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Abstract

We consider a fluid-structure interaction system composed by a three-dimensional viscous incompressible
fluid and an elastic plate located on the upper part of the fluid boundary. The fluid motion is governed
by the Navier-Stokes system whereas the structure displacement satisfies the damped plate equation. We
consider here the Navier slip boundary conditions. The main result of this work is the feedback stabilization
of the strong solutions of the corresponding system around a stationary state for any exponential decay rate
by means of a time delayed control localized on the fixed fluid boundary. This work is the application of the
recent general result that is obtained in [I5] that relies on the Fattorini-Hautus criterion. Then, the main
tool in this work is to show the unique continuation property of the associate solution to the adjoint system.

Keywords: Navier-Stokes system, damped beam equation, strong solutions, stabilization, time delay, Navier
boundary conditions
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1 Introduction

We suppose that the fluid flow occupies a 3D periodic domain and an elastic plate that is disposed on the upper
part of the fluid boundary. The force exerted by the fluid on the plate influences the deformation of the elastic
structure and then the fluid domain depends on the plate displacement and hence on time. Consequently, the
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interaction between the deformable structure and the fluid is modeled by a strongly coupled non linear system
set in a moving domain. Our aim is to stabilize the position and the velocity of the structure as well as the
velocity of the fluid around a stationary state using a time delayed control that acts on a local part of the
boundary of the fluid domain provided that the initial data are close enough to the stationary state in some
norm. First, we give some important notations in order to write the system.

Let w be the rectangular torus

w=(R/L1Z) x (R/LyZ) Ly >0, Ly > 0.
For any function 7 : w — (—1, 00), we define

Q) ={(z1,22,23) €Ew xR ; 0 <23 <1+n(x,22)},
L(n) = {(v1,72,73) €Ew xR ; w3 =1+ n(w1,22)},
Fo =w X {0}

(see the figure [1). In particular, we have

Figure 1: Configuration of the domain corresponding to the plate displacement 7.

We consider the following system describing the evolution of the fluid that is governed by the Navier-Stokes
equations and the displacement of the elastic plate by the damped beam equation

QWU+ (U-V)U -V -T(U,P)=f5 in (0,00) x Q(n),
. V:U=0 in(0,00) x Q(n), (1.1)
Duem + aA®n — §Adm = H, (U, P) + B° in (0,00) x w.

In (1.1, we have denoted by U the fluid velocity, P the fluid pressure and 7 the transversal displacement of the
elastic structure. The functions f° and h° are time independent data.
The Cauchy stress tensor T(U, P) is given by

1 . .
T(U, P) = —PI3+ 2vD(U), D(U)i; =5 <8UZ N 8U]> .

5‘:r,j 8@
The coefficients «, § and v correspond respectively to the rigidity, the damping on the structure and the fluid
viscosity.

We denote by n the unit exterior normal vector on 9€2(n) given as follows:

n = —ezonly,



and on I'(n):

v —05,1(s)
~ N(s,1 ~ 51
(s, 1+ n(s)) = LTI e Ns,14+0(s) = [ —0un(s) |, 5w
[N (s, 1+ 7n(s))l 1
Here and in what follows, | - | stands for the Euclidean norm of R, k > 1. Also, we select two tangent vectors

7', i = 1,2 linearly independent on 9€2(n) such that

?i = €, Z = 1,2 on Fo, (12)
and
1 0
7 (s, 14 7n(s)) = 0 , TA(s, 1+ n(s) = 1 on I'(n). (1.3)
9s,1(s) 0s,7(s)

The function Iﬁ[77 is the contact force exerted by the fluid on the interface which is defined by

H, (U, P) = —/1+ [V|2 (T(U, P)7i - e3) .

We complete (I.1)) by the Navier slip boundary conditions. Let a € R*, we denote by az and az the normal
and the tangential components of a :

ap=(a-n)n, az=a—az=-nx (M Xxa). (1.4)

The Navier slip boundary conditions write as follows:

Uz = Mwv)z  on (0,00) x Ty,
[QVD(U)ﬁ + ﬁlU]?—' = Bl(MU)? on (07 OO) X FO) (1 5)
(U —0me3)n =0 on (0,00) x I'(n), :
2vD(U)n+ B2 (U — dnes)]= =0 on (0,00) x I'(n)

Here, v is the control of the system ([1.1), (1.5) acting on the fixed boundary I'g. In order to preserve the
compatibility condition due to the incompressibility of the fluid, we use the operator M defined by

My = mov — ( mov-n dI‘) mn, (1.6)

To
where m € C?(Ty) is compactly supported in Iy which satisfies / m ds = 1, see for example [4], [24].
T'o

Thus, the operator M localizes the action of the control in a relatively compact subset of I'y. We notice that
M € L([L?(T)]*) and

Mv - n dI’ = 0. (1.7)
To

We assume that the friction coefficients 8; and (2 are two non negative constants

51207 ﬁ2>0

Since w is a rectangular torus, we complement the system (1.1)), (1.5) with periodic boundary conditions for the
fluid and for the elastic plate on the remaining boundaries of €2(n). Then, we consider data and solutions which
are periodic in the both directions e; and es, for example :

U(t,.’El + L1,$2,$3) = U(t,l’l,xg,xg), U(t,.’bl,xz + LQ,(EQ,) = U(t,l'l,{L'Q,.’Eg),
n(t,s1+ L1, s2) = n(t, s1,82), n(t,s1,82 + L2) = n(t, 51, 52).



Since U is divergence free and taking into account the equation (1.7)), the velocity 9;n should satisfy the condition

/ o ds = 0. (1.8)

Integrating the plate equation on w and using (|1.8) and the fact that 7 is periodic, we find
/ H, (U, P) + h* ds = 0. (1.9)

The above condition can be satisfied if we write
P=P+ec, (1.10)

where P, satisfies

PO dr = O,
Q(n)
and c is a constant that is chosen conveniently in such a way (1.9)) is verified. Consequently, the pressure P will
be uniquely defined. In order to impose the condition ([1.9) without considering the normalizing constant ¢, we
define the projection operator M on LZ(w) where

1) = {ne 2w [nas=o}. (1.11)

Since we look for solutions such that (1.8)) is verified, it is convenient to consider the restriction of the associated
semigroup to the plate equation to L5(w). Then, in what follows, we assume that n € L3(w). To impose the
condition (1.9)), we substitute the plate equation by its projection on LZ(w) using the operator M

Oun + aA’n — SAOm = H, (U, P) + Mh3,

where B
H,(U, P) = MH,(U, P).

We complement the system (1.1]), (1.5) with the following initial conditions

U@,)=U" in Q(n),

77( 7') = 770 in w, (112)
om(0,") =n" in w.
Let (w®,p®,n%) be a stationary state of the system (T.1), (T.5) that is a solution of the system

(w® - V)w® = V- T(w®p®) = f¥ in Qn°),
V-w®=0 inQn%),
alA?n® = H,s(w®,p°) + Mh® in w, (1.13)
w? =0 on dQ(n?),
[2vD(w®)n + BwS]T =0 on dQn°),

where

_ /Bl if ) c FOa
/B(y)‘{ B, if yeT(n°).

The vector n stands for the unitary exterior normal vector and 7%, i = 1,2 designate two tangent vectors on
o0 (n”): _
n=-—e3, T =e¢€;, i=12o0nlYy, (1.14)



and on T'(n%):

s
n(s,1+n°(s)) = N(s,1+7°(s)) where N (s, 14 7°(s)) = :351258 sE€w
’ N 1+ 77(5)] | ! ’
1 0
s, 1+ 15(s)) = 0 . T2(s5,14n%(s)) = 1 . (1.15)
851778(5) 852773(5)

Our aim is to stabilize the solution (U, P,n) of , , around the stationary state (w®,p°,n)
that is a solution of by means of a feedback boundary control v(¢) that appears in depending on
the state (U,n). In practice, due to a calculus time issues, we include a time delay to > 0 in the control and
the main goal is to construct this feedback control in such a way it depends at time ¢ on the values of the state
(U(t"),n(t")) for t' <t —to and the associated strong solution (U, P,n) to the system (L.1]), (L.5), goes to
(ws P>, 775 ) exponentially. This context of stabilization has an important interest in the control theory of PDE:
The analysis of the effect of the time delay on the feedback stabilization of some partial differential equations
is given for instance in [I3] and [12]. Recently, in [II] a feedback control is constructed for a finite dimensional
system with input delay and in [23] the authors manage to obtain a stabilizing feedback boundary control to
the one-dimensional reaction-diffusion system considering a constant delay, their method relies essentially on
the Arstein transform and the fact that the generator operator of the system is self-adjoint. We mention also
the work [I8] where the author considered the stabilization of a damped Euler-Bernoulli beam equation with a
time delayed control, here the system is parabolic but it is not generated by a self-adjoint operator. In [I5], the
authors extend the theory developed in [23] and construct a finite dimensional feedback stabilizing control with
input delay to a general class of parabolic systems. The challenge in the present work is to apply the theory of
[15] to deduce the stabilization of the fluid-structure problem (L.1J), since it describes a parabolic system
thanks to the damping term —dAQd;n that appears in the structure equation in .

In order to state the main result, we give some notations. As it is standard in the studies of fluid-structure
interaction systems, one of the main difficulties lies in the fact that the spatial domain of the fluid is variable
and unknown. Since the problem consists to compare the asymptotic behavior of the solution (U, P,7) to the
stationary state (w”,p®, "), we are led to introduce a change of variable to transform the functions (U, P) into
(1, p) defined in the fixed domain Q(n®). More precisely, we set

1 2 oL z;
Xt 2 1 Q) — Qn7), Zz — 1+772(191,y2) i . (1.16)
L+ (y1,92)
We consider the change of variables
X(t,) = X8 (¢, ) Y(t,-) = Xo(t,),mS s (1.17)
and we set
Q= Q(n”).
We define the new functions
u(t,y) = (Cof VX(t,y)"U(t, X(t,y)), p(t,y) =Pt X(t,y) (=0, yeQ). (1.18)

We observe that we have
u” = (Cof VX (0,-))*U°(X(0,-)).

In what follows, we recall that n is the unitary exterior normal vector and 7%, i = 1,2 are two tangent vectors
on 0%



n=—e3, T =¢;, i=12o0nTy, (1.19)
and on T'(n%):

—045,1°%(s)
N(s,1+1°(s)) s NS
n(s,1+n°(s)) = where N(s,1+ 5)) = | —0s, s € w,
(. 140°) = o (5,14 1°(5) 7°6)
1 0
A= 0 ), Reiesen=( 1 . (1.20)
0s,1°(5) 05,1 (5)
The operators (A1, D(A1)) and (Ag, D(A3)) are defined by
A =al®y, D(A) = H*(w)NL3(w), (1.21)
Agn = —6An, D(Az) = H*(w) N L3(w). (1.22)

Let X1, X2 be two Banach spaces with the norms |.||x, and [|.|[y, respectively. For s > 0, we define

W*(0,00; X1, X2) = {v € L*(0,00;X1) ; v € H*(0,00;X2)},

with

||~||Ws(o,00;3el,x2) = H‘”LZ(O,oo;xl) + ||| H#(0,00;X2) *

For s =1, the space WI(O, 00; X1, X2) is denoted by W(0, o0; X1, X2).
Let f(t) be a vector valued function. For v > 0, we define f, by

[yt e f(t).
Then, for v > 0, we consider the following spaces
L{’/(O,oo;fl) ={feLP(0,00;%1); fy€LP(0,00;%1)}, pe€[l,+00], (1.23)

and
W3(0,00; X1, X2) = {f € W#(0,00; X1,X2) ; fy € W¥(0,00; X1, X2)}, (1.24)
with the norms
”fHLg(o,oo;xl) = ||f'y||Lp(07oo;3gl) )
||f||W$(o,oo;x1,x2) = ”f“/”WS(o,oo;xl,xz) .

We set
Koy = W, (0, 00 [H2 ()], [L2(Q)]2) x L2(0, 003 HL(Q)/R) x W2(0,00, D(Ar), I3(w)),  (1.25)
such that

[ (u, p, 77)”)(%"Y = Hu”W,Y(0700;[H2(Q)]37[L2(Q)]3) + ||U||Lff(o7oo;[H1(Q)]3) + va”L'_zy(O)oo)[LQ(Q)]ii)
+ ”nHW,?(O,oo;D(Al),Lg(w)) + HnHL:O(O,oo;H?’(w)) + ||atn||L$°(O,oc;H1(w)) . (126)

We define the space
H = L) x D(A?) x Lj(w),

furnished with the inner product

AL
<@ 7&> = aw@+/AWQAW&m+/@fM&
CQ 62 2 Q w w



We set,

. uU—w
W= n- 77S ’ (1'27)
5}77
where the function w is defined by (1.18]).
Finally, we suppose that the initial conditions verify
@, 7" n') € [HY(Q) x H*(w) x H' (w) (1.28)
V-2’=0inQ, (@ —n'es), =00nT(p°), @ =0on Ty. (1.29)
Now, we state the main result of this paper.
Theorem 1.1. Let tg >0, v > 0,
fPewr=@)P, »¥er?(w), (1.30)
(w,p%,1°) € WH(Q)] x WH(Q)/R x C*(w), (1.31)
with
14+7° >0, (1.32)

such that the system (1.13)) is verified and (u°,n°,n") satisfying (1.28), (T.29). Then, there exist
N, e N*, K € L2 (R?% L(H)),

loc

(6r, CE,CB) € [H2(Q)]® x D(A1) x D(AY?), v € [HY2(To))P, k=1,...,N,,

and R > 0, such that if
[

=0 i + 107 = 1 gy + 0 oy < B
there ezists a unique strong solution (U, P,n) of , and associated to

P

Ny f t—to N
0(t) = 1y 4o ()Y W(t—to)—i—/ K(t—to, )W (s) ds, | & || v (1.33)
k=1 0 C§ H

where W is given by (T.27).
~ ~ S S . ~ ~
Moreover, (u — w”,p —p”,n—1n°) € X, where the functions u, p are defined by (1.18) and we have the
following estimate

G527 < ([~ g + I ey + ) - (39
Remark 1.2. We can obtain analogous results if we consider the classical Dirichlet boundary conditions

U=Mv on (0,00) x Iy,
{ ( (1.35)

U —0me3) =0 on (0,00) x T'(n).

We underline that if 5, = 0, the theorem implies that the system (L1.1)), (1.5) and (1.12)) is exponentially

stabilizable by considering only a scalar control in the impermeability boundary condition .

Remark 1.3. Here, the regqularity of 775 ensures to have a sufficient regular domain to apply elliptic estimates
of the Stokes problem with Navier-slip boundary conditions proved in [§].



In this paper, we are interested in the feedback stabilization of the system , and that is
similar to the system studied in [7] and [26] except that here, we consider the Navier boundary conditions. These
conditions were introduced in [2I] by Navier in 1823. The consideration of this type of boundary conditions
is significant in many physical aspects, see for instance [19, B}, [I7]. Note that the existence and uniqueness
of the strong solution for the system (L)), (L.5), have been obtained recently in [14]. Concerning the
stabilization without delay for fluid structure problems, there are few results in the literature. In [26], the
author considered a coupling system that models the interaction between an incompressible fluid governed
by the Navier-Stokes system and an elastic structure that enjoys the damped Euler-Bernoulli equation in a
rectangular domain considering the Dirichlet boundary conditions, the control in this case is distributed along
the structure. The author shows the exponential stabilization of the strong solution of the considered system
around zero. The same system was studied in [7], where the authors considered a boundary control acting on
a located part of the fluid boundary. The authors obtained a stabilization result of the weak solution around a
stationary state. In the case where the structure is a rigid body, we have [6], [5].

In this work, we construct a boundary feedback control v with a time delay tg > 0 (in the direction of [15])
such that the strong solution of our system is exponentially stabilizable around a fixed stationary state. Due to
regularity concerns, compatibility conditions at ¢t = 0 between v and the initial conditions should be imposed,
see for example [1I [2, B]. To overcome this difficulty, some strategies was developed in [25] 4]. In the case of a
time delay, the control acts on the system from ¢y > 0. Consequently, the control vanishes at ¢ = 0. Then, the
compatibility conditions are automatically satisfied and this is a good advantage of the time delay.

The paper is organized as follows: in section [2| we write the system (1.1, (L5), in a fixed domain
using the change of variables and (L.18). Next, we study the associated linear system in section [3] that
can be written as

2 =Az+ Bv+ f, 2(0)=2" (1.36)
Taking into account the remark the linearized problem is written as a system coupling the Oseen equations
and the damped plate equation, disturbed by some linear terms appearing in the whole system even in the
boundary conditions. We show that the infinitesimal operator associated to the linear system is analytic and
we establish a first result of a time delayed stabilization of the linearized problem. In fact, we show that the
Fattorini-Hautus criterion is satisfied

Ve e D(A*), VA€ C, ReA> -0 A'ce=X et B'e=0 = e=0. (UC,)
More precisely, the condition (UC,)) is obtained using the unique continuation property of an auxiliary Oseen
system with Neumann boundary condition. Finally, we prove the theorem applying the Banach fixed point
argument.

2 Change of variables

Let us define 7,

0 if ES FO

T _ . ) 2.1

B0 ={ ey i = (o1 € 100, 2
for any function 7 : w — (—1,00). We notice that T, € £(L?(w); [L*(9Q(n))]*) and

(T, O(s) = V1+[Vnl%(s, 1 +1(s)) - es, V¢ € [L*(0Qn))]°.
We define T by
T =T,sM,
where we recall that M is the orthogonal projection on the space L (w) defined by (L.1T).
Using (1.17) and (1.18), the system (1.1)), (1.5), (1.12) is equivalent to
Ot — V - T(w, p) = det(VX) f5(X) + (I1d ~K,,) 01 — v(A — L,)u
+(V = G,)p+M,a+ N, in (0,00) x Q, (2.2)

V-u=0 in (0,00) x €,
3tt77+A177+A23t77 = Hns(ﬂaﬁ) +H(ﬂa 77) +Mhs in (Oa OO) X w,



with the boundary conditions

{ [w — Tom|, = 1r,(Mv),, on (0,00) x 09,
2vD(u)n + B(u — Tom)|, = 1r,S(Mv), + G(u,n) on (0,00) x 09,

and with the initial conditions

77(0 )
3:&77( )

{ w(0,-) = (Cof VX (0,.))*U%(X(0,-)) = uO in Q,
17 in w,
7t in w.

(2.3)

We precise here that 1r, is the characteristic function of the set I'y. To simplify the notations, we set

a = (Cof(VY))*, b= (Cof(VX)),

K,u= (VX)u,
G,p = bVp.
We have the following formulas
B PN 0*u,
B Lyl = 3 (46870 () G 0) 21 () = B ) it
o 0] 0%y
J”’j;:m (det (VX)aj(X) 5 = (X)ach(X) 5]k5mzajl> D
8az—k 8Yl aajk 5Y2 aﬂk
+ det(VX) ijk:l < o, (X) o, (X) + 7o (X) o, (X)> i
8azk 8Yl 82Yl 8ajk 8Yl
! ij:kl (596] o B, )+ ai(X) dx3 (X + oz (X)ami <0

82}/1 8% 82a1-k
+a]k(X)8xj8xi(X))8yl+V2k:< 922 (
NS b PP N (s OV xyy 9P
(V= Gy)pli —Ek:(&k b““)ayk —Ek:(&k det(V.X) oz, (X))ayk’
[Nyl = — ) det(VX)ag (X) 8; - Uity — Y det( VX)akl(X)aij(X)a—mk(X)

k,l,j k,,j,m

ou; u;
OYym

)

[Myiil; = = > det(VX)ain(X) " 0y (X) = det(VX)dam(X)i, i=1,2,3.

L,k

The non linear term H appearing in the plate equation writes

H(@,n) = vM [ -3 (G + G 0) Mo

J.k
Y] ~\ Ou
+E <53k5ﬂ —azr(X )7(%; (X)Nj) 7(9;

7.k,

Y,

+ <53l5jk(N)j - ajk(X)aixS(X)Nj

X)+ aicg; (X)) ak], (2.5)



Now let us deal with the boundary conditions. Let W be the operator defined by

W = Y5 00) (G (X0 + (X0 ) 45 (Z ax; (X)T; = Tonm - )

Oy, OY,

o
Vs (%) + () 2o O

O0yq Oxy,

+v ) A(X) (akm(X) (X)) . k=1,2,3. (2.10)
Jimsq
The boundary conditions (L.5) become after the change of variables ((1.17) and (1.18)

{ _ (@ —Tom)n = 1r,(Mv), on (0,00) x 9,
W(u,n) - (T4(X)) = 1r,6(Mo) - (7°(X)), i=1,2 on (0,00) x 09,

where 7¢ are defined by (1.2) and (I.3). The second boundary condition in (2.11)) can be written as
(2uD(@)n + B — Tom)) - 7° = Vi(tu,n) + 1p, S(Mv) - 7%, i =1,2, on 9,
where 7' are the two tangent vectors on 99 defined in (T.19), (T.20) and V' is given by

(2.11)

Vi(,n) = vD(@)n + (@ — Tom)) - (7' = 7(X))
+ 2uD(@)n + B(u — Tom) — W(u,n)) - 74(X), i=1,2, ondQ. (2.12)
We construct an operator G such that G-n =0 and G- 7° = V' on 9. Consequently, G is defined on F(ns) by
Vl((asan)Q +1) - V2(881775882775)

G]_ == |N|2 )
2 S\2 1) — 1 S ) S
q, — Y@unr)+ |)N|2V (Ou,1°0:0°) (2.13)
s,V + 0,1 V?
G3 - )

V]2

2
and G is defined on Tg by G = » Vi7",
1=1

We set,

Then, (u,p,&) satisfies the system

Opu —V - T(u,p) + (w® - V)u + (u- V)w® = F(u,p, &) in (0,00) x €,
V-.u=0 in (0,00) x €, (2.14)
Dut + Ar€ + A20,€ = Hys (u,p) + H(u+w®, € +1) in (0,00) x w,

where
F(u,p,€) = (1d ~K¢1s)0u — v(A = Leyys) (u+w®) + (V= Geyys)(p+p°)
+ M s (u+w%) + Neyps (u+w¥) + (u- V)w® + (0¥ V)u+ (w¥ - V)w®
+det(VX)f5(X) — £5, (2.15)
with the boundary conditions

[u—T0&], = 1r,(Mv),, on (0,00) x 01,
(20D () + Blu — TOL)], = 1r, B(Mv), +Glu+ w,E+7°) on (0,00) x O,

and the initial conditions

(2.16)

£0,)=n"-7n° inw, (2.17)

u(0,)) =" —w’ inQ,
%E0,) =" inw.

10



Remark 2.1. For the linearization of the system (2.14), (2.16), (2.17), we need to find all the linear terms
coming from the change of variables. For example, we observe the term

det(VX)f3(X) — f5 = det(VX)(f¥(X) — f%) + (det(VX) — 1) f5.

1
We recall that det(VX) = 7 _:r Z We notice that
n
Yya€(y1, y
X(y) = & ( - 2)2)63 =Y + 9£(y17 92)83

L4705y, y
We apply Taylor’s formula since f° € W (Q)]?, we get
FEX ) = £5 () = 06y, 92)V £ W)es
+ SVt 0, 2)es) 0, s - OE i, ya)es ds. (218)
Then

det(VX (1)) 1° (X(0) ~ £5(0)
= R 5y a0V e + S g5

L+ 0%y, y2) 1
+ (1 Sl ) /1(1 — )V (y + s0€(yr, y2)es)0& (y1, y2)es - 0€(y1, y2)es ds. (2.19)
L+n%(y1,y2) ) Jo 7 ’ ,

Now, let assume that [[€]| 12 0,00 r2(w)) < CR, then, we have for ezample
2(0,003

< CR.
L3(0,00;[L2(2)]%)

§ s
1+n%

Thus, the terms of this kind should be considered in the linear part of the system or else it will constitute a
problem in the fized point procedure.

To overcome this difficulty, we follow the same approach described in [T]. More precisely, we write for
example

det(VX ()7 (X () — 5 (y) = £32(€) + 12 (¢),

with
Ol a0y < V2 0 a2y L+ 1€y 0.z > 1 (2.20)
where () is the linear operator
/12) § ;s
© = 125"

and €'?) s the remaining non linear terms appearing in (2.19). Then, the strategy consists to integrate the
linear operator (*?) in the left hand side of the fluid equation in (2.14) and to inject €12 in the right hand side
that will be handled in the fized point section.

Due to remark we need to decompose the functions F'; H and G into a linear part in £ and a nonlinear
part.

The notation 9,¢ (resp. 0%.&, 92,.€), designates in what follows the first derivative 0s,& (resp. the second
derivative 6;5],5 , the third derivative 02 508 )
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We underline that the linear part is not given in a explicit way, we just need to write formally the terms
that appear precising the derivative order of £. The linear parts denoted usually by ¢ will have the form that
formally writes

N2y, Z) =P 20+ + PO 7, (2.21)

where Pj(i) are coefficients that depend only on the stationary state (wS ., nS ), consequently, they are regular

enough. The goal now is to decompose each terms appearing in the formulas of F(u,p,&), H(u + w®, £ + ns),
G(u+w®, & +1n°) as it is done in remark the formal calculus are done in lemma Note that since our
system is coupled, we need to obtain a convenient match between the linear operators that appear in the fluid
equation, the structure equation and even in the boundary conditions. That is given in the following lemma.

Lemma 2.2. Suppose that
(w®,p%, %) € W>=(Q)P x WH>(Q)/R x C*(w).
Then,

e there exist linear operators
£1() € LDAYY), [H QPP £2(,) € LDAY?) x DA, [L2(@)),
£5() € L(D(AY?), [H' (0)]"),
e there exist non linear functions Ng, Np, Ng and F,
such that the system (2.14)), (2.16), (2.17) is equivalent to
Oyu— V- T(u,p) + (w” - V)u+ (u- V)w® = V- LE) + L2(£,0:€)
=V - Np(§) + Np(§) + F(u,p,§) in (0,00) x L,
V-u=0 in(0,00)xQ, (2.22)

O + Ar€ + A20,6 + T(L1(E)n) = Hys (u,p) + H (u, & + 1)
—T*(Ng(€)n) in (0,00) X w,

with the boundary conditions

[u—TOok&], = 1r,(Muv), on (0,00) x 09,
[2vD(u)n + LYEn + L3(€) + Blu— Tatﬁ)]T = 1p,B8(Mv

)7 (2.23)
~WE(©)n]: + INa(©)]- + Gu,E+1°)  on (0,00) x I,

and the initial conditions
u(0,-) =2° —w’ inQ,
§(Oa ) = 770 - 775 in w, (224)
2E(0,-) = ' in w.

Proof. Decomposition of F(u,p,¢):
Let decompose the term —v(A — L,). We notice that

— V(A —Ly)(u) = —v(A — Lgyys ) (u+ w’) = —v(A - Leyys)(u) —v(A — L£+ns)(ws). (2.25)

The term —v(A — Lg,s)(u) is nonlinear whereas —v(A — Lg,s)(w®) contains linear terms in ¢, then, from
remark we should write

— V(A = L ps) () = 009 (6,056, 07,6, 02,,6) + €19 (€,0,€, 02,6, 02,,6), (2.26)

12



where (13 is a linear operator of the form (2.21) and ¢1%) is the nonlinear part. To write the linearized system
in an appropriate form, we define for all u

- B oYy, Y] ouy,
(En(u))zm = ij:kl (det(VX)alk(X) 6$j (X)T%(X) - azkdm]6]l> Tyz
Yy, . 0V Oy,
+ ijkl (det(vX)ajk(X)axt(X)axj(X) — 6]]6571116]1) Tm
ﬁaik 8Ym aajk aYm ~
+ det(VX) (V%: < o2, (X) o7, (X) + 5o (X) 5z, (X)) uk) . (2.27)
Observe that
(V- Ep)i = —v[(A =Ly + (F))i, (2.28)
with
- 0det(VX) oY, 190 oY, 1904 ouy,
1 C— ) il . 4 Z7r
(@ === 3 [ (000 G2 O F 00 + a0 G0 L) )
8azk Y E)ajk 8Ym ~
* ((%cj Ox;j () + ox; (X) Ox; (X)> uk]
7.k
0%Y,, 0X, Y, Y, ouy,
7.k, l,m,q
3041]@ 3ajk ~
(0 + 52 m) )] (2.20)
From the lemma [.2] we have
(Eepns (w®)) = L&) + Ng(©), (2-30)

where £! is a linear operator that writes
LNE) = QT+ Q0. + Q%2,

where Q°, i = 1, .., 3 are operators that depend only on the stationary state and are of regularity W°°(Q). The
quantity Ng(€) is the remaining nonlinear part that contains the terms of the form

Cl( S S) 57711(855)7712 CZ(MS S)fnl(asgyuas%qg

w”, , , , mi+me =22 n+ne>1, o 21, 2.31
B ETEE (T gpySm T TEmm AT (230

where ¢! (w®,1°) and ¢*(w®,n®) are two quantities of regularity W1°°(Q). In the other hand, from lemma
we have also

(F,»;-“1+77 )( ) = _6(9) (57 885’ agsf) - 6(9) (57 6€§7 8?35)7 (232)

where the expression of the nonlinear part € (¢, 9,¢, 82,€) contains terms of the form (2.31). Then, from (2.26),
(2.28), (2.30) and (2.32]), we deduce

CI(E,0,€,02,€,03,.8) = V - (L1(€)) + £9(&, 0., 02,9), (2.33)
eI (€,0,6,02,,02,,6) = €9(£,0,6,0%,6) + V - (NB(E)). (2.34)
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Using (2:25), (2:26), (2-33) and (2:34), the term —v(A — L¢,,s)(u + w®) writes

— V(A = Lggys)(u+w®) = V- (L1(E) + 09 (&, 0., 0%,) + €9 (£,0,€,02,8) + V - (Np(€))
— V(A = Lgyys)(u).

Furthermore, using again lemma we obtain

Y, op’®
(V= Gepye) (%) = D0k = det(VX) G (X)) 5o = £7(6,0,6) + 7€ 0,0)
k 1
where ¢ (£, 05€) contains the terms
Cg(psans) 5 2(696) i my +m2 2 23 aq 2 17

3

where ¢’ is a function that depends on the stationary state and bounded in Q. Then, we get

(V= Geays)(p+0%))s = £9(€,056) + €7 (€,056) + [(V = Gepys) ()]s

Moreover, we have

(2.35)

(2.36)

(2.37)

(2.38)

S
Zdet(VX)a,-k(X)‘?;Zk AY(X) = (VXVw®d,Y (X)),
1
1,k
where
s ow
(VXVw0,Y (X)) = 0;Ys——, i =1,2,
8y3
0X5 0ws  0X5 Ows 1+7n ows
VXVw’d,Y (X :ay< ! 2 3.
( V(X0 =0\ 5 Gy T g ays T 1405 oy
We notice that 5 5 ouc( S) 5 Sf
5 X3 S 1 +7] — Ug; .
0,Ys = —yz— - i i =1,2.
tf3 y31+777 6yz Y3 (1+ns)2 , 2 )

Using , we find
—(VXVWS,Y (X)) = 69(0,6) + iV (£,0,€, 0,6),

where € (¢, 8,¢,0,€) has the terms

Hw® S)%

ma2
Mgty ¢ @) e

with ¢* and ¢ are W°°(Q2) functions. Moreover, using lemma we get

=3 det(VX)dhai (X)w§ = £ (9,¢,02.6) + €V (€, 0,6, 9.€),
k

where ¢ (¢,9,¢,02.€) contains terms of the form

6 5 s EMOILE 75 .8 £m2 0 8.5 s M08
) ) b c w ) )
C(w i )(1+£+ns)a1 C(w n )(1+£+ns)a2 ( )(1+§_~_ns)a3
m1>1a m2>17 m3>07 ai>1a

14

(2.40)

(2.41)



where ¢, i = 6, ...,8 are W>>°(Q) functions. Then
M s (ut w?) = (D(0,8) + 90,6, 07,) + V(6. 018, 078) + €V (€, 0:€, 04€) + Mgy (u).

We have,

[Nepys(u+w®) +u- Vo +w® - Vu+w® - V), = - Zdet(VX)akl(X)aaga: )wlswf
k

k,l,j
Yy, ow?
+ Z <6ij6k16km - det<VX)akl(X)aij(X)E)xk(X)> u)ls ay; + FiQ(u7§ + 775)

k,lg,m

= FA(u, &+ %) + F2(w® ¢ +7°%), i=1,2,3.

Using lemma [£.2] we obtain
FP (w6 +1%) = 0 (6,0,, 02.6) + €V (&,0,¢, 62.9),
where ¢® (€,0,€,0%.€) admits terms of the form . Then, we get
[Negps (w4 wS) +u- Vo' +w® - Vu+ 0 - Vud]; = £9(€,0,¢,0%,6)

+ 67 (606050 + (& 7). =123,

From (2.15), (2.35)), (2.38), (2.42) and (2.45)), we get
F(u,p,&) =V - LYE) + L2(&,0:8) + V - Np(&) + Ne (&) + F(u,p, §).

where
L2(€,0,6) = 19(€,0,€,02,6) + L) (£,0,8) + €W (9,€) + £19(0,€, 07.) + (P (€, 04, 02,9).

More precisely,
L2(,0:) = Q'€ + QP& + Q02L& + Q7€ + Q°IZE,

where Q;, i = 4,..,8 are operators of regularity W°°(Q) and we also have

Np(E) = €9(£,0,6,0%8) + €(£,0:8) + €W (€,0:6,0:8) + €9(£,0,6,046) + ¥ (€8¢, 0%¢),

f(u,p, 5) = (Id _K£+ns>atu - V(A - L§+ns)(u) + (V - GEJrnS)(p) + M£+ns (u) + FQ(U,E + nS)'

Decomposition H(u,§ + 775):
We have
H(u+ws,§+ns) :H(u7§+n5)+H(wS,f+nS)-

We notice that
H(w® £ +n%) = =T*((Egyns (w¥))n),

where 7" is defined by

THO)(s) = M (\/1 VRS C(s, 1+ 15 (s)) - ) L Ve e 200,

Using , we obtain
H(u+w® &+ 0%) = =T (L' ()n) + H(u, & +1°%) = T*(Ne()n).
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Decomposition of G(u,& +n°): .
Using the expression of W in (2.10) and of V* in (2.12)), we find

Vi(w®, & +1%) = 2vD(w)n + pw?) - (1" — 7 (X))

>~ an a’UJTSn
Pt 9Y, (‘)wf;Z
> <<n<X>>jajm<X>%j<X> - <n>j6jm6qk) T
o SDEE0) (28 w2 (s, ) + B 0k — ans (X)) |F(X), K =1,2,3.
~ J a.’rj m 8.Tk m ; j j g L , .2,
We notice that
oY, ows
. (X X ~74q X % m
Vj;q <”35k‘m6qy 15 (X)) @ )axj ( ) 3,
~ Y, (9105T
+v j;q <nj5jm(5qk - TLJ(X)CL]m(X)axZ(X)> 8yq

— vy (X) (‘9;’3’;;" (XS, 4 2am (X)w,i> = (B (w05,

In the other hand, using Taylor’s formula

VS Ve |V
INF—  2INP

11
IN| N

2Vn® - VE+ |VEP

302 [ (1-5s) ds
4IN| Jo (1+4s0)5/2 7

where 0 = N . Then, we deduce
1 L vy -VE
Lo L VI VE L o,
IN| N IN?
with e -
\Y%3 30 (I—29)
19)(9.¢) = — ds.
OO =N TNy s @
Then, using (2.30) and (2.54), we obtain
- oY, ows,
y;n:q <nj5km5qj — nj(X)akm(X)%j(X ) T

40 3 (mibim = ()i (X)

Jm,q

8$k

9y ) 2
Oxy, 0yq

o S0 (0wt + 2 (X)) = L+ £19(0.6) - (e

85cj

+ M (g,0,6,0%.6)]k,
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where

ow? S
419(0,6) = v . :
k ( ) ‘N|2 Z 6y] Yk
and €™ admits the terms (2.31). Moreover, From lemma we get

B> 0k — s (X)ws = 67 (€,0,6) + € (€, 0,9),
J

where 65:5) had the terms

9,8 8 & 10y, s sy §M0s€ S S 51 i
C(w » N )(1+£+ns)a17 c (U} s N )(1+§+ns)a2,m1/27 m2/1; Ch/].,l 1,27
where ¢, i = 9,10 are of regularity W3/ (9%).
Vi, ) = = [£1En + L3E)] - 7' — Np(©)n] - 7 + €'V (€, 0,¢,0%,¢), (2.56)

where £3 is an operator defined by
L) 7 == (D) + put) - (r' = 7(X) = 0 (0:8) - 7', L3E) n =0,
then £ can be expressed as the following
L3(6) = Q¢ + Q0.¢, (2.57)
where Q° and Q'° are of regularity WI/Q’OO(QQ) and
€I(6,0,6,0%,6) = (08 - (T(X) = 7) + M(€,0,6,02,6) - T(X) = We(@n] - (F(X) — 7).
Here, €'Y contains terms of the type (2.31)). Finally, we define N such that
Nol§) =i = e“% 0:6,0%,8),  Na(€) -n=0.

Then, the system (2.14)), (2.16)), (2.17) becomes

Oru =V - T(u,p) + (w° - V)u+ (u- V)w® = V- L1E) + L2(€,0:8)
:VNE(§)+NF(§)+.F(U,p,€) in (0,00)XQ,
V-u=0 in (0,00) x Q,

Ol + A1 + A0, + T (LY (E)n) = Hys (u, p) + H(u, & + 1)
—T*(Ng(€)n) in (0,00) X w,

and the boundary conditions

[u—T0&], = 1r,(Mv), on (0,00) x 0L,
{ [2vD(u)n + L1 (E)n + L2(€) + Blu — ToE)] . = 1r, S(Mv),
~WE(©n]r + el + G(u,E+1°)  on (0,00) x 8L,

and the initial conditions

£0,)=n"-7" inw,

u(0,) =’ —w® inQ,
2£(0,) =n' inw.
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3 Feedback stabilization of the linear system
We consider the linear system associated to and
Oy + (w® - V) + (@ - V)w® — V- T(@,§) — V- L&) + L2(£,0,6) = [ in (0,00) x Q,
V-w=0 in (0,00) x Q, (3.1)
On + A1€ + Ag0i6 + TH(LY(E)n) = —T*(T(w,g)n) +h in (0,00) X w,

with the boundary conditions

[ — T 0] = 1p,(Mw),, on (0,00) x 9, 3.9
{ [20D(@)n + B (@ — TOWE) + L1(E)n + L], = Lo BMv), +§ on (0,00) x I, (3:2)
and the initial conditions
@(0,) =w’ =" —w® inQ,
§0,)=¢"=n"-n" inw, (3.3)
2€(0,)=¢ =n" mw,

where

L) = Q' + Q%0:¢ + QDLE,
L2(£,006) = Q6+ Q70,6 + QD26 + Q9,6 + Q®0%E,
L£3(6) = Q% + Q9,6 (3.4)
We set
L21E) = QY + Q0,6 + QP02 L2(0:€) = QT0& + QPOLE. (3.5)

Here, we recall that Q%, i = 1,...,8 are some operators that depend on the stationary state, of regularity
W (Q) and Q°, Q¥ are of regularity W/ (9Q).

The next step consists to reformulate the system (3.1)), to get an evolution problem. To do so, we need
to lift g in the boundary conditions. Then, we set the following lemma that concerns the instationary Stokes
problem with Navier boundary conditions with a non negative friction.

Lemma 3.1. Let 8> 0 and vo > 0. Let (v,7) that verifies the system

v +v0 -V -Tw,7)=0 in (0,00) x Q,
V-u=0 in (0,00) x £,

Up, =0 on (0,00) x 09, (3.6)
2vD(W)n+pv]. =g on (0,00) x 09,
50,)=0  inQ.
If
g € W0, 00 [H'2 (O, [L2(O)]), Gy =0, (3.7)

for v € [0,70], then the problem (3.6) admits a unique solution that satisfies the estimate

~n2 ~112 ~112
191, (0,00, trr2 ()12 22 12) + V22 0,00,122 012) S CNINgw274 0 005711/ 06202 122002072 - (38)
where C is a positive constant.

Remark 3.2. Since v > 0, then the system (3.6) admits a unique solution for any 8 > 0 that is exponentially
stable. If yv9 = B = 0 the system is no more stable hence the importance of taking vo > 0.
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Proof. In the proof, we use the fact that the condition (3.7) is equivalent to
g € W3/2(0, 00, [H ()P, (L), Gny = 0.

This fact is obtained in [20, p.21, Theorem 2.3]. This type of demonstration can be found in [29], for the sake
of completeness, we recall the main steps of the proof here and see how we can adapt some points of the proof
in our case.

We consider the following problem

Yz —V-T(z,x) =0 in (0, 00)
V-z=0 in (0, 00) x €,
zZn =0 on

( (3.9)
2vD(z)n+ pz], =g  on (

By a density argument, we assume that g € C;°(R, [H*(Q)]*) and g(t) = 0 if ¢ < 0. Then, the system (3.9),
admits a unique solution (z,x) € C5°(Ry, [H*(Q)]*) x C° (R, HY(Q)/R) (see [§]). We set then, 7 = v — 2,
X =7 — x. Then, (Z,X) satisfies the system

Wz +vzZ— V- -T(Z,X) = -0z in (0,00) x Q,
V-Z=0 in (0,00) x Q,
Zn =0 on (0,00) x 09, (3.10)
2vD(Z)n+pz], =0  on (0,00) x 09,
Z(0,-)=0 in .

The system above admits a solution using the fact that the operator
A=PA-yld, DA)={ze[H*Q);2-n=0, [2vD(2)n+ B2, =0},

generates an analytic semigroup exponentially stable where P designates the Leray projection. This is a di-
rect consequence of [I0, Theorem 2.12, p.115]. We deduce then the existence of a unique solution (v,7) €
C(Ry, [H*(Q))?) x C°(Ry, H'(2)/R) of the system (3.6).
Now, we show (3.8). Let ¢ € C3°(Ry,[L*(€2)]*) such that V- ¢ =0, ¢ - n = 0, and we suppose that ¢ =0
on (T,00) x Q where T > 0. We consider the system
3t¢*(70*7)1/)+v']r(¢,0):¢ inRXQa
V=0 in R x Q,
=0 onRxdQ, (3.11)

RvDW)n+ pyY] =0 on R x 99,
H(T)=0 inQ.

We observe that ¢ =0, § =0 on (T, 00) x Q. The system (3.11]) admits a unique solution
(¥,0) € W(R; [H*(Q)]%, [L*(Q)]°) x L*(R; H' () /R),
exponentially stable satisfying
191w @iz s, 2@y + 1002w @)y/my < C IOl L2 iz @) - (3.12)
We have

NG b dydt = MG (O — (70 — T(.0)) dyd
/R/Qe 5 dydt /R/Qe B (O — (0 — )b + V - T(,0)) dydt
:—//e”t(a{ﬁ—i—w(ﬁ—v-ﬂl‘(i,%))-wdydt—// G, by dTdt
RJQ R JOQ

__ / / g, b, dUdt.
R JOQ
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Using (3.12), we get
17| Loz aygs) < C 17Tl L2 e o) -

In the other hand, we extend n on ) and we obtain

/ e’9,g - dll = Z/e”ta )i0:g) - @chly+2/e7 )i0:g) - Opt dy.
00

Then,

/R /Qe”taﬁ-wydt Z / / (€' 0:((n)i0hg) - ¥ + 7 ((n)i0hg) - Ditp) dyat.

To estimate t — €*0,0(t) in L*(R, [L2(Q)] ), we notice that

// €9;((n)i0:g) - ¢ dydt = f'y// e"0i((n)ig) - ¢ dydt — // 705 (( - O dydt.

Then,

‘ <evtai((n)iat§)7 ¢>L2(]R;[L2(Q)]3)

<C He’ytgHLZ(R;[H1(Q)]3) ( ||8thL2(]R7[L2(Q)]3)

+ Y1l 2 2@y )

Moreover,

< (( ) atm azw>L2 R;[L2(€2)]3) <at(eﬂyt§)a( )1 zw>L2 R;[L2(2)]3) 7<eyt§7( )l lw>L2 R;[L2(2)]3)

Then, using [28, Proposition 2.3, Proposition 2.8], we obtain

< Cllgllwrre @y @y, ez IV lw2@m @p, e @)

’<€”t((”)iat§)v 81¢>L2(R;[L2(9)]3)

< Clgllvware a2 ) 19w @iaz @) 2 g2 -

Combining (3.17)), (3.16)), (3.14) and (3.12) we have

€700 2

rzzp) S C e Tllws @upa s 2 @) -

Finally, from the classical elliptic estimates of the Stokes problem, we have
||5(t>||[H2(Q)]3 + VA 120y (Hatv( Wiz + ||§(t)||[H1(Q)]3) .

Using (3.19) and ( , we obtain

We set
w=w-—-v, ¢=¢q-—T.
Then, from lemma [3.1] we only need to consider the linear system
dew + (w* - Vyw + (w- V)w® = V- T(w,q) = V- L) + L2(€,0) = [ in (0,00) x 2,
V-w=0 1in (0,00) x £,
O + Ar€ + A20,€ + T (L (€)n) = =T*(T(w, q)n) + b in (0,00) x w,

with the boundary conditions

{ [w = T0&]n = 1, Mwv),, on (0,00) x I,
[2vD(w)n + B (w— T9E) + L1 (En + 53(5)]7 = 1r,8(Mv), on (0,00) x 99,
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and the initial conditions
0,)=¢" inw, (3.22)
0 .
where _ _
f=f—@ Vo —(@-V)w’ +v0, h=h-TT®@7)n). (3.23)

In this section, we prove that the system (3.20), (3.21) and (3.22)) is exponentially stabilisable.
We define

H = {(w,m1,n2) € [L2(Q)] x D(A})?) x L3(w) ; V-w="0in Q [w—Tna], =0 on 90},

with the inner product

w v
< (771) 7 (61) > - <w’v>[L2(Q)]3 + <A}/2771,A}/2§1>L2(w) * <n27§2>L2(u) .
12 &)y

V= ([HI(Q)P x D(AYY) x D(A}/‘*)) NH, (3.24)

We define also

and the orthogonal projection P
P: [L3(Q)]? x D(A)?) x L2(w) — H.
Finally, we set the operator Ag

(w) (VAw — (W Vw — (w-V)w® + V- L) - 52(7717772)>
Ag = J

m 72 (3.25)

2 —Aym — Agmy — T*(2vD(w)n + £1(n1)n)

D(As) = {(w,m,m) € ([H* Q)] x D(A1) x D(4}*)) NV,
[2vD(w)n + B(w — Tip) + L (m)n+ L2(m)] . =0 on 89}, (3.26)
and the operator Ag defined as follows
Ag =PAg, D(As)=D(As). (3.27)

Proposition 3.3. There exists A\g > 0 such that the operator \gld —Ag is the infinitesimal generator of a
strongly continuous semigroup of contractions on H.

Proof. Let W = (w,&1,&2) € D(Ag). We show that AgId —Ag is dissipative.

(o Td — Ag) W, W) :)\O/Q\w|2 dy—l—/Q(VwS)*w-w dy+21//Q|Dw|2 dy
b [ £ Vodyt [ L) wdys [ plw-TE) ar
Q Q o0
3 172, |2 172, |2
[ e =T, [ Al ase [ (A% as

o / 62 ds. (3.28)

w
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From (3.4) and the fact that Q°, i = 1, ...,8 are of regularity W1°°(€2), then

T el A (3.29)
Vllizz@pe S 250 Sl '
I ey < © (4126, +[ae| (3.30)
1,82 [L2(Q) 1 1 L%(w) 2 2 L%(w) . .
Since &; is a periodic function, we get
l€xllzo 0y + 10561 z0c0y < Cllrllmay < €417, -
Using that Q° and Q'° are of regularity W1/2°°(9Q) — L3(1), then we obtain
3 2 1/2 2
1£° €z oy < CHAl ’51’ L2(w) (3:31)

Using (3.29), (3.30) and (3.31)), we find

/(sz)*w-wdy—i—/ﬁl(fl):Vw dy+/£2(§17§2)~wdy
Q Q Q

3 ' _ S _ 2 . 1/2 2
+/89[L ()]s - (w—T&)r dl > 6(|Iw||[H1(Q)P T HA2 52HL2(Q))

2
-C (|w||[2L2(Q)]3 + Hfz”iz(w) + HAi/Q&‘ LQ(M)> . (3.32)

Thanks to the classical Korn’s inequality, we obtain for \g large enough
(Ao ld—As)W, W) > 0.

It remains to show that the oprator \gId —Ag is m-dissipative: we prove that AgId —Ag is onto.

Let FF = £ € H and we consider the equation
h
w
(Mold—Ag) [m | = F, (3.33)
2
Aow — V- T(w,q) + (wS -V)w + (w - V)ws — VL) 4+ L2, m2) = f in Q, (3.34a)
Vow=0 inQ, (3.34b)
A1 — 12 =g in w, (3.34c)
o2 + Avmy + Agne = =T (T(w, ¢)n + L (m)n) + b in w, (3.34d)
[w—"Tmne], =0 on 09, (3.34e)
[2vD(w)n + B(w — Tnz) + L' (m)n+ L3(m)]_ =0 on 9. (3.34f)

To solve the system above, we introduce the space

V:{(qs,g)e[Hl(Q)PxD(A}/2)|v-¢=o inQ, [p—TEn=0 onasz}.
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Then, solving the equation (3.33)) is reduced to solve the following variational problem: one need to find

(w,m2) € V such that
((2)-(€)=#() ((E)=») 539

with a : V x V — R the bilinear form given by

a((j}i)(?)) =Ao/9w-<z>dy+/9<<ws-V>w+(w-V)wS)-¢dy+2u/QD<w):D<¢) dy
+)\i0/ﬂﬁl(772):V¢dy+%0/ﬂl32’1(nz)'¢dy+/ﬂﬁz’2(nz)'¢dy+Aoan-§dS

+ / (Aam) - € ds + %0 / (A%n2) - (A)/%€) ds + /8 Pl =Tl - [ = TE)]- d

t [ 1) 6T, dr,
0 Jox

and L : VYV — R the linear form defined by

L(f) :/Qf.qsdy+/wh~fdsf%O/UJ(A}%)'(A%) ds
—§;Ac%w:vww—§;@£ﬂ@y¢dy—%;égb%m7w¢—7@mdn

The bilinear form a is continuous and coercive on V thanks to the classical Korn’s inequality and L is continuous
on V. Using the Lax-Milgram theorem, there exists a unique (w,n2) € V that is solution to (3.35). Now, taking
£ =0and ¢ € D,(9), the equation (3.35) becomes

S S .
)\O/Qw-qbdy—&—/ﬂ((w -V)w + (w - V)w )-¢dy+2V/QD(w).D(¢) dy
+/Q£1(771):V¢dy+/9£2(m,nz)-¢dy=/9f-¢dy7

that is equivalent to
Dow + (¥ - V)w + (w- V)w® —vAw — V- L) + L2 (1, m2) — f,¢) =0, Vo € Dy().

Using the De Rham theorem [30, Proposition 1.2, p.14], we deduce the existence of a unique element ¢ € L*(Q)/R
such that (3.34al) is satisfied. In particular, we have V-T(w, q) € [L*(Q)]® and T(w, q) € [L*(€2)]°. Consequently,
we get T(w, q)n € [H~Y/2(09)]* and

[ T : D) dy = (D)1
N / (f = Aow = (w® - V)w — (w- V)w® = L2(1,12)) - ¢ dy — / LYm): Vo dy
Q@ Q

+/m[£1(n1)n]T-¢T dT’, (3.36)

for all ¢ € [H*(Q)]3, ¢, = 0. Taking £ =0 in , we obtain
/\o/w'¢dy+2V D(w) : D(9) dy+//~’1(m):V¢ dy+//32(771,n2)-¢>dy
Q Q Q Q
[ (0wt - V)w) -6 dy+ (1800 = Tlm) + L5006 )y 2o

=/ﬁ¢@,@m
Q
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for any ¢ € [H'(Q)]3, V- ¢ =0, ¢, = 0. Comparing ([3.36) and (3.37) and taking into account the fact
/T(w,q) : D(9) dy = 2u/ D(w): D(¢) dy, ¥¢ € [H (), V¢ =0, ¢ =0,
Q Q
we obtain for all ¢ € [H'(Q)]? satisfying V- ¢ =0 and ¢,, = 0

- <T(w7 Q)na ¢>H—1/27H1/2 = <[,@(’LU - T"D) + /31(771)” + 53(771)]77 ¢>H*1/2,H1/2 . (338)

Then, (3.38) is also satisfied for all ¢ € [H'(Q)]?, ¢, = 0 since we can always construct a divergence free
function on 2 that coincides with ¢ at the boundary. Plugging (3.38) in (3.36), we obtain

/((w5~V)w+(w~V)w5)-¢dy+2u/D(w);D(¢>) dy—/qV-¢dy
Q Q Q
+ <[ﬁ(w - 7-772) +£3(771)]r,¢r>H71/27H1/2 = /Q(f — Aow — 52(7717772» “ody
- /Q LY(m): Ve dy, (3.39)

for any ¢ € [H*(Q))3, ¢, = 0.

Then, we deduce that (w,q) is a weak solution of (3.34a)), (3.34b)), (3.34¢) and (3.34f) in the sens of the
[9, Definition, p.10]. Since 1y € H?*(w) then Tny € [H?(9Q)]*, we can apply [9, Théoréme 1.2] to get that
(w,q) € [HA(Q) x H'(Q)/R.

Then, going back to (3.35), we get

/ (AV2ny) - (AY¢) ds = - / M€ ds — / (Agio) - € ds

— / T*(T(u,q)n + LY (n1)n) - € ds +/ h-&ds, (3.40)

1
for all ¢ € D(AY?) where 7, = X(g + 12). We notice that we have n; € D(AY2), then T*(L(n)n) € Li(w).

In the other hand, we have T(w,q)n € [HY?(99)]%, then it implies that 7*(T(w,q)n) € L2(w). Moreover,

since 12 € H?(w), we deduce that 7, € D(Az). Thus, using the fact that D(Ai/z) is dense in L2(w), we obtain
Ay € LE(w).

Applying the Lumer-Phillips theorem, we deduce that A\gId —Ag generates a strongly continuous semigroup
of contractions on H. O

Proposition 3.4. The adjoint operator of Ag is given by

w vAw + (w® - V)w — (Vwd)*w
Ag (m | =P | —m = AT ((L))(Vw) + (L2 w + (L) w = ((L2)*(Tn2)) | (3.41)
12 Ay — Agny — T*(2vD(w)n) — (£22) w

and

D(AF) = {(w,m,m) € ([HAQ) x D(A1) x D(4}*)) NV,
2vD(w)n+ B(w —Tn2)], =0 on 0N}, (3.42)
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Proof. Let (w,m,n2) € D(Ag) and (¢, (1,(2) € D(AS). We have

(As(w,m.m2), (9, C1s ) = —20 / D(w) : D(g) dy + / (W’ V)p-w
Q Q
- w0 w dy — Yn) : Vw dy — 2(n1,m2) - w
/Q(V Vo w dy /Qﬁ(n)de /Qﬁ(nn) dy
[ Bw—Tm)r (o — TGa)r dr — / L3 () - (0 — TCa)y dT
onN o0

_/(A2C2) “mg ds. (3.43)

w

Then

(As(w,m712), (. C1. C2) =u/QAso-wdy+/Q<wS~v>go~w
—/Q(sz)*w-wdy—/ﬂﬁl(m):vw dy—/Q»CQ(m,nz)-@dy
- / L3 (m)], - (9 — TCa)r dT — / (AsGa) - 112 ds — / T*QuD(p)n)e ds. (3.44)
o0 w w

Using and , we obtain . O
Proposition 3.5. For 0 € [0,1], we have

D((Ao1d—Ag)") = [D(A), H]1_g, D((Aold—45)) = [D(A*), H];_, (3.45)
for Ao > 0 large enough.
Proof. The proof is a direct consequence of proposition and of [10, Proposition 6.1, p.171]. O

Proposition 3.6. The operator Ag defined by (3.25)) and (3.27) is the infinitesimal generator of an analytical
semigroup on H.

Proof. We notice that Ag = —A* + Og where A is the operator defined by

D(A) = {(w,m,m) € ([FAQ x D(41) x D(4}*)) NV,
2vD(w)n+ B(w —Tn2)], =0 on 002}, (3.46)

w —vAw
Alm | = —12 ; (3.47)
(772> (Alm + Aomo + T (21/D(w)n))
D(A)=D(A), A=PA, (3.48)

and

w (w® - V)w — (V) w
Os (?) =P (—All ((LH)(Vw) + (L) w + (L) w — ((53)*(7'52))> :

We precise here
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From [I4], A is the infinitesimal generator of an analytical semigroup on H. Then, from [22, Corollaire 2.4,
p.81], we only need to show that V C D(Og). In fact, let (w,&1,£2) € V and (¢, m,72) € H. First, we use (3.5))
and we observe that for n, € H'(w) N LE(w)

—/(£2’2)*w~v72 ds = —/Qw~£2’2(nz) dy = —/Qw'(Q7772+Q8V’72) dy

= —/ w- Qo dy — / w- Q¥Vny dy.  (3.49)
Q Q

By integration by parts, we find that

/Qw Qg dy+/9w - Q% dy‘ < Cllwllgg @y 120l L2 w) -

Then, by density, we get

w ¥
<Os S, |m > < C( lwll g1y <@|[L2(Q)]3 + HAI/in‘
&2 n2) Iy

L2(w)>

e 1l * ol Il
< Cw @)l 1ol (350

We deduce that Ag is the infinitesimal generator of an analytical semigroup on H. Moreover, Ag admits a
compact resolvent. O

|47

Let
VfL(FO):{vGHS(FO);/v~ndF:0}, 52 0.
To

From [27], the system (3.20), (3.21), (3.22) is equivalent to

PW’ = AgPW +PF + Bv, PW(0)=PW?°, (3.51)
Id-P)yW' = (Id —P) Do, :
with
w f w?
51 = 67 62 - 6t§7 W = 51 ) F= 0 ) WO = 50 )
S h ¢t

where D € L(VO(Ty), [L3(Q)]* x D(A}/?) x L2(w)) such that Dv = (w, n1,72) verifies the system

N — V- (T(@, 7)) + (0’ - VT + (@ - VI)w® =V - LY (1) + L2(n1,72) =0 in Q,
V-w=0 in{,
Aom —n2=0 inw,
Xon + Ay + Agno + T (T(w, 7)n + L (n)n) =0 in w,
[ — Tneln = 1r,v, on 99,
[2vD(@)n + B(w — Tna) + L (m1)n + Eg(m)]T =1r,(Bv;) on 99.

with \g € p(Ag), and the operator B is defined by
B:veU=[H?Ty) — (AoId—Ag)PD(Mv) € (D(A%)).

We notice that ‘
(NoId—Ag) "B € L([H**(To)]>, H), Ve € (0,1/4).
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The adjoint operator D* € L([L*(Q)]® x D(Ai/Q) x L3(w),[L*(Ty)]?) is defined for all (f,g,h) € [L*(Q)]* x
D(4)?) x L§(w) by

{ D*(F.5.5) = (T(¢,r)n)a + (TG, 1)) g, + i B >0,
D*(f7§ h) ( ((ba ) )n|F0’ ifﬁlzo,

such that (¢,7,(1,¢2) € [H2(Q)]* x HY(Q)/R x D(A;) x D(Ai/Q) is solution of the system

Mo = V- (T(¢,71) = (W - V)p+ (Vu) ¢ =f inQ,
V-¢p=0 1in Q,
MoC1+ G+ AT (((LY))(V) + (£21) ¢+ (£%)"6 — ( V(TG) =7 inw,
MoCa — A1y + ACo + TH(T(p,7)n) + (L**) ¢ =h in w,
(¢—TC )o =0 on 99,
[2vD(¢)n + (¢ — T(2)], =0 on Q.
We precise that (¢, (1, 2) is solution of the system
(Mo — A5)(9,¢1,¢2) = P(f, 9, h). (3.52)

If 81 > 0, the operator B* is given by

B (6,61,G) = m ((T(¢>, ) -n— [ mT6,rn-n dr) 0+ m(T(6,r)n),

)

Fo F0

and if 51 = 0, we get

mT(p,r)n-n dF) n

B*(¢,(1,¢2) = m ((T((p, rn)-n—

)

1—‘U Fo

where 7 € H*(Q)/R, is the solution of the problem

Vr 1)
( 0 ) = (I -P)A; (41) . (3.53)
—T"(rn) G2

Now, we establish a first result of stabilization of the linear system (3.20), (3.21) and (3.22)). To do so, it suffices
to verify that (Ag, B) satisfies the Fattorini-hautus criterion (UC,)) and to apply [I5, Theorem 1.1 .
Let 0 > 0 and A € C such that Re A > —o. Let (¢, r, (1, (2) solution of the system

A=V - (T(¢,7) = (w® - V)¢ + (V) ¢ =0 inQ,
V-¢=0 in Q,
MG+ G+ AT (L)) (V) + (L21)7 0 = (£5)7 0+ (£5)*(T¢)) =0 inw,
Ao — A1y + AoGo + TH(T(p,7)n) + (£2?)*¢ =0 in w,
((b - TCQ)n =0 on 09,
[2vD(¢)n + B(¢ — T¢)], =0 on 9.

and assume that B*(¢, (1, (2) = 0, it implies that for 8; > 0, we have

m ((T(¢, r)n)-n— mT(p,r)n - n dF) n+ m(T(p,r)n), = 0. (3.54)

To

We set,

c(p,r) = g mT(¢p,r)n-n dl.
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The equation becomes
m(T(d)a r—= C(¢a r))n)n + m(’]r(d)? r—= C(¢, T))n)-,- =0. (355)

We deduce that
T(¢,r — c(¢p,r))n =0, on Iy.

Then, from [16], we get
¢=0, inQ, r=c(g,r), onf

In particular
T(¢, 7 — (¢, r))n =0, on IN. (3.56)

Thus, we obtain

T*(T(p,r)n) = —c(¢p,r)T*(n), on ON. (3.57)
From the definition of the operator 7" given in (2.51)), we have that 7*(n) = 0. Then, from (3.57), we obtain

T*(T(¢p,r)n) =0, on ON. (3.58)

Moreover, we have 7(; = 0 on 012, then (; = 0. The equation (3.58)) implies that A;¢; = 0 and taking into
account the periodicity of ¢;, we find {; = 0. Then, the condition (UC,] is verified. We deduce then the
following theorem.

Theorem 3.7. Letty >0, 0 > 0 and W° € V. Then, there exists N, € N*, K € LS. (R% L(H)), (¢x,CF, () €
D(AY) and v, € B* (D(AY)), k=1,..., Ny, such that

Ny t—to P
v(t) = Ly, +00) (1) Z Wt —to) + / K(t —to,s)W(s) ds, | CF Uk, (3.59)
k=1 0 Cg H
stabilizes exponentially the system (3.51) and we have
W | 2 (0,000 (A5 )€ ([0,00) )2 (0,00:8) < C (IWOlw + [ Fll £2 (0,000 ) - (3.60)

Finally, using (3.60), (3.8) and (3.23]), we obtain the following corollary.

Corollary 3.8. Let vg > 0. For all v € [0,70], the solution (w,q, &) of the system (3.1), (3.2)), (3.3) verifies the
estimate

@70l < C( 1w, + |7

+ A
L2(0,+005(L2(Q)]?) L2(0,+00;L2(w))

TGl rs 0 oz 20 (22 0) ) (3:61)
4 Fixed point
Let Voo and B g be given respectively by
_ 72 . 2 3 1/4 . 1/2 3 2 3 2 .72
Yoo = L3(0, 003 [L2(Q)]*) x W/4(0, 00; [H'2(02))%, [L*(9Q)]*) x L5(0, 00; L*(w)). (4.1)
Bur={(F50) e Vx| gD, <r). (4.2)

Let (J?, 9, 71) € Boo,r and let (u, p, §) be the solution of the system (3.1), (3.2), (3.3)) associated to (f, g, }Nl) From
(3.61)), we obtain
1w P, )., < CR, (4.3)
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where we supposed that
(w?, €, N, < B.
From (4.3)), we have the following estimates

||€||L°° 0,00;L>° (w)) + ||6315HL°° 0,00; L (w + ‘ ‘L;{"’(O,oo;L"’(w))

SjSk
3
S sy S CMliz 0 OB (44)
2
Hatf”Lf‘y(O,oo;Loc(w)) + Hatsjf L8 (0,002 (w) < CR, (45)
2
180112775 0, 00515 oy 1953 €ll 11375 0,001 ey ’ 058 ‘ HI/%(0,00,L8/3(w)) SO (4.6)
||§||Lac 0 00! HQ(UJ + ||8SJ£||L°°(0 00: H3/2(w)) + ‘ Sjsk L?(O,Do;Hl/Z(w)) < CR (47)

In particular, taking into account the condition ([1.32), there exists Ry > 0 such that, if R < Rg, then

< C(Ry). (4.8)

H L+ 11 oo (0,005 ()

In fact, if 1 4+7n° > 6, then Ry is chosen such that 0 < Ry < 6.
Here, we recall a well known result about product in Sobolev spaces.

Proposition 4.1. Let s > 0, s1 > s and sa > s such that s1+s2 > s+1/2. Let X1, X2 and X3 be three Banach
spaces such that for all f € X9 and g € X3, we have

1fallzx, < Clfllx, 9], -
Then

VUJ S HSl (07 OO; x2)7 V’U S H82 (07 OO; ‘%3)’ ||uv||H5(O,oo;xl) < C HuHH‘Sl(O,oo;xQ) ||U||H52(0,00;x;3) °
Proof. The proof is similar to the one given in [32, Theorem 2] extending data by reflexion on R. O
Lemma 4.2. Let X and Y given in (1.17). Then, we have

VY (X) — Iy = (W(€,056) + (€, 056), (4.9)
oYy (X) = (3)(£,0,€,0%,6) + €P(€,0,¢,02,¢), (4.10)
O0x0x;
aa2aék (X) = £9(8, 058, 05,6, 07s8) + €9 (€, 0,6, 01,8, 03,,8), (4.11)
LTmOT|
0y = 119(0,6) + €'V (€, 8,9), (4.12)
ataik: (X) = 6(14) (at§7 at25§> + 6(14) (57 at§7 agsf)v (413)

where the operators 1% have the form and €9 are given formally by
€D(€,0,6) = O™ (0:6)™),  my+ma >2,
€?(€,0:,05,6) = O(&]"(0:6)™ (92)™), iy +my +ms > 2,
€B)(€, 05, 02,6, 02,,6) = O(E7"(9:6) "2 (92,6) ™ (92,)™),  mi + ma +mg + my > 2,
ID(E,0:€) = O(E™ (9:)™), My +m2 > 2,
0(€.0,€,07,6) = O™ (24€) ™ (™), my +ma +ms > 2.
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Proof. We recall that £ =n — ns, then we have

1 _( ¢ >+ &
L+n \1+49% (1+9%2) Q+n%2(1+n)

After standard calculations, VY (X) — I writes

oY- S _ 2 3
73(X)_1:77 T=- éhs+ 552_ S£2 ’
Oxs 1+n 1+n (1+n%) (1+7%)2(1+n)
Y3 0s;€ s 3 £
—(X) = —y3—L= + as,- + 85,. ) j = 172
5z, X = s YO s T T ey
Using (4.14)), we obtain (4.9) where e(l)(g, 0s€) contains the terms of the form
mi mg@v
'71(775) g 72(778) 5 5£ mq > 2a ma 2 17 673 2 la 1= 172a

where 7, i = 1,2 are functions of regularity C*(w). We have for all k,j € {1,2},

v, 52 ¢ o, ¢ o
X) = —y3 2 g By e A+ Y30y
Fardz, ) T Ty TR0 T ) PO T T ()
ag S 89 ae<
o, (S,MTI L (gn(,n :
(1+n%)(1+n) (1+n%)(1+n)

Then, we deduce [&.10) where e (¢,8,¢,2%.€) had the terms

£ (9:€)™ A

30,8 40,8 -
> ISy bms > 2, S S >l a1, i=1,2
Y (77 )(1+§+775)a1 1 2 Y (77 )(1+£+ns)a2 3
i 2 : : o Y3 .
where 7*, i = 3,4 are C*(w) functions. The third derivative —————(X) admits the terms:
8xi8xk8mj
D2 s 0502, & 92 ., nds,€ 05, D505, €

By Parn@+a5) PUrpa+gs) Parn2a+ g5

) |

852jsk7788i§ 8.§jsksin fazksjnasm gasknasjnasin

B2+ PO+ PO+ PO+t + 95

Then, we get (£.11) where €®)(¢,0,¢,82.€,02,.£) contains the terms

§m(9s6)™

gnl (aSS)nZ(??sg 7( S) gmgagssg
(L+&+n5)’

50,5 6,5
7 (n°) VO T e sy (T+E+n5)

m1+m2>2, n1+n2>2, m321, Oéi>1, i =1...

with 4%, i = 5, ..., 7 are bounded functions on w.
We also have,

B 0i
0Ys = —Ysg o

We deduce ([#12) where %) (¢,8,¢) had the terms

M0

= T =1, a2 L
Trgrpye M2
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(4.15)
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(4.17)
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(4.19)

(4.20)

(4.21)
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The terms appearing in 0;a;;(X) have the form

01£0s;m 0:£0s,m° atzsjf (1+n%)0

Blavnz Pasna+ss) Pa+n T 0+n)2

Then, we get (£.13) with (¢, 8,¢,92.€) contains the terms

A

£m20i€ 10(,)S) £ 0,05
L+ & +n%)x’

8/ S 9/, S
77 (n7) 7 (n )—(HHUS)QZ, ¥ Aret )™

)

m1>17 m2>17 m3>oa az>1aZ:17

where 7%, i = 8, ..., 10 are C*(w) functions.
Let suppose that R < 1.
Lemma 4.3. Let ¢ given in lemma@ and let
(w®,p%,7%) € WH=(Q)] x Wh(Q) x C*(w).

Then, we have

(g, 0,6)| +

L2 (0,005[L>(2)]°)

e (€, 0,6, 02.6)|

L5 (0,00:L2(2)

+ [ €€ 0, 026,020 e )

L2 (0,00;L2(Q2 L3 (0,00;[L>=(2)]3)

+ |10 ane. a26)|

L8(0,00:L2())

(RIS

+[|e® € 0.6 0%0)|

L3 (0,003[H3/2(09)]%)

(€0,

L (0,00;H1/2(892))

+| + @€ a6 02.0)|

HS/®(0,005[ L2 (89)]°) HT/®(0,00:L8/3(0Q))

Proof. Using (21), (4).(T8) and (LT7), we gt
W o H < OR?
€ ; Us < .
(&, 9:¢) L5 (0,00;[L>(Q)]°)
From (4.8), ([d-24), (4.4) and (4.19), we find
€@, 0., 0%0)|

< CR?.
L0 (0,00;L2(R2))

From ([4.8), ([d.24), and (4.21)), we obtain
®)(¢,8,¢,0%.¢, 0 H < CR.
€ (£7 367 5367 SSSS) L?{O(O’()O;L2(Q))

From , , , (4.4) and (4.22), we get

19(&, 016)|

< CR”.
L4,(0,00i[L>= ()]2)

Using (@&3), @24), @E4), (@5) and (@E23), we get
H6(14) (57 8:‘,57 815255) ‘

2

L8 (0,00,L2(Q))
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(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)



Using (4.27), ([@-28), (#.29), (4.30) and ([@.31)), we deduce ([4.25). In the other hand, we have

Hfasg||mw3/2(w)) < C 16l oty 195 e 0 oty < CRP
Thus, using and ( , we have

1
_ <C, o; =1
S a; ~ b) 1 =
H (L4 &4 0%)% ] oo (0,002 ()
Then,
H gmla f CR2
L&+ %)% | oo (0000132 ()

Then, using the fact that 0,¢ € L3°(0, oo;Hz(w)) and [|0s 5||L<x>(0 sosH2(w)) S OR, we get

||£m1 (3s€)m2 ||L$°(0,00;H3/2(w)) < CR2

We have also
Hga §HLOO (0,00;HY/2(w)) CH£||L°°(OOOH3/2(UJ H8585HL°° OooHl/z(w)) CR2

Then, using (4.33)), we obtain

< CR?,
L52(0,00;H/2(w))

[
(+E+ )

Furthermore, using (4.8]), we get

5/8 3/8

§

S
ol rren
H?,/‘L(O,oo;Loo(w)) (]' +f+7ls)al

3
” (L+&+n%) H2(0,00;12 () L2 (0,005 H*(w))

< CR, (677 > 1.

hence, we obtain

£05€ H £
T oS SO\ FoFr e 101l 1778 (0,001 (w
” A+ e )% ooy NEHEFN)N g om0 =D
< OR%.
Since 7/8 > 1/2, we use the proposition we obtain
S H7/8(0,00; L (w H7/8(0,00;L°° (w
1™ L7730 02wy < C IO -
We deduce 5
ma mao
[t < CR,
(1 + 5 +n ) ¢ H,Z/g(o,oo;L“(w))
Moreover,
CH888§HH7/8 0,00;L8/3 (w ||§HH5/4 0,00; L (w < CR*.
H 1+ 5 + 77 ;/8(0700;[/8/3(“)) ( (w))
From (4.38)), we have
m1
H 6 s < C«RQ7
L&+ a7 0,0019/2(w)

Using (4.35)), (4-37), (£.40) and (4.42)), we obtain (£.26).
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(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)



Lemma 4.4. We have

HV .NE(£)||L?Y(O,OO;[L2(Q)]3) + HNF(f)”Lg/((),oo;[[,z(g)p) < CRQ, (4.43)

INE (& )||L2 (0,00;[L2(2)]° < CR?, (4.44)

WNE@©)nlly 14 0 00str /200y 12 00)8) T WG (€ )”Wl/‘*(ooo 2 e e S OR (4.45)
[ (F(u,p, €), Glu, € + %), H(u, & + 1)), < CR®. (4.46)

Proof. From (2.30) and lemma [.2] Ng(¢) admits the following terms

§ML(0:8)™? £ (0:6)™92,€
(% w) O a9 SO TOE
(1+&+n5)™ (1+E&+n9)o

mi+me =22, ni+ne 22,05 21, 1=1..2 (447)

where ¢, i = 1,2 are W (Q) functions.

From (4.8)), (4.24) and (4.4), we obtain

INEE) L2 (0001122 0)12) S CR. (4.48)

From (2.28), (2.30), (2.32), (#.24) and lemma the terms that appear in V - Ng(€) are the following

" (9:6)™ £ (05€)"05,€ £m393,,€
dl S7 ’U)S 5 ( , d2 S, wS S5 ; d3 S’ U)S S5 ,
R (e ) R e
m1+m2 2 ’I'L1+1”L2 2 m3>1 CVZZ].,Z:].S,

where d’, i = 1,...,3 are bounded functions €.

From (4.8]), (4.24]) and (4.4]), we obtain

IV - Ne(©)ll L2 (0,00:12213) S CR®. (4.49)

Moreover, from (2.48), Nr(£) has the terms

1.5 sy §MH(9:6)™ a5 5 8" (0s)™05E 5 5 g EMILE
a (n”,w )—(14‘54—775)0‘17 a*(n”,w )—(1_'_5_'_775)&27 a*(n®,w )(1+§+773)0‘3’
a*(n®, w?) 0L a®(n®, w?) <005

(I +E+n5)as’ (1+E&+n)es’
mi+me =22, ni+ng =22 mg=21, mg=>21 mg>21, ms 20, a; 21, 1 =1...5,

where af, i = 1, ...,5 are bounded functions in .

Thus, using (£.8), {-24), (£4) and ([@F), we obtain
INE(E)ll 22 (0,005122(200) < CR”.
The functions Nz (€) and Ng(§) admit terms of the form (4.47). Then, from lemmafd.3|and (4.24), we have the

estimate (4.45)).
Finally, using lemma [£.3] (4.3) and the same procedure described in [14], we get (4.46). O
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4.1 Proof of theorem [1.1]
We define the application ® : Boo p — Voo by

O(f,g,h) = (V- Np(€) + Np(€) + F(u,p, ),
— WE(©n]; + N ()] + Glu,& +1°), H(u, & +n%) — T*NEp(€)n). (4.50)

In this case, we show that for R small enough ®(B. r) C Be,r and ®5_ , is a strict contraction. Let
(f,9,h) € B g, from lemma we obtain

H@(ﬁgﬁ)“y < CR.

oo

We get similarly

Hq)(f(1)7§(1)7%(1)) . @(f@)’g(z),ﬁ(z))H <CR H(fu),g(l)’g(l)) _ (f@)’g(z))g(z))H
yOO oo
for (.]?‘a 57 71)3 (f(2)7§(l)777’(1)) € BOO,R-
Thus, we deduce the principal result of this paper.
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