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We consider a uid-structure interaction system composed by a three-dimensional viscous incompressible uid and an elastic plate located on the upper part of the uid boundary. The uid motion is governed by the Navier-Stokes system whereas the structure displacement satises the damped plate equation. We consider here the Navier slip boundary conditions. The main result of this work is the feedback stabilization of the strong solutions of the corresponding system around a stationary state for any exponential decay rate by means of a time delayed control localized on the xed uid boundary. This work relies on the Fattorini-Hautus criterion. Then, the main tool in this work is to show the unique continuation property of the associate solution to the adjoint system.

Introduction

We suppose that the uid ow occupies a 3D periodic domain and an elastic plate that is disposed on the upper part of the uid boundary. The force exerted by the uid on the plate inuences the deformation of the elastic structure and then the uid domain depends on the plate displacement and hence on time. Consequently, the interaction between the deformable structure and the uid is modeled by a strongly coupled non linear system set in a moving domain. Our aim is to stabilize the position and the velocity of the structure as well as the velocity of the uid around a stationary state using a time delayed control that acts on a local part of the boundary of the uid domain provided that the initial data are close enough to the stationary state in some norm. First, we give some important notations in order to write the system.

Let ω be the rectangular torus

ω = (R/L 1 Z) × (R/L 2 Z) L 1 > 0, L 2 > 0.
For any function η : ω → (-1, ∞), we dene

Ω(η) = {(x 1 , x 2 , x 3 ) ∈ ω × R ; 0 < x 3 < 1 + η(x 1 , x 2 )} , Γ(η) = {(x 1 , x 2 , x 3 ) ∈ ω × R ; x 3 = 1 + η(x 1 , x 2 )} , Γ 0 = ω × {0}.
(see the gure 1). In particular, we have ∂Ω(η) = Γ(η) ∪ Γ 0 .

x 1

x 2 We consider the following system describing the evolution of the uid that is governed by the Navier-Stokes equations and the displacement of the elastic plate by the damped beam equation

x 3 η Γ(η) Γ 0 L 1 L 2 1
   ∂ t U + (U • ∇)U -∇ • T(U, P ) = f S in (0, ∞) × Ω(η),
∇ • U = 0 in (0, ∞) × Ω(η), ∂ tt η + α∆ 2 η -δ∆∂ t η = H η (U, P ) + h S in (0, ∞) × ω.

(1. [START_REF] Badra | Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system[END_REF] In (1.1), we have denoted by U the uid velocity, P the uid pressure and η the transversal displacement of the elastic structure. The functions f S and h S are time independent data.

The Cauchy stress tensor T(U, P ) is given by T(U, P ) = -P I 3 + 2νD(U ), D(U ) i,j = 1 2

∂U i ∂x j + ∂U j ∂x i .
The coecients α, δ and ν correspond respectively to the rigidity, the damping on the structure and the uid viscosity.

We denote by n the unit exterior normal vector on ∂Ω(η) given as follows:

n = -e 3 on Γ 0 , and on Γ(η):

n(s, 1 + η(s)) = N (s, 1 + η(s)) | N (s, 1 + η(s))| , where N (s, 1 + η(s)) =   -∂ s1 η(s) -∂ s2 η(s) 1   , s ∈ ω.
Here and in what follows, | • | stands for the Euclidean norm of R k , k 1. Also, we select two tangent vectors τ i , i = 1, 2 linearly independent on ∂Ω(η) such that

τ i = e i , i = 1, 2 on Γ 0 , (1.2) 
and

τ 1 (s, 1 + η(s)) =   1 0 ∂ s1 η(s)   , τ 2 (s, 1 + η(s)) =   0 1 ∂ s2 η(s)   on Γ(η).
(1.

3)

The function H η is the contact force exerted by the uid on the interface which is dened by

H η (U, P ) = -1 + |∇η| 2 (T(U, P ) n • e 3 ) .
We complete (1.1) by the Navier slip boundary conditions. Let a ∈ R 3 , we denote by a n and a τ the normal and the tangential components of a :

a n = (a • n) n, a τ = a -a n = -n × ( n × a) .
(1.4)

The Navier slip boundary conditions write as follows:

       U n = (Mv) n on (0, ∞) × Γ 0 , [2νD(U ) n + β 1 U ] τ = β 1 (Mv) τ on (0, ∞) × Γ 0 ,
(U -∂ t ηe 3 ) n = 0 on (0, ∞) × Γ(η), [2νD(U ) n + β 2 (U -∂ t ηe 3 )] τ = 0 on (0, ∞) × Γ(η).

(1.5) Here, v is the control of the system (1.1), (1.5) acting on the xed boundary Γ 0 . In order to preserve the compatibility condition due to the incompressibility of the uid, we use the operator M dened by

Mv = mv - Γ0 mv • n dΓ m n, (1.6) 
where m ∈ C 2 (Γ 0 ) is compactly supported in Γ 0 which satises Γ0 m ds = 1, see for example [START_REF] Badra | Stabilization of parabolic nonlinear systems with nite dimensional feedback or dynamical controllers: application to the Navier-Stokes system[END_REF], [START_REF] Raymond | Feedback boundary stabilization of the two-dimensional Navier-Stokes equations[END_REF].

Thus, the operator M localizes the action of the control in a relatively compact subset of Γ 0 . We notice that M ∈ L([L 2 (Γ 0 )] 3 ) and Γ0 Mv • n dΓ = 0.

(1.7)

We assume that the friction coecients β 1 and β 2 are two non negative constants

β 1 0, β 2 0.
Since ω is a rectangular torus, we complement the system (1.1), (1.5) with periodic boundary conditions for the uid and for the elastic plate on the remaining boundaries of Ω(η). Then, we consider data and solutions which are periodic in the both directions e 1 and e 2 , for example :

U (t, x 1 + L 1 , x 2 , x 3 ) = U (t, x 1 , x 2 , x 3 ), U (t, x 1 , x 2 + L 2 , x 3 ) = U (t, x 1 , x 2 , x 3 ), η(t, s 1 + L 1 , s 2 ) = η(t, s 1 , s 2 ), η(t, s 1 , s 2 + L 2 ) = η(t, s 1 , s 2 ).
Since U is divergence free and taking into account the equation (1.7), the velocity ∂ t η should satisfy the condition ω ∂ t η ds = 0.

(1.8)

Integrating the plate equation on ω and using (1.8) and the fact that η is periodic, we nd ω H η (U, P ) + h S ds = 0.

(1.9)

The above condition can be satised if we write

P = P 0 + c, (1.10) 
where P 0 satises Ω(η)

P 0 dx = 0,
and c is a constant that is chosen conveniently in such a way (1.9) is veried. Consequently, the pressure P will be uniquely dened. In order to impose the condition (1.9) without considering the normalizing constant c, we dene the projection operator M on L 2 0 (ω) where

L 2 0 (ω) = η ∈ L 2 (ω) ; ω η ds = 0 . (1.11)
Since we look for solutions such that (1.8) is veried, it is convenient to consider the restriction of the associated semigroup to the plate equation to L 2 0 (ω). Then, in what follows, we assume that η ∈ L 2 0 (ω). To impose the condition (1.9), we substitute the plate equation by its projection on L 2 0 (ω) using the operator M ∂ tt η + α∆ 2 η -δ∆∂ t η = H η (U, P ) + M h S , where H η (U, P ) = M H η (U, P ).

We complement the system (1.1), (1.5) with the following initial conditions

   U (0, •) = U 0 in Ω(η 0 ), η(0, •) = η 0 in ω, ∂ t η(0, •) = η 1 in ω.
(1.12) Let (w S , p S , η S ) be a stationary state of the system (1.1), (1.5) that is a solution of the system

           (w S • ∇)w S -∇ • T(w S , p S ) = f S in Ω(η S ), ∇ • w S = 0 in Ω(η S ), α∆ 2 η S = H η S (w S , p S ) + M h S in ω, w S n = 0 on ∂Ω(η S ), 2νD(w S )n + βw S τ = 0 on ∂Ω(η S ), (1.13) 
where

β(y) = β 1 if y ∈ Γ 0 , β 2 if y ∈ Γ(η S ).
The vector n stands for the unitary exterior normal vector and τ i , i = 1, 2 designate two tangent vectors on ∂Ω(η S ):

n = -e 3 , τ i = e i , i = 1, 2 on Γ 0 , (1.14) 
and on Γ(η S ):

n(s, 1 + η S (s)) = N (s, 1 + η S (s)) |N (s, 1 + η S (s))| where N (s, 1 + η S (s)) =   -∂ s1 η S (s) -∂ s2 η S (s) 1   s ∈ ω, (1.15 
)

τ 1 (s, 1 + η S (s)) =   1 0 ∂ s1 η S (s)   , τ 2 (s, 1 + η S (s)) =   0 1 ∂ s2 η S (s)   .
(1.16)

Our aim is to stabilize the solution (U, P, η) of (1.1), (1.5), (1.12) around the stationary state (w S , p S , η) that is a solution of (1.13) by means of a feedback boundary control v(t) that appears in (1.5) depending on the state (U, η). In practice, due to a calculus time issues, we include a time delay t 0 > 0 in the control and the main goal is to construct this feedback control in such a way it depends at time t on the values of the state (U (t ), η(t )) for t t -t 0 and the associated strong solution (U, P, η) to the system (1.1), (1.5), (1.12) goes to (w S , p S , η S ) exponentially. This context of stabilization has an important interest in the control theory of PDE: The analysis of the eect of the time delay on the feedback stabilization of some partial dierential equations is given for instance in [START_REF] Datko | An example on the eect of time delays in boundary feedback stabilization of wave equations[END_REF] and [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF]. Recently, in [START_REF] Bresch-Pietri | New formulation of predictors for nite-dimensional linear control systems with input delay[END_REF] a feedback control is constructed for a nite dimensional system with input delay and in [START_REF] Prieur | Feedback stabilization of a 1-D linear reaction-diusion equation with delay boundary control[END_REF] the authors manage to obtain a stabilizing feedback boundary control to the one-dimensional reaction-diusion system considering a constant delay, their method relies essentially on the Arstein transform and the fact that the generator operator of the system is self-adjoint. We mention also the work [START_REF] Lhachemi | Boundary input-to-state stabilization of a damped Euler-Bernoulli beam in the presence of a state-delay[END_REF] where the author considered the stabilization of a damped Euler-Bernoulli beam equation with a time delayed control, here the system is parabolic but it is not generated by a self-adjoint operator. In [START_REF] Djebour | Feedback stabilization of parabolic systems with input delay[END_REF], the authors extend the theory developed in [START_REF] Prieur | Feedback stabilization of a 1-D linear reaction-diusion equation with delay boundary control[END_REF] and construct a nite dimensional feedback stabilizing control with input delay to a general class of parabolic systems. The challenge in the present work is to apply the theory of [START_REF] Djebour | Feedback stabilization of parabolic systems with input delay[END_REF] to deduce the stabilization of the uid-structure problem (1.1), (1.5) since it describes a parabolic system thanks to the damping term -δ∆∂ t η that appears in the structure equation in (1.1).

In order to state the main result, we give some notations. As it is standard in the studies of uid-structure interaction systems, one of the main diculties lies in the fact that the spatial domain of the uid is variable and unknown. Since the problem consists to compare the asymptotic behavior of the solution (U, P, η) to the stationary state (w S , p S , η S ), we are led to introduce a change of variable to transform the functions (U, P ) into ( u, p) dened in the xed domain Ω(η S ). More precisely, we set

X η 1 ,η 2 : Ω(η 1 ) -→ Ω(η 2 ),   y 1 y 2 y 3   -→     y 1 y 2 1 + η 2 (y 1 , y 2 ) 1 + η 1 (y 1 , y 2 ) y 3     .
(1.17)

We consider the change of variables

X(t, •) = X η S ,η(t,•) , Y (t, •) = X η(t,•),η S , (1.18) 
and we set Ω = Ω(η S ).

We dene the new functions

u(t, y) = (Cof ∇X(t, y)) * U (t, X(t, y)), p(t, y) = P (t, X(t, y)) (t 0, y ∈ Ω). (1.19)
We observe that we have

u 0 = (Cof ∇X(0, •)) * U 0 (X(0, •)).
In what follows, we recall that n is the unitary exterior normal vector and τ i , i = 1, 2 are two tangent vectors on ∂Ω already dened in (1.14), (1.16) and (1.15).

The operators (A 1 , D(A 1 )) and (A 2 , D(A 2 )) are dened by

A 1 η = α∆ 2 η, D(A 1 ) = H 4 (ω) ∩ L 2 0 (ω), (1.20) 
A 2 η = -δ∆η, D(A 2 ) = H 2 (ω) ∩ L 2 0 (ω). (1.21)
Let X 1 , X 2 be two Banach spaces with the norms . X1 and . X2 respectively. For s 0, we dene

W s (0, ∞; X 1 , X 2 ) = v ∈ L 2 (0, ∞; X 1 ) ; v ∈ H s (0, ∞; X 2 ) , with . W s (0,∞;X1,X2) = . L 2 (0,∞;X1) + . H s (0,∞;X2) . For s = 1, the space W 1 (0, ∞; X 1 , X 2 ) is denoted by W (0, ∞; X 1 , X 2 ).
Let f (t) be a vector valued function. For γ > 0, we dene f γ by

f γ : t → e γt f (t).
Then, for γ > 0, we consider the following spaces

L p γ (0, ∞; X 1 ) = {f ∈ L p (0, ∞; X 1 ) ; f γ ∈ L p (0, ∞; X 1 )}, p ∈ [1, +∞], (1.22) 
and

W s γ (0, ∞; X 1 , X 2 ) = {f ∈ W s (0, ∞; X 1 , X 2 ) ; f γ ∈ W s (0, ∞; X 1 , X 2 )}, (1.23) 
with the norms

f L p γ (0,∞;X1) = f γ L p (0,∞;X1) , f W s γ (0,∞;X1,X2) = f γ W s (0,∞;X1,X2) . We set X ∞,γ = W γ (0, ∞; [H 2 (Ω)] 3 , [L 2 (Ω)] 3 ) × L 2 γ (0, ∞; H 1 (Ω)/R) × W 2 γ (0, ∞; D(A 1 ), L 2 0 (ω)), (1.24) 
such that

(u, p, η) X∞,γ = u Wγ (0,∞;[H 2 (Ω)] 3 ,[L 2 (Ω)] 3 ) + u L ∞ γ (0,∞;[H 1 (Ω)] 3 ) + ∇p L 2 γ (0,∞,[L 2 (Ω)] 3 ) + η W 2 γ (0,∞;D(A1),L 2 0 (ω)) + η L ∞ γ (0,∞;H 3 (ω)) + ∂ t η L ∞ γ (0,∞;H 1 (ω)) . (1.25) We dene the space H = [L 2 (Ω)] 3 × D(A 1/2 1 ) × L 2 0 (ω), furnished with the inner product   φ ζ 1 ζ 2   ,   ψ ξ 1 ξ 2   H = Ω φ • ψ dy + ω A 1/2 1 ζ 1 • A 1/2 1 ξ 1 ds + ω ζ 2 • ξ 2 ds.
We set

W =   u -w S η -η S ∂ t η   , (1.26) 
where the function u is dened by (1.19). Finally, we suppose that the initial conditions verify

( u 0 , η 0 , η 1 ) ∈ [H 1 (Ω)] 3 × H 3 (ω) × H 1 (ω) (1.27) ∇ • u 0 = 0 in Ω, ( u 0 -η 1 e 3 ) n = 0 on Γ(η S ), u 0 n = 0 on Γ 0 . (1.28)
Now, we state the main result of this paper.

Theorem 1.1. Let t 0 > 0, γ > 0,

f S ∈ [W 2,∞ (Ω)] 3 , h S ∈ L 2 (ω), (1.29) 
(w S , p S , η S ) ∈ [W 2,∞ (Ω)] 3 × W 1,∞ (Ω)/R × C 4 (ω), (1.30) 
with

1 + η S > 0, (1.31) 
such that the system (1.13) is veried and ( u 0 , η 0 , η 1 ) satisfying (1.27), (1.28). Then, there exist

N γ ∈ N * , K ∈ L ∞ loc (R 2 ; L(H)), (φ k , ζ k 1 , ζ k 2 ) ∈ [H 2 (Ω)] 3 × D(A 1 ) × D(A 1/2 1 ), v k ∈ [H 3/2 (Γ 0 )] 3 , k = 1, . . . , N γ ,
and R > 0, such that if

u 0 -w S [H 1 (Ω)] 3 + η 0 -η S H 3 (ω) + η 1 H 1 (ω) R,
there exists a unique strong solution (U, P, η) of (1.1), (1.5) and (1.12) associated to

v(t) = 1 [t0,+∞) (t) Nγ k=1   W (t -t 0 ) + t-t0 0 K(t -t 0 , s) W (s) ds,   φ k ζ k 1 ζ k 2     H v k , (1.32) 
where W is given by (1.26). Moreover, ( u -w S , p -p S , η -η S ) ∈ X ∞,γ where the functions u, p are dened by (1.19) and we have the following estimate

( u -w S , p -p S , η -η S ) X∞,γ C u 0 -w S [H 1 (Ω)] 3 + η 0 -η S H 3 (ω) + η 1 H 1 (ω) . (1.33) 
Remark 1.2. We can obtain analogous results if we consider the classical Dirichlet boundary conditions

U = Mv on (0, ∞) × Γ 0 , (U -∂ t ηe 3 ) = 0 on (0, ∞) × Γ(η).
(1.34)

We underline that if β 1 = 0, the theorem 1.1 implies that the system (1.1), (1.5) and (1.12) is exponentially stabilizable by considering only a scalar control in the impermeability boundary condition . Remark 1.3. Here, the regularity of η S ensures to have a sucient regular domain to apply elliptic estimates of the Stokes problem with Navier-slip boundary conditions proved in [START_REF] Beirão Da | Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions[END_REF].

In this paper, we are interested in the feedback stabilization of the system (1.1), (1.5) and (1.12) that is similar to the system studied in [START_REF] Badra | Feedback boundary stabilization of 2D uid-structure interaction systems[END_REF] and [START_REF] Raymond | Feedback stabilization of a uid-structure model[END_REF] except that here, we consider the Navier boundary conditions. These conditions were introduced in [START_REF] Navier | Mémoire sur les lois du mouvement des uides[END_REF] by Navier in 1823. The consideration of this type of boundary conditions is signicant in many physical aspects, see for instance [START_REF] Liakos | Finite-element approximation of viscoelastic uid ow with slip boundary condition[END_REF][START_REF] Verfürth | Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition[END_REF][START_REF] Kistler | Coating ow theory by nite element and asymptotic analysis of the Navier-Stokes system[END_REF]. Note that the existence and uniqueness of the strong solution for the system (1.1), (1.5), (1.12) have been obtained recently in [START_REF] Djebour | On the existence of strong solutions to a uid structure interaction problem with Navier boundary conditions[END_REF]. Concerning the stabilization without delay for uid structure problems, there are few results in the literature. In [START_REF] Raymond | Feedback stabilization of a uid-structure model[END_REF], the author considered a coupling system that models the interaction between an incompressible uid governed by the Navier-Stokes system and an elastic structure that enjoys the damped Euler-Bernoulli equation in a rectangular domain considering the Dirichlet boundary conditions, the control in this case is distributed along the structure. The author shows the exponential stabilization of the strong solution of the considered system around zero. The same system was studied in [START_REF] Badra | Feedback boundary stabilization of 2D uid-structure interaction systems[END_REF], where the authors considered a boundary control acting on a located part of the uid boundary. The authors obtained a stabilization result of the weak solution around a stationary state. In the case where the structure is a rigid body, we have [START_REF] Badra | Feedback stabilization of a simplied 1d uid-particle system[END_REF], [START_REF] Badra | Feedback stabilization of a uid-rigid body interaction system[END_REF].

In this work, we construct a boundary feedback control v with a time delay t 0 > 0 (in the direction of [START_REF] Djebour | Feedback stabilization of parabolic systems with input delay[END_REF]) such that the strong solution of our system is exponentially stabilizable around a xed stationary state. Due to regularity concerns, compatibility conditions at t = 0 between v and the initial conditions should be imposed, see for example [START_REF] Badra | Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system[END_REF][START_REF] Badra | Lyapunov function and local feedback boundary stabilization of the Navier-Stokes equations[END_REF][START_REF] Badra | Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control[END_REF]. To overcome this diculty, some strategies was developed in [START_REF] Raymond | Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations[END_REF][START_REF] Badra | Stabilization of parabolic nonlinear systems with nite dimensional feedback or dynamical controllers: application to the Navier-Stokes system[END_REF]. In the case of a time delay, the control acts on the system from t 0 > 0. Consequently, the control vanishes at t = 0. Then, the compatibility conditions are automatically satised and this is a good advantage of the time delay.

The paper is organized as follows: in section 2, we write the system (1.1), (1.5), (1.12) in a xed domain using the change of variables (1.18) and (1.19). Next, we study the associated linear system in section 3 that can be written as

z = Az + Bv + f, z(0) = z 0 . (1.35)
Taking into account the remark 2.1, the linearized problem is written as a system coupling the Oseen equations and the damped plate equation, disturbed by some linear terms appearing in the whole system even in the boundary conditions. We show that the innitesimal operator associated to the linear system is analytic and we establish a rst result of a time delayed stabilization of the linearized problem. In fact, we show that the Fattorini-Hautus criterion is satised

∀ε ∈ D(A * ), ∀λ ∈ C, Re λ -σ A * ε = λε et B * ε = 0 =⇒ ε = 0. (UC σ )
More precisely, the condition (UC σ ) is obtained using the unique continuation property of an auxiliary Oseen system with Neumann boundary condition. Finally, we prove the theorem 1.1 applying the Banach xed point argument.

Change of variables

Let us dene T η

(T η ξ)(y) = 0 if y ∈ Γ 0 , ξ(s)e 3 if y = (s, 1 + η(s)) ∈ Γ(η), (2.1) 
for any function η : ω -→ (-1, ∞). We notice that T η ∈ L(L 2 (ω); [L 2 (∂Ω(η))] 3 ) and

(T * η ζ)(s) = 1 + |∇η| 2 ζ(s, 1 + η(s)) • e 3 , ∀ζ ∈ [L 2 (∂Ω(η))] 3 .
We dene T by

T = T η S M,
where we recall that M is the orthogonal projection on the space L 2 0 (ω) dened by (1.11). Using (1.18) and (1.19), the system (1.1), (1.5), (1.12) is equivalent to

       ∂ t u -∇ • T( u, p) = det(∇X)f S (X) + (Id -K η )∂ t u -ν(∆ -L η ) u +(∇ -G η ) p + M η u + N η u in (0, ∞) × Ω, ∇ • u = 0 in (0, ∞) × Ω, ∂ tt η + A 1 η + A 2 ∂ t η = H η S ( u, p) + H( u, η) + M h S in (0, ∞) × ω, (2.2)
with the boundary conditions

[ u -T ∂ t η] n = 1 Γ0 (Mv) n on (0, ∞) × ∂Ω, [2νD( u)n + β( u -T ∂ t η)] τ = 1 Γ0 β(Mv) τ + G( u, η) on (0, ∞) × ∂Ω, (2.3) 
and with the initial conditions

   u(0, •) = (Cof ∇X(0, .)) * U 0 (X(0, •)) = u 0 in Ω, η(0, •) = η 0 in ω, ∂ t η(0, •) = η 1 in ω. (2.4)
We precise here that 1 Γ0 is the characteristic function of the set Γ 0 . To simplify the notations, we set

a = (Cof(∇Y )) * , b = (Cof(∇X)), K η u = (∇X) u, G η p = b∇ p.
We have the following formulas

[-ν(∆ -L η ) u] i = ν j,k,l,m det(∇X)a ik (X) ∂Y m ∂x j (X) ∂Y l ∂x j (X) -δ ik δ mj δ jl ∂ 2 u k ∂y l ∂y m + ν j,k,l,m det(∇X)a jk (X) ∂Y m ∂x i (X) ∂Y l ∂x j (X) -δ jk δ mi δ jl ∂ 2 u k ∂y l ∂y m + det(∇X) ν j,k,l ∂a ik ∂x j (X) ∂Y l ∂x j (X) + ∂a jk ∂x i (X) ∂Y l ∂x j (X) ∂ u k ∂y l + ν j,k,l ∂a ik ∂x j (X) ∂Y l ∂x j (X) + a ik (X) ∂ 2 Y l ∂x 2 j (X) + ∂a jk ∂x j (X) ∂Y l ∂x i (X) + a jk (X) ∂ 2 Y l ∂x j ∂x i (X) ∂ u k ∂y l + ν k ∂ 2 a ik ∂x 2 j (X) + ∂ 2 a jk ∂x j ∂x i (X) u k , (2.5) [(∇ -G η ) p] i = k (δ ik -b ik ) ∂ p ∂y k = k (δ ik -det(∇X) ∂Y k ∂x i (X)) ∂ p ∂y k , (2.6 
)

[N η u] i = - k,l,j det(∇X)a kl (X) ∂a ij (X) ∂x k u l u j - k,l,j,m det(∇X)a kl (X)a ij (X) ∂Y m ∂x k (X) u l ∂ u j ∂y m , (2.7) 
[M η u] i = - l,k det(∇X)a ik (X) ∂ u k ∂y l ∂ t Y l (X) - k det(∇X)∂ t a ik (X) u k , i = 1, 2, 3. (2.8) 
The non linear term H appearing in the plate equation writes

H( u, η) = νM - j,k ∂a 3k ∂x j (X) + ∂a jk ∂x 3 (X) N j u k + j,k,l δ 3k δ jl (N ) j -a 3k (X) ∂Y l ∂x j (X) N j ∂ u k ∂y l + δ 3l δ jk (N ) j -a jk (X) ∂Y l ∂x 3 (X) N j ∂ u k ∂y l . (2.9) 
Now let us deal with the boundary conditions. Let W be the operator dened by

[W( u, η)] k = ν j,m n j (X) ∂a km ∂x j (X) u m + ∂a jm ∂x k (X) u m + β   j a kj (X) u j -T ∂ t η • e k   + ν j,m,q n j (X) a km (X) ∂ u m ∂y q ∂Y q ∂x j (X) + a jm (X) ∂ u m ∂y q ∂Y q ∂x k (X) , k = 1, 2, 3. (2.10)
The boundary conditions (1.5) become after the change of variables (1.18) and (1.19)

( u -T ∂ t η) n = 1 Γ0 (Mv) n on (0, ∞) × ∂Ω, W( u, η) • ( τ i (X)) = 1 Γ0 β(Mv) • ( τ i (X)), i = 1, 2 on (0, ∞) × ∂Ω, (2.11) 
where τ i are dened by (1.2) and (1.3). The second boundary condition in (2.11) can be written as

(2νD( u)n + β( u -T ∂ t η)) • τ i = V i ( u, η) + 1 Γ0 β(Mv) • τ i , i = 1, 2, on ∂Ω,
where τ i are the two tangent vectors on ∂Ω dened by (1.14), (1.16) and V i is given by

V i ( u, η) = (2νD( u)n + β( u -T ∂ t η)) • (τ i -τ i (X)) + (2νD( u)n + β( u -T ∂ t η) -W( u, η)) • τ i (X), i = 1, 2, on ∂Ω. (2.12)
We construct an operator G such that G

• n = 0 and G • τ i = V i on ∂Ω. Consequently, G is dened on Γ(η S ) by G 1 = V 1 ((∂ s2 η S ) 2 + 1) -V 2 (∂ s1 η S ∂ s2 η S ) |N | 2 , G 2 = V 2 ((∂ s1 η S ) 2 + 1) -V 1 (∂ s1 η S ∂ s2 η S ) |N | 2 , G 3 = ∂ s1 η S V 1 + ∂ s2 η S V 2 |N | 2 , (2.13) 
and

G is dened on Γ 0 by G = 2 i=1 V i τ i . We set u = u -w S , p = p -p S , ξ = η -η S .
Then, (u, p, ξ) satises the system

   ∂ t u -∇ • T(u, p) + (w S • ∇)u + (u • ∇)w S = F (u, p, ξ) in (0, ∞) × Ω, ∇ • u = 0 in (0, ∞) × Ω, ∂ tt ξ + A 1 ξ + A 2 ∂ t ξ = H η S (u, p) + H(u + w S , ξ + η S ) in (0, ∞) × ω, (2.14) 
where

F (u, p, ξ) = (Id -K ξ+η S )∂ t u -ν(∆ -L ξ+η S )(u + w S ) + (∇ -G ξ+η S )(p + p S ) + M ξ+η S (u + w S ) + N ξ+η S (u + w S ) + (u • ∇)w S + (w S • ∇)u + (w S • ∇)w S + det(∇X)f S (X) -f S , (2.15)
with the boundary conditions

[u -T ∂ t ξ] n = 1 Γ0 (Mv) n on (0, ∞) × ∂Ω, [2νD(u)n + β(u -T ∂ t ξ)] τ = 1 Γ0 β(Mv) τ + G(u + w S , ξ + η S ) on (0, ∞) × ∂Ω, (2.16) 
and the initial conditions

   u(0, •) = u 0 -w S in Ω, ξ(0, •) = η 0 -η S in ω, ∂ t ξ(0, •) = η 1 in ω.
(2.17)

Remark 2.1. For the linearization of the system (2.14), (2.16), (2.17), we need to nd all the linear terms coming from the change of variables. For example, we observe the term

det(∇X)f S (X) -f S = det(∇X)(f S (X) -f S ) + (det(∇X) -1)f S .
We recall that det(∇X) = 1 + η 1 + η S . We notice that

X(y) = y + y 3 ξ(y 1 , y 2 ) 1 + η S (y 1 , y 2 ) e 3 = y + θξ(y 1 , y 2 )e 3 .
We apply Taylor's formula since

f S ∈ [W 2,∞ (Ω)] 3 , we get f S (X(y)) -f S (y) = θξ(y 1 , y 2 )∇f S (y)e 3 + 1 0 (1 -s)∇ 2 f S (y + sθξ(y 1 , y 2 )e 3 )θξ(y 1 , y 2 )e 3 • θξ(y 1 , y 2 )e 3 ds. (2.18) Then det(∇X(y))f S (X(y)) -f S (y) = ξ(y 1 , y 2 ) 1 + η S (y 1 , y 2 ) f S (y) + θξ(y 1 , y 2 )∇f S (y)e 3 + (ξ(y 1 , y 2 )) 2 1 + η S θ∇f S (y)e 3 + 1 + ξ(y 1 , y 2 ) 1 + η S (y 1 , y 2 ) 1 0 (1 -s)∇ 2 f S (y + sθξ(y 1 , y 2 )e 3 )θξ(y 1 , y 2 )e 3 • θξ(y 1 , y 2 )e 3 ds. (2.19) Now, let assume that ξ L 2 γ (0,∞;L 2 (ω))
CR, then, we have for example

ξ 1 + η S f S L 2 γ (0,∞;[L 2 (Ω)] 3 ) CR.
Thus, the terms of this kind should be considered in the linear part of the system or else it will constitute a problem in the xed point procedure.

To overcome this diculty, we follow the same approach described in [START_REF] Badra | Feedback boundary stabilization of 2D uid-structure interaction systems[END_REF]. More precisely, we write for example det(∇X(y))f S (X(y)) -f S (y) = (12) (ξ) + (12) (ξ), with (12) (ξ)

L 2 γ (0,∞;[L 2 (Ω)] 3 ) C ξ 2 L 2 γ (0,∞;L 2 (ω)) (1 + ξ m L 2 γ (0,∞;L 2 (ω)) ), m 1. (2.20) 
where (12) is the linear operator (12) (ξ) = ξ 1 + η S f S , and (12) is the remaining non linear terms appearing in (2.19). Then, the strategy consists to integrate the linear operator (12) in the left hand side of the uid equation in (2.14) and to inject (12) in the right hand side that will be handled in the xed point section.

Due to remark 2.1, we need to decompose the functions F , H and G into a linear part in ξ and a nonlinear part.

The notation ∂ s ξ (resp. ∂ 2 ss ξ, ∂ 3 sss ξ), designates in what follows the rst derivative ∂ sj ξ (resp. the second derivative ∂ 2 sisj ξ, the third derivative ∂ 3 sisj s k ξ ). We underline that the linear part is not given in a explicit way, we just need to write formally the terms that appear precising the derivative order of ξ. The linear parts denoted usually by (i) will have the form that formally writes

(i) (Z 1 , ..., Z m ) = P (i) 1 Z 1 + .... + P (i) m Z m , (2.21) 
where

P (i) j
are coecients that depend only on the stationary state (w S , p S , η S ), consequently, they are regular enough. The goal now is to decompose each terms appearing in the formulas of F (u, p, ξ), H(u + w s , ξ + η S ), G(u + w S , ξ + η S ) as it is done in remark 2.1, the formal calculus are done in lemma 4.2. Note that since our system is coupled, we need to obtain a convenient match between the linear operators that appear in the uid equation, the structure equation and even in the boundary conditions. That is given in the following lemma. Lemma 2.2. Suppose that

(w S , p S , η S ) ∈ [W 2,∞ (Ω)] 3 × W 1,∞ (Ω)/R × C 4 (ω).

Then,

• there exist linear operators

L 1 (•) ∈ L(D(A 3/4 1 ), [H 1 (Ω)] 3×3 ), L 2 (•, •) ∈ L(D(A 1/2 1 ) × D(A 1/4 1 ), [L 2 (Ω)] 3 ), L 3 (•) ∈ L(D(A 1/2 1 ), [H 1/2 (∂Ω)] 3 ),
• there exist non linear functions N E , N F , N G and F, such that the system (2.14), (2.16), (2.17) is equivalent to

           ∂ t u -∇ • T(u, p) + (w S • ∇)u + (u • ∇)w S -∇ • L 1 (ξ) + L 2 (ξ, ∂ t ξ) = ∇ • N E (ξ) + N F (ξ) + F(u, p, ξ) in (0, ∞) × Ω, ∇ • u = 0 in (0, ∞) × Ω, ∂ tt ξ + A 1 ξ + A 2 ∂ t ξ + T * (L 1 (ξ)n) = H η S (u, p) + H(u, ξ + η S ) -T * (N E (ξ)n) in (0, ∞) × ω, (2.22) 
with the boundary conditions

   [u -T ∂ t ξ] n = 1 Γ0 (Mv) n on (0, ∞) × ∂Ω, 2νD(u)n + L 1 (ξ)n + L 3 (ξ) + β(u -T ∂ t ξ) τ = 1 Γ0 β(Mv) τ -[N E (ξ)n] τ + [N G (ξ)] τ + G(u, ξ + η S ) on (0, ∞) × ∂Ω, (2.23) 
and the initial conditions

   u(0, •) = u 0 -w S in Ω, ξ(0, •) = η 0 -η S in ω, ∂ t ξ(0, •) = η 1 in ω. (2.24) 
Proof. Decomposition of F (u, p, ξ):

Let decompose the term -ν(∆ -L η ). We notice that

-ν(∆ -L η )( u) = -ν(∆ -L ξ+η S )(u + w S ) = -ν(∆ -L ξ+η S )(u) -ν(∆ -L ξ+η S )(w S ). (2.25)
The term -ν(∆ -L ξ+η S )(u) is nonlinear whereas -ν(∆ -L ξ+η S )(w S ) contains linear terms in ξ, then, from remark 2.1, we should write

-ν(∆ -L ξ+η S )(w S ) = (13) (ξ, ∂ s ξ, ∂ 2 ss ξ, ∂ 3 sss ξ) + (13) (ξ, ∂ s ξ, ∂ 2 ss ξ, ∂ 3 sss ξ), (2.26) 
where (13) is a linear operator of the form (2.21) and (13) is the nonlinear part. To write the linearized system in an appropriate form, we dene for all u

(E η ( u)) im = ν j,k,l det(∇X)a ik (X) ∂Y m ∂x j (X) ∂Y l ∂x j (X) -δ ik δ mj δ jl ∂ u k ∂y l + ν j,k,l det(∇X)a jk (X) ∂Y m ∂x i (X) ∂Y l ∂x j (X) -δ jk δ mi δ jl ∂ u k ∂y l + det(∇X)   ν j,k ∂a ik ∂x j (X) ∂Y m ∂x j (X) + ∂a jk ∂x i (X) ∂Y m ∂x j (X) u k   . (2.27)
Observe that

(∇ • E η ) i = -ν[(∆ -L η )] i + (F 1 η ) i , (2.28) 
with

[(F 1 η )( u)] i = ν ∂ det(∇X) ∂y m j,k,l,m a ik (X) ∂Y m ∂x j (X) ∂Y l ∂x j (X) + a jk (X) ∂Y m ∂x i (X) ∂Y l ∂x j (X) ∂ u k ∂y l + j,k ∂a ik ∂x j (X) ∂Y m ∂x j (X) + ∂a jk ∂x i (X) ∂Y m ∂x j (X) u k + ν det(∇X) j,k,l,m,q ∂ 2 Y m ∂x j ∂x q (X) ∂X q ∂y m a ik (X) ∂Y l ∂x j (X) + a jk (X) ∂Y l ∂x j (X) ∂ u k ∂y l + ∂a ik ∂x j (X) + ∂a jk ∂x i (X) u k . (2.29)
From the lemma 4.2, we have

(E ξ+η S (w S )) = L 1 (ξ) + N E (ξ), (2.30) 
where L 1 is a linear operator that writes

L 1 (ξ) = Q 1 ξ + Q 2 ∂ s ξ + Q 3 ∂ 2 ss ξ,
where Q i , i = 1, .., 3 are operators that depend only on the stationary state and are of regularity W 1,∞ (Ω). The quantity N E (ξ) is the remaining nonlinear part that contains the terms of the form

c 1 (w S , η S ) ξ m1 (∂ s ξ) m2 (1 + ξ + η S ) α1 , c 2 (w S , η S ) ξ n1 (∂ s ξ) n2 ∂ 2 ss ξ (1 + ξ + η S ) α2 , m 1 + m 2 2, n 1 + n 2 1, α i 1, (2.31) 
where c 1 (w S , η S ) and c 2 (w S , η S ) are two quantities of regularity W 1,∞ (Ω). In the other hand, from lemma 4.2, we have also

(F 1 ξ+η S )(w S ) = -(9) (ξ, ∂ s ξ, ∂ 2 ss ξ) -(9) (ξ, ∂ s ξ, ∂ 2 ss ξ), (2.32) 
where the expression of the nonlinear part (9) (ξ, ∂ s ξ, ∂ 2 ss ξ) contains terms of the form (2.31). Then, from (2.26), (2.28), (2.30) and (2.32), we deduce (13) 

(ξ, ∂ s ξ, ∂ 2 ss ξ, ∂ 3 sss ξ) = ∇ • (L 1 (ξ)) + (9) (ξ, ∂ s ξ, ∂ 2 ss ξ), (2.33) 
(13) (ξ, ∂ s ξ, ∂ 2 ss ξ, ∂ 3 sss ξ) = (9) (ξ, ∂ s ξ, ∂ 2 ss ξ) + ∇ • (N E (ξ)). ( 2 
L ξ+η S )(u + w S ) writes -ν(∆ -L ξ+η S )(u + w S ) = ∇ • (L 1 (ξ)) + (9) (ξ, ∂ s ξ, ∂ 2 ss ξ) + (9) (ξ, ∂ s ξ, ∂ 2 ss ξ) + ∇ • (N E (ξ)) -ν(∆ -L ξ+η S )(u). (2.35)
Furthermore, using again lemma 4.2, we obtain

[(∇ -G ξ+η S )(p S )] i = k (δ ki -det(∇X) ∂Y k ∂x i (X)) ∂p S ∂y k = (5) i (ξ, ∂ s ξ) + (5) i (ξ, ∂ s ξ), (2.36) 
where (5) (ξ, ∂ s ξ) contains the terms

c 3 (p S , η S ) ξ m2 (∂ s ξ) m2 (1 + ξ + η S ) α1 , m 1 + m 2 2, α 1 1, (2.37)
where c 3 is a function that depends on the stationary state and bounded in Ω. Then, we get

[(∇ -G ξ+η S )(p + p S )] i = (5) i (ξ, ∂ s ξ) + (5) i (ξ, ∂ s ξ) + [(∇ -G ξ+η S )(p)] i . (2.38) Moreover, we have l,k det(∇X)a ik (X) ∂w S k ∂y l ∂ t Y l (X) = (∇X∇w S ∂ t Y (X)) i ,
where

(∇X∇w S ∂ t Y (X)) i = ∂ t Y 3 ∂w S i ∂y 3 , i = 1, 2, (∇X∇w S ∂ t Y (X)) 3 = ∂ t Y 3 ∂X 3 ∂y 1 ∂w S 1 ∂y 3 + ∂X 3 ∂y 2 ∂w S 2 ∂y 3 + 1 + η 1 + η S ∂w S 3 ∂y 3 .
We notice that

∂ t Y 3 = -y 3 ∂ t ξ 1 + η , ∂X 3 
∂y i = y 3 ∂ si ξ(1 + η S ) -∂ si η S ξ (1 + η S ) 2 , i = 1, 2.
Using (4.14), we nd

-(∇X∇w S ∂ t Y (X)) i = (4) i (∂ t ξ) + (4) i (ξ, ∂ s ξ, ∂ t ξ), where (4) (ξ, ∂ s ξ, ∂ t ξ) has the terms c 4 (w S , η S ) ξ m1 ∂ t ξ∂ s ξ (1 + ξ + η S ) α1 , c 5 (w S , η S ) ξ m2 ∂ t ξ (1 + ξ + η S ) α2 , m 1 0, m 2 1, α i 1, (2.39) 
with c 4 and c 5 are W 1,∞ (Ω) functions. Moreover, using lemma 4.2, we get

- k det(∇X)∂ t a ik (X)w S k = (6) i (∂ t ξ, ∂ 2 ts ξ) + (6) i (ξ, ∂ t ξ, ∂ 2 ts ξ), (2.40) 
where [START_REF] Badra | Feedback stabilization of a simplied 1d uid-particle system[END_REF] (ξ, ∂ t ξ, ∂ 2 ts ξ) contains terms of the form

c 6 (w S , η S ) ξ m1 ∂ 2 ts ξ (1 + ξ + η S ) α1 , c 7 (w S , η S ) ξ m2 ∂ t ξ (1 + ξ + η S ) α2 , c 8 (w S , η S ) ξ m3 ∂ t ξ∂ s ξ (1 + ξ + η S ) α3 , m 1 1, m 2 1, m 3 0, α i 1, (2.41)
where c i , i = 6, ..., 8 are W 2,∞ (Ω) functions. Then

M ξ+η S (u + w S ) = (4) (∂ t ξ) + (6) (∂ t ξ, ∂ 2 ts ξ) + (6) (ξ, ∂ t ξ, ∂ 2 ts ξ) + (4) (ξ, ∂ s ξ, ∂ t ξ) + M ξ+η S (u). (2.42) 
We have,

[N ξ+η S (u + w S ) + u • ∇w S + w S • ∇u + w S • ∇w S ] i = - k,l,j det(∇X)a kl (X) ∂a ij (X) ∂x k w S l w S j + k,l,j,m δ ij δ kl δ km -det(∇X)a kl (X)a ij (X) ∂Y m ∂x k (X) w S l ∂w S j ∂y m + F 2 i (u, ξ + η S ) = F 2 i (u, ξ + η S ) + F 3 i (w S , ξ + η S ), i = 1, 2, 3. (2.43)
Using lemma 4.2, we obtain

F 3 i (w S , ξ + η S ) = (8) i (ξ, ∂ s ξ, ∂ 2 ss ξ) + (8) i (ξ, ∂ s ξ, ∂ 2 ss ξ), (2.44) 
where [START_REF] Beirão Da | Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions[END_REF] (ξ, ∂ s ξ, ∂ 2 ss ξ) admits terms of the form (2.31). Then, we get 

[N ξ+η S (u + w S ) + u • ∇w S + w S • ∇u + w S • ∇w S ] i = (8) i (ξ, ∂ s ξ, ∂ 2 ss ξ) + (8) i (ξ, ∂ s ξ, ∂ 2 ss ξ) + F 2 i (u, ξ + η S ), i = 1,
F (u, p, ξ) = ∇ • L 1 (ξ) + L 2 (ξ, ∂ t ξ) + ∇ • N E (ξ) + N F (ξ) + F(u, p, ξ). (2.46)
where

L 2 (ξ, ∂ t ξ) = (9) (ξ, ∂ s ξ, ∂ 2 ss ξ) + (5) (ξ, ∂ s ξ) + (4) (∂ t ξ) + (6) (∂ t ξ, ∂ 2 ts ξ) + (8) (ξ, ∂ s ξ, ∂ 2 ss ξ). (2.47) More precisely, L 2 (ξ, ∂ t ξ) = Q 4 ξ + Q 5 ∂ s ξ + Q 6 ∂ 2 ss ξ + Q 7 ∂ t ξ + Q 8 ∂ 2 st ξ, where Q i , i = 4, .
., 8 are operators of regularity W 1,∞ (Ω) and we also have

N F (ξ) = (9) (ξ, ∂ s ξ, ∂ 2 ss ξ) + (5) (ξ, ∂ s ξ) + (4) (ξ, ∂ s ξ, ∂ t ξ) + (6) (ξ, ∂ t ξ, ∂ 2 ts ξ) + (8) (ξ, ∂ s ξ, ∂ 2 ss ξ), (2.48) F(u, p, ξ) = (Id -K ξ+η S )∂ t u -ν(∆ -L ξ+η S )(u) + (∇ -G ξ+η S )(p) + M ξ+η S (u) + F 2 (u, ξ + η S ). (2.49) Decomposition H(u, ξ + η S ):
We have

H(u + w S , ξ + η S ) = H(u, ξ + η S ) + H(w S , ξ + η S ).
We notice that

H(w S , ξ + η S ) = -T * ((E ξ+η S (w S ))n), (2.50) 
where T * is dened by

T * (ζ)(s) = M 1 + |∇η S | 2 ζ(s, 1 + η S (s)) • e 3 , ∀ζ ∈ [L 2 (∂Ω)] 3 .
(2.51) Using (2.30), we obtain

H(u + w S , ξ + η S ) = -T * (L 1 (ξ)n) + H(u, ξ + η S ) -T * (N E (ξ)n). (2.52)
Decomposition of G(u, ξ + η S ):

Using the expression of W in (2.10) and of V i in (2.12), we nd

V i (w S , ξ + η S ) = 2νD(w S )n + βw S • (τ i -τ i (X)) + ν j,m,q (n) j δ km δ qj -( n(X)) j a km (X) ∂Y q ∂x j (X) ∂w S m ∂y q -ν j,m,q ( n(X)) j a jm (X) ∂Y q ∂x k (X) -(n) j δ jm δ qk ∂w S m ∂y q -ν j,m ( n(X)) j ∂a km ∂x j (X)w S m + ∂a jm ∂x k (X)w S m + β j (δ kj -a kj (X))w S j τ i k (X), k = 1, 2, 3.
We notice that ν j,m,q

n j δ km δ qj -n j (X)a km (X) ∂Y q ∂x j (X) ∂w S m ∂y q + ν j,m,q n j δ jm δ qk -n j (X)a jm (X) ∂Y q ∂x k (X) ∂w S m ∂y q -ν j,m n j (X) ∂a km ∂x j (X)w S m + ∂a jm ∂x k (X)w S m = - |N | | N | (E ξ+η S (w S ))n k + ν j (n) j - N j | N | ∂w S k ∂y j + ν j (n) j - N j | N | ∂w S j ∂y k . (2.53)
In the other hand, using Taylor's formula

1 | N | = 1 |N | - ∇η S • ∇ξ |N | 3 - |∇ξ| 2 2|N | 3 + 3θ 2 4|N | 1 0 (1 -s) (1 + sθ) 5/2 ds, where θ = 2∇η S • ∇ξ + |∇ξ| 2 |N | 2
. Then, we deduce

1 | N | = 1 |N | - ∇η S • ∇ξ |N | 3 + (10) (∂ s ξ), (2.54) 
with (10) 

(∂ s ξ) = - |∇ξ| 2 2|N | 3 + 3θ 2 4|N | 1 0 (1 -s) (1 + sθ) 5/2 ds.
Then, using (2.30) and (2.54), we obtain ν j,m,q n j δ km δ qj -n j (X)a km (X) ∂Y q ∂x j (X) ∂w S m ∂y q + ν j,m,q

n j δ jm δ qk -n j (X)a jm (X) ∂Y q ∂x k (X) ∂w S m ∂y q -ν j,m n j (X) ∂a km ∂x j (X)w S m + ∂a jm ∂x k (X)w S m = [-L 1 (ξ)n + (14) (∂ s ξ) -N E (ξ)n + (14) (ξ, ∂ s ξ, ∂ 2 ss ξ)] k , (2.55) 
where ( 14)

k (∂ s ξ) = ν ∇η S • ∇ξ |N | 2 j ∂w S k ∂y j + ∂w S j ∂y k ,
and (14) admits the terms (2.31). Moreover, From lemma 4.2, we get

β j (δ kj -a kj (X))w S j = (15) k (ξ, ∂ s ξ) + (15) k (ξ, ∂ s ξ),
where

k had the terms c 9 (w S , η S ) ξ m1 (1 + ξ + η S ) α1 , c (10) (w S , η S )

ξ m2 ∂ s ξ (1 + ξ + η S ) α2 , m 1 2, m 2 1, α i 1, i = 1, 2,
where c i , i = 9, 10 are of regularity W 3/2,∞ (∂Ω).

V i (w S , η) = -[L 1 (ξ)n + L 3 (ξ)] • τ i -[N E (ξ)n] • τ i + (11) i (ξ, ∂ s ξ, ∂ 2 ss ξ), (2.56) 
where L 3 is an operator dened by

L 3 (ξ) • τ i = -2νD(w S )n + βw S • (τ i -τ i (X)) -(14) (∂ s ξ) • τ i , L 3 (ξ) • n = 0,
then L 3 can be expressed as the following

L 3 (ξ) = Q 9 ξ + Q 10 ∂ s ξ, (2.57) 
where Q 9 and Q 10 are of regularity W 1/2,∞ (∂Ω) and (11) 

(ξ, ∂ s ξ, ∂ 2 ss ξ) = -(14) (∂ s ξ) • ( τ i (X) -τ i ) + (14) (ξ, ∂ s ξ, ∂ 2 ss ξ) • τ i (X) -[N E (ξ)n] • ( τ i (X) -τ i ).
Here, [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF] contains terms of the type (2.31). Finally, we dene N G such that

N G (ξ) • τ i = (11) i (ξ, ∂ s ξ, ∂ 2 ss ξ), N G (ξ) • n = 0.
Then, the system (2.14), (2.16), (2.17) becomes

           ∂ t u -∇ • T(u, p) + (w S • ∇)u + (u • ∇)w S -∇ • L 1 (ξ) + L 2 (ξ, ∂ t ξ) = ∇ • N E (ξ) + N F (ξ) + F(u, p, ξ) in (0, ∞) × Ω, ∇ • u = 0 in (0, ∞) × Ω, ∂ tt ξ + A 1 ξ + A 2 ∂ t ξ + T * (L 1 (ξ)n) = H η S (u, p) + H(u, ξ + η S ) -T * (N E (ξ)n) in (0, ∞) × ω,
and the boundary conditions

   [u -T ∂ t ξ] n = 1 Γ0 (Mv) n on (0, ∞) × ∂Ω, 2νD(u)n + L 1 (ξ)n + L 3 (ξ) + β(u -T ∂ t ξ) τ = 1 Γ0 β(Mv) τ -[N E (ξ)n] τ + [N G (ξ)] τ + G(u, ξ + η S ) on (0, ∞) × ∂Ω,
and the initial conditions

   u(0, •) = u 0 -w S in Ω, ξ(0, •) = η 0 -η S in ω, ∂ t ξ(0, •) = η 1 in ω.
3 Feedback stabilization of the linear system

We consider the linear system associated to (2.14) and (2.16)

   ∂ t w + (w S • ∇) w + ( w • ∇)w S -∇ • T( w, q) -∇ • L 1 (ξ) + L 2 (ξ, ∂ t ξ) = f in (0, ∞) × Ω, ∇ • w = 0 in (0, ∞) × Ω, ∂ tt ξ + A 1 ξ + A 2 ∂ t ξ + T * (L 1 (ξ)n) = -T * (T( w, q)n) + h in (0, ∞) × ω, (3.1)
with the boundary conditions

[ w -T ∂ t ξ] n = 1 Γ0 (Mv) n on (0, ∞) × ∂Ω, 2νD( w)n + β ( w -T ∂ t ξ) + L 1 (ξ)n + L 3 (ξ) τ = 1 Γ0 β(Mv) τ + g on (0, ∞) × ∂Ω, (3.2) 
and the initial conditions

   w(0, •) = w 0 = u 0 -w S in Ω, ξ(0, •) = ξ 0 = η 0 -η S in ω, ∂ t ξ(0, •) = ξ 1 = η 1 in ω, (3.3) 
where

L 1 (ξ) = Q 1 ξ + Q 2 ∂ s ξ + Q 3 ∂ 2 ss ξ, L 2 (ξ, ∂ t ξ) = Q 4 ξ + Q 5 ∂ s ξ + Q 6 ∂ 2 ss ξ + Q 7 ∂ t ξ + Q 8 ∂ 2 st ξ, L 3 (ξ) = Q 9 ξ + Q 10 ∂ s ξ. (3.4) We set L 2,1 (ξ) = Q 4 ξ + Q 5 ∂ s ξ + Q 6 ∂ 2 ss ξ, L 2,2 (∂ t ξ) = Q 7 ∂ t ξ + Q 8 ∂ 2 ts ξ. (3.5) 
Here, we recall that Q i , i = 1, ..., 8 are some operators that depend on the stationary state, of regularity W 1,∞ (Ω) and Q 9 , Q 10 are of regularity W 1/2,∞ (∂Ω). The next step consists to reformulate the system (3.1), (3.2) to get an evolution problem. To do so, we need to lift g in the boundary conditions. Then, we set the following lemma that concerns the instationary Stokes problem with Navier boundary conditions with a non negative friction. Lemma 3.1. Let β 0 and γ 0 > 0. Let ( v, π) that veries the system

           ∂ t v + γ 0 v -∇ • T( v, π) = 0 in (0, ∞) × Ω, ∇ • v = 0 in (0, ∞) × Ω, v n = 0 on (0, ∞) × ∂Ω, [2νD( v)n + β v] τ = g on (0, ∞) × ∂Ω, v(0, •) = 0 in Ω. (3.6) If g ∈ W 1/4 γ (0, ∞; [H 1/2 (∂Ω)] 3 , [L 2 (∂Ω)] 3 ), g n0 = 0, (3.7) 
for γ ∈ [0, γ 0 [, then the problem (3.6) admits a unique solution that satises the estimate

v 2 Wγ (0,∞,[H 2 (Ω)] 3 ,[L 2 (Ω)] 3 ) + ∇ π 2 L 2 γ (0,∞;[L 2 (Ω)] 3 ) C g 2 W 1/4 γ (0,∞;[H 1/2 (∂Ω)] 3 ,[L 2 (∂Ω)] 3 ) , (3.8) 
where C is a positive constant.

Remark 3.2. Since γ 0 > 0, then the system (3.6) admits a unique solution for any β 0 that is exponentially stable. If γ 0 = β = 0 the system is no more stable hence the importance of taking γ 0 > 0.

Proof. In the proof, we use the fact that the condition (3.7) is equivalent to

g ∈ W 1/2 γ (0, ∞; [H 1 (Ω)] 3 , [L 2 (Ω)] 3 ), g n0 = 0.
This fact is obtained in [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]p.21,Theorem 2.3]. This type of demonstration can be found in [START_REF] Shimada | On the L p -L q maximal regularity for Stokes equations with Robin boundary condition in a bounded domain[END_REF], for the sake of completeness, we recall the main steps of the proof here and see how we can adapt some points of the proof in our case. We consider the following problem

       γ 0 z -∇ • T(z, χ) = 0 in (0, ∞) × Ω, ∇ • z = 0 in (0, ∞) × Ω, z n = 0 on (0, ∞) × ∂Ω, [2νD(z)n + βz] τ = g on (0, ∞) × ∂Ω.
(3.9)

By a density argument, we assume that g ∈ C ∞ 0 (R + , [H 1 (Ω)] 3 ) and g(t) = 0 if t < 0. Then, the system (3.9), admits a unique solution [START_REF] Beirão Da | Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions[END_REF]). We set then, z = v -z, χ = π -χ. Then, ( z, χ) satises the system

(z, χ) ∈ C ∞ 0 (R + , [H 2 (Ω)] 3 ) × C ∞ 0 (R + , H 1 (Ω)/R) (see
           ∂ t z + γ 0 z -∇ • T( z, χ) = -∂ t z in (0, ∞) × Ω, ∇ • z = 0 in (0, ∞) × Ω, z n = 0 on (0, ∞) × ∂Ω, [2νD( z)n + β z] τ = 0 on (0, ∞) × ∂Ω, z(0, •) = 0 in Ω.
(3.10)

The system above admits a solution using the fact that the operator

A = P∆ -γ 0 Id, D(A) = {z ∈ [H 2 (Ω)] 3 ; z • n = 0, [2νD(z)n + βz] τ = 0},
generates an analytic semigroup exponentially stable where P designates the Leray projection. This is a direct consequence of [9, Theorem 2.12, p.115]. We deduce then the existence of a unique solution

( v, π) ∈ C ∞ 0 (R + , [H 2 (Ω)] 3 ) × C ∞ 0 (R + , H 1 (Ω)/R) of the system (3.6). Now, we show (3.8). Let φ ∈ C ∞ 0 (R + , [L 2 (Ω)] 3
) such that ∇ • φ = 0, φ • n = 0, and we suppose that φ = 0 on (T, ∞) × Ω where T > 0. We consider the system

           ∂ t ψ -(γ 0 -γ)ψ + ∇ • T(ψ, θ) = φ in R × Ω, ∇ • ψ = 0 in R × Ω, ψ n = 0 on R × ∂Ω, [2νD(ψ)n + βψ] τ = 0 on R × ∂Ω, ψ(T ) = 0 in Ω. (3.11) 
We observe that ψ = 0, θ = 0 on (T, ∞) × Ω. The system (3.11) admits a unique solution

(ψ, θ) ∈ W (R; [H 2 (Ω)] 3 , [L 2 (Ω)] 3 ) × L 2 (R; H 1 (Ω)/R),
exponentially stable satisfying

ψ W (R;[H 2 (Ω)] 3 ,[L 2 (Ω)] 3 ) + θ L 2 (R;H 1 (Ω)/R) C φ L 2 (R;[L 2 (Ω)] 3 ) . (3.12)
We have

R Ω e γt v • φ dydt = R Ω e γt v • (∂ t ψ -(γ 0 -γ)ψ + ∇ • T(ψ, θ)) dydt = - R Ω e γt (∂ t v + γ 0 v -∇ • T( v, π)) • ψ dydt - R ∂Ω e γt g τ • ψ τ dΓdt = - R ∂Ω e γt g τ • ψ τ dΓdt.
Using (3.12), we get

e γt v L 2 (R;[L 2 (Ω)] 3 ) C e γt g L 2 (R;[H 1 (Ω)] 3 ) . (3.13)
In the other hand, we extend n on Ω and we obtain

∂Ω e γt ∂ t g • ψ dΓ = i Ω e γt ∂ i ((n) i ∂ t g) • ψ dy + i Ω e γt ((n) i ∂ t g) • ∂ i ψ dy. Then, R Ω e γt ∂ t v • φ dydt = - i R Ω e γt ∂ i ((n) i ∂ t g) • ψ + e γt ((n) i ∂ t g) • ∂ i ψ dydt. (3.14) To estimate t -→ e γt ∂ t v(t) in L 2 (R, [L 2 (Ω)] 3 ), we notice that R Ω e γt ∂ i ((n) i ∂ t g) • ψ dydt = -γ R Ω e γt ∂ i ((n) i g) • ψ dydt - R Ω e γt ∂ i ((n) i g) • ∂ t ψ dydt. (3.15)
Then,

e γt ∂ i ((n) i ∂ t g), ψ L 2 (R;[L 2 (Ω)] 3 ) C e γt g L 2 (R;[H 1 (Ω)] 3 ) ∂ t ψ L 2 (R,[L 2 (Ω)] 3 ) + γ ψ L 2 (R,[L 2 (Ω)] 3 ) . (3.16)
Moreover,

e γt ((n) i ∂ t g), ∂ i ψ L 2 (R;[L 2 (Ω)] 3 ) = ∂ t (e γt g), (n) i ∂ i ψ L 2 (R;[L 2 (Ω)] 3 ) -γ e γt g, (n) i ∂ i ψ L 2 (R;[L 2 (Ω)] 3 ) .
Then, using [27, Proposition 2.3, Proposition 2.8], we obtain

e γt ((n) i ∂ t g), ∂ i ψ L 2 (R;[L 2 (Ω)] 3 ) C g W 1/2 (R;[H 1 (Ω)] 3 ,[L 2 (Ω)] 3 ) ∇ψ W 1/2 (R;[H 1 (Ω)] 9 ,[L 2 (Ω)] 9 ) . C g W 1/2 (R;[H 1 (Ω)] 3 ,[L 2 (Ω)] 3 ) ψ W (R;[H 2 (Ω)] 3 ,[L 2 (Ω)] 3 ) . (3.17)
Combining (3.17), (3.16), (3.14) and (3.12) we have

e γt ∂ t v L 2 (R;[L 2 (Ω)] 3 ) C e γt g W 1/2 (R;[H 1 (Ω)] 3 ,[L 2 (Ω)] 3 ) . (3.18)
Finally, from the classical elliptic estimates of the Stokes problem, we have

v(t) [H 2 (Ω)] 3 + ∇ π(t) [L 2 (Ω)] 3 C ∂ t v(t) [L 2 (Ω)] 3 + g(t) [H 1 (Ω)] 3 . (3.19) 
Using (3.19) and (3.18), we obtain (3.8).

We set w = w -v, q = q -π.

Then, from lemma 3.1, we only need to consider the linear system

   ∂ t w + (w S • ∇)w + (w • ∇)w S -∇ • T(w, q) -∇ • L 1 (ξ) + L 2 (ξ, ∂ t ξ) = f in (0, ∞) × Ω, ∇ • w = 0 in (0, ∞) × Ω, ∂ tt ξ + A 1 ξ + A 2 ∂ t ξ + T * (L 1 (ξ)n) = -T * (T(w, q)n) + h in (0, ∞) × ω, (3.20)
with the boundary conditions

[w -T ∂ t ξ] n = 1 Γ0 (Mv) n on (0, ∞) × ∂Ω, 2νD(w)n + β (w -T ∂ t ξ) + L 1 (ξ)n + L 3 (ξ) τ = 1 Γ0 β(Mv) τ on (0, ∞) × ∂Ω, (3.21) 
and the initial conditions

   w(0, •) = w 0 in Ω, ξ(0, •) = ξ 0 in ω, ∂ t ξ(0, •) = ξ 1 in ω, (3.22) where f = f -(w S • ∇) v -( v • ∇)w S + γ 0 v, h = h -T * (T( v, π)n). (3.23)
In this section, we prove that the system (3.20), (3.21) and (3.22) is exponentially stabilisable.

We dene

H = {(w, η 1 , η 2 ) ∈ [L 2 (Ω)] 3 × D(A 1/2 1 ) × L 2 0 (ω) ; ∇ • w = 0 in Ω, [w -T η 2 ] n = 0 on ∂Ω},
with the inner product

  w η 1 η 2   ,   v ξ 1 ξ 2   H = w, v [L 2 (Ω)] 3 + A 1/2 1 η 1 , A 1/2 1 ξ 1 L 2 (ω) + η 2 , ξ 2 L 2 (ω) .
We dene also

V = [H 1 (Ω)] 3 × D(A 3/4 1 ) × D(A 1/4 1 ) ∩ H, (3.24) 
and the orthogonal projection

P P : [L 2 (Ω)] 3 × D(A 1/2 1 ) × L 2 0 (ω) -→ H.

Finally, we set the operator

A S A S   w η 1 η 2   =   ν∆w -(w S • ∇)w -(w • ∇)w S + ∇ • L 1 (η 1 ) -L 2 (η 1 , η 2 ) η 2 -A 1 η 1 -A 2 η 2 -T * (2νD(w)n + L 1 (η 1 )n)   , (3.25) D(A S ) = {(w, η 1 , η 2 ) ∈ [H 2 (Ω)] 3 × D(A 1 ) × D(A 1/2 1 ) ∩ V, 2νD(w)n + β(w -T η 2 ) + L 1 (η 1 )n + L 3 (η 1 ) τ = 0 on ∂Ω}, (3.26)
and the operator A S dened as follows

A S = PA S , D(A S ) = D(A S ).
(3.27) Proposition 3.3. There exists λ 0 > 0 such that the operator λ 0 Id -A S is the innitesimal generator of a strongly continuous semigroup of contractions on H.

Proof. Let W = (w, ξ 1 , ξ 2 ) ∈ D(A S ). We show that λ 0 Id -A S is dissipative.

(λ 0 Id -A S )W, W = λ 0 Ω |w| 2 dy + Ω (∇w S ) * w • w dy + 2ν Ω |Dw| 2 dy + Ω L 1 (ξ 1 ) : ∇w dy + Ω L 2 (ξ 1 , ξ 2 ) • w dy + ∂Ω β |(w -T ξ 2 ) τ | 2 dΓ + ∂Ω [L 3 (ξ 1 )] τ • (w -T ξ 2 ) τ dΓ + ω A 1/2 2 ξ 2 2 ds + λ 0 ω A 1/2 1 ξ 1 2 ds + λ 0 ω |ξ 2 | 2 ds. (3.28)
From (3.4) and the fact that

Q i , i = 1, ..., 8 are of regularity W 1,∞ (Ω), then L 1 (ξ 1 ) 2 [L 2 (Ω)] 9 C A 1/2 1 ξ 1 2 L 2 0 (ω) , (3.29) L 2 (ξ 1 , ξ 2 ) 2 [L 2 (Ω)] 3 C A 1/2 1 ξ 1 2 L 2 0 (ω) + A 1/2 2 ξ 2 2 L 2 0 (ω) . (3.30)
Since ξ 1 is a periodic function, we get

ξ 1 L 6 (ω) + ∂ s ξ 1 L 6 (ω) C ξ 1 H 2 (ω) C A 1/2 1 ξ 1 L 2 0 (ω)
.

Using that Q 9 and Q 10 are of regularity W 1/2,∞ (∂Ω) → L 3 (∂Ω), then we obtain 

L 3 (ξ 1 ) 2 [L 2 (Ω)] 3 C A 1/2 1 ξ 1 2 L 2 0 (ω) . ( 3 
+ Ω L 1 (ξ 1 ) : ∇w dy + Ω L 2 (ξ 1 , ξ 2 ) • w dy + ∂Ω [L 3 (ξ 1 )] τ • (w -T ξ 2 ) τ dΓ -ε w 2 [H 1 (Ω)] 3 + A 1/2 2 ξ 2 2 L 2 (Ω) -C w 2 [L 2 (Ω)] 3 + ξ 2 2 L 2 (ω) + A 1/2 1 ξ 1 2 L 2 (ω)
. (3.32)

Thanks to the classical Korn's inequality, we obtain for λ 0 large enough

(λ 0 Id -A S )W, W 0.
It remains to show that the oprator λ 0 Id -A S is m-dissipative: we prove that λ 0 Id -A S is onto.

Let F =   f g h  
∈ H and we consider the equation

(λ 0 Id -A S )   w η 1 η 2   = F, (3.33) λ 0 w -∇ • T(w, q) + (w S • ∇)w + (w • ∇)w S -∇ • L 1 (η 1 ) + L 2 (η 1 , η 2 ) = f in Ω, (3.34a) ∇ • w = 0 in Ω, (3.34b) λ 0 η 1 -η 2 = g in ω, (3.34c) 
λ 0 η 2 + A 1 η 1 + A 2 η 2 = -T * (T(w, q)n + L 1 (η 1 )n) + h in ω, (3.34d) [w -T η 2 ] n = 0 on ∂Ω, (3.34e) 2νD(w)n + β(w -T η 2 ) + L 1 (η 1 )n + L 3 (η 1 ) τ = 0 on ∂Ω. (3.34f)
To solve the system above, we introduce the space

V = (φ, ξ) ∈ [H 1 (Ω)] 3 × D(A 1/2 1 ) | ∇ • φ = 0 in Ω, [φ -T ξ] n = 0 on ∂Ω .
Then, solving the equation (3.33) is reduced to solve the following variational problem: one need to nd

(w, η 2 ) ∈ V such that a w η 2 , φ ξ = L φ ξ φ ξ ∈ V , (3.35)
with a : V × V -→ R the bilinear form given by

a w η 2 , φ ξ = λ 0 Ω w • φ dy + Ω ((w S • ∇)w + (w • ∇)w S ) • φ dy + 2ν Ω D(w) : D(φ) dy + 1 λ 0 Ω L 1 (η 2 ) : ∇φ dy + 1 λ 0 Ω L 2,1 (η 2 ) • φ dy + Ω L 2,2 (η 2 ) • φ dy + λ 0 ω η 2 • ξ ds + ω (A 2 η 2 ) • ξ ds + 1 λ 0 ω (A 1/2 1 η 2 ) • (A 1/2 1 ξ) ds + ∂Ω β[w -T (η 2 )] τ • [φ -T (ξ)] τ dΓ + 1 λ 0 ∂Ω [L 3 (η 2 )] τ • [φ -T (ξ)] τ dΓ,
and L : V -→ R the linear form dened by

L φ ξ = Ω f • φ dy + ω h • ξ ds - 1 λ 0 ω (A 1/2 1 g) • (A 1/2 1 ξ) ds - 1 λ 0 Ω L 1 (g) : ∇φ dy - 1 λ 0 Ω L 2,1 (g) • φ dy - 1 λ 0 ∂Ω [L 3 (g)] τ • [φ -T (ξ)] τ dΓ.
The bilinear form a is continuous and coercive on V thanks to the classical Korn's inequality and L is continuous on V. Using the Lax-Milgram theorem, there exists a unique (w, η 2 ) ∈ V that is solution to (3.35). Now, taking ξ = 0 and φ ∈ D σ (Ω), the equation (3.35) becomes

λ 0 Ω w • φ dy + Ω ((w S • ∇)w + (w • ∇)w S ) • φ dy + 2ν Ω D(w) : D(φ) dy + Ω L 1 (η 1 ) : ∇φ dy + Ω L 2 (η 1 , η 2 ) • φ dy = Ω f • φ dy,
that is equivalent to

λ 0 w + (w S • ∇)w + (w • ∇)w S -ν∆w -∇ • L 1 (η 1 ) + L 2 (η 1 , η 2 ) -f, φ = 0, ∀φ ∈ D σ (Ω).
Using the De Rham theorem [29, Proposition 1.2, p.14], we deduce the existence of a unique element q ∈ L 2 (Ω)/R such that (3.34a) is satised. In particular, we have ∇•T(w, q) ∈ [L 2 (Ω)] 3 and T(w, q) ∈ [L 2 (Ω)] 9 . Consequently, we get T(w, q)n ∈ [H -1/2 (∂Ω)] 3 and

Ω T(w, q) : D(φ) dy -T(w, q)n, φ H -1/2 ,H 1/2 = Ω (f -λ 0 w -(w S • ∇)w -(w • ∇)w S -L 2 (η 1 , η 2 )) • φ dy - Ω L 1 (η 1 ) : ∇φ dy + ∂Ω [L 1 (η 1 )n] τ • φ τ dΓ, (3.36) for all φ ∈ [H 1 (Ω)] 3 , φ n = 0. Taking ξ = 0 in (3.35), we obtain λ 0 Ω w • φ dy + 2ν Ω D(w) : D(φ) dy + Ω L 1 (η 1 ) : ∇φ dy + Ω L 2 (η 1 , η 2 ) • φ dy + Ω ((w S • ∇)w + (w • ∇)w S ) • φ dy + [β(w -T (η 2 )) + L 3 (η 1 )] τ , φ H -1/2 ,H 1/2 = Ω f • φ dy, (3.37) 
for any φ ∈ [H 1 (Ω)] 3 , ∇ • φ = 0, φ n = 0. Comparing (3.36) and (3.37) and taking into account the fact

Ω T(w, q) : D(φ) dy = 2ν Ω D(w) : D(φ) dy, ∀φ ∈ [H 1 (Ω)] 3 , ∇ • φ = 0, φ n = 0, we obtain for all φ ∈ [H 1 (Ω)] 3 satisfying ∇ • φ = 0 and φ n = 0 -T(w, q)n, φ H -1/2 ,H 1/2 = [β(w -T η 2 ) + L 1 (η 1 )n + L 3 (η 1 )] τ , φ H -1/2 ,H 1/2 . (3.38) 
Then, (3.38) is also satised for all φ ∈ [H 1 (Ω)] 3 , φ n = 0 since we can always construct a divergence free function on Ω that coincides with φ at the boundary. Plugging (3.38) in (3.36), we obtain

Ω ((w S • ∇)w + (w • ∇)w S ) • φ dy + 2ν Ω D(w) : D(φ) dy - Ω q∇ • φ dy + [β(w -T η 2 ) + L 3 (η 1 )] τ , φ τ H -1/2 ,H 1/2 = Ω (f -λ 0 w -L 2 (η 1 , η 2 )) • φ dy - Ω L 1 (η 1 ) : ∇φ dy, (3.39) for any φ ∈ [H 1 (Ω)] 3 , φ n = 0.
Then, we deduce that (w, q) is a weak solution of (3.34a), (3.34b), (3.34e) and (3.34f) in the sens of the [8, Denition, p.10]. Since

η 2 ∈ H 2 (ω) then T η 2 ∈ [H 2 (∂Ω)] 3 , we can apply [8, Théorème 1.2] to get that (w, q) ∈ [H 2 (Ω)] 3 × H 1 (Ω)/R.
Then, going back to (3.35), we get

ω (A 1/2 1 η 1 ) • (A 1/2 1 ξ) ds = -λ ω η 2 • ξ ds - ω (A 2 η 2 ) • ξ ds - ω T * (T(u, q)n + L 1 (η 1 )n) • ξ ds + ω h • ξ ds, (3.40) 
for all ξ ∈ D(A

1/2 1 ) where η 1 = 1 λ (g + η 2
). We notice that we have η 1 ∈ D(A 1/2 ), then T * (L 1 (η 1 )n) ∈ L 2 0 (ω). In the other hand, we have T(w, q)n ∈ [H 1/2 (∂Ω)] 3 , then it implies that T * (T(w, q)n) ∈ L 2 0 (ω). Moreover, since η 2 ∈ H 2 (ω), we deduce that η 2 ∈ D(A 2 ). Thus, using the fact that D(A

1/2 1 ) is dense in L 2 0 (ω), we obtain A 1 η 1 ∈ L 2 0 (ω).
Applying the Lumer-Phillips theorem, we deduce that λ 0 Id -A S generates a strongly continuous semigroup of contractions on H.

Proposition 3.4. The adjoint operator of A S is given by

A * S   w η 1 η 2   = P   ν∆w + (w S • ∇)w -(∇w S ) * w -η 2 -A -1 1 (L 1 ) * )(∇w) + (L 2,1 ) * w + (L 3 ) * w -((L 3 ) * (T η 2 ) A 1 η 1 -A 2 η 2 -T * (2νD(w)n) -(L 2,2 ) * w   , (3.41) 
and

D(A * S ) = {(w, η 1 , η 2 ) ∈ [H 2 (Ω)] 3 × D(A 1 ) × D(A 1/2 1 ) ∩ V, [2νD(w)n + β(w -T η 2 )] τ = 0 on ∂Ω}. (3.42) Proof. Let (w, η 1 , η 2 ) ∈ D(A S ) and (ϕ, ζ 1 , ζ 2 ) ∈ D(A * S ). We have A S (w, η 1 , η 2 ), (ϕ, ζ 1 , ζ 2 ) = -2ν Ω D(w) : D(ϕ) dy + Ω (w S • ∇)ϕ • w - Ω (∇w S ) * ϕ • w dy - Ω L 1 (η 1 ) : ∇w dy - Ω L 2 (η 1 , η 2 ) • w dy - ∂Ω β(w -T η 2 ) τ • (ϕ -T ζ 2 ) τ dΓ - ∂Ω [L 3 (η 1 )] τ • (ϕ -T ζ 2 ) τ dΓ - ω (A 2 ζ 2 ) • η 2 ds. (3.43) Then A S (w, η 1 , η 2 ), (ϕ, ζ 1 , ζ 2 ) = ν Ω ∆ϕ • w dy + Ω (w S • ∇)ϕ • w - Ω (∇w S ) * ϕ • w dy - Ω L 1 (η 1 ) : ∇ϕ dy - Ω L 2 (η 1 , η 2 ) • ϕ dy - ∂Ω [L 3 (η 1 )] τ • (ϕ -T ζ 2 ) τ dΓ - ω (A 2 ζ 2 ) • η 2 ds - ω T * (2νD(ϕ)n)η 2 ds. (3.44)
Using (3.4) and (3.5), we obtain (3.41).

Proposition 3.5. For θ ∈ [0, 1], we have

D((λ 0 Id -A S ) θ ) = [D(A), H] 1-θ , D((λ 0 Id -A * S ) θ ) = [D(A * ), H] 1-θ , (3.45) 
for λ 0 > 0 large enough.

Proof. The proof is a direct consequence of proposition 3.3 and of [9, Proposition

Proposition 3.6. The operator A S dened by (3.25) and (3.27) is the innitesimal generator of an analytical semigroup on H.

Proof. We notice that A * S = -A * + O S where A is the operator dened by

D(A) = {(w, η 1 , η 2 ) ∈ [H 2 (Ω)] 3 × D(A 1 ) × D(A 1/2 1 ) ∩ V, [2νD(w)n + β(w -T η 2 )] τ = 0 on ∂Ω}, (3.46) 
A   w η 1 η 2   =   -ν∆w -η 2 A 1 η 1 + A 2 η 2 + T * (2νD(w)n)   , (3.47) 
D(A) = D(A), A = PA, (3.48) 
and

O S   w ξ 1 ξ 2   = P   (w S • ∇)w -(∇w S ) * w -A -1 1 (L 1 ) * )(∇w) + (L 2,1 ) * w + (L 3 ) * w -((L 3 ) * (T ξ 2 ) -(L 2,2 ) * w   .
We precise here D((A * ) 1/2 ) = V.

From [START_REF] Djebour | On the existence of strong solutions to a uid structure interaction problem with Navier boundary conditions[END_REF], A is the innitesimal generator of an analytical semigroup on H. Then, from [21, Corollaire 2.4, p.81], we only need to show that V ⊂ D(O S ). In fact, let (w, ξ 1 , ξ 2 ) ∈ V and (φ, η 1 , η 2 ) ∈ H. First, we use (3.5) and we observe that for

η 2 ∈ H 1 (ω) ∩ L 2 0 (ω) - ω (L 2,2 ) * w • η 2 ds = - Ω w • L 2,2 (η 2 ) dy = - Ω w • (Q 7 η 2 + Q 8 ∇η 2 ) dy = - Ω w • Q 7 η 2 dy - Ω w • Q 8 ∇η 2 dy. (3.49)
By integration by parts, we nd that

Ω w • Q 7 η 2 dy + Ω w • Q 8 ∇η 2 dy C w [H 1 (Ω)] 3 η 2 L 2 (ω) .
Then, by density, we get

O S   w ξ 1 ξ 2   ,   ϕ η 1 η 2   H C w [H 1 (Ω)] 3 ϕ [L 2 (Ω)] 3 + A 1/2 η 1 L 2 (ω) + A 1/2 η 1 L 2 (ω) ξ 2 L 2 (ω) + w [H 1 (Ω)] 3 η 2 L 2 (ω) C (w, ξ 1 , ξ 2 ) V (ϕ, η 1 , η 2 ) H . (3.50)
We deduce that A S is the innitesimal generator of an analytical semigroup on H. Moreover, A S admits a compact resolvent.

Let with

V s n (Γ 0 ) = {v ∈ H s (Γ 0 ) ; Γ0 v • n dΓ = 0}, s 0.
ξ 1 = ξ, ξ 2 = ∂ t ξ, W =   w ξ 1 ξ 2   , F =   f 0 h   , W 0 =   w 0 ξ 0 ξ 1   , where D ∈ L(V 0 n (Γ 0 ), [L 2 (Ω)] 3 × D(A 1/2 1 ) × L 2 0 (ω)) such that Dv = (w, η 1 , η 2 ) veries the system                λ 0 w -∇ • (T(w, π)) + (w S • ∇)w + (w • ∇)w S -∇ • L 1 (η 1 ) + L 2 (η 1 , η 2 ) = 0 in Ω, ∇ • w = 0 in Ω, λ 0 η 1 -η 2 = 0 in ω, λ 0 η 2 + A 1 η 1 + A 2 η 2 + T * (T(w, π)n + L 1 (η 1 )n) = 0 in ω, [w -T η 2 ] n = 1 Γ0 v n on ∂Ω, 2νD(w)n + β(w -T η 2 ) + L 1 (η 1 )n + L 3 (η 1 ) τ = 1 Γ0 (βv τ ) on ∂Ω.
with λ 0 ∈ ρ(A S ), and the operator B is dened by

B : v ∈ U = [H 3/2 (Γ 0 )] 3 -→ (λ 0 Id -A S )PD(Mv) ∈ (D(A * S )) .
We notice that (λ 0 Id -A S ) -1+ε B ∈ L([H 3/2 (Γ 0 )] 3 , H), ∀ε ∈ (0, 1/4).

The adjoint operator

D * ∈ L([L 2 (Ω)] 3 × D(A 1/2 1 ) × L 2 0 (ω), [L 2 (Γ 0 )] 3 ) is dened for all (f , g, h) ∈ [L 2 (Ω)] 3 × D(A 1/2 1 ) × L 2 0 (ω) by D * (f , g, h) = ((T(φ, r)n) n + (T(φ, r)n) τ )| Γ0 , if β 1 > 0, D * (f , g, h) = (T(φ, r)n) n | Γ0 , if β 1 = 0, such that (φ, r, ζ 1 , ζ 2 ) ∈ [H 2 (Ω)] 3 × H 1 (Ω)/R × D(A 1 ) × D(A 1/2 1
) is solution of the system

               λ 0 φ -∇ • (T(φ, r)) -(w S • ∇)φ + (∇w S ) * φ = f in Ω, ∇ • φ = 0 in Ω, λ 0 ζ 1 + ζ 2 + A -1 1 ((L 1 ) * )(∇φ) + (L 2,1 ) * φ + (L 3 ) * φ -(L 3 ) * (T ζ 2 ) = g in ω, λ 0 ζ 2 -A 1 ζ 1 + A 2 ζ 2 + T * (T(φ, r)n) + (L 2,2 ) * φ = h in ω, (φ -T ζ 2 ) n = 0 on ∂Ω, [2νD(φ)n + β(φ -T ζ 2 )] τ = 0 on ∂Ω.
We precise that (φ, ζ 1 , ζ 2 ) is solution of the system

(λ 0 -A * S )(φ, ζ 1 , ζ 2 ) = P(f , g, h). (3.52)
If β 1 > 0, the operator B * is given by

B * (φ, ζ 1 , ζ 2 ) = m (T(φ, r)n) • n - Γ0 mT(φ, r)n • n dΓ n + m(T(φ, r)n) τ Γ0 ,
and if β 1 = 0, we get We deduce that T(φ, r -c(φ, r))n = 0, on Γ 0 . Then, from [START_REF] Fabre | Prolongement unique des solutions de l'equation de Stokes[END_REF], we get φ = 0, in Ω, r = c(φ, r), on Ω.

B * (φ, ζ 1 , ζ 2 ) = m (T(φ, r)n) • n - Γ0 mT(φ,
               λφ -∇ • (T(φ, r)) -(w S • ∇)φ + (∇w S ) * φ = 0 in Ω, ∇ • φ = 0 in Ω, λζ 1 + ζ 2 + A -1 1 ((L 1 ) * )(∇φ) + (L 2,1 ) * φ -(L 3 ) * φ + (L 3 ) * (T ζ 2 ) = 0 in ω, λζ 2 -A 1 ζ 1 + A 2 ζ 2 + T * (T(φ, r)n) + (L 2,2 ) * φ = 0 in ω, (φ -T ζ 2 ) n = 0 on ∂Ω, [2νD(φ)n + β(φ -T ζ 2 )] τ = 0 on ∂Ω.
In particular T(φ, r -c(φ, r))n = 0, on ∂Ω. Theorem 3.7. Let t 0 > 0, σ > 0 and W 0 ∈ V. Then, there exists

N + ∈ N * , K ∈ L ∞ loc (R 2 ; L(H)), (φ k , ζ k 1 , ζ k 2 ) ∈ D(A * S ) and v k ∈ B * (D(A * S )), k = 1, . . . , N + , such that v(t) = 1 [t0,+∞) (t) N+ k=1   W (t -t 0 ) + t-t0 0 K(t -t 0 , s)W (s) ds,   φ k ζ k 1 ζ k 2     H v k , (3.59) 
stabilizes exponentially the system (3.51) and we have Corollary 3.8. Let γ 0 > 0. For all γ ∈ [0, γ 0 [, the solution ( w, q, ξ) of the system (3.1), (3.2), (3.3) veries the estimate

W L 2 σ (0,∞;D(A S ))∩C 0 σ ([0,∞);V)∩H 1 σ (0,∞;H) C W 0 V + F L 2 σ (0,∞;H) . ( 3 
( w, q, ξ) X∞,γ C (w 0 , ξ 0 , ξ 1 ) V + f L 2 γ (0,+∞;[L 2 (Ω)] 3 ) + h L 2 γ (0,+∞;L 2 (ω)) + g W 1/4 γ (0,+∞;[H 1/2 (∂Ω)] 3 ,[L 2 (∂Ω)] 3 ) . (3.61) 4 Fixed point Let Y ∞ and B ∞,R be given respectively by Y ∞ = L 2 γ (0, ∞; [L 2 (Ω)] 3 ) × W 1/4 γ (0, ∞; [H 1/2 (∂Ω)] 3 , [L 2 (∂Ω)] 3 ) × L 2 γ (0, ∞; L 2 (ω)). (4.1) B ∞,R = {( f , g, h) ∈ Y ∞ | ( f , g, h) Y∞ R}. (4.2) 
Let ( f , g, h) ∈ B ∞,R and let (u, p, ξ) be the solution of the system (3.1), (3.2), (3.3) associated to ( f , g, h). From (3.61), we obtain (u, p, ξ) X∞,γ CR,

where we supposed that (w 0 , ξ 0 , ξ 1 ) V R.

From (4.3), we have the following estimates

ξ L ∞ γ (0,∞;L ∞ (ω)) + ∂ sj ξ L ∞ γ (0,∞;L ∞ (ω)) + ∂ 2 sj s k ξ L ∞ γ (0,∞;L 2 (ω)) + ∂ 3 sj s k si ξ L ∞ γ (0,∞;L 2 (ω)) C ξ L ∞ γ (0,∞;H 3 (ω))
CR, (4.4)

∂ t ξ L 4 γ (0,∞;L ∞ (ω)) + ∂ 2 tsj ξ L 6 γ (0,∞;L 2 (ω)) CR, (4.5 
)

ξ H 7/8 γ (0,∞;L ∞ (ω)) + ∂ sj ξ H 7/8 γ (0,∞;L ∞ (ω)) + ∂ 2 sj s k ξ H 7/8 γ (0,∞;L 8/3 (ω)) CR, (4.6) 
ξ L ∞ γ (0,∞;H 2 (ω)) + ∂ sj ξ L ∞ γ (0,∞;H 3/2 (ω)) + ∂ 2 sj s k ξ L ∞ γ (0,∞;H 1/2 (ω)) CR. (4.7) 
In particular, taking into account the condition (1.31), there exists R 0 > 0 such that, if R R 0 , then

1 1 + η L ∞ (0,∞;L ∞ (ω)) C(R 0 ). (4.8) 
In fact, if 1 + η S > δ, then R 0 is chosen such that 0 < R 0 < δ.

Here, we recall a well known result about product in Sobolev spaces.

Proposition 4.1. Let s 0, s 1 s and s 2 s such that s 1 + s 2 > s + 1/2. Let X 1 , X 2 and X 3 be three Banach spaces such that for all f ∈ X 2 and g ∈ X 3 , we have

f g X1 C f X2 g X3 . Then ∀u ∈ H s1 (0, ∞; X 2 ), ∀v ∈ H s2 (0, ∞; X 3 ), uv H s (0,∞;X1) C u H s 1 (0,∞;X2) v H s 2 (0,∞;X3) .
Proof. The proof is similar to the one given in [START_REF] Zolesio | Multiplication dans les espaces de Besov[END_REF]Theorem 2] extending data by reexion on R.

Lemma 4.2. Let X and Y given in (1.18). Then, we have

∇Y (X) -I 3 = (1) (ξ, ∂ s ξ) + (1) (ξ, ∂ s ξ), (4.9) 
∂ 2 Y 3 ∂x k ∂x j (X) = (2) (ξ, ∂ s ξ, ∂ 2 ss ξ) + (2) (ξ, ∂ s ξ, ∂ 2 ss ξ), (4.10) 
∂ 2 a ik ∂x m ∂x l (X) = (3) (ξ, ∂ s ξ, ∂ 2 ss ξ, ∂ 3 sss ξ) + (3) (ξ, ∂ s ξ, ∂ 2 ss ξ, ∂ 3 sss ξ), (4.11) 
∂ t Y = (13) (∂ t ξ) + (13) (ξ, ∂ t ξ), (4.12) 
∂ t a ik (X) = (14) 

(∂ t ξ, ∂ 2 ts ξ) + (14) (ξ, ∂ t ξ, ∂ 2 ts ξ), (4.13) 
where the operators l (i) have the form (2.21) and (i) are given formally by

(1) (ξ, ∂ s ξ) = O(ξ m1 (∂ s ξ) m2 ), m 1 + m 2 2, (2) (ξ, ∂ s ξ, ∂ 2 ss ξ) = O(ξ m 1 (∂ s ξ) m2 (∂ 2 ss ξ) m3 ), m 1 + m 2 + m 3 2, (3) (ξ, ∂ s ξ, ∂ 2 ss ξ, ∂ 3 sss ξ) = O(ξ m 1 (∂ s ξ) m2 (∂ 2 ss ξ) m3 (∂ 3 sss ξ) m4 ), m 1 + m 2 + m 3 + m 4 2, (13) (ξ, ∂ t ξ) = O(ξ m1 (∂ t ξ) m2 ), m 1 + m 2 2, (14) (ξ, ∂ t ξ, ∂ 2 ts ξ) = O(ξ m1 (∂ t ξ) m2 (∂ 2 ts ξ) m3 ), m 1 + m 2 + m 3 2.
Proof. We recall that ξ = η -η S , then we have

1 1 + η = 1 1 + η S - ξ (1 + η S ) 2 + ξ 2 (1 + η S ) 2 (1 + η) . (4.14) 
After standard calculations, ∇Y (X) -I 3 writes

∂Y 3 ∂x 3 (X) -1 = η S -η 1 + η = - ξ 1 + η S + ξ 2 (1 + η S ) 2 - ξ 3 (1 + η S ) 2 (1 + η) , (4.15) 
∂Y 3 ∂x j (X) = -y 3 ∂ sj ξ 1 + η S + y 3 ∂ sj η S ξ (1 + η)(1 + η S ) + y 3 ∂ sj ξ ξ (1 + η)(1 + η S ) , j = 1, 2. (4.16) 
Using (4.14), we obtain (4.9) where (1) (ξ, ∂ s ξ) contains the terms of the form

γ 1 (η S ) ξ m1 (1 + ξ + η S ) α1 , γ 2 (η S ) ξ m2 ∂ s ξ (1 + ξ + η S ) α2 , m 1 2, m 2 1, α i 1, i = 1, 2, (4.17) 
where γ i , i = 1, 2 are functions of regularity C 3 (ω). We have for all k, j ∈ {1, 2},

∂ 2 Y 3 ∂x k ∂x j (X) = -y 3 ∂ 2 sj s k ξ (1 + η S ) + y 3 ∂ s k η ∂ sj ξ (1 + η)(1 + η S ) + y 3 ∂ sj η ∂ s k ξ (1 + η)(1 + η S ) + y 3 ξ ∂ 2 s k sj η (1 + η S )(1 + η) -2 ∂ s k η∂ sj η (1 + η S )(1 + η) 2 . (4.18)
Then, we deduce (4.10) where (2) (ξ, ∂ s ξ, ∂ 2 ss ξ) had the terms

γ 3 (η S ) ξ m1 (∂ s ξ) m2 (1 + ξ + η S ) α1 , m 1 + m 2 2, γ 4 (η S ) ξ m3 ∂ 2 ss ξ (1 + ξ + η S ) α2 , m 3 1, α i 1, i = 1, 2, (4.19) 
where γ i , i = 3, 4 are C 2 (ω) functions. The third derivative ∂ 3 Y 3 ∂x i ∂x k ∂x j (X) admits the terms:

y 3 ∂ 3 sj s k si ξ (1 + η S ) , y 3 ∂ si η∂ 2 sj s k ξ (1 + η)(1 + η S ) , y 3 ∂ 2 sis k η∂ sj ξ (1 + η)(1 + η S ) , y 3 ∂ s k η∂ si η∂ sj ξ (1 + η) 2 (1 + η S ) , y 3 ∂ 2 sj s k η∂ si ξ (1 + η) 2 (1 + η S ) , y 3 ξ∂ 3 sj s k si η (1 + η S )(1 + η) , y 3 ξ∂ 2 s k sj η∂ si η (1 + η) 2 (1 + η S ) , y 3 ξ∂ s k η∂ sj η∂ si η (1 + η) 4 (1 + η S ) . (4.20) 
Then, we get (4.11) where (3) (ξ, ∂ s ξ, ∂ 2 ss ξ, ∂ 3 sss ξ) contains the terms

γ 5 (η S ) ξ m1 (∂ s ξ) m2 (1 + ξ + η S ) α1 , γ 6 (η S ) ξ n1 (∂ s ξ) n2 ∂ 2 ss ξ (1 + ξ + η S ) α2 , γ 7 (η S ) ξ m3 ∂ 3 sss ξ (1 + ξ + η S ) α3 , m 1 + m 2 2, n 1 + n 2 2, m 3 1, α i 1, i = 1...3, (4.21)
with γ i , i = 5, ..., 7 are bounded functions on ω.

We also have,

∂ t Y 3 = -y 3 ∂ t ξ 1 + η .
We deduce (4.12) where (13) (ξ, ∂ t ξ) had the terms

ξ m1 ∂ t ξ (1 + ξ + η S ) α1 , m 1 1, α 1 1. (4.22)
The terms appearing in ∂ t a ik (X) have the form

y 3 ∂ t ξ∂ sj η (1 + η) 2 , y 3 ∂ t ξ∂ sj η S (1 + η)(1 + η S ) , y 3 ∂ 2 tsj ξ (1 + η) , - (1 + η S )∂ t ξ (1 + η) 2 .
Then, we get (4.13) with (14) (ξ, ∂ t ξ, ∂ 2 ts ξ) contains the terms

γ 8 (η S ) ξ m1 ∂ 2 ts ξ (1 + ξ + η S ) α1 , γ 9 (η S ) ξ m2 ∂ t ξ (1 + ξ + η S ) α2 , γ 10 (η S ) ξ m3 ∂ t ξ∂ s ξ (1 + ξ + η S ) α3 , m 1 1, m 2 1, m 3 0, α i 1, i = 1, ..., 3, (4.23)
where γ i , i = 8, ..., 10 are C 3 (ω) functions.

Let suppose that R < 1.

Lemma 4.3. Let (i) given in lemma 4.2 and let (w S , p S , η S ) ∈ [W 2,∞ (Ω)] 3 × W 1,∞ (Ω) × C 4 (ω).

(4.24)

Then, we have (1) (ξ, ∂ s ξ)

L ∞ γ (0,∞;[L ∞ (Ω)] 9 )
+ (2) (ξ, ∂ s ξ, ∂ 2 ss ξ)

L ∞ γ (0,∞;L 2 (Ω))

+ (3) (ξ, ∂ s ξ, ∂ 2 ss ξ, ∂ 3 sss ξ) L ∞ γ (0,∞;L 2 (Ω))
+ (13) (ξ, ∂ t ξ)

L 4 γ (0,∞;[L ∞ (Ω)] 3 )
+ (14) (ξ, ∂ t ξ, ∂ 2 ts ξ)

L 6 γ (0,∞;L 2 (Ω))
CR 2 , (4.25)

(1) (ξ, ∂ s ξ)

L ∞ γ (0,∞;[H 3/2 (∂Ω)] 9 )

+ (2) (ξ, ∂ s ξ, ∂ 2 ss ξ)

L ∞ γ (0,∞;H 1/2 (∂Ω))

+ (1) (ξ, ∂ s ξ) Proof. Using (4.24), (4.4),(4.8) and (4.17), we get (1) (ξ, ∂ s ξ) Moreover, from (2.48), N F (ξ) has the terms a 1 (η S , w S ) ξ m1 (∂ s ξ) m2 (1 + ξ + η S ) α1 , a 2 (η S , w S ) ξ n1 (∂ s ξ) n2 ∂ 2 ss ξ (1 + ξ + η S ) α2 , a 3 (η S , w S ) ξ m3 ∂ 2 ts ξ (1 + ξ + η S ) α3 , a 4 (η S , w S ) ξ m4 ∂ t ξ (1 + ξ + η S ) α4 , a 5 (η S , w S ) ξ m5 ∂ t ξ∂ s ξ (1 + ξ + η S ) α5 , m 1 + m 2 2, n 1 + n 2 2, m 3 1, m 3 1, m 4 1, m 5 0, α i 1, i = 1...5, where a i , i = 1, ..., 5 are bounded functions in Ω.

L ∞ γ (0,∞;[L ∞ (Ω)]
Thus, using (4.8), (4.24), (4.4) and (4.5), we obtain

N F (ξ) L 2 γ (0,∞;[L 2 (Ω)] 9 ) CR 2 .
The functions N E (ξ) and N G (ξ) admit terms of the form (4.47). Then, from lemma 4.3 and (4.24), we have the estimate (4.45). Finally, using lemma 4.3, (4.3) and the same procedure described in [START_REF] Djebour | On the existence of strong solutions to a uid structure interaction problem with Navier boundary conditions[END_REF], we get (4.46). In this case, we show that for R small enough Φ(B ∞,R ) ⊂ B ∞,R and Φ |B ∞,R is a strict contraction. Let ( f , g, h) ∈ B ∞,R , from lemma 4.4, we obtain Φ( f , g, h)

Y∞ CR 2 .
We get similarly Φ( f (1) , g (1) , h (1) ) -Φ( f (2) , g (2) , h (2) )

Y∞ CR ( f (1) , g (1) , h (1) ) -(f (2) , g (2) , h (2) )

Y∞ .

for ( f , g, h), ( f (i) , g (i) , h (i) ) ∈ B ∞,R . Thus, we deduce the principal result of this paper.
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 1 Figure 1: Conguration of the domain corresponding to the plate displacement η.
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  obtain T * (T(φ, r)n) = -c(φ, r)T * (n), on ∂Ω. (3.57) From the denition of the operator T * given in (2.51), we have that T * (n) = 0. Then, from (3.57), we obtain T * (T(φ, r)n) = 0, on ∂Ω. (3.58) Moreover, we have T ζ 2 = 0 on ∂Ω, then ζ 2 = 0. The equation (3.58) implies that A 1 ζ 1 = 0 and taking into account the periodicity of ζ 1 , we nd ζ 1 = 0. Then, the condition (UC σ ) is veried. We deduce then the following theorem.

  .60) Finally, using (3.60), (3.8) and (3.23), we obtain the following corollary.
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 2 ∞;[L ∞ (∂Ω)] 9 ) + (2) (ξ, ∂ s ξ, ∂ 2 ss ξ) (4.26)

H

  ∞;L ∞ (ω)) ∂ s ξ H 7/8 γ (0,∞;L ∞ (ω))CR 2 . (4.39) Since 7/8 > 1/2, we use the proposition 4.1, we obtain(∂ s ξ) m2 H 7/8 (0,∞;L ∞ (ω))

∂ 2 ss ξ ( 1 +

 1 ξ + η S ) α2 , d 3 (η S , w S ) ξ m3 ∂ 3 sss ξ (1 + ξ + η S ) α3 , m 1 + m 2 2, n 1 + n 2 2, m 3 1, α i 1, i = 1...3,where d i , i = 1, ..., 3 are bounded functions Ω.From (4.8), (4.24) and (4.4), we obtain∇ • N E (ξ) L 2 γ (0,∞;[L 2 (Ω)] 3 )

4 . 1 Proof of theorem 1. 1 We

 411 dene the application Φ : B ∞,R -→ Y ∞ by Φ( f , g, h) = (∇ • N E (ξ) + N F (ξ) + F(u, p, ξ), -[N E (ξ)n] τ + [N G (ξ)] τ + G(u, ξ + η S ), H(u, ξ + η S ) -T * (N E (ξ)n)).(4.50)

  9 ) Using (4.27), (4.28), (4.29), (4.30) and (4.31), we deduce (4.25). In the other hand, we haveξ∂ s ξ L ∞ γ (0,∞;H 3/2 (ω)) C ξ L ∞ γ (0,∞;H 2 (ω)) ∂ s ξ L ∞ γ (0,∞;H 3/2 (ω))Then, using the fact that∂ s ξ ∈ L ∞ γ (0, ∞; H 2 (ω)) and ∂ s ξ L ∞

						CR 2 .	(4.32)
	Thus, using (4.8) and (4.4), we have				
	1 (1 + ξ + η S ) αi	L ∞ γ (0,∞;H 2 (ω))	C, α i 1.	(4.33)
	Then,	ξ m1 ∂ s ξ (1 + ξ + η S ) αi	L ∞ γ (0,∞;H 3/2 (ω))	CR 2 .	(4.34)
						γ (0,∞;H 2 (ω))	CR, we get
		ξ m1 (∂ s ξ) m2	L ∞ γ (0,∞;H 3/2 (ω))	CR 2 .	(4.35)
	We have also				
	ξ∂ 2 ss ξ L ∞ γ (0,∞;H 1/2 (ω))	C ξ L ∞ γ (0,∞;H 3/2 (ω)) ∂ 2 ss ξ L ∞ γ (0,∞;H 1/2 (ω))	CR 2 ,	(4.36)
	Then, using (4.33), we obtain				
		ξ m1 ∂ 2 ss ξ (1 + ξ + η S ) αi	L ∞ γ (0,∞;H 1/2 (ω))	CR 2 ,	(4.37)
	Furthermore, using (4.8), we get				
	ξ				
	(1 + ξ + η S ) αi				
						CR 2 .	(4.27)
	From (4.8), (4.24), (4.4) and (4.19), we nd		
		(2) (ξ, ∂ s ξ, ∂ 2 ss ξ)	L ∞ γ (0,∞;L 2 (Ω))	CR 2 .	(4.28)
	From (4.8), (4.24), (4.4) and (4.21), we obtain		
	(3) (ξ, ∂ s ξ, ∂ 2 ss ξ, ∂ 3 sss ξ)	L ∞ γ (0,∞;L 2 (Ω))	CR 2 .	(4.29)
	From (4.8), (4.24), (4.5), (4.4) and (4.22), we get		
		(13) (ξ, ∂ t ξ)	L 4 γ (0,∞;[L ∞ (Ω)] 3 )	CR 2 .	(4.30)
	Using (4.8), (4.24), (4.4), (4.5) and (4.23), we get		
		(14) (ξ, ∂ t ξ, ∂ 2 ts ξ)	L 6 γ (0,∞;L 2 (Ω))	CR 2 .	(4.31)

  • N E (ξ) L 2 γ (0,∞;[L 2 (Ω)] 3 ) + N F (ξ) L 2 γ (0,∞;[L 2 (Ω)] 3 ) (∂Ω)] 3 ;[L 2 (∂Ω)] 3 ) + N G (ξ) W 1/4 γ (0,∞;[H 1/2 (∂Ω)] 3 ;[L 2 (∂Ω)] 3 ) (F(u, p, ξ), G(u, ξ + η S ), H(u, ξ + η S )) Y∞ CR 2 . (4.46)Proof. From (2.30) and lemma 4.2, N E (ξ) admits the following termsc 1 (η S , w S ) ξ m1 (∂ s ξ) m2 (1 + ξ + η S ) α1 , c 2 (η S , w S ) ξ n1 (∂ s ξ) n2 ∂ 2 ss ξ (1 + ξ + η S ) α2 , m 1 + m 2 2, n 1 + n 2 2, α i 1, i = 1...2, (4.47)where c i , i = 1, 2 are W 1,∞ (Ω) functions. From (4.8), (4.24) and (4.4), we obtainN E (ξ) L 2 γ (0,∞;[L 2 (Ω)] 3 )From (2.28), (2.30), (2.32), (4.24) and lemma 4.2, the terms that appear in ∇ • N E (ξ) are the followingd 1 (η S , w S ) ξ m1 (∂ s ξ) m2 (1 + ξ + η S ) α1 , d 2 (η S , w S ) ξ n1 (∂ s ξ) n2

	Lemma 4.4. We have								
										CR 2 ,	(4.43)
					N E (ξ) L 2 γ (0,∞;[L 2 (Ω)] 9 )	CR 2 ,	(4.44)
	N E (ξ)n W 1/4 γ	(0,∞;[H 1/2 CR 2 ,	(4.45)
										CR 2 .	(4.48)
										C (∂ s ξ)	m2 H 7/8 (0,∞;L ∞ (ω)) .
	We deduce				ξ m1 (∂ s ξ) m2 (1 + ξ + η S ) αi	H	7/8 γ	(0,∞;L ∞ (ω))	CR 2 .	(4.40)
	Moreover,								
	ξ∂ 2 ss ξ (1 + ξ + η S ) αi	H	7/8 γ	(0,∞;L 8/3 (ω))	C ∂ 2 ss ξ H 7/8 γ	(0,∞;L 8/3 (ω)) ξ H 5/4 γ	(0,∞;L ∞ (ω))	CR 2 .	(4.41)
	From (4.38), we have								
					ξ m1 ∂ 2 ss ξ (1 + ξ + η S ) αi	H	7/8 γ	(0,∞;L 8/3 (ω))	CR 2 ,	(4.42)
	Using (4.35), (4.37), (4.40) and (4.42), we obtain (4.26).

∇