
needs to complete the third request. This kind of representa-
tion allows to compact all information in a single array, but

at the same time leads to the possibility of having different
chromosomes for the same actual allocation.

In the evaluation phase, the chromosomes are then
ranked following the fitness function that is the one defined
in Eq. 3 (e.g. lower cost solutions are better). The best per-
forming chromosomes are the ones that present low alloca-
tion costs. During evaluation, also the specific constraints
of weight and volume are taken into account. Specifically
it is checked that for every packet k assigned to a drone
d: its weight is smaller than the drone’s maximum payload
(dMP ≥ kW ), and that its dimensions do not exceed the
drone’s maximum volume (dMV ≥ kV ). If these conditions
are not met, the gene is evaluated with a very high cost. As
explained later, this allows to reduce the probability of fur-
ther exploring that part of the solution space and to discard
these high cost solutions at the algorithm’s termination.

During crossover, the whole population is regenerated,
while conserving a part of the best performing chromosomes
of the previous one. In particular, the crossover consists in
copying in a new chromosome the elements of a parent chro-
mosome whose index is lower than a random sampled num-
ber and appending in order the unrepeated elements from
the other parent. This last step ensures that all requests are
present within the new chromosome and preserves its cor-
rect size.

The mutation step is randomly chosen among two dif-
ferent processes. The first simply consists in swapping two
elements in the chromosome. The second inverts the order
of the elements contained between two random indexes.

Finally the GA is stopped when the best chromosome has
had the same values for more than a given number of cycles
or if the time limit expires. At this point a certain amount
of the most performing allocations (e.g. promising actions),



which are the chromosomes which are characterized by the
lowest cost, are returned by the algorithm.

These allocation solutions (best chromosomes) will form
the set of applicable actions App(s) ⊆ A in a given state
s ∈ S, corresponding to the set of actions to consider in
the N-step planning algorithm at state s. Therefore, within
a certain time limit, a predefined number of allocations is
generated. Note that selecting only the best obtained result
would constrain the exploration in the global MDP solver
to a single possible action per explored state. Thus selecting
promising actions does not constrain the N-step planning al-
gorithm while limiting the MDP branching factor. For sim-
plicity, the GA implementation does not allow subsequent
packet set up or drop off, which is a reasonable choice in
case of vehicles such small drones. Note that a similar GA
was used also for truck scheduling as shown in (Alaia et al.
2013).

N-step planning
The N-step planning allows to explore the MDP model
through a Trial-based Heuristic Tree Search algorithm
(THTS) framework. This framework is an online planner
that enhances performances as the environment considered
strictly depends on time. The proposed algorithm receives
the most promising actions from the ”One-step allocation”
algorithm and the probability distributions for the expected
future packet requests. For each allocation and for the most
likely future requests it will build a new successor state s′
with respectively a specific list of vehicles D′ and of cur-
rent requests K ′. In other words, the amount of possible
future states is huge (possibly infinite), therefore only the
most likely ones are considered, defining the set of succes-
sors states such as Succ(s). This property exploits the in-
dependence between the allocation and the packet requests’
appearance (P (s′|s, a) = P (K ′|K, a) = P (K ′|K) as pre-
viously discussed). As a consequence, a partial Bellman
buckup function (Keller and Helmert 2013) that does not
rely on all successor nodes in the MDP is a sound solution to
be applied in order to well estimate action and state values.
This can be achieved by weighting the outcomes that have
been taken into account for the tree proportionally to their
(normalized) probability. The immediate cost of each action
is given by Eq. 3.

By the way, the THTS-based framework here proposed
consists in three phases executed repeatedly until the time
limit is reached or until a convergence criterion is met. As
displayed in Figure 2, the three main steps are:

Selection: in this phase, a selection strategy is recursively
called until a leaf node is reached. In the current imple-
mentation, a greedy-action selection strategy is used, like in
RTDP (Barto, Bradtke, and Singh 1995) or (L)RTDP(Bonet
and Geffner 2003) algorithms. Using the partial backup
function, it selects the action presenting the best Q-value ap-
proximation, such as:

â← arg min
a∈App(s)

Q̂(s, a)

where,

Q̂(s, a) = c(s, a) +

∑
s′∈Succ(s) P (s′|s, a)V̂ (s′)∑

s′∈Succ(s) P (s′|s, a)

Expansion: in this phase, the actions proposed by the
One-step allocation algorithm (e.g GA) are integrated into
the tree followed by their successors nodes. In the current
implementation an heuristic function is used to first approx-
imate the initial state value V̂ (s) of those new nodes.

The heuristic used in this case exploits one specific prop-
erty of any multi-agent delivery problem. In fact, among all
k ∈ K, if the longest one (in terms of distance between
source and destination) is taken into consideration, there is
no possible allocation solution where the maximum time
cost for the global system is lower than the time needed by
the fastest vehicle to perform the aforementioned task. Thus,
this admissible heuristic h(s) for a given state s is given as:

h(s) = min
d∈D

L(d, k̄)

ds
+ dSUT + dDOT

where, k̄ = arg maxk∈K ||
−−−→
kDkS ||.

Backpropagation or Backup: in this phase the value es-
timated of the new state is backpropagated through the tree
up to the root state node. It enables to update all parent’s
values since the leaf, and by consequence also update the
policy. The update strategy selected in this algorithm is the
same applied by the DP-UCT algorithm (e.g. partial Bell-
man backup function).

The state value function V (s) is then updated as:

V̂ (s) =

{
mina∈App(s) c(s, a) if s is a terminal state
mina∈App(s) Q̂(s, a) otherwise

where the Q-value is:

Q̂(s, a) = c(s, a) +

∑
s′∈Succ(s) P (s′|s, a)V̂ (s′)∑

s′∈Succ(s) P (s′|s, a)

It is interesting to point out an interesting characteristic
of such algorithm. As a matter of fact this algorithm uses
Partial Bellman backups rather than Monte-Carlo Backups.
This leads to a combination of properties of Dynamic Pro-
gramming and MCTS (see (Keller and Helmert 2013)).

One may note that this mechanism enables to implement
state labeling (like in (L)RTDP (Bonet and Geffner 2003)
to inform when the value has converged in a given state)
and thus to set a termination condition when the root node
is solved. This is possible thanks to the fact that the backup
function considers the probabilities of the future events dur-
ing the computation. This is specially important when com-
paring the quality of the solutions of the sub-action set case
(by restricting the action space using GA one-step solutions)
and the full action space case. As a matter of fact, simply
limiting the computation time might cause one of the afore-
mentioned approaches to have a lower cost just because the
MDP was not sufficiently explored. Similarly, checking if



Figure 2: GA-guided THTS algorithm steps illustration. In the Selection phase the algorithm greedly selects an action among
a set of promising actions given by the GA until it reaches a leaf state node. In the Expansion phase new GA solutions are
computed for this leaf node generating the set of applicable actions, and new leaf state nodes are added to the tree along with
their initial heuristic value h(s). Finally, in the backpropagation phase, partial Bellman backup is used - updating states values
and the best current policy - followed by the labeling procedure.

the root state value has not changed too much in the last tri-
als is also not feasible as its variation can be very slow and
directly depend on the input characteristics, obliging to tune
it for each solving launch. In this sense, the use a labeling
function (just like (L)RTDP (Bonet and Geffner 2003)) in
order to stop the planning once the root state value has con-
verged seems a reasonable option. The current implemen-
tation of the GA-guided THTS implements such labeling
mechanism.

As a consequence two algorithmic approaches, one con-
sidering the full action space, and the other one consider-
ing only the most promising solutions proposed by the GA -
both following the (L)RTDP structured and performing the
value update using the partial Bellman backup are compared
in the following section.

Experiments

Experiments were performed in order to assess the perfor-
mances of the proposed GA-guided THTS-based algorithm
when compared to a classical THTS-based MDP solving
approach in our application case. As previously stated, the
main idea of the proposed algorithm is to restrict the action
space A of an MDP using the GA one-step allocation solu-
tions (App(s) ⊆ A). Therefore a first experiment shows how
costly this GA meta-heuristic is, when restricting the action
space since the dimension of the problem increases (in this
particular case for large vehicles’ and requests’ set cardinal-
ity); whereas the second and third experiments compares the
full action space tree exploration against the proposed algo-
rithmic approach concerning initial state value convergence
and policy quality, computation time and memory consump-
tion, respectively.

Setup
The first experiment goal is to show that looking for the
whole action space is impracticable for any true system.
For this, ten simulations were performed with |D| = 2 and
2 ≤ |K| ≤ 8 and with different initial parameters (e.g. ve-
hicles location, requests drop locations, etc). It is clearly not
representative of a real life scenario of a crowded city. How-
ever, this experiment aims to illustrate how costly it can be
to just list all the possible actions in a given state.

The second experiment aims to compare the proposed
approach with an MDP classical THTS solution when the
full action space is investigated in terms of value con-
vergence. As no real convergence criterion exists in the
THTS framework, it led us to develop a labeled version
of the aforementioned algorithm following the same label-
ing procedure of (L)RTDP. Note it still uses partial Bell-
man backup (as DP-UCT) and still defines a fixed horizon
(so resembling to UCT∗). These mechanisms allows to as-
sess whether the algorithm has converged by just consid-
ering the label assigned to the root state node. Therefore
the tree selection-exploration-backup strategies are com-
mon. The only difference would stand in the applicable ac-
tions set generation: considering all possible actions or se-
lecting the most promising action sets with GA (with dif-
ferent sizes |App(s)| = {2, 4, 8, 16} and App(s) ⊆ A).
Nevertheless, such an experiment is run once with a very
small case scenario. This choice is mainly due to memory
constraints while building the full tree. The experiment used
|D| = 2 and |K| = 3 while generating three possible future
states for each action with respectively |K| = 2, |K| = 3
and |K| = 4. The planning horizon considered is N = 3.

The third experiment aims to analyse the average solu-
tion quality, average execution time and average memory
consumption given different problems. Thus, ten different
problems with |D| = 2 and |K| = 3, three possible fu-
tures with respectively |K| = 2, |K| = 3 and |K| = 4, a



considered planning horizon of N = 3, although with dif-
ferent initial parameters are considered. A run was launched
for each of them to compute: a solution policy considering
the full action space and solution policies using the pro-
posed GA-guided THTS approach with a different number
of GA promising actions set size in each state (|App(s)| =
{2, 4, 8, 16} and App(s) ⊆ A). Then, the average ratio be-
tween the expected value of the root node achieved with
the GA-guided approach over the expected value of the root
node achieved with the full action space was calculated. In
the same vein, the average ratio of execution time and the
average ratio of memory consumption were saved.

Results
The plot presented in Figure 3 concerns the results obtained
in the first experiment. It depicts how the time needed to list
all actions is much lower when the action space is little. This
result means that the GA meta-heuristic would require much
more time to complete its execution than the full action list-
ing, so affecting the convergence time. In particular the GA
would be respectively around 925, 252 and 52 times slower
than only listing actions for the three possible futures. How-
ever, the GA meta-heuristic scales up much better once the
problem dimension increases. Moreover, the GA algorithm
was always able to find a set of promising actions in all the
runs for the given inputs.

Figure 3: GA run execution time against and full action space
listing time analysis.

The results obtained in the second experiment are showed
in Figure 4 which depicts the root state value node in every
exploration trial (e.g. initial state value convergence evolu-
tion). This result shows how the algorithm using GA one-
step allocation solutions has a much rapid convergence in
value with respect to trials performed. However, it converges
towards a sub-optimal solution as expected. Anyway, the
solution cost error is on average less than 3% higher than
when the full action space is considered. More specifically,
the value error is 3.008%, 2.956% 2.605% and 3.289% for
|App(s)| equal to 2, 4, 8 and 16, respectively.

The Table 3 resumes the results obtained in the third ex-
periment. The average execution time ratio, the average ini-
tial state value ratio and the average memory consumption

Figure 4: Initial state value convergence for the GA-guided
THTS approaches compared to a full action space THTS
over trials.

ratio are presented. Recall that the full action space is the
common baseline. It can be seen that execution time in-
creases linearly in the proposed approach with the number
of GA solutions being considered at each state (|App(s)| =
2, 4, 8, 16). For |App(s)| = 8 or |App(s)| = 16, the ex-
ecution time ratio is 12 and 14 times bigger, respectively.
It is mainly due to the fact that GA takes 52, 252 or 925
times more time (see Fig. 3) depending if one is consider-
ing 4, 3 or 2 requests. In other words, the tree expansion
phase that, in turn depends on actions generation, is time
costly in the particular case of small problems. That said,
the previous experiments showed that the GA-guided THTS
approach scales up to treat more vehicles and requests while
taking fewer trials to reach a reasonable solution. Whereas,
the proposed algorithm is only 14 times slower, while get-
ting 50 times less memory. Concerning the solution quality
measure, the average initial state value ratio is almost one
(≈ 3% error). It shows that the expected sum of costs and
policy achieved gives a near-optimal solution. The average
initial state value ratio seems to increase when 16 GA so-
lutions are considered. At this moment, the authors are not
able to explain this result, speculating that it may be related
to the the number of runs (i.e. 10) used to compute averages
that should not be enough to erase the bias relative to these
sampling-based technique. As long as memory is concerned,
the full tree exploration required approximately 0.5 Gbytes
in average, while the GA one used 50 times less memory
in the worst case (|App(s)| = 16) in average (see Table 3).
This amount of memory is increasing factorially with the
cardinality of the requests and vehicles sets. In any case, it
would be interesting to find the best amount of promising
actions from the GA to maximize policy quality while sac-
rificing the least possible memory and execution time.

Conclusion and Future Work
This work proposes a novel approach to compute a Multi-
Agent Package Delivery policy using a combination of the
Trial-based Heuristic Tree Search (THTS) and a Genetic Al-
gorithm (GA). Specifically, during policy search trials, the



|App(s)| Avg. Execution Time Ratio Avg. Initial State Value Ratio Avg. Memory Consumption Ratio
|App(s)| = 2 0.91667 1.0386 0.00012917
|App(s)| = 4 4.0885 1.0313 0.0027340
|App(s)| = 8 12.206 1.0257 0.016762
|App(s)| = 16 14.126 1.0330 0.021463

Table 3: Ten runs average execution time ratio, initial state value ratio and memory consumption ratio. The common basis is
the result obtained when the full action space is evaluated.

GA is used as a meta-heuristic function inside the THTS
paradigm to suggest the most cost-promising actions con-
cerning drone-request immediate allocation given the cur-
rent set of requests. It restricts the actions to a subset of
the full action space. Then, THTS algorithm exploits the
GA proposed actions and likely requests arrivals to generate
only relevant branches in the tree. It enables to concentrate
the search around those actions breaking-out the inherent
combinatorial of this planning problem. Empirical results
demonstrated the algorithm using GA-guided THTS con-
vergences faster in value, however, towards a sub-optimal
solution. Anyway, given the average value error observed in
experiments (≈ 3%), the proposed approach seems to be a
reasonable solution to deal with Multi-Agent Package De-
livery planning problems with regards to execution time and
memory consumption.

An immediate future work would be to check if the fluc-
tuations observed in the error on the average of the expected
values decreases if the number of runs increases. A mid-term
work would be to compared the GA-guided THTS approach
with others state-of-the-art techniques to check its scalability
and solution quality on real-life Multi-Agent Package De-
livery problems. And finally, a long-term future work could
address an automated technique that finds the good amount
of GA solutions to be kept in the THTS algorithm during
policy optimization.
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