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a b s t r a c t

This paper introduces a concept of safe path planning for UAV’s autonomous operation in an urban
environment where GNSS-positioning may become unreliable or even unavailable. If the operation
environment is a priori known and geo-localized, it is possible to predict a GNSS satellite constellation
and hence to anticipate its signal occlusions at a given point and time. Motivated from this, our main
idea is to utilize such sensor availability map in path planning task for ensuring UAV navigation
safety. The proposed concept is implemented by a Partially Observable Markov Decision Process
(POMDP) model. It incorporates a low-level navigation and guidance module for propagating the
UAV state uncertainty in function of the probabilistic sensor availability. A new definition of cost
function is introduced in this model such that the resulting optimal policy respects a user-defined
safety requirement. A goal-oriented version of Monte-Carlo Tree Search algorithm, called POMCP-GO,
is proposed for POMDP solving. The developed safe path planner is evaluated on two simple obstacle
benchmark maps as well as on a real elevation map of San Diego downtown, along with GPS availability
maps.
1. Introduction

1.1. UAV operation in urban environment

In recent years, Unmanned Aerial Vehicles (UAVs) or drones
ave started to be widely used in real-life operations such as
ackage delivery, infrastructure inspection, disaster relief and
escue operation, and so on. Though, UAV operation in an urban
r peri-urban environment is yet quite a challenge due to its im-
ature level of navigation autonomy and safety. Most of outdoor
AVs rely its localization precision on GNSS (Global Navigation
atellite System). However, in an urban environment surrounded
y tall buildings, GNSS is at risk of losing a line-of-sight to one or
ore satellites, and even worse, of receiving a signal via reflected
ath. Such signal occlusion and multipath effect make a GNSS
osition solution unreliable or even unavailable. If a drone does
ot have any alternative navigation sensor, such GNSS-failing
ituation could critically degrade its localization and trajectory
xecution accuracy, and lead a fatal collision or crash.
A quality of the GNSS position solution can be given as a metric

alled Position Dilution of Precision (PDOP), derived purely from a
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geometry of satellite constellation and the environment. Roughly
speaking, it signifies a theoretical standard deviation of the po-
sitioning error. If the operation environment and geo-location
are known a priori, it is possible to predict the PDOP value at a
given point and time, and hence to build a PDOP map [1]. Fig. 1
shows an example of GPS(Global Positioning System)-PDOP map
computed by loading an elevation map of San Diego downtown,
available in [2], in the Oktal-SE GPS simulator.1 In this example on
the right figure, the GPS position solution has a risk of including
large error in red areas (with large PDOP values), and hence
the UAV navigation system should better not rely on GPS when
traveling in them.

In order to cope with such possible degradation in naviga-
tion accuracy and to avoid fatal collision or crash, this paper
addresses the problem of safe path planning for UAV urban op-
eration. Motivated from the GNSS-PDOP map generation, a main
idea is to make use of such environment-dependent sensor qual-
ity/availability information in path planning task for ensuring
UAV flight safety with regard to collision risk. Before introducing
the proposed approach, some related works are reviewed in the
remaining of this section.

1 All of the GPS-PDOP maps used in this work were generated with this
imulator available at Department of Electro Magnetism and Radar, ONERA.
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Fig. 1. Example of GPS-PDOP map generation: (Left) Digital elevation map of San Diego downtown is loaded in the Oktal-SE GPS simulator, which simulates GPS
signal reception at a given location and time. Multipath effects are shown in red. (Right) Resulting GPS-PDOP map at a ground level. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
1.2. Deterministic path planning under motion or localization uncer-
tainty

Given the UAV operation environment in a form of 3D model
r elevation map, a classical flight path planning task consists of
inding a path from a start point A to a destination B with a max-
mum Efficiency (i.e., minimum distance, energy or time) while
voiding obstacles. In the most classical approaches, localization
nd motion uncertainties are considered only globally by inflating
bstacles for a certain fixed safety margin.
Refs. [3,4] propose Chance-Constrained path planning (CCP)

pproaches, based on the Mixed Integer Linear Programming.
iven a time-invariant linear system with Gaussian noise repre-
enting motion uncertainty (disturbance), the CCP tries to find a
ost-optimal path while explicitly limiting an obstacle collision
robability to a user-defined threshold. The collision probability
s evaluated with the Gaussian state distribution which is deter-
inistically and environment-independently propagated along a
lanned path.
Refs. [5–9] implement a state estimation module in path plan-

er for taking into account an evolution of the localization uncer-
ainty along a planned path, and apply graph or tree search algo-
ithms (such as Dijkstra, A*, RRT* [10], BRM [11] and RRBT [12]).
pon each node transition, the localization uncertainty is propa-
ated by Kalman filter (KF) with a given local sensor precision
r availability. For example, Ref. [5] uses a laser range-finder
erception model with a limited sensing range, and the work
resented in [6] uses a landmark map for visual SLAM (Simultane-
us Localization and Mapping) navigation, both in a GNSS-denied
nvironment. Refs. [7], as far as the authors know, is one of
he first work proposing to consider a GNSS availability map
n UAV path planning, where the propagated localization un-
ertainty is used not only in evaluating collision condition but
lso in cost function to find the most informative path. Recent
ork [8,13] also addresses a problem of UAV path planning by
aking into account GNSS local precision and availability in an
rban environment.
A drawback of these approaches is that graph node (or state-

ean) transitions are deterministic. They make an assumption
f so-called Maximum Likelihood Observation [14] where stochas-
icity in the sensor measurement is ignored. Although this as-
umption is commonly used to simplify the problem, large errors
n navigation sensor measurements could drive the UAV state
ean far from a deterministically-chosen destination node, and
o invalidate the considered node transition.
2

1.3. Probabilistic path planning under motion and sensing uncer-
tainties

Partially Observable Markov Decision Process (POMDP) frame-
work offers a general mathematical formulation for sequential
decision-making problems under both motion and sensing un-
certainties [15,16]. One can find works that have applied dis-
crete/continuous POMDPs to solve robotic task, motion or path
planning under uncertainty.

1.3.1. Discrete POMDP path planning
Several works have applied discrete POMDPs (i.e. state, action

and observation are discrete variables) to solve robotic task or
path planning under uncertainty [17–22]. Those robotic POMDP
applications usually approach a policy solution thanks to heuristic
guided algorithms that explore only reachable belief states for
computing a value function expressing the expected total cost of
the policy being applied.

Ref. [21] addresses an Autonomous Underwater Vehicle (AUV)
navigation problem under localization and motion uncertainty
and possible obstacle collision risk. This work actually proposes
and applies an extension of the POMDP framework, called Mixed-
Observability Markov Decision Process (MOMDP). As explained
later in this paper, MOMDP factorizes the state space into fully
and partially observable state variables, which enables to de-
crease the belief state dimension resulting in less computational
effort needed to approach the value function and the associ-
ated policy [23]. Although [21] proves the competitive policy
computation time of MOMDP planning compared to classical
POMDP model, their discrete POMDP model for the AUV naviga-
tion problem remains small. The policy computation will be more
challenging when the state, action and/or observation spaces
are continuous, which is the case for the motion or trajectory
planning context.

1.3.2. Continuous POMDP path planning
Refs. [24,25] implement LQG (Linear Quadratic Gaussian) feed-

back controller along with the vehicle dynamics into POMDP
model for taking into account its closed-loop motion uncertainty.
These continuous POMDP path planners consider the sensor mea-
surement as an observation and the measurement noise as sens-
ing uncertainty, with an assumption that the environment-
dependent sensing quality is perfectly known.

Unlike those works, this paper introduces uncertainty in the a
priori knowledge on the local sensor quality/availability map. As
mentioned earlier, the GNSS-PDOP map can be generated from
the geo-referenced 3D environment model and the GNSS satellite
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constellation prediction at a given time. Hence, uncertainties in
those used models and parameters will induce uncertainty in the
resulting PDOP. Indeed, the experimental results presented in [8]
emphasizes this point. They compared a predicted GPS mean
position error with that obtained by a real GPS receiver for dif-
ferent environment context such as open-sky and narrow urban
canyon. Certain results show an important gap, which confirms
our interest of considering an uncertainty in the predicted sensor
quality/availability map.

1.4. Proposed safe path planning approach

This paper firstly defines a MOMDP model for our UAV safe
ath planning problem, where the flight time is minimized while
especting a user-defined maximum allowable collision risk un-
er the UAV state uncertainty that may evolve in function of
he motion execution error and the probabilistic local sensor
vailability. The proposed MOMDP model is quite different from
he ones seen in most of the related work, and has the following
articularities for coping with the new and challenging features
ddressed in the problem:

• It incorporates a low-level navigation and guidance mod-
ule to propagate the UAV state uncertainty in continuous
state space, without making the assumption of Maximum
Likelihood Observation.
• The observation is defined as sensor availability but not as

sensor measurement, which is not accessible at the moment
of planning. It enables to avoid working with a continuous
observation variable. Sensor availability is also considered
as an uncertain fully observable state and given by a
probability grid map. These specific assumptions make a
belief state non-Gaussian.
• Collision penalty is not constant, but depends on the time-

to-collision. This definition makes the resulting MOMDP
value function linear to a total collision probability, which
allows us to choose the collision penalty value according to
a user-defined maximum allowable collision risk.

oreover, this paper presents a new algorithm, called POMCP-
O, for solving this proposed MOMDP safe path planning prob-
em. Inspired by the RTDP-bel algorithm [26], POMCP-GO extends
OMCP (POMDP Monte-Carlo Planning) [27] to a Goal-Oriented
ersion of the Monte-Carlo Tree Search algorithm applied for
artially observable domains.
The remainder of this paper is organized as follows: Section 2

rovides a MOMDP model of our safe path planning problem.
ection 3 introduces a method to define the collision penalty
ost in function of the allowable collision risk. Section 4 presents
he proposed POMCP-GO algorithm. Simulation results are then
resented in Section 5, followed by conclusion and future work.

. MOMDP-based model for UAV safe path planning

The safe path planning problem addressed in this paper con-
ists of finding safe (avoiding obstacles) and efficient (minimum
ime or distance) trajectories towards a goal under uncertainty.
his sequential decision making problem can be defined as a
artially Observable Stochastic Shortest Path (PO-SSP) planning
roblem [28], which is an extension of Stochastic Shortest Path
SSP) problem [29,30] to the case of imperfect state information.
his section first describes our planning objective and hypothe-
es. Then, formulating our safe path planning problem as PO-SSP,
MOMDP model is proposed.
3

.1. Planning objective and hypotheses

This paper considers a problem of finding a path for an UAV to
each a given goal region in an urban environment, whose model
s given as a 3D grid occupancy map. The UAV is equipped with
classical navigation sensor setup, IMU (Inertial Measurement
nit) and GNSS, for its localization. The IMU measurement is al-
ays available regardless the vehicle position in the environment,
ut it includes an unknown bias which needs to be compen-
ated by using other unbiased sensor measurement notably GNSS
osition.
Availability of the GNSS measurement depends on the envi-

onment and its probability is given in the same 3D grid map as
he occupancy map. In this work, a probability of GNSS availabil-
ty is computed for each grid cell by setting a maximum position
rror threshold to a zero-mean Gaussian distribution with a stan-
ard deviation given by a simulated PDOP value (Fig. 1). Note that,
he PDOP value slowly changes over time due to the movement
f the GNSS satellite constellation. However, this work suppose
hat the mission duration is short enough to assume the PDOP
ap as static (up to 5-min missions for 20-min validity of the
DOP map).
For simplicity, it is supposed that the UAV estimates its at-

itude with accuracy from IMU and other sensors, and that the
ow-level controller realizes an acceleration command with negli-
ible delay. Hence, only the vehicle translation kinematics model
s considered for its motion dynamics.

Due to the uncertainties in motion, sensing and sensing avail-
bility, an evolution of the UAV state as well as that of the
tate distribution become stochastic. Under such uncertainties, no
avigation strategy can bring the UAV to reach in the goal region
or avoid collision with probability 1. Therefore, our planning
bjective is to find a policy to minimize an expected total path
ost (i.e. flight time) to the goal while ensuring flight safety by
collision probability not exceeding a user-defined threshold.

een it as a Risk-Constrained Stochastic Shortest Path problem
ith unavoidable deadends (RC-SSPUDE) [31] with the partial ob-
ervable state, this paper proposes to adopt an MOMDP planning
odel [21,23]. Instead of handling the risk constraint explicitly

n the optimization (as done in the CCP approaches [3,4]), here
ntroduced a particular cost function which enables to penalize
oth flight time and collision in a way that makes the resulting
ptimal policy respect the maximum collision risk.
Fig. 2 gives an overview of the assumed architecture of the

roposed MOMDP model. It incorporates a low-level navigation
nd guidance system along with the vehicle kinematics (called
NC module) to propagate the probability density (i.e. belief
tate) of the UAV state vector. Assuming that the UAV always
nows whether GNSS position measurement is accurate enough
o be used in the navigation or not at the current decision time
tep, the GNSS availability is included as an observable state
ariable of the MOMDP model that updates the belief state. In
his sense, the planning module does not have a direct access to
he UAV state (e.g. position, velocity) but only to its probability
istribution.
The next subsections will present the GNC module and the

roposed MOMDP model.

.2. GNC module

Fig. 3 illustrates a detail of the GNC module used in the
roposed MOMDP planning model. It is composed of the UAV
otion model, a guidance law, a state estimator (navigation) and

he IMU and GNSS sensor models. Similar to the work presented
n [32], a closed-loop of these component will propagate the UAV
tate, for an action execution, in a stochastic manner.
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Fig. 2. The MOMDP safe path planning architecture. The GNC module is incorporated as a part of the planning model.
Fig. 3. Detailed GNC module. It is a closed-loop of the vehicle motion model, a guidance law, and a Kalman filter for the UAV state estimation (navigation) with
the IMU/GNSS sensor models.
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2.2.1. UAV state and motion model
As stated in Section 2.1, the UAV motion is represented only

y its translational kinematics. Let X , V and a be the UAV’s
osition, velocity and acceleration vectors, respectively, in a ref-
rence frame fixed to the environment. The non-gravitational
cceleration is measured by IMU 3-axis accelerometers in the
AV-fixed frame. But this measurement includes an unknown
ias ba which needs to be estimated and compensated. Hence,
e define the UAV state vector x by its position, velocity and
ccelerometer bias:

=
[
X T V T bT

a

]T (1)

Then its discretized motion model from a time step tk to tk+1 =
k +∆t is given by

k+1 =

[Xk+1
Vk+1
bak+1

]
=

[ I (∆t)I O
O I O
O O I

][Xk
Vk
bak

]

+

⎡⎣( 12∆t2)I
(∆t)I
O

⎤⎦ ak +

[
νX k+1
νV k+1
νba k+1

]
= Φxk + Bak + νk+1 (2)

where νk+1 is a zero-mean Gaussian noise with covariance Q ,
enoted as νk+1 ∼ N (0,Q ).

.2.2. Navigation system for the UAV state estimation
A Kalman filter (KF) is applied to estimate the UAV state vector

k from the accelerometer measurement and the GNSS position
nd velocity measurements, if available. Let x̂k, x̃k = xk − x̂k
nd Pk = E

[
x̃kx̃Tk

]
be the state estimate, its estimation error and

rror covariance matrix at the time step tk. Firstly, a prediction
step is performed based on the motion model (2) and the IMU
acceleration measurement, modeled by

aIMU k = RT (qk)(ak − g)+ bak + ξak (3)

where qk is a known UAV attitude and R(qk) represents a rotation
matrix from the UAV frame to the reference frame. g is a gravity
4

vector in the reference frame, and ξak ∼ N (0, Ra = σ 2
a I) is a

measurement noise. By substituting (3) into (2),

xk+1 = (Φ − BR(qk)
[
O O I

]
)xk + B(R(qk)aIMU k + g)

+νk+1 − BR(qk)ξak
= Φakxk + BāIMUk + ν̄k+1 (4)

where the augmented noise follows ν̄k+1 ∼ N (0, Q̄k+1 = Q +
RaBT ). By using (4), the KF prediction step is performed as
ollows.

x̂−k+1 = Φakx̂k + BāIMUk
−

k+1 = E
[
x̃−k+1x̃

−T
k+1

]
= ΦakPkΦa

T
k + Q̄k+1 (5)

It should be noted that, although an acceleration command ak
is assumed in the vehicle motion model (2) for simplicity, it is
not accessible in the real navigation system and hence cannot be
directly used in the KF prediction.

The GNSS measures the UAV position and velocity in the
reference frame:

zk+1 =
[
I O O
O I O

]
xk+1 +

[
ξX k+1
ξV k+1

]
= Hxk+1 + ξk+1 (6)

where ξk+1 ∼ N (0, Rk+1). As seen in the PDOP map (Fig. 1),
the GNSS measurement quality depends on the environment and
could significantly degrade due to multi-path effect. However, if
the receiver does not aware of that, it will provide the erroneous
solution associated with a small error variance, which should
not be trusted. For this reason, regardless the PDOP value, a
constant error covariance matrix Rk+1 = RGNSS is used in the
navigation filter design. For example, we can use the same value
as the position accuracy threshold used in the GNSS availability
probability map generation (explained in Section 2.1). Based on
this sensor model (6), when the GNSS measurement is available,
the KF correction is applied to the state prediction (5) as below.

x̂k+1 = x̂−k+1 + Kk+1(zk+1 − H x̂−k+1)

P = E
[
x̃ x̃T

]
= (I − K H)P− (7)
k+1 k+1 k+1 k+1 k+1
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where Kk+1 is a Kalman gain derived by Kk+1 = P−k+1H
T (HP−k+1H

T
+

RGNSS)−1. When the GNSS measurement is not available, x̂k+1 =
ˆ
−

k+1 and Pk+1 = P−k+1.

.2.3. Guidance law for velocity tracking
A linear feed-back guidance law for velocity tracking is applied

o guide the UAV to a desired direction, determined by a selected
ction defined in the planning model. Let Vref is a desired velocity.
hen the following acceleration input is applied.

k = −Kd(V̂k − Vref ) (8)

here Kd > 0 is a control gain. By substituting this into (2),

k+1 = (Φ −∆ΦV )xk + BKdVref +∆ΦV x̃k + νk+1 (9)

here ∆ΦV = BKd
[
O I O

]
. Given the UAV state xk, its esti-

ation error covariance Pk and the desired velocity Vref , the state
istribution at tk+1 becomes

k+1 ∼ N (µk+1 = (Φ −∆ΦV )xk + BKdVref , Σk+1

= ∆ΦVPk∆ΦT
V + Q ) (10)

fter N time steps from tk, the state distribution becomes xk+N ∼
(µk+N , Σk+N ) with the mean and the covariance matrix are

ncrementally derived as follows.

k+N = (Φ −∆ΦV )µk+N−1

k+N = (Φ −∆ΦV )Σk+N−1(Φ −∆ΦV )T +∆ΦVPk+N−1∆ΦT
V + Q

(11)

here the estimation error covariance P is propagated at the
ame time by the Kalman filter. This closed-loop path execution
rror distribution will be implemented as a part of the state
ransition function in the MOMDP model.

.3. MOMDP safe path planning model

Ong et al. [21], followed by Araya et al. [23] have proposed
special class of the classical POMDP framework, called Mixed-
bservability Markov Decision Process (MOMDP). This model fac-
orizes the state space into fully and partially observable state
ariables, which reduces the belief state space dimension and
hus policy computation time. Since our safe path planning prob-
em considers the partially observable UAV state vector x and
he fully observable sensor availability, it can adopt this MOMDP
odel.
The MOMDP is here defined as a tuple (Sv, Sh,A, Ω, Tv, Th,

, C, G, b0), where Sv is the fully observable state space, Sh is
idden (partially observable) state space. Their combination con-
titutes the state space of the POMDP such as S = Sv × Sh.
ince Sv is visible, the belief state space can be partitioned as
= Sv × Bh. In a same fashion, the state transition function is

actorized into Tv for the fully observable state variables, and Th
or the hidden state variables. Ω and O are the observation space
nd function. C is the cost function. G ⊂ S defines a set of goal
tates, and b0 = (sv0 , bh0 ) is the initial belief.
The Fig. 4a schematizes the MOMDP planning model proposed

n this paper. It actually differs from the original MOMDP [21,23].
n our case, the fully observable state sv depends on the hidden
tate sh, but not the contrary. It will be shown that this as-
umption implies particular transition and observation functions.
n what follows, the detailed definitions of each element of the
roposed MOMDP safe path planning model are presented.
5

.3.1. States, goal states, actions and observations
The fully observable state sv ∈ Sv is defined as a tuple

v = (FGNSS, FC , P, Θ), where FGNSS, FC ∈ {0, 1} are Boolean
lags to indicate the GNSS sensor availability and the collision
o obstacles, respectively. P ∈ S9

++
(R) is the UAV localization

rror covariance matrix2 computed by the Kalman filter (5)–(7).
t should be noted that, despite the stochasticity in the sensor
easurements and in the guidance command, the estimation
rror covariance matrix P can be calculated in a deterministic
ay. Θ ∈ R+0 represents a total flight time from the initial
tate s0 until s. Since this work assumes a known execution time
or all actions, an evolution of Θ is also deterministic. For their
eterministic transition from known initial state, P and Θ can
e considered as a fully observable state variable. The hidden
tate sh ∈ Sh coincides with the UAV state vector defined in (1),
h = x ∈ R9. The Fig. 4b illustrates state variable structure and
heir dependencies.

The goal states G ⊂ S are defined as the set of all the states
n which the position is included in a bounded region GX ⊂ R3

round a given goal position Xg . Let us define the goal hidden
tate space by Gh = {sh = x = [X,V , ba] ∈ Sh|X ∈ GX }. Then,
he goal state space is given by G = {s = (sv, sh) ∈ S|sh ∈ Gh}.
oal states are considered as absorbing states. In addition, an
rtificial terminal state sT is added to the state space for easing
urther developments. Let us define a collision visible state space
y SvC = {sv = (FGNSS, FC , P, Θ) ∈ Sv|FC = 1}, and a collision state
pace by SC = {s = (sv, sh) ∈ S|sv ∈ SvC }. The terminal state
T is an absorbing state, mandatory reached from any collision
tate s ∈ SC . Thus, the set of absorbing states can be defined as
T = G ∪ {sT }.
An action a ∈ A corresponds to a selection of the desired

elocity Vref ∈ R3 to be given to the guidance law in (8). For
implification, this paper considers a discrete action space by
imiting it to a finite set. For instance, it could be {VNorth,VSouth,
East ,VWest ,VUp,VDown}. It is assumed that a value of Vref holds
or a ∆Ta period of time. Note, it has a subscription a to indicate
specific action since this action duration can differ from one
ction to other.
A specificity of the MOMDP model proposed in this paper is

hat the sensor measurements are not considered as observations.
uch sensor measurements, defined in a continuous space, are
ssumed not accessible at the planning level. In result, if we
reat them as observation in the POMDP model, policy compu-
ation needs to consider a decision tree with infinitely many
ranches because observation strategies becomes a continuous
unction (i.e. all possible combinations of actions and observa-
ions in a given horizon h = (b0, a0, o1, a1, o2, . . . , at−1, ot )) [33].
any of the related work avoid this issue by making the afore-
entioned Maximum Likelihood Observation assumption [14] and

gnoring the measurement residual. Unlike these, our MOMDP
odel keeps the stochasticity in the sensor measurements (as
ell as in the guidance input) and includes it in the state transi-
ion function.

In our model, the set of observations Ω is equal to Sv (see
ig. 4b) which is composed of the discrete state variables (FGNSS,
C ) and the deterministic continuous state variables (P, Θ). This
ay of modeling limits the decision tree branching factor because
bservation strategies are finite resulting in a finite reachable
elief state set (whereas possibly huge), over which the policy
s defined. Although the agent receives no direct observation on
he state sh, the observation o = sv will modify its distribution
hanks to the dependence of sv on sh (Fig. 4a). In consequence,
he complete state s ∈ S remains partially observable.

2 Sn (R) denotes a set of positive definite matrices with a dimension n.
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Fig. 4. The modified MOMDP planning model. Note the fully observable state sv depends on the hidden state sh , and the observation o is assumed to be equal to
v . Despite of this assumption the complete state s remains partially observable.
i
d

b

.3.2. Transition and observation functions
The state transition function defines a state distribution after

xecuting an action a ∈ A at the state s ∈ S. The execution
uration ∆Ta of each action a corresponds to a decision step
f the planner, which is in general much longer than a time
iscretization step ∆t (introduced in (2)) of the lower-level GNC
odule. This paper defines one decision step by several time
teps of the GNC module, i.e., ∆Ta = Na∆t with Na > 1 for an
ction a.
The state transition function is factorized as T (sv, sh, a, s′v, s

′

h)
= Tv(sv, a, s′v, s

′

h)Th(sv , sh, a, s′h) where :

• Th(sv, sh, a, s′h) = Pr(s′h|sv, sh, a) ∼ N (s̄′h,
∑
′), which is based

on the GNC closed-loop vehicle motion model (11) with the
number of time steps N = Na.
• Tv(sv, a, s′v, s

′

h) = Pr(s′v|sv, a, s
′

h), representing the transition
function for s′v , whose stochasticity basically comes from
the probability of the GNSS availability FGNSS which depends
on the hidden UAV position. Transition of the three other
state variables in s′v , given s′h, is deterministic. That is, for a
probability 1, the collision flag becomes F ′C = 1 when the
position in s′h falls in an occupied grid of the environment
map (otherwise F ′C = 0), the localization error covariance
matrix P ′ is obtained after iterating the Kalman filter process
(5), (7) for Na time steps from (sh = x, P), and the flight time
is updated by Θ ′ = Θ +∆Ta.

However, the transition function is defined differently for the
following two particular cases:

1. a free-cost transition to the terminal state sT is imposed
from any collision state, i.e., T (sv, sh, a, s′ = sT ) = 1, for
∀sv ∈ SvC .

2. the definition of absorbing states holds for the goal and the
terminal state, thus, T (s, a, s′ = s) = 1 for ∀s ∈ ST =

G ∪ {s }.
T i
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Since our observation o ∈ Ω coincides with the fully ob-
servable state s′v ∈ Sv , the observation function is defined as
O(o, s′v) = Pr(o|s′v) = δ(o, s′v)

3 meaning that Pr(o = s′v) = 1.

2.3.3. Belief state update
After the state transition from s to s′ via the action a, the

agent perceives an observation o ∈ Ω following the observation
function O. Given the previous belief state b = (sv, bh) ∈ Sv × Bh
and the transition and observation functions, one can apply the
Bayes’ rule to update the state distribution. The belief update step
of the proposed model, developed below, differs from previous
works as the visible state depends on the hidden state.

boa(s
′
v , s′h) = Pr(s′v , s′h|sv , bh, a, o) =

Pr(s′v , s′h, o|sv , bh, a)
Pr(o|sv , bh, a)

=
Pr(o|s′v )Pr(s

′
v |sv , bh, a, s′h)Pr(s

′
h|sv , bh, a)∑

s′v∈Sv
δ(o, s′v )

∫
s′h∈Sh

Pr(s′v , s′h|sv , bh, a)ds′h

=

δ(o, s′v )Pr(s
′
v |sv , a, s′h)

∫
sh∈Sh

Pr(s′h|sv , sh, a)bh(sh)dsh∑
s′v∈Sv

δ(o, s′v )
∫
s′h∈Sh

Pr(s′v |sv , a, s′h)
∫
sh∈Sh

Pr(s′h|sv , sh, a)bh(sh)dshds′h

= δ(o, s′v ) ·
Pr(s′v |sv , a, s′h)

∫
sh∈Sh

Pr(s′h|sv , sh, a)bh(sh)dsh∫
s′h∈Sh

Pr(s′v = o|sv , a, s′h)
∫
sh∈Sh

Pr(s′h|sv , sh, a)bh(sh)dshds′h

The last line of the above equation used a fact that δ(o, s′v) = 0
for ∀s′v ̸= o to remove the summation in the denominator. Thus,
n the following of this work the belief state update rule will refer
irectly to the distribution of the hidden state s′h given s′v:
s′v
a (s′h) = Pr(s′h|sv, bh, a, s

′

v)

=
Pr(s′v|sv, a, s

′

h)
∫
sh∈Sh

Pr(s′h|sv, sh, a)bh(sh)dsh∫
s′h∈Sh

Pr(s′v|sv, a, s
′

h)
∫
sh∈Sh

Pr(s′h|sv, sh, a)bh(sh)dshds
′

h

=
Tv(sv, a, s′v, s

′

h)
∫
sh∈Sh

Th(sv, sh, a, s′h)bh(sh)dsh∫
s′h∈Sh

Tv(sv, a, s′v, s
′

h)
∫
sh∈Sh

Th(sv, sh, a, s′h)bh(sh)dshds
′

h
(12)

3 A definition of the delta function used in this paper is given as δ(x, y) = 1
f x = y, and 0 if x ̸= y.
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It is noteworthy that the updated belief state bs
′
v
a (s′h) becomes

on-Gaussian even when the initial belief bh(sh) is so. This is
ecause the transition function Tv(sv, a, s′v, s

′

h) used in (12) fol-
ows the GNSS availability probability given in a 3D grid map.
herefore, the computation of Pr(s′v|sv, bh, a) becomes costly. For
oping with it, this paper proposes to solve this path planning
odel by a sampling-based algorithm (Section 4).

.3.4. Cost function
The cost function C : S × A→ R+0 gives a cost of performing

n action a ∈ A in the state s ∈ S , and is defined as below in our
odel.

(s, a) = C(sv, sh, a) =

⎧⎨⎩
0 if s ∈ ST = G ∪ {sT }
K −Θ if sv ∈ SvC

∆Ta otherwise
(13)

here ∆Ta is an action execution (i.e. flight) time and K > 0 is
a fixed collision penalty cost. When a collision occurs, the cost of
any action is given by this fixed penalty K subtracted with the
total flight time Θ . This special condition avoids penalizing more
the collision near the goal. In other words, the collision penalty
has the same impact, wherever it occurs, on the value function at
the initial belief. As explained later, this particular cost function
makes the value function linear to the total collision probability
when following a policy from the initial belief. By benefiting
from this fact, this paper will propose in Section 3 a method to
determine a value for the collision penalty K so that the resulting
optimal policy will satisfy the user-defined maximum collision
risk.

2.3.5. Value function and policy
The aim of solving a MOMDP problem is to find a policy π :

B→ A, where B defines the belief state space (i.e. B = Sv × Bh),
hich optimizes a given criterion usually defined by a value

unction. In the PO-SSP planning problem, the value function
π (b) is defined as the expected total cost when starting from
∈ B and following a policy π .

Vπ (b) = E

[
∞∑
t=0

C(bt , π (bt ))| b0 = b

]
(14)

where C(bt , π (bt ) = a) = E
[
C(s,a)|bt

]
=
∑

s∈S C(s,a)bt (s) is the
expected cost of executing an action a ∈ A in the belief state
bt ∈ B. The optimal policy π∗ is defined by a policy minimizing
the value function, which results in the optimal value function
V ∗(b) = Vπ∗ (b) = minπ Vπ (b).

Developing the summation in (14) and computing the ex-
pected value of the immediate future belief states based on their
probabilities, it is straightforward to find that the optimal value
function (for our MOMDP) can be expressed by the Bellman’s
equation as follows.

V ∗(b) = min
a∈A

Q (b, a) (15)

π∗(b) = argmin
a∈A

Q (b, a) (16)

where the Q -value of an action is defined as the value of per-
forming an action a in belief state b, assuming the optimal policy
will be followed afterwards:

Q (b, a) = C(b, a)+
∑
s′v∈Sv

Pr(s′v|b, a)V
∗(s′v, b

s′v
a ) (17)

bs
′
v
a is the hidden state distribution (12) given s′v after executing

′
an action a in the belief state b. The probability of having sv is

7

given by the transition function, as done in the denominator of
(12). One can then apply dynamic programming to compute (or to
approximate) the optimal value function V ∗ and the related policy
π∗. However, we recall here that the computation of Pr(s′v|b, a)
becomes costly for our particular MOMDP model. Thus, this paper
proposes to approximate the Q-value of reachable belief states by
a sampling-based algorithm, which will be presented in Section 4.

3. Collision penalty value for safety requirement

As stated in Section 2.1, our planning objective is to find a
policy to minimize an expected total flight time to reach the
goal while ensuring flight safety by not exceeding the maximum
allowable collision probability threshold, say pthd. Contrary to
some related approaches [34,35] which consider explicitly such
risk constraint in the planning model, this work treats this Safety
Requirement implicitly by imposing the collision penalty K in (13).
The idea is similar to what is done in the [36] where a fixed cost
is assigned to dead-end states. Intuitively, the collision penalty
cost specifies a point of compromise between the collision risk
avoidance (Safety) and the flight time minimization (Efficiency).
The larger the penalty is, the more priority is put on the Safety.
Therefore, setting a right value to K is an important key to make
the resulting optimal policy respect the safety requirement. This
paper proposes a systematic way to determine an appropriate K
value for a user-defined maximum collision risk pthd.

3.1. Redefinition of value function

Firstly, this section shows that the value function with our
cost function definition (13) becomes a linear combination of
the expected flight time to the goal, and the expected collision
probability with a coefficient equal to the penalty cost K .

Similarly to the collision state space, let us define a collision
belief state space by BC = {b = (sv, bh) ∈ B|sv ∈ SvC }. Recalling
hat every action brings the collision state to the absorbing ter-
inal state sT , we have Pr(s′ = sT |b ∈ BC , a) = 1 for ∀a ∈ A.

From the definitions (14) with (13), for any policy π , the value
function at any collision belief state bC ∈ BC becomes

Vπ (bC ) = C(bC , π (bC ))+
∞∑

C(sT , π (sT )) = K −Θ (18)

By using (18) and the fact that the goal states s ∈ G are absorbing,
the value function at a non-collision belief state b = (sv, bh) ̸∈ BC
can be expanded as follows.

Vπ (b) = pπ
C1 (b)(K −Θ)

+
(
1− pπ

G0 (b)− pπ
C1 (b)

)
×

(
∆Tπ (b) + E

[
Vπ (b′)

⏐⏐⏐b, π (b), s ̸∈ G, b′ ̸∈ BC

])
= pπ

C1 (b)K + pπ
G0 (b)Θ

+
(
1− pπ

G0 (b)− pπ
C1 (b)

)
E

×

[
Vπ (b′)+Θ ′

⏐⏐⏐b, π (b), s ̸∈ G, b′ ̸∈ BC

]
−Θ

where pπ
Gn (b) and pπ

Cn (b) are the probabilities of reaching a goal or
collision state for the first time after executing n actions following
a policy π from the belief state b. That is, pπ

G0
(b) = Pr(s ∈ G|b) and

pπ
C1
(b) = Pr(b′ ∈ BC |b, π (b)) = Pr(s′ ∈ SC |b, π (b)). By developing

the above expression for Vπ (b′), and then to Vπ (b′′) and future
belief states, the value function can be written as a linear function
of the collision penalty K as below.

Vπ (b)+Θ =

(
N∑

pπ
Cn (b)

)
K +

(
N∑

pπ
Gn−1 (b)

)
Θπ

GN (b)

n=1 n=1
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+

(
1−

N∑
n=1

(pπ
Cn (b)+ pπ

Gn−1 (b))

)
·

E
[
Vπ (b(N))+Θ (N)

⏐⏐⏐b, π, {s, s′, . . . , s(N−1)} ̸∈ G,

{b′, b′′, . . . , b(N)
} ̸∈ BC

]
(19)

here Θπ
Gn (b) is the average goal flight time given that the goal

s reached within n actions following a policy π from the belief
tate b.
Let us now consider the value function at the initial belief

tate b0 (̸∈ BC ), where Θ0 = 0. For all policies whose planning
bjective is to find a flight path to the goal states, the last term
f (19) goes to zero as the iteration number N increases towards

infinity. In result, the optimal value function at b0 can be written
as a sum of the collision penalty K and the average goal flight time
Θπ

G (b0), weighed with the total collision and goal probabilities.

Vπ (b0) =

(
∞∑
n=1

pπ
Cn (b0)

)
K +

(
∞∑
n=1

pπ
Gn−1 (b0)

)
Θπ

G∞ (b0) = pπ
C (b0)K

+ pπ
G (b0)Θ

π
G (b0) (20)

with pπ
C (b0)+ pπ

G (b0) = 1.

3.2. Penalty value determination for maximum allowable collision
risk

Based on this nice linear relation (20), this paper proposes
a method to determine a value for the collision penalty K such
that the corresponding optimal policy π∗ will satisfy a given
maximum allowable collision risk, i.e., pπ∗

C (b0) ≤ pthd.
First, let us introduce two extreme policies, which optimize

different criteria for the same PO-SSP problem but without the
risk constraint. The first one is the safest policy πS which pri-
oritizes the vehicle safety over the mission efficiency, like the
approaches in [36,37]. This safest policy corresponds to the op-
timal policy for our MOMDP when the collision penalty K is
sufficiently large. Another extreme policy is the path-efficient
policy, denoted by πE , which on the contrary minimizes the goal
time disregarding the collision risk. In addition, let us consider an
artificial collision policy πC which always brings the vehicle into
an immediate collision from any state.

Then, it is obvious that the following inequalities are satisfied
among the four different policies πC , πS , πE and π∗.

0 < pπS
C (b0) ≤ pπ∗

C (b0) ≤ pπE
C (b0) < pπC

C (b0) = 1 (21)

0 < Θ
πE
G (b0) ≤ Θπ∗

G (b0) ≤ Θ
πS
G (b0) <∞ (22)

When Θ
πE
G (b0) = Θ

πS
G (b0), the safest and path-efficient policies

coincide and give the best optimal policy both in terms of the
goal flight time and the collision risk. So there is no interest to
solve the safety-constrained path planning. Hence, we consider
the cases when Θ

πE
G (b0) < Θ

πS
G (b0) and pπS

C (b0) < pπE
C (b0).

The above relations (21), (22) allow us to establish the following
heorem.

heorem 1. The optimal policy π∗(16) to the MOMDP problem
efined in Section 2 with the cost function (13) satisfies a user-
efined safety requirement, pπ∗

C (b0) ≤ pthd for any pthd > pπS
C (b0),

hen the collision penalty value is given by

∗
=

pπS
G (b0)Θ

πS
G (b0)− (1− pthd)Θ

πE
G (b0)

pthd − pπS
C (b0)

(23)
8

Fig. 5. The value function Vπ (b0) for the different policies versus the collision
penalty K . (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Proof of Theorem 1. Fig. 5 plots the value function at the
initial belief state b0 for the two extreme policies, πS (in green)
and πE (in yellow), versus the collision penalty value K . Follow-
ing Eq. (20), each policy can be represented as a line with a slope
of the total collision probability pπ

C (b0). The virtual collision policy
πC (in red) can be represented as a line from the origin with a
slope pπC

C (b0) = 1. Since it is a line of Vπ (b0) = K , every policy
line intersects with it at K = Θπ

G (b0).
When K = K ∗ given in (23), from the relations Θ

πE
G (b0) <

Θ
πS
G (b0) and pπS

C (b0) < pthd,

K = K ∗ = Θ
πS
G (b0)+

1− pthd
pthd − pπS

C (b0)
(ΘπS

G (b0)−Θ
πE
G (b0)) ≥ Θ

πS
G (b0)

t means that K = K ∗ lies after the safest policy line (in green)
rosses the collision policy line (in red). This ensures that the col-
ision policy πC can never be optimal in terms of our optimization
riteria. Given K ≥ Θ

πS
G (b0) ≥ Θπ∗

G (b0), the optimal policy π∗

ill meet the safety requirement (pπ∗

C (b0) ≤ pthd) if the following
nequality holds.
∗(b0) = pπ∗

C (b0)K + (1− pπ∗

C (b0))Θπ∗

G (b0)

≤ pthdK + (1− pthd)Θπ∗

G (b0) (24)

ince the path-efficient policy πE minimizes the goal flight time
ithout caring the collision risk, the right hand side of (24) is

ower-bounded by pthdK + (1 − pthd)Θ
πE
G (b0), which is drawn in

lue line in Fig. 5. Thus, if V ∗(b0) ≤ pthdK + (1 − pthd)Θ
πE
G (b0),

24) satisfies. Besides, from the optimality condition, we have
∗(b0) ≤ VπS (b0) = pπS

C (b0)K + (1 − pπS
C (b0))Θ

πS
G (b0). As seen

n Fig. 5, the blue and green lines intersect at K = K ∗. Conse-
uently, the inequality (24) satisfies automatically when K = K ∗,
nd hence the optimal policy π∗ meets the safety requirement
π∗

C (b0) ≤ pthd.

This theorem gives a guarantee of not violating a user-defined
aximum allowable collision probability to the optimal policy
olution of the unconstrained PO-SSP problem. However, the PO-
SP problem (even risk-unconstrained one) is not always math-
matically tractable to derive the exact optimal policy π∗. Many
OMDP solvers only approach to it. The theorem below shows a
ondition on the value function of a (non-optimal) policy π to
uarantee the safety requirement.

heorem 2. A policy π to the MOMDP problem defined in Section 2
ith the cost function (13) satisfies a user-defined safety require-
ent, pπ (b ) ≤ p for any p > pπS (b ), when the collision
C 0 thd thd C 0



b

P
p

V

A
t

V

B
Θ

t
p

4

i
c
s
m
g
l
o
p
w
s
a
p
a
n
s
t

a
e
a
c
a
p

4

e
s
(
h
s
a
b
o
e

p
s
t
t
a
w
w

t
w
d

B
e

a

penalty value is given by (23) and its value function at the initial
elief state satisfies Vπ (b0) ≤ VπS (b0).

roof of Theorem 2. From the definition of the path-efficient
olicy, Θπ

G (b0) ≥ Θ
πE
G (b0) for any policy π . Hence,

π (b0) = pπ
C (b0)K + (1− pπ

C (b0))Θ
π
G (b0) ≥ pπ

C (b0)K
+ (1− pπ

C (b0))Θ
πE
G (b0)

t the same time, from (23) and the condition Vπ (b0) ≤ VπS (b0),
he following satisfies.
π (b0) ≤ VπS (b0) = pπS

C (b0)K + (1− pπS
C (b0))Θ

πS
G (b0)

= pthdK + (1− pthd)Θ
πE
G (b0)

y combining the two inequalities, we obtain (pπ
C (b0)− pthd)(K −

πE
G (b0)) ≤ 0. Recall that K = K ∗ ≥ Θ

πS
G (b0) > Θ

πE
G (b0). Then

he term (K − Θ
πE
G (b0)) in the above inequality becomes strictly

ositive, and hence the safety requirement pπ
C (b0) ≤ pthd satisfies.

. POMCP-GO algorithm

Solving a POMDP problem – or even a MOMDP problem –
s not a trivial task. The process of updating the belief state is
hallenging, in particular in continuous state/action/observation
paces (e.g. real-world problems). Furthermore, in our MOMDP
odel, when applying (12), the belief state is deformed by the
rid-based probability distribution Pr(s′v|sv, a, s

′

h) and can no
onger be represented as a Gaussian. Even if an approximation
f such a Gaussian function could be learnt, it would be com-
utationally expensive. Moreover, the computation of Pr(sv|b, a),
hich is necessary to the value approximation, is also a time con-
uming step. Contrary to solvers such as SARSOP [20], HSVI [39]
nd RDTP-bel [26], Monte-Carlo Tree Search (MCTS)-based ap-
roaches, like Partially Observable Monte-Carlo Planning (POMCP)
lgorithm [27] and variants [40,41], are based on sampling and do
ot require to explicitly update the belief state in each decision
tep. Therefore, such approaches become a promising alternative
o solve our planning problem.

This paper proposes a goal-oriented variant of the POMCP
lgorithm, named POMCP-GO. As shown later in Section 5, it
nables to accelerate the convergence of the value, and thus to
pproach faster a promising path policy when compared to the
lassical version of POMCP. In the following, the classical POMCP
lgorithm [27] is recalled in the first subsection, followed by a
resentation of the proposed POMCP-GO algorithm.

.1. POMCP algorithm

POMCP is an online MCTS algorithm for partially observable
nvironments [27]. It samples a state s from the initial belief
tate b0 (root node) and simulates action–observation sequences
trials) in order to evaluate actions while constructing a tree of
istory (belief) nodes. The trial procedure is repeated during a
hort fixed time budget. Then, the best current action is applied
nd an observation is received, allowing to follow the related
ranch in the tree and to update the root node. As POMCP works
nline, those steps are performed along with the real action
xecution and observation until the mission ends.
Each tree node h represents a history of action–observation

airs from the initial belief state. Rather than updating the belief
tate after each action–observation pair, POMCP keeps in memory
he number of times a node was explored N(h) and the number of
imes a given action a was chosen N(ha) in this node. This trick
llows to approximate the Q -value of a belief state by Q (h, a),
hich is the mean return from all trials started from the history h

hen action a was selected. Note this approximation differs from
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he classical definition of Q -value given in (17). This may incur a
ell-known bias [42] to the Q-value approximation that tends to
ecrease as the number of trials increases.
During planning, POMCP relies on the Upper Confidence

ounds (UCB1) action selection strategy [43] to deal with the
xploration–exploitation dilemma [44].

¯UCB = argmin
a∈A

{
Q (h, a)− c

√
logN(h)
N(ha)

}
(25)

While the first term in (25) vouches for the exploitation of the
previously visited choice with the lowest cost values, the second
encourages the exploration of undiscovered nodes in order to
avoid falling into a local optimum. The larger the exploration
coefficient c > 0 is, the more the exploration is prioritized over
the exploitation. Hence the value of c directly influences the
algorithm to perform either a breath-first or a depth-first tree
search. If a leaf node is reached, a rollout procedure is performed
in order to have an initial approximation of the value for this leaf
node. Then, the algorithm updates the Q -value of all nodes visited
during the trial by back propagation starting from the leaf node.
Interested readers are invited to see [27,40,41] for more details.

4.2. POMCP-GO algorithm

The POMCP-GO algorithm, proposed in this paper and pre-
sented in Algorithm 1, is an offline goal-oriented variant of the
POMCP algorithm for our PO-SSP problem. The main differences
from the original POMCP are hereafter listed.

Algorithm 1: POMCP-GO

1 Function POMCP-GO(b0):
2 h = b0 = (sv0, bh0)
3 while nbTrial < nbmax do
4 sh0 ∼ bh0
5 Trial(h, sv0, sh0)
6 nbTrial+ = 1

7 return T ∗, where ∀h ∈ T ∗, π∗(h)← argmin
a∈A

Q (h, a)

8 Function Trial(h, sv , sh):
9 if (sv, sh) ∈ ST = G ∪ {sT } then

10 return 0

11 if sv ∈ SvC (FC == 1) then
12 return K −Θ , with Θ ∈ sv

13 if h /∈ T then
14 for a ∈ A do
15 Creating ha node
16 T (ha)← (Ninit (ha),Qinit (h, a),∅)

17 ā← āUCB following Eq. (25)
18

(
s′v, s

′

h, C(sv, sh, ā)
)
∼ TransitionModel(sv, sh, ā), cf.

Section 2.3.2
19 Creating hao node (if necessary) with a = ā, o = s′v
20 Q (h, ā)′ ← C(sv, sh, ā) + Trial(hao, s′v , s

′

h)
21 N(h)← N(h)+ 1
22 N(hā)← N(hā)+ 1

23 Q (h, ā)← Q (h, ā)+ Q (h,ā)′−Q (h,ā)
N(hā)

24 return Q (h, ā)′



Fig. 6. Benchmark maps from [38] and the availability maps for different elevations. These probability maps were computed thanks to the Oktal-SE GPS simulator
available at ONERA and the technique explained in Section 1.1 based on the GPS-PDOP maps obtained.
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• In the classical POMCP algorithm, a trial procedure simulates
the action–observation sequences until reaching a leaf node.
In the POMCP-GO algorithm, these sequences end only when
an absorbing state s ∈ ST = G ∪ {sT } (either goal or
collision) is reached (Line 9 in Alg. 1), which forces a depth-
first search as proposed in [26]. Note it is no more only
the UCB1 coefficient that influences the type of the search
(i.e., breath- or depth-first), although it still plays a similar
role as in POMCP for pushing the algorithm to play different
actions (i.e. explore) time to time.
• Instead of performing a rollout procedure, POMCP-GO ini-

tializes the Q-value of a newly created node by a pre-
computed heuristic value (Qinit (h, a) in line 16). More pre-
cisely, it gives an optimistic estimation of the flight time
based on the Dijkstra algorithm [45] performed on a grid
obstacle map without considering uncertainties nor vehicle
GNC model. This heuristic-based value initialization gives a
10
more informative value approximation than a rollout policy
resulted from random sampling of actions.
• Finally, after a specified number of trials (or a time budget),

POMCP-GO returns the best policy tree computed (Line 7 in
Alg. 1), while POMCP returns only the best action for the
current root node. This difference is more related to the fact
that POMCP-GO is an offline variant of POMCP algorithm.
Nonetheless, it is straightforward to adapt POMCP-GO to
online planning.

s the path cost is back propagated only when a terminal state
s encountered during policy optimization, the POMCP-GO takes
ore computation time than the POMCP for the same number
f trials. However, for the same time budget, the POMCP-GO
lgorithm is expected to be able to provide a qualitatively better
olicy for our planning problem, given that longer paths should
elp to identify collision risk faster and so to favor alternative
aths earlier in optimization.
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5. Experiment results

The approach proposed in this paper was evaluated in two
teps.
Firstly, the performance of the POMCP-GO algorithm is com-

ared with the state-of-the-art POMCP algorithm in terms of pol-
cy value convergence and mission success rate in two benchmark
roblems.
Secondly, the collision penalty determination method for an

ser-defined maximum allowable collision risk (Section 3) is
mpirically demonstrated in two other benchmark problems.

.1. Experiment set-up

Environment maps. The evaluation uses environment maps
vailable in the benchmark problems of UAV obstacle field nav-
gation [38]: WallBaffle, CubeBaffle, and a digital elevation map
f San Diego downtown (Fig. 6). The two first simple obstacle
aps are represented in 100 × 100 × 20 grids of 2 m on each
ide. The San Diego map has 217 × 167 × 21 grids of 4 m. Thus
he maximum altitude considered is 84 m for San Diego map,
nd 40 m for the other benchmark maps. For each environment
ap, a GPS availability probability map is generated from the
DOP values calculated by using the GPS simulator as explained in
ection 2.1. Fig. 6 shows the GPS availability probability maps at
ifferent elevations. Obviously, the GPS becomes more available
t higher altitude with less satellite occlusion.
Initial conditions. The initial mean position is set to X0 =

50, 20, 5] for the WallBaffle and San Diego maps, and [60, 40, 5]
in grids) for CubeBaffle, along with the zero-mean velocity and
ccelerometer bias, giving x0 = [X0, 0, 0]. The initial belief state
s defined such as b0 =

(
sv0, bh0 = N (x0,

∑
0 = P0)

)
, where sv0 =

FGNSS0 = 1, FC0 = 0, P0, Θ0 = 0).
Goal states. The goal position is set to XG = [50, 80, 5] for the

WallBaffle and CubeBaffle maps, and [100, 70, 5] (in grids) for the
San Diego map. The bounded region GX is defined by a cube of
3-grid edge length centered at XG .

Actions. Two sets of actions are considered: A2 is composed
of only 4 desired horizontal velocity directions (North, South,
East, West) with a constant speed Vref = 2.2 m/s, and A3 is of
0 directions including 8 radial directions in the 2D horizontal
lane, plus up and down. While the first set A2 was used for
he CubeBaffle map, A3 was considered for the WallBaffle and San
iego maps.
GNC parameters. The parameters used in the GNC mod-

le (Section 2.2) are the followings: a sampling time ∆t =
.4 s, the initial error covariance P0 = diag(1 m, 1 m, 2 m,
.1 m/s, 0.1 m/s, 0.2 m/s, 0.1 m/s2, 0.1 m/s2, 0.1 m/s2)2,4 the
rocess noise covariance Q = diag(0 m, 0 m, 0 m, 0 m/s, 0 m/s,
m/s, 0.2 m/s2, 0.2 m/s2, 0.2 m/s2)2, the IMU acceleration noise
ovariance Ra = diag(0.1 m/s2, 0.1 m/s2, 0.1 m/s2)2, the GNSS
easurement noise covariance RGNSS = diag(1 m, 1 m, 1 m,

.1 m/s, 0.1 m/s, 0.1 m/s)2, and the control gain for the velocity
racking guidance Kd = 0.44.

Planning model and algorithm parameters. In the planning
odel, the action execution time is set to ∆Ta = Na∆t = 5∆t =
s for ∀a ∈ A. A large collision cost parameter K = 450
as used in the first test, and also in the second test to derive
he safest policy πS . Then in the second test, a value of K ∗ was
xplicitly computed for each study case according to (23). The
ollowing algorithm parameters were used: the UCB1 coefficient
= 0.222 × K , and the total number of trials nbmax = 105. The
OMCP rollout policy used to initialize the value of leaf nodes was

4 diag(x1, x2, . . .) represents a diagonal matrix with the diagonal elements of
, x , . . ..
1 2 a

11
replaced by the heuristic value obtained from the relaxed Dijkstra
solution as done in the POMCP-GO algorithm.

Evaluation metrics. The evaluation was made for 5 opti-
mization runs, since our algorithm is based on random Monte
Carlo sampling. The optimized initial belief state value V opt (b0)
s recorded at every 5000 trials during optimization, and its evo-
ution is analyzed in order to check the policy value convergence.
hen, a current best policy obtained after every 5000 trials is
valuated by performing 1000 simulations. The initial belief state
alue V sim(b0), the goal probability Pπ

G (b0), and the average goal
light time Θπ

G (b0) resulted from the simulations are considered
s evaluation metrics. Note that the resulting V sim(b0) is the
verage cost for all trajectories executed during the simulation
ollowing the current best policy, which differs from V opt (b0)
btained after the optimization due to the Q-value approximation
ias.

.2. Planning performance comparison : POMCP-GO vs. POMCP al-
orithms

First, the simple CubeBaffle and WallBaffle maps are used to
ompare the planning performance of the proposed POMCP-GO
lgorithm and the state-of-the-art POMCP. The comparative study
as made only with an offline version of POMCP, since the
articularities of our planning model hinder the application of
ost of the other POMDP solvers which are not based on Monte-
arlo sampling.5 The recent variants of POMCP explore new ac-
ion selection strategies, or Q-value update functions. Given that
OMCP-GO introduces a new trial mechanism (goal-oriented) and
different node initialization that favors in-depth trials, those
OMCP variants were excluded from our experiments. The pre-
ented analysis focuses on demonstrating how the goal-oriented
echanism improves the value convergence.

.2.1. Cubebaffle map with K = K̄ = 450
Fig. 7 shows the comparative results for the CubeBaffle exam-

le. The evolution of V opt (b0) (in the first column of the figure)
emonstrates that the both algorithms converge after 105 trials.
lthough the value reached by POMCP is lower than that by
OMCP-GO (69 against 96), the average value observed during
imulations V sim(b0) (in the second column) for POMCP-GO is
ower than that for POMCP (88 against 113). This difference
an be explained by the remaining bias on the optimized value.
ince the POMCP-GO algorithm continues a trial until reaching an
bsorbing state (goal or collision), its V opt (b0) tends to be always
reater than the simulation average V sim(b0). It is not the case
or POMCP as it back-propagates the value of a trial once reach-
ng a leaf node whose Q-value is initialized with the optimistic
euristic. The planning performance advantage of POMCP-GO is
lso affirmed by the mission success rate (in the third column —
5% for POMCP against 96% for POMCP-GO).
The POMCP policies result in shorter goal flight time in average

han POMCP-GO (in the fourth column on Fig. 7). As illustrated in
ig. 8, the POMCP policies generate trajectories flying between
he two cube obstacles favoring the flight time minimization,
hile the POMCP-GO policies make a detour to increase the goal
robability. Thanks to its depth-first search, POMCP-GO is able to
eviate from the heuristic policy paths to improve the value much
arlier (w.r.t. the number of trials). However, the computation

5 In [46], the authors actually compared the planning performance with the
euristic policy following the shortest path obtained by Dijkstra algorithm over
discretized position space. However, it is not a fair comparison as the heuristic
olicy does not take into account the collision risk issued from the sensor
vailability and the navigation uncertainty.



Fig. 7. POMCP and POMCP-GO performance comparison with the A2 action set for the CubeBaffle.
Fig. 8. Path examples obtained with POMCP (run 1 - a) and POMCP-GO (run 2 - b) for the CubeBaffle.
t

time for the same number of trials is 50% longer than that of
POMCP in our example.

In conclusion, the trade-off between policy computation time
and policy quality must be carefully analyzed. When comparing
the evaluation results of a POMCP-GO policy obtained after 6×104

trials and a POMCP policy after 10 × 104 trials (after almost the
same computation time ), the POMCP-GO policy still presents the
lower simulated value, implying ‘‘more’’ optimal.

5.2.2. WallBaffle map with K = K̄ = 450
Fig. 9 compares the results of POMCP and POMCP-GO on the

WallBaffle map. In this example, a large gap in the optimized
and simulated values (49 against 213) is observed for the POMCP
case. The optimized value is similar to the one obtained with a
heuristic policy. This implies that, in this example, the number
of trials was not sufficient for the POMCP algorithm to search
in depth for deviating from the heuristic policy. The simulation
results show the poor goal probability (69%) of the POMCP policy,
while POMCP-GO attains 99.7%. This is due to a fact that, during
simulations, the heuristic policy is applied when encountering
a leaf (but not absorbing) node of the policy tree. Simulated
path examples are illustrated in Fig. 10. The POMCP-GO policy
finds a path to fly over the walls for exploiting more chance to
have GPS (see Fig. 6), while the POMCP policy still tries to fly
between them where GPS is less-likely available. These results
confirm an advantage of the proposed POMCP-GO algorithm over
the classical POMCP in solving our safe path planning problem.
12
5.3. Results of the safety-constrained path planning

In this section, the WallBaffle and San Diego maps are used
o empirically demonstrate the method proposed in Section 3 to
compute the collision penalty value K for a given safety require-
ment. Moreover, the impact on the policy behavior (e.g. paths)
is also evaluated for different values of the collision probability
threshold pthd.

5.3.1. WallBaffle map with pthd = 10% and 40%
Given the previous results from Section 5.2.2, one can consider

one of the resulting policies that reached a 100% of success as the
safe policy πS , defined in Section 3. It gives the average goal flight
time Θ

πS
G (b0) = 75 s with the goal probability pπS

G (b0) = 1 (cf.
Fig. 9). The path-efficient policy, πE , can be approximated by the
heuristic policy, which is the shortest-path solution of the relaxed
problem (on a 3D grid map without considering uncertainty and
vehicle motion dynamics) obtained by the Dijsktra algorihtm. It
gives the average goal flight time Θ

πS
G (b0) = 61 s. Then, one

can calculate the collision penalty value K ∗ for a given collision
risk threshold pthd according to Eq. (23). For example, we obtain
K ∗0.1 = 201 and K ∗0.4 = 96 for pthd = 0.10 and pthd = 0.40
respectively.

The planning results of the cases of K = K̄ , K ∗0.1 and K ∗0.4 are
compared in Fig. 11. When pthd = 0.10, the optimized initial
belief state value V opt (b0) tends to 90 after 105 trials, while the
initial belief state observed during simulations V sim(b ) achieves
0
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Fig. 9. POMCP and POMCP-GO performance comparison with the A3 action set for the WallBaffle.
Fig. 10. Path examples obtained with POMCP and POMCP-GO for the WallBaffle map: (left) horizontal path and (right) altitude.
4 (except for Run 1), which is lower than VπS (b0) = 75.
hus, Theorem 2 can guarantee that those computed policies
ill respect the given safety requirement. This is confirmed by
he success rate result pπ

G (b0) = 99.9%. These policies have the
verage goal flight time (73 s) slightly shorter than Θ

πS
G (b0) =

5 s. This is an expected result, as the decrease in the K value
ould put more priority on the mission Efficiency over Safety.
he same analysis can be done for the results of pthd = 0.40.

These results demonstrate the interest of the proposed safety-
constrained path planner, which computes a policy that decreases
the flight time by admitting a certain risk of collision depending
on the mission requirement.

5.3.2. San Diego map and pthd = 40%
The same approach of the collision penalty determination was

applied to the San Diego map. Firstly, policies were computed
with K = K̄ = 450 to determine the safest policy πS . Its results
are shown in the first column of Fig. 12. The last policy obtained
after 105 trials in Run 4 (in pink) attaining 100% success and
Θ

πS
G (b0) = 105 s was chosen for πS . The path-efficient policy πE is

approximated by the heuristic policy with Θ
πE
G (b0) = 82 s. Then,

imposing an allowable collision risk of pthd = 0.4, the collision
penalty value can be derived as K ∗(pthd = 0.4) = K ∗0.4 = 140
according to (23).

The second column of Fig. 12 shows the results with this new
∗
value of K = K0.4. While the optimized initial belief state value

13
is slightly above Θ
πS
G (b0), the simulated value V sim(b0) achieves

lower and hence satisfies the condition of Theorem 2. The success
rate of the computed policies after 105 trials is at least 65% (with
Run 5), and 74% in average, respecting the 40% of maximum
collision risk. In return of admitting this 40% collision risk, the
average flight time was reduced from 105s to 83s in average.

Note that this San Diego map represents a realistic but chal-
lenging environment for the vehicle navigation, as there is more
risk of losing the GPS availability than in the previous simple ob-
stacle scenarios. Interestingly, the simulated paths for the policies
with K = K̄ and K ∗0.4 are quite different. While the safe policy
chooses to fly over the building for favoring the GPS availability
and the mission Safety, the policies with pthd = 0.4 choose to stay
at the initial low altitude and to fly between the buildings where
GPS is less likely available – increasing the collision risk due to
the larger path execution uncertainty – for favoring the mission
Efficiency.

6. Conclusions and future work

This paper proposed a safe path planner for UAV autonomous
operation in an urban environment, which takes into account
the environment-dependent uncertain sensor availability and its
influence on the path execution accuracy. It adopted a MOMDP
model which incorporates the low-level GNC module in the plan-
ning task in order to propagate the UAV state uncertainty without
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Fig. 11. POMCP-GO planning results for the WallBaffle benchmark for A3 action set and different collision penalty values.
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gnoring the stochasticity in the sensor measurements and in
he guidance commands. It also introduced a new cost function
efinition for the (PO-)SSPUDE problem, along with the method
o determine the penalty value for a given safety requirement.
urthermore, a new POMDP solving algorithm, POMCP-GO, was
roposed by extending the POMCP algorithm to goal-oriented
ersion. The proposed safe path planner was evaluated on the
imple and real obstacle maps. The results firstly showed the
uperior planning performance of our POMCP-GO algorithm over
he classical POMCP. Then, we also proved the capability of our
14
lanner to compute a policy which respects the user-defined
afety requirement without imposing it explicitly while planning.
Despite of the fact that MCTS-based algorithms are actually the

est candidates to solve our complex MOMDP planning problem,
he POMCP-GO algorithm still takes about few hours to converge
for the presented test cases), which is far from being able to
un online. The perspectives of this work includes the following
opics.

• Finding a new and more efficient heuristic function to ini-
tialize the action Q -value.



Fig. 12. POMCP-GO planning results for the San Diego benchmark with the A3 action set and different collision penalty values.
• Adapting the UCB1 exploration coefficient c in function
of the environment complexity. The authors have already
started to investigate it in [47].
• Introducing a debranching strategy which identifies useless

branches of the decision tree and removing them to save
the memory-use. We have actually applied an ad-hoc strat-
egy to avoid the memory saturation, showing its efficiency.
We would like to further explore this idea to establish a
theoretically-proven debranching strategy.
15
• Decreasing the Q-value bias of POMCP and POMCP-GO by
applying a different back-propagation strategy, as suggested
in [42]. Such bias reduction should improve the convergence
speed of the algorithm [47].
• Investigating original methods to clustering similar (belief)

states to better initialize its Q -value, and also making the
policy solution generalize to belief states (or nodes) not
visited during the optimization process.
• Integrating the improved planning algorithm in the AM-

PLE framework [48], which develops a plan-while-executing
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strategy. This framework ensure reactivity to action requests
from the execution engine, while being able to constantly
improve the policy by prioritizing future execution states
and computing a partial but applicable policy for each of
them.

With these planning performance improvements, our ultimate
oal is to extend this work to online safe path planner and to
mplement and flight-test it on real UAV platforms for enabling
heir safe urban operations.
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