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Taking into account the morphology of the particles in the aggregation dynamics is addressed theoretically in this paper. The rate constant or kernel of collision between particles with simple shapes (spheroids oblate and prolate, disc, needle) has been calculated from a Monte Carlo algorithm simulating shear aggregation. The corresponding data were used to build a model, which comes in the form of an empirical expression linking the rate constant of collision, the shear rate and three shape parameters describing each particle. This concise expression represents very well all the data issued from Monte Carlo calculation. Statistical analysis of the Monte Carlo calculations and the proposed model as well has been carefully achieved.

Introduction

Aggregation of fine particles is a phenomenon frequently met during the synthesis of particles by precipitation or crystallization, in suspensions containing a precursor of ceramics, in aerosols...Aggregation of particles in a fluid depends on several phenomena. The collision between two primary particles can arise from the Brownian motion, the fluid and particle velocity fields. So, Von Smoluchowski has calculated the collision rate for spheres in the case of Brownian motion and particles moving in a shear flow [START_REF] Smoluchowski | Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen[END_REF][START_REF] Smoluchowski | Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen[END_REF]. This approach has been extended to spherical particles moving in a turbulent flow [START_REF] Saffman | On the collision of drops in turbulent clouds[END_REF] or a rarefied atmosphere [START_REF] Oh | Light scattering study of fractal cluster aggregation near the free molecular regime[END_REF]. As a consequence, a collision rate constant has been calculated for each mechanism. In its early history, aggregation has been strongly related to colloids science where physico-chemical aspects are prevailing. So, Van der Waals and Electric Double Layer interactions have been identified and constitute the basis of DLVO theory [START_REF] Verwey | Theory of the Stability of Lyophobics Colloids[END_REF][START_REF] Elimelech | Particle deposition & aggregation[END_REF]. This one addresses the stability of the particle suspension. Fuchs [START_REF] Fuchs | Ueber die Stabilität und Aufladung der Aerosole[END_REF] established the link between aggregation rate constant and inter-particle interaction by introducing a multiplicative factor into the expression of the collision rate constant. By a similar way, Spielman [START_REF] Spielman | Viscous interactions in Brownian coagulation[END_REF] and Zeichner et al. [START_REF] Zeichner | Use of trajectory analysis to study stability of colloidal dispersions in flow fields[END_REF] introduced the effect of the hydrodynamic resistance on aggregation rate. Later refinements have included retarded Van der Waals interaction, non DLVO forces, roughness parameters, non-wetting effect [START_REF] Vinogradova | Coagulation of hydrophobic and hydrophilic solids under dynamic conditions[END_REF]. Therefore, aggregation kernel is now written as the product of the collision rate constant and the aggregation efficiency. At the scale of the colliding primary particles, the impact of the particle asphericity has not been rigorously treated. The considered geometrical parameter is only the radius of the volume equivalent sphere. Brownian aggregation is the predominant mechanism for nanoparticles in aqueous suspension whereas shear aggregation is the one for micro-particles. The two mechanisms occur at the same time for particles sized within the [0.1-1µm] range [START_REF] Adachi | Kinetics of turbulent coagulation studied by means of end-over-end rotation[END_REF]. The experimental validation of the mentioned models and theories is based on the study of the first instants of aggregation, for whom only doublets of primary particles are formed [START_REF] Gruy | Formation of small silica aggregates by turbulent aggregation[END_REF].

At the later instants of aggregation, clusters of primary particles are formed. Simulations, e.g. Monte-Carlo simulations, make it possible their computational formation [START_REF] Meakin | Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation[END_REF][START_REF] Jullien | The application of fractals to colloidal aggregation[END_REF][START_REF] Family | Kinetics of aggregation and gelation[END_REF][START_REF] Babick | Suspension of colloidal particles and aggregates[END_REF]. Statistical analysis of the clusters formed by basic mechanisms shows that the larger ones have a fractallike structure, i.e. porous objects with self-similar spatial ordering. Collision between aggregates has to take account of their permeability as well [START_REF] Veerapaneni | Hydrodynamics of fractal aggregates with radially varying permeability[END_REF][START_REF] Kusters | Aggregation kinetics of small particles in agitated vessels[END_REF]. However, the comparison between these simulations and experiments suggests that internal mechanisms as restructuring, sintering between primary particles and fragmentation occur [START_REF] Xiong | Formation of agglomerate particles by coagulation and sintering: Part1: a two-dimensional solution of the population balance equation[END_REF][START_REF] Yang | Computer simulation of the aggregation and sintering restructuring of fractal-like clusters containing limited numbers of primary particles[END_REF][START_REF] Soos | Investigation of aggregation, breakage and restructuring kinetics of colloidal dispersions in turbulent flows by population balance modelling and static light scattering[END_REF][START_REF] Kostoglou | Bivariate population dynamics simulation of fractal aerosol aggregate coagulation and restructuring[END_REF][START_REF] Selomulya | Evidence of shear rate dependence on restructuring and breakup of latex aggregates[END_REF][START_REF] Gmachowski | Aggregate restructuring and its effect on the aggregate size distribution[END_REF][START_REF] Eggersdorfer | Nanoparticle agglomerates and aggregates in aerosols by coagulation and sintering[END_REF][START_REF] Gruy | Modelling of aggregate restructuring in a weakly turbulent flow[END_REF]. The resulting aggregates are more compact and elongated. Consideration of such phenomena in simulations is yet under study.

Moreover the dynamics of the population of interacting and merging aggregates may be modeled by solving a population balance equation. Aggregates are roughly depicted by one internal variable (the volume of matter or the radius of the volume equivalent sphere or the radius of the spherical hull) and, possibly, another one (porosity or fractal dimension). In the special case of homogeneous kernel the population density reaches a self-preserving shape [START_REF] Friedlander | The self-preserving particle size distribution for coagulation by Brownian motion[END_REF][START_REF] Lushnikov | Evolution of coagulating systems[END_REF][START_REF] Rückenstein | Kinetics of crystallite sintering during heat treatment of supported metal catalysts[END_REF]. In the other cases the complexity and the large variety of phenomena affecting the aggregation kinetics and the morphology changes restrict complete and realistic description of the aggregate population to date.

On the other hand, the synthesis of particles with controlled morphology has developed since the pioneering work of Matijevic [START_REF] Matijevic | Monodispersed colloids: art and science[END_REF][START_REF] Sugimoto | Monodispersed Particles[END_REF]. The authors strove to control the shape and size of the particles and to understand the mechanisms of synthesis. However, few studies have been dedicated to the aggregation of non-spherical primary particles. Unfortunately they do not correspond to shear aggregation [START_REF] Loudet | Capillary interactions between anisotropic colloidal particles[END_REF] or consider only the late stage of aggregation in relation with the suspension rheology [START_REF] Bounoua | Shear-thinning in concentrated rigid fiber suspensions: Aggregation induced by adhesive interactions[END_REF]. Quantitative studies about kinetics often consider the amount of matter and therefore the radius of the volume equivalent sphere as the relevant parameter involved in the modelling of the aggregation. This approximation has also been applied to dense aggregates with spherical hull. The objective of this paper is to evaluate the effect of the non-sphericity on the rate constant of aggregation. We have specifically focused our study on the collision rate constant, i.e. assuming an aggregation efficiency coefficient equal to one. This follows the classical methodology being to distinguish collision dynamics and attachment kinetics. We will consider particles with a simple shape: sphere, discs, needles and spheroids. They have been selected to represent the whole of the precipitated particles and eventually lead to analytical calculations. We restrict ourselves to the collision induced by shear flow, which is the case for primary particles in particulate systems with Peclet number larger than 1, e.g. aqueous suspension of particles whose largest dimension is greater than 1µm. The ultimate goal of the article is to propose an approximate expression to the rate constant of collision; this relation will enable the numerical solving of a population balance equation, the particles being made up of objects with simple shapes, real or representative of more complex morphologies [START_REF] Gruy | Inertia tensor as morphological descriptor for aggregation dynamics[END_REF].

The paper is organized as follows: section 2 describes the tools and methods used to calculate the rate constant of collision. Section 3 presents the results corresponding to the collision of objects having the same shape, but homothetically different. Section 4 presents the results corresponding to the collision of particles with different shapes. Section 5 will discuss these results and conclude the paper.

Monte Carlo Simulations and statistics

Von Smoluchowski [START_REF] Smoluchowski | Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen[END_REF] has studied the collision between two spheres denoted 1 and 2 with different radii a1 et a2 moving in a shear flow with shear rate G. The corresponding rate constant K12 obeys the relation:

  3 12 1 2 4 / 3 K G a a  Eq.1
Along the calculation, the particle 1 is located at the origin of Cartesian coordinate system and is considered as motionless (see Figure 1). The particle 2 moves in the relative fluid flow with a straight trajectory parallel to the z axis (unit vector k ). The velocity is expressed as

V Gy k 
in the Cartesian coordinate system   ,, i j k . j is the unit vector in the direction of the shear (axis y). i is the unit vector in the direction perpendicular to j and k (axis x). V is also the velocity of the center of mass of the particle 2.

The flow is a pure shear flow just around the particle 1. It is, for instance, the case for particles moving in a turbulent flow. The initial orientation of the particle 2, i.e. close to the particle 1, is random. Then, a single particle in a shear flow undergoes a translation and rotation. For instance, in the case of a spheroidal particle, the end of the unit vector along the revolution axis follows circular (periodic) paths, called Jeffery trajectories [START_REF] Jeffery | The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid[END_REF]. The motion of the particle along these paths is unstable [START_REF] Ingber | A numerical study of three-dimensional Jeffery orbits in shear flow[END_REF]. Moreover the relative motion of particles is made it more complicated by the presence of various physico-chemical interactions and interphase forces as drag, lift, hydrodynamic resistance [START_REF] Marshall | Adhesive particle flow: a discrete-element approach[END_REF]. Thus the actual trajectory should be estimated by means of computational fluid mechanics. As mentioned in the introduction, the usual practice is to include such phenomena in the aggregation efficiency. Considering only the collision rate and knowing that there is no favored orientation of non spherical particles at the beginning of the encounter, we will assume, as a rough approximation, that the orientation distribution of a single particle in a shear flow before the collision is uniform. This approach has to be considered as a first step in the search of simple kernel taking into account the asphericity of particles.

The objects considered in this paper are anisotropic, but have a center of symmetry and an axis of revolution. Each object is characterized by a triplet of values corresponding to three half-distances in a 3D space (ai,bi,ci) with iii a b c . The selected objects are the sphere (ai,ai,ai), spheroids oblate (ai,ai,bi) and prolate (ai,bi,bi), disc (ai,ai,0) and needle (ai,0,0). ) appears to be relevant. Xi is a characteristic length of the object i. We denote

    3 12, 1 2 12 1 2 , / 4 / 3 N K X X K G X X   
. We have chosen for Xi a geometrical quantity related to the gyration radius , gi R for an ellipsoid and equal to iii a b c  for the sphere:

  2 2 2 /3 i i i i X a b c    Eq.2
It can be underlined that the , / i g i

XRratio remains constant for each object set (needles, discs, spheroids), each set having its own constant of proportionality. The anisotropy of a given object will be quantified by:

/ i i i Xa   Eq.3
Then,

1 1 1 1 1 1/ 3 1 N P D O S           
(S: sphere; O: spheroid oblate; D: disc; P: spheroid prolate; N: needle).

The collision of two objects is simulated by a Monte Carlo method with Nr runs, each one having the following steps:

One considers a cube with the edge a at the center of which is located the Cartesian coordinate system. The a value is taken equal to   12 4 max , aa  .

i. The particle 1 is located at the center of the coordinate system. Its orientation, i.e. orientation of the symmetry axis, is randomly selected.

ii. The particle 2, the orientation of which is randomly chosen too, is located inside the cube. Given four random numbers A1, A2, A3 et A4 within the [0 ;1] range, the coordinates of the center of the particle 2 are:

    23 1 22 1 24 2 1 / 2 21 /2 21 2 1 / 2 X A a A Y A a A Z A a    



The expression for y-coordinate of the particle 2 satisfies the likelihood of relative position between particles 1 and 2 in a shear flow [START_REF] Walck | Handbook on statistical distributions for experimentalists[END_REF].

iii.

The particle shapes are projected onto the xOy plane perpendicularly to Oz.

The figures generated by the projection are disc (for a sphere), line segment (for a needle), ellipse (for a disc or an ellipsoid).

iv.

Any intersection between the projections of particles 1 and 2 is searched. The collision will be effective if the two projections overlap and if 22 0 YZ  . The latter condition means that the particle 2 is catching up with the particle 1 or is being caught up by particle 1: 22 00 YZ  or 22 00 YZ  .

The collision rate constant is (G=1) :

   3 12 / / 2 Cr K N N a  Eq.4
where NC is the number of effective collisions. Nr is taken equal to 10 6 , but may be modified in order to obtain the required accuracy (see below).

The considered particle pairs require to perform the calculation of the intersection between i. two line segments

ii. a disc (or ellipse) and a line segment iii. a disc (or ellipse) and another one

The two first cases can be analytically solved. The third one leads to the search of zeros of a quartic polynomial, for which the procedure of Rees has been used [START_REF] Rees | Graphical Discussion of the Roots of a Quartic Equation[END_REF].

The above algorithm has been checked by comparing the Monte Carlo data to analytical calculations for the following object collisions: Sphere -Sphere (Eq.1), Sphere -Needle (appendix 1), Needle -Needle (appendix 2).

The algorithm performances have been estimated by performing twenty Monte Carlo calculations for a given pair of colliding objects. We have calculated the standard deviation  and the mean value 12,N K for the sample, then the coefficient of variation ) within a short computational time. In the case of more anisotropic objects, the poorer performance needs to increase the value of Nr. For spheroid prolate with b/a=c/a<0.1, Nr will be taken equal to 10 7 ( 0.04 CV 

). For needles, Nr will be taken equal to 3.10 7 ( 0.04 CV 

). As shown in the appendix four, this choice restricts the modeling quality to R 2 <0.995.

Collision between objects with same shape and different sizes

The collision rate constant has been calculated for the following pairs: sphere-sphere, oblateoblate with various values of bi/ai (=0.5 ; 0.2), disc-disc, prolate-prolate with various values of bi/ai (=0.2 ; 0.05 ; 0.01), needle-needle. The impact of the ratio of the larger lengths (a2/a1) of the two particles has been studied within the range [10 -2 ; 2.10 2 ].

The results are presented by taking the ratio ( 21 / h X X  ) in abscissa and K12,N in ordinate, more precisely

    12, 1 2 , 1, 2 ii N K X X i  
. The superscript i-i expresses the collision between particles having the same shape. A dimensional analysis shows that

  12, 1 2 , ii N K X X  is a function of the single variable 21 / h X X 
. Thus it may be written:

      12, 1 2 12, , 1, 2 i 
i i i NN K X X K h i   .
For objets 1 and 2 with the same shape, but with different sizes, 21 /1 h a a  .

The figure 2 contains the data set (dots). The dashed lines represent the asymptotic value of 12, ii N K  , i.e. when one particle is much larger than the other one. This asymptotic value, denoted

  12, 0 ii N K 
, can be obtained by considering the collision between a point-like particle (particle 2) and the particle 1. The analytical calculation of the corresponding K12,N is reported in the appendix 3.

A first analysis of the curves shows that:

-More anisotropic are the colliding particles, smaller is the K12,N value -If the colliding particles have the same size, K12,N, denoted

  12, 1 ii N K 
, has a value within the [0.308; 1] range. The value for the most anisotropic particles (needles) is not so small.

-More different in size are the colliding particles, smaller is the K12,N value. This variation is all larger given the larger anisotropy factor of the particles.

-The asymptotic value is non-zero for all objects except for the needles. 

0 i i i i i i N N N K K K     
 only depends on the anisotropy of the larger object.

iii.

If the two objects are not identical ( 1 h  ), the symmetry of the problem with respect to the exchange of the two colliding objects requires that any model should be invariant by the transform h → h -1 .

Therefore, it makes sense to look for such an expression:

            12, 12 , 12, 12, 0 1 0 
i i i i i i i i N N N N K h K g h K K        Eq.5
with the following requirements (R1, R2, R3):

    1 g h g h   (R1)   11 g  (R2)     00 gg    (R3)
A function fulfilling these conditions is:

    /2 p mm g h h h     
Eq.6

We have performed a fitting of Monte Carlo data reported in the figure 2 The application of equations 5-6 is reported on figure 2 (solid line).

The previous results show the relevance of the choice of the Xi expression (Eq.2) for the objects set. We emphasize that the disc has a gyration radius ( /2 g Ra 

) different from the one of the spheroid oblate with bi/ai<<1 ( 2 / 5 g Ra  ), whereas their respective K12 and Xi (= 2/3a ) are equal.

Collision between objects with different shape and size

The collision rate constant has been computed for the following pairs: sphere-disc, sphereprolate, sphere-needle, disc-needle. The results are presented in the Figure 3 by taking the ratio h (

2 1 2 1 // h X X a a 
) as abscissa and K12,N as ordinate. We can see that:

-If one of the two particles is much smaller than the other one, the former may be considered as a point-like particle; the asymptotic K12,N value (appendix 3) is the same that the one computed for the collision between objects with the same shape (Figure 2). This is observed for both h→0 et h→∞.

-One deduces that the curves contain information about the larger object if h→0 et h→∞ These results suggest that the corresponding data may be represented by means of a composition law:

          1 2 1 1 1 2 2 1 12, 12, 12, N N N K h f h K h f h K h       Eq.7 f is a function of h .   12, ij N
Kh  is the dimensionless rate constant of collision between the objects i and j (i, j in   1, 2 ), with different shapes ( ij  ) or same shape ( ij  ) and size ratio h. The equation 7 and the function f must meet the following conditions (C1, C2, C3):

    1 2 1 1 12, 12, 0 1 0 NN h f h K K     (C1)     1 2 2 2 12, 12, 00 NN h f h K K      (C2)
If the colliding particles have the same shape, then:

            1 2 1 1 12, 12 , 12, 12, 1, 2 
i i i i i i N N N N K h f h K h f h K h K h i           (Eq.8)
which imposes (see iii. in section 3):

    1 1 f h f h   (C3)
Thus, the expression (Eq.9) would be a good candidate meeting these requirements (C1, C2):

  1 1 n fh h   Eq.9
We have performed a fitting of a model consisting in Equations 7 and 9 with the Monte Carlo data by using the least square method with n as parameter and the minimization of the root mean square error (RMSE) as criteria. The   ). The figure 3 compares the model (dotted lines) and the Monte Carlo calculations (dots).

Discussion and conclusion

Along the sections 3 and 4, we have considered separately the collisions of objects with the same shape and different shapes. Two separate and independent models have been provided. Now, we consider the use of equations 5-9 for the calculation of

  12, ij N Kh  .   12, ij N
Kh  obeys therefore the expression:

                          1 2 1 1 1 1 1 1 12, 12 , 12, 12, 2 2 2 2 2 2 12, 12, 12, 1 0 
/ 2 1 0 1 1 0 / 2 1 0 1 p mm N N N N n p mm N N N n K h K h h K K h K h h K K h                          
Eq.10

The model contains three parameters: n, m and p. The optimal values of the exponents m, p and n are taken equal to 0.36, 3 and 1.30, values already determined in the sections 3-4. We note in the figure 3 ii N K  as an approximate function of these shape parameters. In view of the form of equations 5 and 10, we will consider thereafter the functions

    12, ,0 ii N P k l K   Eq.11a       12, 12, , 1 
0 i i i i NN Q k l K K   Eq.11b
Having no theoretical model for these functions, we logically search for each function a linear combination of polynomials in k and l:

    ,, jj j P k l P f k l   Eq.12a     ,, jj j Q k l Q f k l  
Eq.12b

The functions P, Q and fj must be invariant under the exchange of k and l. The functions set {   , j f k l } is infinite and the selected sub-set is just limited by the authors creativity. We have chosen the following set:

  2 3 4 2 2 3 3 4 4 2 0..10 1, , , , , , , , , , 2 2 2 
2 2 2 2 2 j k l k l k l k l k l k l k l k l f kl kl kl                                       

Eq.13

Pj et Qj are the coefficients to be determined. It should be noted that

  12, 1 2 1 2 , 1 , ii N K X X X X  
for the collision of two spheres, i.e.     1,1 1; 1,1 0 PQ  . We deduce the relationship between the coefficients:

1 j j P   Eq.14a 0 j j Q   Eq.14b
The analytical value of 12, ii N K  for two needles (k=l=0) with the same length being 0.3084, the following expression is valid as well: 00 0.3084 PQ  Eq.15

It is known that the consideration of a large number of   , j f k l functions for fitting data and model improves the coefficient of determination R 2 but leads to two major drawbacks:

-the increase of the risk to build a fortuitous model [START_REF] Verzelen | Minimax risks for sparse regressions: Ultra-high-dimensional phenomenons[END_REF] -a decrease of the model predictability.

The best model corresponding to equations 12a,b has been searched by using the optimization of the predictive R 2 : Q 2 in a cross validation method using the leave-one-out scheme. This approach, similar to the one used in another study [START_REF] Nortier | Modelling the solubility in Bayer Liquors: a critical review and new models[END_REF] 

    3 2 0 1 2 3 , 22 
k l k l Q k l Q Q Q Q kl         Eq.16b
The parameter values of the model leading to the best fit are reported in the Table 2.

To test the model, we have considered the two object pairs: P0.05-N and P0.2-N, that have not been involved for the building of the model. Then, we have calculated   12 12,N Kh  by using the Monte Carlo method and compared these data to the ones coming from the model (Figure 4). The model is based on the equations 10 and 16a-b. We see that the model is in good agreement with the data coming from the Monte Carlo calculations (P0.05-N : RMSE=0.0086, R 2 =0.994 ; P0.2-N : RMSE=0.0075, R 2 =0.9984). (see Table 3).

To conclude, we have calculated by using Monte Carlo simulations, the rate constant or kernel of collision between particles with simple shapes, but with various anisotropy factors, in a shear flow. These data were used to build an empirical analytical model for the collision rate constant. Any object is characterized by three internal distances in three mutually perpendicular directions. The model is expressed as a formula including the six internal distances and the shear rate as well. It describes very reasonably the data coming from Monte Carlo calculations. All the objects used for the building of the model have a center of symmetry and an axis of symmetry at least. One can ask whether the model would remain valid for objects described by three internal distances, but without the above-mentioned properties of symmetry. The results obtained in this paper are the starting point of a study undertaken to answer this question.

Appendix 1: K12 for the collision between a needle with length L and a sphere with radius R

The general expression for the rate constant (kernel) of collision between two particles with any shape in a shear flow is, following Von Smoluchowski [START_REF] Smoluchowski | Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen[END_REF]:

12 ,, 12 1, 2 12 1 2 , k K k K OO P C C PP K G C C j d     A1-1 12 1, 2 12 
12 ,

OO OO KK  A1-2 1
C and 2 C are the centers of mass of the colliding objects 1 and 2. K1 and K2 are the objects 1 and 2 consisting of geometrical points (see Figure 1). , i kK P is the projection of Ki onto the plane perpendicular to the vector k .

12 ,,

k K k K W P P 
is the intersection of the projections of K1 and K2 onto the plane perpendicular to k .

12 , P C C d is the infinitesimal area element, in the plane of projection, around the center of mass of the object 2 (1 being the reference particle).

12 ,

OO is the over all the orientations O1 and O2 for objects 1 and 2.

One calculate by using the same methodology as for the collision of two spheres the contribution 1, 2 12

OO

K

of a given needle orientation to K12 (orientation of the sphere is trivial).

The needle orientation is characterized by the angles  and .  is the angle between the needle projection onto the xOy plane and the x'Ox axis.  is the angle between the needle and the Oz axis. The length of the needle projection is sin p LL  . Two cases may occur: 

 / 2sin cos p LR   thus   1, 2 2 3 2 12 21 / sin sin 1/ sin sin 2 3 2 OO pp K G L R R RL          /2     A1-3  /
L K G L R Arc L R L R R L R L                                  /2     A1-4 K12 is the average of 1, 2 12 OO K
over all the needle orientations (the average simply applies to the sphere) :

      1, 2 12 12 / 2, , 0, / 2 2 , sin OO K K d d               A1-5

Appendix 2: K12 for the collision between two needles with lengths L1 and L2 repectively

The orientation of each needle is characterized by the angles i and i. i is the angle between the projection of needle i (   1, 2 

) onto the xOy plane and the x'Ox axis. i is the angle between the needle i and the Oz axis. The length of the needle projection is , sin

p i i i LL  .
Two cases may occur (

21 0       ):  1 1 2 2 / 2sin / 2sin pp LL   thus         22 1, 2 1 1 12 2 1 , 2 2 ,2 2 ,1 1 2 
/ tan tan / 2sin / 2sin 3 / 2sin 3 OO p p p K G L L L          A2-1  1 1 2 2 / 2sin / 2sin pp LL   thus         22 1, 2 1 1 12 2 1 ,1 1 ,1 1 ,2 2 2 / 
tan tan / 2sin / 2sin 3 / 2sin 3

OO p p p K G L L L          A2-2 K12 is the average of 1, 2 12 OO K
over all the orientations of the two needles:

            22 1 2 1 2 22 1 2 1 2 1, 2 12 12 1 1 2 2 1 1 1 2 2 2 2 0, , , 0, / 2 1 
, 2 12 2 2 1 1 1 1 1 2 2 2 2 0, , , 0, / 2 1 , , , sin sin 2 1 
, , , sin sin 2

OO OO K K d d d d K d d d d                                             A2-3
Appendix 3: K12 for the collision between a spheroid and a point-like particle  prolate (a1,b1,b1)

    22 1, 2 12 1 1 4 / cos sin 3 OO p p p p K G a b b a   A3-1
ap and bp are the lengths of semi-axes of the spheroid projection, i.e. an ellipse, on a plane perpendicular to the flow direction:

    22 1 1 1 1 1 cos sin p p a b a bb   
The axis of revolution of the spheroid (prolate and oblate) is characterized by the angles  and .  is the angle between the axis of revolution and the Oz axis. is the angle between the axis projection onto the xOy plane and the x'Ox axis.

 oblate (a1,a1,b1)

    22 1, 2 12 1 1 4 / sin cos 3 OO p p p p K G a b b a   A3-2 with     1 22 1 1 1 1 sin cos p p aa b b a    endly,       11 1, 2 12 12 1 1 1 1 1 0, , 0, / 2 1 , sin OO K K d d              A3-3 and   33 12, 12 1 1 / 4 / 3 N K K G a   A3-4 if 1 0 b  , then 3/ 2 1 12, 1 4 3 3 N b K a   (prolate) and   3/ 2 12, 4 3/ 2 3 N K   (oblate) 1 I si i yy I    ,   2 1 1 1 I s i s i yy I      , / ss CV y  

Limitation of the quality of models due to the error in MC calculations

A model cannot be better than the data it represents. To check the effect of CV = 0.04 on the maximum R² that can be obtained in any model, we performed this calculation using Matlab and the set of data for K12,N depicted in figure 2 

          12, , 12, , 12, , 0 / 2 1 
0 Fitting procedure, least square method, section 4, model from Eqs. 7-9:

p i i m m i i i i kl N k l l N k N k y K h h K K            using a Microsoft Excel worksheet.
The procedure is basically the same as for the model in §3, Eqs. 5-6, but the points . The value of n is kept identical for all points, n is the "Variable" cell for the solver. SSE is found minimal when n = 1.3.

Verification procedure, least square method, section 5, model from Eq. 10:

As in the fitting procedure, section 4, Eqs. 7-9, the observed values are those of figure 3 and the model is: 

    1 1 2 2 12, , 12, , 1 1/ 
            12, , 12, , 12, , 12, , 0 / 2 1 
0

p i i i i m m i i i i N k l N k l l N k N k K h K h h K K            
. The values of m, n and p are kept at the optimal values determined before (resp. 0. 

0 ii Nk K  (A3-3).
The hypothesis and constraints of this modelling were:

- ii N K  =0.3084, consequently, according to Eq. 10: 0.3084 = P(0,0)+Q(0,0)

    12, ,0 ii N P k l K   and       12, 12, , 1 0 i i i i NN Q k l K K  
For the sake of simplicity, we first searched a solution as a linear combination of simple functions of k and l, respecting the invariance by exchange, as the 11 functions:

  2 3 4 2 2 3 3 4 4 2 0..10 1, , , , , , , , , , 2 2 2 
2 2 2 2 2 j k l k l k l k l k l k l k l k l f kl kl kl                                       
This list was only limited by our creativity but revealed to contain a set of functions that correctly reach the objective.

The data to be modelled (observations) are issued from the 7 values in table 1 for each of the responses P and Q. With 7 observations and 11 candidate predictors, the ensemble of solutions is infinite; any subset of 7 predictors would yield a "perfect" model in terms of explanation of the variance (R²=1). However, these models would have no predictive capacity for values of (k,l) not in the set described by the 7 objects in table 1. Moreover, Verzelen [START_REF] Verzelen | Minimax risks for sparse regressions: Ultra-high-dimensional phenomenons[END_REF] showed that incorporating too many predictors in a model drastically increases the risk to build a fortuitious model. Consequently, we decided to limit the number of predictors in the model to the minimum necessary to build a model with a level of quality equal to the maximum consistent with the accuracy of the MC calculations, namely R² =0.995. The choice of the best subset was based on a procedure similar to the one used by Nortier & al. [START_REF] Nortier | Modelling the solubility in Bayer Liquors: a critical review and new models[END_REF] Because R² can only increase with the addition of one more predictor in the model, the criteria for the model selection was the predictive R², or Q² introduced by Wold [START_REF] Wold | Soft modeling: The basic design and some extensions[END_REF] and refined by Quan [START_REF] Quan | The Prediction Sum of Squares as a General Measure for Regression Diagnostics[END_REF]. In short, this is a cross validation method using the leave-one-out scheme. Contrary to [START_REF] Nortier | Modelling the solubility in Bayer Liquors: a critical review and new models[END_REF], the authors programmed in this work the whole scheme in Matlab, with the multi-linear regression based on Matlab's function "regress".

The Q² criteria was calculated for all combinations of "1" plus up to 4 functions in the 10 non constant candidate predictors, for both P and Q responses. In both cases (P or Q), the best set of "1" plus 3 non constant predictors was: 1, (k+l)/2, ((k+l)/2) 3 , (kl) 2 , with Q² = 0.9993 and R² = 1.000 for P and Q² = 0.9984 and R² = 0.9998 for Q, which satisfies our criteria.

Due to intrinsic features of Matlab function "regress", the above described calculation could not take the constraints on P(1,1)(

  0 1 2 3 1 P P P P     ), Q(1,1)(   1 0 2 3 Q Q Q Q    
) and P(0,0) + Q(0,0)( 00 0.3084 QP  ) into account: so, once the best model was obtained, we made another multilinear regression with the Matlab function "regress" the considering 5 variables P1, P2, P3, Q2 and Q3 and the equations: 

      3 
k l k l k l k l Q k l Q Q kl                                
The resulting values are given in table 2 and provide RMSEP = 0.0047, R²P = 0.9999, RMSEQ=0.0027, R²Q = 0.9996. 

Figure captions

Q Q Q Q     .

2 0

 2 that the agreement between the Monte Carlo data (dots) and the model (solid line) is very good. The root mean square error is of which are obtained from analytical calculations and Monte Carlo calculations respectively. These quantities depend on the shape parameters, k=b/a and l=c/a, that are the same for the two colliding particles. It is interesting to express

For;

  all points ((k,l)∈{1,6}x{1,15}), m and p are kept identical, the Sum of Squared Errors (SSE) is calculated according to : the Solver add_in in Excel is then used with SSE as the "Objective" cell and m and p as the "Variable" cells to determine the values of m and p than yield the minimum value of SSE. These values are: m = 0.36 and p = 3.0.

  are functions of k and l only -P(k,l) and Q(k,l) are not modified by the exchange of k and l -P(1,l) = 1, Q(1,1) = 0 (case of a sphere) -for identical needles where h=1:

Figure 1 :

 1 Figure 1: Sketch of the collision between two particles moving in a shear flow.

Figure 2 :Figure 3 :Figure 4 :

 234 Figure 2: dimensionless rate constant of collision K12,N as a function of h=X2/X1 ratio for various pairs Y-Y of particles with the same shape Y (S: sphere; O b/a: spheroid oblate with b/a ratio; D: disc; P b/a: spheroid prolate with b/a ratio; N: needle) dots: Monte Carlo calculation dashed line (--): asymptotic value of K12,N solid line: model (Eqs.5-6)
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 2 Figure 2 (zoom)
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  Figure 4

Table 1

 1 

	contains the	12, ii N K 	  0	values got from analytical calculation and the	12,	  1

  the values calculated by the Monte Carlo method with an accuracy consistent with the one of the Monte Carlo calculations. The selected functions are:

	  kl   3 2 1, , , 22 k l k l       	.			
	  , P k l P P 0 1  	3   2 22 k l k l P   		  P kl 3	2	Eq.16a

, is depicted in appendix 4. It leads to a predictive and parcimonious model. It appears that a model with four parameters is sufficient to reproduce

Fitting procedure, least square method, section 3, model from Eqs.5-6: For each pair

  

						1 yK  k	12, , 1 N k	: generate a normal distribution
	of k.l random values rkl ((k,l)∈{1,6}x{1,15}) with mean =1 and standard deviation 0.04,
	generate a "noisy" set of values kl y	kl y  and calculate the value of R² corresponding kl r
	according to	R	2	 1/ kl  22  6 15 6 15  1 1 1 1 kl kl k l k l y y y y          	. The average value of R² on 10000
	draws is 0.995. This result suggests that any model with R²≥0.995 can be considered as
	having its accuracy limited by the precision of the data to be modeled.
			k (k∈{1,6}) of identical form objects,	  12, , 1 ii Nk K 	is known from the MC
	calculation at h=1 and	12, , ii Nk K 	  0	from the analytical calculation described in Appendix 3.
	Each point l (l∈{1,15}), ( 12, , , ii N k l K 		, y h kl l	) on the corresponding curve is modelled according
	to Eqs. 5-6 :				

  [START_REF] Adachi | Kinetics of turbulent coagulation studied by means of end-over-end rotation[END_REF] 

			y	kl	n l nn N k l ll h K h hh  K  	N k	l h	, with this modification: the values
	of	  l Kh  12, , ii N k	are not taken from the MC calculation, but from the model of section 3, Eqs. 5-
	6:					

Table 2 :

 2 Pj and Qj coefficients (Eqs.12a,b), adjusted values and (95% confidence intervals)

				5	O 0.2		D			P 0.2	P 0.05	P 0.01	N
	12, ii N K 	  0		0.925	0.824		0.780	0.428	0.110	0.0221	0.000
	N ii 12, K 	  1		0.936	0.864		0.827	0.590	0.383	0.329	0.3084
	Table 1: analytical values for	N ii 12, K 	  0	and values coming from Monte Carlo calculations for
	N ii 12, K 	  1	for any Y object shape			
	Function	1	(k+l)/2			((k+l)/2) 3	(kl) 2
	Pj		0	2.200				-2.523	1.323
					(2.100/2.299)			(-2.820/-2.226)	(1.116/1.529)
	Qj		0.3084	-0.7570				0.9371	-0.4885
									(0.7962/1.0780)	(-0.5890/-0.3880)
	P1, P2, P3 from the multilinear regression,	0 P	     1 2 1 P P P 3		; Q2, Q3 from the multilinear
	regression 00 0.3084 QP  ,	1		0	2	3	

Appendix 4: Details of statistical calculations and modeling procedures

Precision of the Monte Carlo calculations of K12,N (section 2): for each couple of objects considered, a sample of 20 independent observations ((yi), i∈{1,…I}, I = 20) was calculated by repeating the described Monte-Carlo procedure with independent random draws. As usual, the sample mean s y ,the sample standard deviation s  and the (sample) coefficient of