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Abstract

This paper presents a fast method of solving 3D contact problems when one of

the mating bodies has an elastic-damageable behavior. The damage model is

implemented in a semi-analytical model using Eshelby’ s equivalent inclusion

method in the contact solver. The proposed technique can be seen as an enrich-

ment technique for which the effect of heterogeneous inclusions is surimposed

on the homogeneous solution in the contact algorithm. Contact pressure and

subsurface stress field computation time is kept small due to a massive use of

3D and 2D Fast Fourier Transforms. Cuboidal inclusions with the same size

as the discretization of the half-space and with the same elastic properties are

surimposed. The damage model affects the elastic properties of the cuboidal

inclusions. The emphasis is put on the effects of the fretting regimes on the

contact pressure and damage evolution.

Keywords: Contact Mechanics, Semi-Analytical Methods (SAM), Damage

Mechanics, Fretting, Eshelby’s Equivalent Inclusion Method (EIM),

Inhomogeneity, Eigenstrain

1. Introduction

Fretting occurs when two body in contact are submitted to oscillatory tan-

gential loading.
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Based on the amount of stick and slip that occurs in the contact two fretting

sliding conditions can be differentiated : the partial slip condition and the gross5

slip condition [1]. For a circular contact in partial slip condition, the center of

the contact is stick and a slip annulus appears at the edge of the contact [2] but

in gross slip conditions all the contact surface is slipping.

Under fretting loading, cracks and surface degradation are appearing as a

result of fatigue phenomenon, void nucleation and sub-surface crack propagation10

[3] [4]. Bryggman [5] explained the appearance of crack in partial slip conditions

by the cyclic shearing of material in the contact region and, in the same way,

wear would be caused by the propagation and intersections of these cracks.

Zhou and Vincent [6] have established three fretting regimes based on ex-

perimental results : the partial slip regime, the gross slip regime and the mixed15

fretting regime which corresponds to sliding conditions evolving from gross slip

to partial slip due to a modification of the contact conditions. Wear is generally

associated with the gross slip regime while the partial slip regime to cracks [7].

Both damage phenomenon compete on the mixed regime and material response

fretting map associated with fretting regimes map has been proposed in [8].20

Continuum Damage Mechanics (CDM) has been widely used to study fail-

ure due to fatigue [9]. Recently, CDM has been applied to study the damage

phenomenons leading to wear and cracks initiation in material during fretting

cycles [10, 11, 12, 13] and rolling/sliding contacts [14].

Raje et al. [15, 16] developed a damage model for rolling contact fatigue in25

which the material microstructure is modeled using Voronoi tessellation. The

same model was used to study fretting fatigue [17] and fretting wear [18, 19].

Shen et al. [20] coupled an elastic-plastic damage model with wear in order

to simulate fretting fatigue life. Kumar et al. [21] proposed a finite element

simulation of fretting fatigue and studied the effects of the presence of voids30

inside the material. Finite element (FE) models have been developed by many

authors for fretting [22] and wear computations [23, 24]. Recently, Yue et al.

[25] proposed a finite element model of fretting wear with a variable coefficient

of friction. But for three-dimensional problems and a moving load, a very fine
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mesh is required for the contact interfaces and the computation costs become35

very high.

A numerical technique to simulate three-dimensionnal fretting has been in-

vestigated by Nelias and co-workers [26, 27, 28, 29] based on the semi-analytical

method (SAM) initially proposed by Jacq et al. [30]. SAMs have been contin-

uously developed and applied to several problems such as thermo-elasto-plastic40

contact modeling [31], modeling plasticity and accumulation of plastic strains

[31] [32], running-in [33], simulation of single impact [34], shot peening [35] and

low plasticity burnishing [36] [33] [37], modeling of cuboidal inclusions [38] [39]

[40] [41], ellipsoidal inclusions [42, 43] [44], heterogeneous viscoelastic behavior

[45] [46], heterogeneous elastoplastic behavior [47], as well as to account for45

material or coating anisotropy [48] [49].

The purpose of the present work is to use the damage mechanics approach

to model the phenomenon leading to wear and cracks initiation in semi analyti-

cal methods. The proposed enrichment technique is using multiple damageable

cuboidal inclusions surimposed on the homogeneous solution in the contact algo-50

rithm. The damage algorithm only affects the Young’s modulus of the inclusions

and, by this way, modifies the contact solution. Fretting simulation have been

performed in both gross slip and partial slip conditions The emphasis is put on

the effects of the fretting regimes on the contact pressure and damage evolution.

2. Theoretical Background and model description55

2.1. Contact problem formulation

Generally, the formulation of the contact between two finite bodies (Fig. 1)

consists in a set of equations and inequalities that are recalled below:

• The load balance : the applied load W and the integration of the contact

pressure p(x, y) in the contact region Γc must be strictly equal.

W =
∫

Γc
p(x, y)dΓ (1)
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• The surface separation : the gap between the two contacting surfaces is:

h(x, y) = hi(x, y) + δ + u(B1+B2)
z (x, y) (2)

where hi(x, y) is the initial geometry, δ the rigid body displacement, and

u
(B1+B2)
z (x, y) the sum of normal displacements of surfaces 1 and 2, that60

can be due to elastic deflection (under loading only), plastic deformation

or the presence of inhomogeneities.

• The contact conditions : the distance h(x, y) is always positive, because

the contacting bodies can not interpenetrate each other. The conditions

are defined by the inequalities:

h(x, y) > 0

contact : hi(x, y) = 0 and p(x, y) > 0

separation : hi(x, y) > 0 and p(x, y) = 0 (3)

• The tangential contact conditions can be written using the Coulomb’s

friction law to express the shear stresses qτ in the contact. The tangential

load Q and the contact zone Γc are known from the solution of the normal

problem. The following system of equation needs to be solved to determine

the sticking region Γst and the slipping region Γsl.

qτ (x, y) = −µ · p (x, y) · ∆sτ (x, y)

‖ ∆sτ (x, y) ‖
∀ (x, y) ∈ Γsl (4)

∆uτ (x, y)−∆δτ = ∆sτ (x, y) ∀ (x, y) ∈ Γsl (5)

‖ qτ (x, y) ‖< µ · p (x, y) ∀ (x, y) ∈ Γst (6)

∆uτ (x, y)−∆δτ = 0 ∀ (x, y) ∈ Γst (7)∑
Γp

q (x, y)S = Q (8)

Γsl ∪ Γst = Γc (9)
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δτ is the tangential rigid body displacement and sτ is the relative slip

amplitude. The tangential surface displacement uτ is the result of the

displacements coming from both the shear stresses and the normal pressure65

field.

These equations are solved simultaneously using the Conjugate Gradient Method

(CGM) as proposed by Polonsky and Keer [50].

Z

Y o X

W

Figure 1: Contact of rigid indenter over a elastic half-space.

2.2. Eshelby’s equivalent inclusion method in Contact Mechanics

The presence of a single or multiple inhomogeneities within one of the bodies

in contact is taken into account by adding in Eq. (2) the eigendisplacement u∗z

induced by these inhomogeneities. Equation 2 is then modified as follows:

h(x, y) = hi(x, y) + δ + uz(x, y) + u∗z(x, y) (10)

The bases of the method in the case of an elastic or elastic-plastic half-space70

are detailed extensively in [42, 43, 44, 47].

Sections 2.2.2 and 2.2.3 present the various steps for the calculation of u∗z

in the case of an elastic body containing elastic inhomogeneities. First, the

calculation of the eigenstrain ε∗ is presented followed by the calculation of the

subsurface stresses and finally the calculation of the eigendisplacement u∗z is75

detailed.
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2.2.1. Eshelby’s solution for an infinite space

An infinite matrix M with the elastic stiffness tensor CMijkl containing an

ellipsoidal domain Ω with the elastic stiffness tensor CIijkl is submitted at infinity

to a uniform strain ε0. The strain field is disturbed by the presence of the80

inhomogeneity.

The Eshelby’s equivalent inclusion method (EIM) consists in representing

the ellipsoidal inhomogeneity as an inclusion having the same elastic propreties

CMijkl as the matrix but being subjected to an additional imaginary strain called

eigenstrain ε∗ giving:85

CIijkl(ε
0
kl + εkl) = CMijkl(ε

0
kl + εkl − ε∗kl) in Ω (11)

The necessary and sufficient condition for the equivalence of the stresses and

strains in the two above problems of inhomogeneity and inclusion is provided

by Eq. (11). In particular, the eigenstrain ε∗ij is related to compatibility strain

εij by:

εij = Sijkl × ε∗kl, (12)

where Sijkl is the Eshelby’s tensor. Substitution of Eq. (12) into Eq. (11) leads

to:

∆CijklSklmnε
∗
mn + CMijklε

∗
kl = −∆Cijklε

0
kl (13)

where

∆Cijkl = CIijkl − CMijkl

Moschovidis and Mura [51] extended Eshelby’s solution to two close ellip-

soidal inhomogeneities. In recent work, multiple inclusions problems have been

solved by using a conjugate gradient algorithm to determine each unknown

eigenstrain [39, 40, 42].

2.2.2. Half-space solution90

Three dimensional contact problems involve a half-space that is bounded by

the surface plane z = 0 in the cartesian coordinate system (x, y, z) as shown in

Fig. 1. Jacq et al. [30] and later Zhou et al. [38] proposed a method allowing
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to extend previous solution, valid only for infinite spaces, to half spaces. The

solution for an isotropic half space consists in decomposing the problem into95

three subproblemes (Fig. 2), known as Chiu’s decomposition [52].

(1) An inclusion with the prescribed eigenstrain ε∗ = (ε∗xx; ε∗yy; ε∗zz; ε
∗
xy;

ε∗xz; ε
∗
yz) in an infinite space.

(2) A symmetric inclusion with a mirror eigenstrain ε∗s = (ε∗xx; ε∗yy;

ε∗zz; ε
∗
xy;−ε∗xz;−ε∗yz) in the same space.100

(3) A normal traction distribution −σn at the surface of the half space

(z = 0) which is a function of the eigenstrains ε∗ and ε∗s.

Figure 2: Decomposition of the half-space solution into three sub-problems.

The summation of the two solutions (1) and (2) leaves the plane of symmetry

(z = 0) free of shear tractions. By adding an opposite normal stress σn, the

condition of free surface traction is obtained. The stress at any point of the105

domain meshed with nx × ny × nz cuboids is given by:

σij(x, y, z) =

nx−1∑
xI=0

ny−1∑
yI=0

nz−1∑
zI=0

Bijkl(x− xI , y − yI , z − zI)ε∗kl(xI , yI , zI)

+

nz−1∑
zI=0

ny−1∑
yI=0

nx−1∑
xI=0

Bijkl(x− xI , y − yI , z + zI)ε∗skl(x
I , yI ,−zI)

−
ny−1∑
yI=0

nx−1∑
xI=0

Mij(x− xI , y − yI , z)σn(xI , yI , 0)

(14)

where Bijkl are the influence coefficients that relate the constant eigenstrain
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at the point (xI , yI , zI) which is the inclusion center in an infinite space to the

stress σij at the point (x, y, z). Mij represent the influence coefficients relating

the normal traction σn within a discretized area centered at (xI , yI , 0) to the110

stress σij at the point (x, y, z).

Bijkl(x) = CMijmnDmnkl(x) for x in D − Ω (15)

Bijkl(x) = CMijmn(Dmnkl(x)− Imnkl) for x in Ω (16)

where Iijkl = 1
2 (δilδjk + δikδjl) is the fourth-order identity tensor.

The expression for Dijkl is given in Mura [53].

Dijkl =
1

8π(1− ν)
[Ψ,ijkl − 2νδklφ,ij − (1− ν)(δklφil + δkiφ,jl + δjlφ,ik + δliφ,jk)]

(17)

Ψ(x) =

∫
Ω

|x− x′|dx′

φ(x) =

∫
Ω

1

|x− x′|
dx′

For a single inclusion centered at (xI , yI , zI) in the half-space, the normal

traction σn at the surface point (x,, y,, 0) is obtained as:115

σn(x′, y′, 0) =−B33kl(x
′ − xI , y′ − yI ,−zI , )ε∗kl(xI , yI , zI)

−B33kl(x
′ − xI , y′ − yI , zI , )ε∗skl(xI , yI ,−zI)

(18)

In Eq. (14), each component Mij() is obtained by a double integration of the

function Fij() over a discretized surface area 2∆x× 2∆y centered at (xI , yI , 0),

see appendices A and B.

Mij(x− xI , y − yI , z) =

∫ xI+∆x

xI−∆x

∫ yI+∆y

yI−∆y

Fij(x− x′, y − y′, z)dx′y′ (19)

The 3D-FFT is used to accelerate the calculation of the first (1) and second

terms (2) and the 2D-FFT for the third term (3). Wrap around order and zero-120

padding techniques are used in order to remove the induced periodicity error

[54].
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2.2.3. Normal displacement of a surface point

The surface normal ’eigen-displacements’ can be obtained when inserting the

eigenstrain into the total strain. They are generated by the pressure field σn125

only. The normal displacements are calculated as:

u∗z(x, y) =

ny−1∑
y′=0

nx−1∑
x′=0

Kn(x− x′, y − y′)σn(x′, y′) (20)

To solve the equation above numerically, the surface in contact is discretized

into n1 × n2 rectangular elements of uniform size 2∆x × 2∆y. Then, pressure

and displacement within each discrete patch are treated as constant and their

values located at the center. The effect of a uniform pressure on a rectangular130

area has been given by Love [55] and Johnson [56]. Kn denotes the influence

coefficients that relate the normal pressure at the surface point (x′, y′, 0) to the

normal displacement at the surface point (x, y, 0), recalled in Appendix C.

2.2.4. Integration of the inhomogeneity effects in the contact algorithm

In order to integrate the inhomogeneity effects in the contact algorithm, an135

equivalent elastic algorithm is proposed. The effect of an inclusion on the contact

problem derives from the fact that the surface contact geometry is modified

by the eigen-displacement produces by the eigenstrain. The contact pressure

and shears are then updated, which modifies the eigenstrain value. The elastic

displacements are obtained from the updated contact pressure via the resolution140

of the elastic contact problem. The algorithm is repeated until convergence of

the normal displacements is obtained. The equilibrium between the contact

problem and subsurface problem is checked at every time step of the loading

cycle.

2.3. Damage model145

In the elastic heterogeneous contact solver presented in 2.2.4, a Continuum

Damage Mechanics (CDM) based model was implemented in order to describe

the degradation of material due to contact loading. During fretting cycles, the
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high contact stresses are causing micro-cracks in the material responsible of

wear or fatigue cracks [7, 3, 4, 5]. Sections 2.3.1 and 2.3.2 present the basics150

of continuum damage mechanic and his application when coupled with elastic-

ity. Sections 2.3.3 highlights the implementation of the damage model in the

heterogeneous contact algorithm.

2.3.1. Continuum Damage Mechanics

Continuum Damage Mechanics (CDM) background permits to describe the155

initiation and evolution of degradation in materials at the microscale such as

micro cracks and voids. The damage model used in the current approach

is isotropic and based on a single scalar damage variable D introduced by

Kachanov [57]). Considering no healing of the material, D is monotonically

increasing from D = 0, the undamaged state, to D = 1 the complete local160

rupture of the material.

The state of stress in the damaged material can be described by the effective

stress introduced by Rabotnov [58]:

σ̃ =
σ

(1−D)
(21)

Following Lemaitre [59] strain equivalence hypothesis, the strain behavior

is modified by damage only through the effective stress. Hence, the strain

associated with a damaged state under the applied stress is equivalent to the

strain associated with its undamaged state under the effective stress. Applying

the Hooke’s law with E, the modulus of elasticity for the undamaged material,

the elastic strain in the damaged material becomes:

ε =
σ̃

E
=

σ

(1−D)E
(22)

From this equation it can be deduced that an increase in the damage manifests as

the reduction in the modulus of elasticity as shown in Fig. 3. D characterizes the

effect of microscopic phenomenon on the macroscopic behavior of the material

as a strength loss. These usually reproduce the presence of micro-cracks within165

an elastic material.
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2.3.2. Elasticity Coupled with Damage

In order to model the damage of concretes, predominant in tension ,Mazars

[60] used the scalar damage parameter D coupled with elasticity in his 3D model.

Mazars [60] choosed D as a function of the positive (tensile) strains and to170

evaluate these strains, he defined the following scalar called equivalent strain:

ε̃ =

√∑
i=1,3

〈εi〉2+ (23)

with

〈εi〉+ =

(
εi + |εi|

2

)
(24)

and εi the principal strains. However, to study the damage of contact under

fretting, D needs to take into account tensile, compressive and shear stresses.

An adaptation of the expression of Mazars’s equivalent strain is proposed

here :

ε̃ =

√∑
i=1,3

〈εi〉2+ +
∑
i=1,3

〈εi〉2− =

√∑
i=1,3

ε2
i (25)

with

〈εi〉− =

|εi| if εi ≤ 0

0 if εi > 0

(26)

The equivalent strain is now traducing the local three-dimensional state of de-

formation of the solid via a uniaxial scalar variable.175

The equivalent strain controls the growth of the damage variable according

to an evolving threshold. At the end of every time step and for every point of

the discretization of the half-space, the loading function can be defined as :

f(ε,D) = ε̃−K(D) (27)

K(D) takes the largest value of the equivalent strain ε̃ ever reached by the

material during the loading history at the considered point. K(D = 0) is

initialized at εd0, the damage threshold strain, corresponding to the strain at
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the elastic limit. K(D) = εd0 if D = 0

K(D) = maxt ε̃ if D ≥ 0

(28)

If the threshold is reached, a new increment of damage called δD is added to

the damage variable at the considered point. The evolution law for the damage

variable is defined as:
δD =

ε̃−K(D)

εR − εd0
if ε̃ ≥ K(D)

δD = 0 if ε̃ < K(D)

→ D = D + δD (29)

with εR the strain leading to a macroscopic cracks.

The behavior of the material is linear elastic on the first part of Fig. 3. When

the equivalent strain reaches the damage threshold, the local elastic properties

of the matrix are modified through the presence of micro-cracks which decreases

the strength of the material. This local decrease of the modulus of elasticity is180

irreversible.s From εd0, the damage threshold strain, the damage variable will

modified the elastic behavior of the material by decreasing the Young’s modulus

as illustrated in Fig. 3 and until the material strain reaches the macroscopic

fracture strain εR (see Fig. 4b).The damage evolution is always increasing and

locally linear by pieces (Fig. 4a).185

Figure 3: Stress-Strain plot with damage evolution.
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(a) (b)

Figure 4: (a) Damage evolution as a function of strain showing the purely elastic domain and

the damageable domain. (b) Purely elastic and damageable domain on a stress strain plot.

2.3.3. Integration of the damage model in the contact algorithm

The damage model defined in 2.3.2 is coupled with the semi-analytical con-

tact solver developed by Nelias and co-workers [28, 43]. This method is based on

the solution developed by Love [55] for a rectangular patch of pressure over a ho-

mogeneous half space. The Eshelby’s equivalent inclusion method is used as an190

enrichment technique in order to introduce a local modification of the Young’s

modulus of the material. Multiple cuboidal inclusions with the same size as

the discretization of the half-space and initially with the same elastic properties

are surimposed on the half-space as presented in Fig. 5. The effect of damage

on the material is traduced through the modification of the Young’s modulus195

of the inclusions. Leroux et al.[42] and Koumi et al.[44] have shown that the

contact pressure distribution may be significantly modified by the presence of

inhomogeneities close to the surface, which subsequently affect the subsurface

stress distribution. The Young’s modulus of the inclusions are modified by the

damage variable D and hence affect the contact pressure distribution through200

the contribution of eingenstrains. One of the main advantage of the method is

to compute only the stress field in the area around the contact (at the surface

but also in depth). It has been observed that damage usually happened just

13



under the contact during fretting [5]. For sake of computational efficiency, the

half-space has been enriched only in this area. Note that no damage occurs far205

from the contact. When the first element is reaching a damage value equal to 1,

the simulation is stopped. It should be noted that in CDM, D = 1 means that

the element is too damaged to ensure continuity which can lead to the initiation

of crack. In order to continue the simulation once an element damage value

reaches 1, the contact surface should be modified by removing the element. De-210

pending of the area concerned and of the localization of the damage, it can be

interpreted as wear or crack initiation. It should be noted that because simu-

lations are stopped when a first element damage value reaches 1, the present

model is only simulating the phenomena leading to the first appearance of wear

or crack.215

Figure 5: 3D view of a sphere on a elastic half-space with multiple cuboidal inclusions surim-

position.

The main step of the algorithm, sumerized on the flowchart in Fig. 6 are

described here :

14



Initial state

N Fretting Cycles

Load W and tangential

displacement   u  

Geometry

Figure 6: Algorithm of Heterogeneous Elastic-Damageable Contact Problem

1st Fretting Cycle :

• Step1:

Solve the elastic contact problem for the initial loading increment, and220

determine the elastic stresses and strains in the solid.

• Step2: Damage module

Compute the equivalent strains for the current loading increment.

15



Test the damage criterion for each inclusion and determine the inclusion’s

damage increments δD for the current time step.225

Increment the loading and solve the elastic problem again.

Compute the equivalent strains and, after testing the damage criterion,

determine the inclusion’s damage increment δD.

Repeat until the last loading increment of the loading cycle.

230

• Step3: At the end of the cycle:

Update the corresponding Young’s modulus with the damage variable

computed during the loading cycle.

Ith Fretting Cycle :235

• Assign to each inclusion the new Young’s modulus.

• Repeat the previous steps for the considered loading cycle. Compute elas-

tic stresses, equivalent strains and the damage increments δD for every

time step of the cycle.240

• At the end of the fretting cycle, if one-or more-of inclusions are totally

damaged : stop the calculation.

3. Validation

For validation purpose of the enrichment technique, a comparison with the245

analytical Hertzian solution is performed. Note that the heterogeneous semi-

analytical method has been compared and validated in previous work with both

analytical solutions [42] and finite element simulation [44]. A 3D rigid sphere

in contact with a heterogeneous half-space has been simulated with the semi-

analytical method. The half-space Young’s modulus and Poisson’s ration are250
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choosen as E0 = 210GPa and µ0 = 0.3, respectively. The normal applied load is

W = 410N. For the homogeneous half-space, this load leads to a contact radius

a∗ = 0.32mm and a maximum contact pressure P0 = 1890.8MPa. The half-

space is discretized in 67×67×51 computation points such as the space between

the constituted is 2∆x = 2∆y = 2∆z = 0.062a∗. Then the half-space is filled255

from the free surface to a defined thickness with cuboidal inclusions centered on

computation points and having the same dimensions as the discretization. The

enrichment is constituted of Nx×Ny×Nz = 62× 62× 36 cuboids as illustrated

in Fig. 5.

A comparison between the analytical Hertzian contact solution and the con-260

tact solution founded with the enriched half-space is given for the pressure dis-

tribution, for the half space stresses along axis z and axis y at surface (z = 0)

as shown in Fig. 7. A very good agreement is found which in turn validates the

numerical enrichment technique.

4. Results265

4.1. Description of the problem

In this section the contact simulation between a rigid sphere of radius R=25mm

and a homogeneous half-space is presented. The contacting bodies are subjected

to an oscillatory tangential motion. The two bodies are first brought into con-

tact with a normal load W = 410N. A tangential displacement along the x270

direction is then applied. The half-space Young’s modulus and Poisson’s ration

are choosen as E0 = 210GPa and µ0 = 0.3, respectively. For the homogeneous

half-space, this load leads to a Hertzian contact radius a∗ = 0.32mm and a max-

imum contact pressure P0 = 1890.8MPa. The imposed rigid body displacement

is cycling between ux = 0.025mm and ux = −0.025mm (ux/a
∗ = 0.078) to re-275

produce an entire fretting loop. The fretting cycle is decomposed into multiple

time steps as shown in Fig. 8.
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Figure 7: Validation of the enrichment technique with Hertzian analytical solution (a) Pressure

distribution (b) Stresses along z direction (c) Stresses along y direction
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Figure 8: Normal and tangential load during one fretting cycle.

The half-space has been enriched with damageable elastic cuboidal inclusions

with the same properties than the half-space. The damage model, as presented

in section 2.3.2 is used with two parameters : εR = 0.036 and εd0 = 0.003225.280

Firstly, results in the case of the gross slip regime are presented, afterwards the

partial slip regime is investigated and finally, simulation in the case of coated

materials are presented.

4.2. Simulation in gross slip regime

Here are presented the results of contact simulations in gross slip regime.285

According to Coulomb’s law, the shear distribution is equal to the coefficient of

friction times the pressure along the contact surface : Q = µ× P .

For unlubricated fretting, the coefficient of friction is generally high [61] and

main phenomenon are wear and cracks. That’s why all simulations have been

performed with a friction coefficient µ ≥ 0.3.290

A first fretting simulation is presented with a coefficient of friction µ = 0.5.

In Fig. 9, the distribution of the equivalent strain ε̃ is shown for normal and

19



tangential loading conditions for the undamaged material. It can be observed

that the maximum value of ε̃ is reached at depth around z/a∗ = 0.5 under the

surface for a normal loading. When a tangential displacement is added, the295

maximum value of ε̃ is reached at the surface and is more than 50% higher than

with normal load only. All damage simulations have been performed until at

least one point reached the critical damage value D = 1. The distribution of

the scalar damage variable D at the end of fretting simulation is plotted at the

contact surface z = 0 and in the plane x = 0 in Fig. 10a and Fig. 10b. It can300

be observed that the maximum damage is located at the center of the contact

surface where the contact pressure is the higher and where the surface has seen

the biggest sliding amplitude.

Figure 11 represents the evolution of the damage variable and the associated

Young’s modulus for the most damaged point of the material during fretting305

cycles. As the Young’s modulus is decreasing, the equivalent strain is increasing

and the material is becoming more damaged until the damage variable reaches

its critical value and the Young’s modulus has dropped to 0.

As the damage variable increases, contact pressure decreases (Fig. 12) and

consequently, the contact area increases to respect the load equilibrium (Eq. 1).310

Moreover, the contact pressure drops locally by almost 40% at the center of

the contact, where the surface is the more damaged. These results are in good

agreements with the numerical results obtained by Shen et al. [20].
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Figure 9: Equivalent strain ε̃ (a) under normal loading in the plane x = 0. (b) under normal

and tangential loading in the plane y = 0 with µ = 0.5 during the first fretting cycle.
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Figure 10: Damage variable D with µ = 0.5 (a) in the plane z = 0. (b) in the plane x = 0

after 17 cycles.

22



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle

 

 

E/E
0

D

Figure 11: Evolution of damage and Young modulus with cycles for µ = 0.5

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

P
/P

0

x/a*

 

 

N=1
N=2
N=3
N=14
N=15
N=16
N=17
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4.2.1. Effect of the coefficient of friction

Simulations were then performed in order to identify the influence of the315

friction coefficient on the model response. Firstly, values of the equivalent strain

ε̃ along direction z for different coefficients of friction are compared in Fig. 13.

It can be observed that for µ < 0.3, the highest value of ε̃ is localized in the

subsurface under the center of the contact while for µ ≥ 0.3, it is localized

at the surface z = 0. Note that during unlubricated fretting conditions, the320

friction coefficient is usually high [61]. The following studies will focus on friction

coefficient µ ≥ 0.3.

It can be observed in Fig. 16 that a higher coefficient of friction leads to

an increased surface damage rate. It comes from the fact that, according to

Coulomb’s law, the higher is the coeffcient of friction, the higher are the surface325

shear stresses. That is why the damage surface is larger with µ = 0.7 (Fig. 14a

and Fig. 14b) than for µ = 0.5 and the pressure distribution is dropping on a

larger surface (see Fig. 15). It should be noted that the number of cycles leading

to failure is significantly lower than what can be found in literature.
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Figure 13: Equivalent strain ε̃ along direction z for different friction coefficients.
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Figure 14: Damage variable D with µ = 0.7 (a) in the plane z = 0. (b) in the plane x = 0

after 4 cycles.
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4.2.2. Effect of computation discretization on damage evolution330

The reference space between the computation point is defined as 2∆x =

0.062a∗ in section 3. Simulations are performed with different discretization

sizes and the damage evolution of the most damage point is plotted in Fig.

17. There is no effect of the discretization size on the damage computation at

the beginning of the simulation but after a few cycles, damage values are slowly335

diverging. For an identical damage value, different discretizations are modifying

the Young’s modulus in a different material volume. In the following cycles, the

stress field will not be the same for the different discretizations.
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Figure 17: Evolution of damage function of enrichment width.

4.2.3. Effect of enrichment size on damage evolution

The half-space is constituted of Nx×Ny×Nz cuboids as illustrated in Fig. 5.340

Fretting simulations are performed with µ = 0.5 and with different enrichment

sizes and plotted in Fig. 18. The enrichment depth Nz = 2.23a∗ is kept the

same for every simulation. Nx and Ny are equals and vary from 2a∗ to 4a∗.

One can observe that no effect of the size of the enrichment is observed on the

damage evolution nor on contact pressure (see Fig. 19).345
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4.3. Simulation in partial slip regime

In this section, the same damage model is used in the partial slip regime.

A gross slip fretting loop is associated to wear whereas the partial slip regime

is associated to cracking appearance. In partial slip regime the center of the

contact is sticking and an annular slip zone is appearing at the edge of the350

contact area as shown in [2]. Acordingly to fretting material response fretting

map, cracking appearance is generally associated whith smaller displacement

amplitude and higher normal loading than in gross slip conditions [7].

A simulation is performed using a coefficient of friction of µ = 0.7 and

a normal load W = 900N. Accordingly with Hertzian theory, this load leads355

to a contact radius a∗ = 0.41817mm and a maximum contact pressure P0 =

2457.386MPa. The tangential displacement is imposed with a value of ux =

0.001mm or ux/a
∗ = 0.0023. The damage model parameters are kept the same

as in section 4.1.

The state of the scalar damage variable D at the end of fretting simulation360

can be observed at the contact surface z = 0 and in the plane x = 0 in Fig. 20a

and Fig. 20b after five fretting cycles. The higher damage values are localized

in the slip circular zone at the edge of the contact. It is where the material sees

the maximum strain during fretting cycles. In agreement to that, the pressure

distribution is locally dropping at the contact edge as the damage is increasing365

(Fig. 21). During the damage progression, the contact area is increasing to

respect the load equilibrium (Eq. 1) and the shear maximum value is moving

out of the initial contact area (Fig. 22). These results exhibits the same effects

of damage on contact pressure that the ones found in Ghosh et al. [18].
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Figure 20: Damage variable D with µ = 0.7 (a) in the plane z = 0. (b) in the plane x = 0

after 5 cycles.
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Figure 21: Evolution of contact pressure with damage in the plane x=0 for =0.7
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Figure 23: Wear scar of a steel ball under gross sliding

Figure 24: Wear scar of a steel ball under stick-slip
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The results obtained in sections 4.2 and 4.3 are qualitatively in good agree-370

ment with the surface damage phenomenon usually observed in fretting condi-

tions, see for example our experimental results in Figs. 23 and 24 – that can

be compared to Figs. 14 and 20 – or to literature data [7].

4.4. Comparison with another damage model

In this section, the damage law used in Ghosh et al. [18] is presented and375

implemented into the semi-analytical contact solver. Fretting simulations are

performed in gross slip regime and results are compared between the two damage

models. A damage evolution law with an isotropic damage variable D based on

the work of Chaboche and Lesne [62] is implemented and recalled here:

dD

dN
=

0.8Sut
E

∆τ

H(1−D)
(30)

with N the number of stress cycles, Sut the ultimate tensile strength of the380

material, E the Young’s modulus and H the hardness of the material. ∆τ is

the shear stress reversal at the considered point during a fretting cycle. Details

leading to this equation can be found in Ghosh et al. [18].

The shear stress amplitude during one fretting cycle is calculated using the

semi-analytical contact solver and damage evolution is calculated at every point385

of the material domain using Equation 30. For sake of computational efficiency,

the number of cycles leading to the first fully damage element is computed using

the jump-in-cycles algorithm proposed by Lemaitre [9] and already used in finite

element simulation by Slack et al. [63]. This method assumes a linear damage

evolution over a block of cycles.390

4.4.1. Gross slip regime

Contact between a rigid sphere of radius R = 25mm and a homogeneous

half-space is simulated using the semi-analytical solver. The same material and

loading characteristics than in section 4.1 are used with a coefficient of friction

µ = 0.7.395
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The half-space has been enriched with damageable elastic cuboidal inclu-

sions with initially the same properties than the half-space. The damage model

proposed in Ghosh et al. [18] is used with two parameters: Sut = 2500 MPa

and H = 1 GPa. The damage increment used in the jump-in-cycles algorithm

is chosen to be ∆D = 0.01. All damage simulations have been performed until400

at least one point reached the critical damage value D = 1. Results in the case

of gross slip regime and partial slip regime are investigated. The distribution

of the scalar damage variable D at the end of fretting simulation is plotted at

the contact surface z = 0 and in the plane x = 0 in Fig. 25. It can be observed

that the maximum damage point is located at the center of the contact surface405

as observed with the previous model in Fig. 14. As the damage variable in-

creases, contact pressure decreases (Fig. 26) and consequently, the contact area

increases to respect the load equilibrium (see Eq. 1). Moreover, the contact

pressure found at the last cycle with the two models are similar. A small dif-

ference is found between the two pressures due to the fact that simulation is410

stopped once the damage variable reaches the value D = 1 for the first time.

The represented contact pressure is computed with the damage state from the

previous cycle and depending on the damage evolution law, the damage level at

this previous cycle is not exactly the same in the two models.
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Figure 25: Damage variable D with µ = 0.7 (a) in the plane x = 0. (a) in the plane z = 0

after 28 loading cycles using damage model from Ghosh et al. [18].

35



−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
/P

0

y/a*

 

 

N=1
N=28 − Ghosh Model
N=4 − Proposed Model

Figure 26: Contact pressure with damage in the plane x=0 for =0.7 at the last iteration of

the simulation for the two models.

The number of damage cycles found in this damage model is equal to 28415

compared to 4 in the proposed model. Therefore one damage cycle in our

model is equivalent to approximately 7 cycles in the model of Ghosh et al. [18]

in this specific example i.e. with the defined hardness and tensile strength.

4.5. Application to coated materials

A lot of materials used in the industry are coated to protect the surface420

from damage or to help keeping the integrity of the substrate. Hard metallic

coatings can mitigate fretting by reducing friction and resisting crack initiation

[64, 65]. Using the same enrichment technique as before gives the possibility

to simulate coated materials. From the top surface until a defined thickness

zc cuboidal inclusions with different material properties than the substrate are425

used. Above this layer, the same material properties than the substrate are used

for the inclusions (see Fig. 27).
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Figure 27: Enrichment of the half space with cuboidal inclusions to simulate the effect of

coatings.

This section only aims to investigate the effects of elastic coatings on the lo-

calization of damage in the material. Firstly, only the distribution of equivalent

strain ε̃ is studied. Different coating’ s stiffnesses (with a Young modulus ratio430

defines as γ = E/E0 with E and E0 the modulus of the coating and substrate,

respectively.) and thickness (zc) are studied and the effect on damage evolution

is analyzed. Two different coating stiffnesses are studied here, a harder one

with γ = 2 and a softer one with γ = 0.5. The equivalent strain ε̃ is plotted

in order to represent the coating effect on the damage localization. The same435

parameters as in section 4.1 are used for the contact loading.

In Figs. 28 and 29, the equivalent strain ε̃ is plotted for the undamaged

material during the first cycle in the plane y = 0 for four different coating

thicknesses zc and for both coating stiffness ratios γ. These results are compared

to the uncoated model along the axe z in Figs. 30 and 31.440

For γ = 0.5, the maximum equivalent strain ε̃ is always located in the coated

material (see Fig. 28) and ε̃ is very attenuated in the substrate. Moreover, the

equivalent strain ε̃ in the coating is almost twice the value of ε̃ in the uncoated

half-space (Fig. 30).
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Figure 28: Equivalent strain ε̃ with a soft coating (γ = 0.5) of thickness (a) zc = 0.125a (b)

zc = 0.25a (c) zc = 0.5a (d) zc = a
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Figure 29: Equivalent strain ε̃ with a hard coating (γ = 2) of thickness (a) zc = 0.125a (b)

zc = 0.25a (c) zc = 0.5a (d) zc = a
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In contrary to soft coatings, the maximum equivalent strain ε̃ is always445

located in the substrate material (see Fig. 29) for hard coatings (γ = 2). More-

over, the maximum equivalent strain ε̃ in the hard coating is almost two times

lower than with the uncoated half space (Fig. 31). It is important to notice

that the maximum of the equivalent strain ε̃ is located at the interface between

the coating and the substrate for a coating thickness zc/a
∗ ≈ 0.5 (close to the450

maximum shear stress localisation). In the case of zc = a∗, there is no high

equivalent strain ε̃ at the interface. The layered structure of hard coatings leads

to damage propagation at the interface between the coating and the substrate

parallel to the surface as shown in [66].
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Figure 30: Equivalent strain along z for different thickness zc and with a soft coating (γ = 0.5)
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Figure 31: Equivalent strain along z for different thickness zc and with a hard coating (γ = 2)

The damage variable D is plotted in Fig. 32, along the z-axis for the two455

different coating stiffnesses for a coating thickness zc = 0.25a after one fretting

cycle. A strong hypothesis is made here that the damage parameters are the

same for the coating and for the substrate even if there are not from the same

material.

It can be observed that, accordingly with what was previously observed with460

ε̃, the soft coating is a lot more damaged than the hard one. Moreover, for the

hard coating, the maximum damage is located at the interface between the

substrate and the coating. But for the soft coating, the maximum of damage is

located at the surface and is much higher (around 5 times).

The results presented here show that hard coatings are effective to protect465

the material from fretting surface degradations while soft coatings are damaging

faster than uncoated material assuming that the damage threshold in term of

yield strengh (εd0) and ductility (εR) are the same.
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Figure 32: Damage after one fretting cycle along z direction for two different coating stiffnesses

5. Conclusion

In this paper, a numerical method has been proposed to model the effect of470

fretting on surface damage and contact solution. A three-dimensional contact

solver with heterogeneous elastic damageable model is developed based on the

Eshelby’s equivalent inclusion method. Multiple cuboidal inclusions are surim-

posed on the half space solution as an enrichment technique. The model has

been validated by performing a comparison with the the Hertzian contact solu-475

tion. The model allow to simulate fretting cycles while taking into account the

damage evolution of the surface and his influence on the contact solution. The

following major conclusions have been reached :

• The proposed method permits to couple the contact problem, the pres-

ence of heterogeneous inclusions and a damage law. The algorithm is very480

robust and convergence can be easily reached even with high level of dam-
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age. Influence of the computation discretization and enrichment size have

been performed to proof the accuracy of the simulations.

• Contact pressure and shear distributions have been investigated along with

the damage evolution for both gross slip and partial slip regimes.485

• The results obtained with our model are in good agreement with the sur-

face damage phenomenon caused by fretting. The proposed method re-

produce accurately some classical results of the literature [7]. The model

proposed in Ghosh et al. [18] have been implemented in the semi-analytical

solver along with the jump in cycle algorithm and a good agreement have490

been found between the two models.

• The enrichment technique allows to simulate fretting contact on coated

material. The influence of these coatings on the damage localization in

the material has been explicited. In agreement with the literature [64, 65],

it is found again that hard coatings are protecting the surface from fretting495

damage.

The present work is made on the assumption of linear elasticity to keep the

model simple and demonstrate its capability. To be more realistic, the present

model could be improved by taking into account plasticity effects during the

fretting cycles.500
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Appendix A. Stress in a half-space due to a concentrated unit normal

force at the surface origin(Fij)

F11(x, y, z) =
1

2π

[
1− 2ν

r2
(1− z

ρ
)
x2 − y2

r2
+
zy2

ρ3
− 3zx2

ρ5

]
,

F22(x, y, z) = F11(y, x, z),

F33((x, y, z)) = − 3

2π

z3

ρ5
,

F12((x, y, z)) =
1

2π

[
1− 2ν

r2
(1− z

ρ
)
xy

r2
+
zyx

ρ3
− 3zyx

ρ5

]
,
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F13((x, y, z)) = − 3

2π

xz2

ρ5
,

F23((x, y, z)) = F12(y, x, z),

where

r2 = x2 + y2, ρ =
√
x2 + y2 + z2,

with ν, the Poisson’s ratio of the isotropic half-space.

Appendix B. Stresses in a half-space subject to normal pressure (Mij)

An isotropic half-space is submitted a uniform normal pressure σn in a dis-685

cretized surface area of 2∆x × 2∆y at the center point P (x′, y′, 0). The stress

at an observation point Q(x, y, z) is given in [38] and [56]:

σij(x, y, z) = Mij(x− x′, y − y′, z)σn(x, y)

σij(x, y, z) =
σn

2π
[hij(ξ1 + ∆x, ξ2 + ∆y, ξ3)− hij(ξ1 + ∆x, ξ2 −∆y, ξ3)

+ hij(ξ1 −∆x, ξ2 −∆y, ξ3)− hij(ξ1 −∆x, ξ2 + ∆y, ξ3)]

where

ξ1 = x− x′.ξ2 = y − y′.ξ3 = z − z′.

The functions hij() in Eq.(B1) are defined by

h11((x, y, z) = 2ν tan−1 y
2 + z2 − ρy

xz
+ 2(1− ν) tan−1 ρ− y + z

x
+

xyz

ρ(x2 + z2)
,

h22((x, y, z) = h11(y, x, z),

h33((x, y, z) = tan−1 y
2 + z2 − ρy

xz
− xyz

ρ

(
1

x2 + z2
+

1

y2 + z2

)
,

h12((x, y, z) = −z
ρ
− (1− 2ν) log(ρ+ z),

h13((x, y, z) = − yz2

ρ(x3 + z2)
,

h23((x, y, z) = h13(y, x, z),

where

rho =
√
x2 + y2 + z2.
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Appendix C. Normal displacement at the surface subject to normal

pressure (Kn)

The contact between a sphere and an elastic half-space having respectively690

elastic constants (E1, ν1) and (E2, ν2), where the surface z = 0 is discretized into

rectangular surface area of 2∆1 × 2∆2, is now considered. The initial contact

point coincides with the origin of the Cartesian coordinate system ((x, y, z).

The relationship between the normal displacement at an observation point

P (ξ1, ξ2, 0) and the pressure field at the center Q(ξ′1, ξ
′
2, 0) is built using the695

function Kn.

Kn(c1, c2) =

[
1− ν2

1

πE1
+

1− ν2
2

πE2

] 4∑
p=1

Kn
p (c1, c2),

Kn
1 (c1, c2) = (c1 + ∆1) log

(
(c2 + ∆2) +

√
(c2 + ∆2)2 + (c1 + ∆1)2

(c2 −∆2) +
√

(c2 −∆2)2 + (c1 + ∆1)2

)
,

Kn
2 (c1, c2) = (c2 + ∆2) log

(
(c1 + ∆1) +

√
(c2 + ∆2)2 + (c1 + ∆1)2

(c1 −∆1) +
√

(c2 + ∆2)2 + (c1 −∆1)2

)
,

Kn
3 (c1, c2) = (c1 −∆1) log

(
(c2 −∆2) +

√
(c2 −∆2)2 + (c1 −∆1)2

(c2 + ∆2) +
√

(c2 + ∆2)2 + (c1 −∆1)2

)
,

Kn
4 (c1, c2) = (c2 −∆2) log

(
(c1 −∆1) +

√
(c2 −∆2)2 + (c1 −∆1)2

(c1 + ∆1) +
√

(c2 −∆2)2 + (c1 + ∆1)2

)
,

where

c1 = ξ1 − ξ′1 and c2 = ξ2 − ξ′2
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