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Abstract

A healthy soil plant continuum is critical for maintaining agroecosystem functions and

ensuring food security,  which is  the basis  of sustainable agricultural  development.

Diverse soil microorganisms form a complex assembly and play an important role in

agroecosystems  by  regulating  nutrient  cycling,  promoting  plant  growth,  and

alleviating biotic and abiotic stresses.  Improving microbial  coexistence may be an

effective and practical solution for the promotion of soil-plant ecosystem health in the

face of the impacts of anthropogenic activities and global climate change. Modern

coexistence theory is a useful theoretical framework for studying the coexistence of

species  that  are  competing  for  resources.  Here,  we  briefly  introduce  the  basic

framework of modern coexistence theory,  including the theoretical  definitions  and

mathematical calculations for niche difference and fitness difference, as well as ways

to test for these differences empirically. The possible effects of several major biotic

and abiotic  factors,  such as  biological  interactions,  climate  change,  environmental

stress and fertilization, on microbial niche and fitness differences are discussed. From

the  perspective  of  stabilizing  and  equalizing  mechanisms,  the  potential  roles  of

microbe-microbe  interactions  and  plant-microbe  interactions  in  promoting  healthy

soil-microbe-plant  continuum  are  presented.  We  suggest  that  the  use  of  the

coexistence  theory  framework  for  the  design  and  construction  of  microbial

communities in agricultural production can provide a solid basis for the biological

improvement of agroecosystems.
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Introduction

Global demand for crops is growing rapidly and is likely to continue for decades to

come,  due to  increases  in  both  the  global  population  and per  capita  consumption

(Godfray and Garnett  2014;  Tilman et  al.  2011).  However,  global  crop yields  are

predicted to be insufficient to meet the projected demand in 2050 (Ray et al. 2013).

Agricultural crop productivity is under tremendous pressure from a variety of abiotic

stresses, due to intensive use of chemical fertilizers and pesticides, climate change and

environmental pollution, and biotic stresses from pests and pathogens (Molotoks et al.

2020; Pandey et al. 2017). Increasing the productivity of agroecosystems remains a

huge challenge and there is an urgent need for more sustainable ways to increase crop

yields.

The phytobiome is composed of plants, their environment, and diverse interacting

microscopic and macroscopic organisms, which together profoundly influence plant

and agroecosystem health and productivity  (Leach et al.  2017).  In the phytobiome,

complex  networks  of  interactions  that  links  crops  with  microorganisms,  animals,

plants,  soil,  climate,  and other environmental factors are established and regulated

through  physical  and  chemical  cues  (Korenblum and  Aharoni  2019;  Leach  et  al.

2017).  Historically,  agroecosystems have been managed by focusing on individual

components of the phytobiome, such as nutrient applications and pesticides. However,
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managing the phytobiome as an integrated system of diverse interacting components

may offer greater opportunities to achieve optimal and sustainable crop productivity

(Bell  et  al.  2019).  Phytobiome  studies  that  consider  the  complex  network  of

interactions  inside and outside the plant  have demonstrated their  potential  in  crop

improvement (Hale et al. 2014; Macias-Bobadilla et al. 2020).

Soil and phytobiome microbes provide essential ecosystem services for agricultural

crop production by regulating nutrient cycling, promoting plant growth, controlling

pests and pathogens, and alleviating abiotic stress (Begum et al. 2019; Goswami and

Deka  2020;  Vimal  et  al.  2017).  Microbes  are  rarely  observed  as  single  species

populations in the soil environment. They form complex consortia through various

types  of  interactions,  including  mutualism  (two  partners  A and  B  have  mutual

benefit), commensalism (A take profit, whereas B gains no disadvantage), amensalism

(A is limited by B), parasitism (A takes profit of B), predation (A consumes B) and

competition (A and B compete for a limiting factor) (Faust and Raes 2012; van Elsas

et al. 2019). Thus, the interactions can be either mutualistic (or cooperative, leading to

a positive effect on partners of the interaction) or antagonistic (in which a negative

effect on at least one partner of the interaction can be seen)  (van Elsas et al. 2019).

These  interactions  involve  ecological  processes  such  as  physiochemical  changes,

metabolite exchanges, and signaling, which allow different niches to be occupied and

affect  the  competitiveness  of  communities  (Braga  et  al.  2016).  On the  one  hand,

mutualistic  interactions  between  plants  and  arbuscular  mycorrhizal  fungi  provide
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several benefits for plant growth and yield by increasing the availability of nutrients,

improving  soil  structure,  and  enhancing  stress  resistance  of  plants  (Begum et  al.

2019).  Plant  growth-promoting  rhizobacteria  generally  promote  plant  growth  by

producing  plant  hormones  such  as  auxins  and  cytokinins,  improving  nutrition

acquisition,  enhancing  the  antioxidant  system,  inducing  resistance  against  plant

pathogens,  production  of  siderophore,  volatile  organic  compounds  and  protection

enzymes  (Vejan et al. 2016). One the other hand, antagonistic interactions between

plants and pathogens have detrimental effects on plant growth and account for a major

loss in global crop productivity (Oerke 2006; Strange and Scott 2005).

Many  plant  growth-promoting  microorganisms  have  been  isolated  from soil  or

rhizosphere to study their beneficial effects on soil and plant (De-Bashan et al. 2020;

Le Mire et al. 2016; Mahanty et al. 2017). Microbiome engineering is an emerging

field of synthetic biology, which may provide a sustainable strategy to improve crop

productivity (Ahkami et al. 2017; Orozco-Mosqueda et al. 2018; Qiu et al. 2019). The

synthetic  community  builds  on  complementary  ecological  functions  of

microorganisms and aims to engineer synthetic microbial communities  to promote

beneficial  plant-microbe  interactions  (Ke  et  al.  2020).  A  synthetic  microbial

community is  designed by mixing selected microbial  strains  that  perform a given

function better than the sum of individual performances, and applying it to plants to

study  various  aspects  of  plant-microbe  interactions  (Vorholt  et  al.  2017).  The

challenge  of  microbiome  engineering  is  not  only  to  design  synthetic  microbial
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consortia with multiple plant growth promoting functions, but also to stabilize them

under  field  conditions  (Arif  et  al.  2020;  Sessitsch  et  al.  2019).  It  is  necessary,

therefore,  to  understand  the  mechanism of  both  microbe-microbe interactions  and

plant-microbe  interactions  (including  how  microbes  affect  plants  and  how  plants

manipulate microbes) based on the theory of species coexistence  (Arif et al. 2020;

Vorholt et al. 2017). 

Species coexistence has been studied for decades, resulting in two prevailing views

on the mechanisms involved. One is the classical niche-based viewpoint that focuses

on the demands of species and emphasizes  niche differentiation among species  to

reduce interspecific competition and allow coexistence (Grinnell 1917; Hardin 1960;

Macarthur and Levins 1967). The other is the neutral viewpoint, which assumes that

different  species  are  functionally  equivalent  and  that  coexistence  is  driven  by

stochasticity and dispersal (Bell 2001; Hubbell 2001). The modern coexistence theory

developed by Peter Chesson reconciles these two perspectives and provides a more

comprehensive  theoretical  framework  for  studying  the  coexistence  of  species  in

competition  for  resources  (Chesson  2000,2013,2018).  In  the  past  two  decades,

modern  coexistence  theory  has  been  widely  used  in  the  theoretical  and empirical

research on the coexistence of plant species. Here, we review the basic framework of

modern  coexistence  theory,  including  the  theoretical  definitions  and  empirical

approaches to test the theory, discuss the main biotic and abiotic factors that influence

microbial  species’ coexistence  within  this  framework,  and  highlight  the  potential
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application of modern coexistence theory in agricultural soil-microbe-plant systems.

The framework of modern coexistence theory

In order to understand and predict species coexistence quantitatively on the basis of

mechanistic  theory,  Chesson  (2000) proposed  two  ecological  differences  among

species,  namely  niche  difference  and  average  fitness  difference.  Here,  ecological

niche is not a Hutchinsonian hypervolume (Leibold 1995), but instead is defined by

the  relationship  between  organisms  and  the  physical  and  biological  environment,

taking into account both time and space. A particular combination of physical factors

(e.g. temperature and moisture) and biological factors (e.g. predated food resources,

predators and natural enemies) at a particular point in time and space defines a point

in niche space. A modern definition of a species’ ecological niche is the response that

the species has to each point in the niche space and the effect that the species has at

each point (Chesson 2000; Shea and Chesson 2002). Responses are defined in terms

of  demographic  variables,  such  as  survival  and  individual  growth;  but  of  most

importance is the overall outcome of these responses, the per-capita rate of population

increase.  Effects  include  consumption  of  resources,  interference  with  access  to

resources by other organisms, support of natural enemies and occupancy of space.

Niche difference reflects the spatial and temporal differences in resource utilization of

species.  Niche  differences  arise  when  intraspecific  competition  is  greater  than

interspecific  competition  and  prevents  any  species  from  becoming  absolutely

dominant  or  extinct  in  the  community,  thus  stabilizing  coexistence.  By  contrast,
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fitness difference is competitive asymmetry, which can result in one species excluding

another species, regardless of their relative abundance, thus limiting the possibility of

coexistence.  Examples  of  fitness  difference  include  differences  of  species  in

fecundity, susceptibility to generalist predators, resistance to fluctuating environment,

and ability to take up limited resources (Chesson and Kuang 2008). The joint effects

of  niche  difference  and  fitness  difference  determine  whether  each  species  in  a

competitive  pair  can  increase  from low density  when  the  other  is  abundant,  thus

leading to coexistence or exclusion (Figure 1). Niche difference supports coexistence

by limiting the over expansion of species when they rise to dominance and protecting

them from exclusion when they become rare  (Adler et al. 2007). Fitness difference

drives  competitive  exclusion  when  species  share  the  same  niche.  When  niche

difference between competitors is larger than fitness difference, the two species will

coexist stably. Otherwise, the species with higher fitness will exclude other species.

Increasing niche difference between species and/or decreasing fitness difference,

referred  to  as  stabilizing  and  equalizing  mechanisms,  respectively,  can  promote

coexistence (Chesson 2000). In other words, the stability mechanism tends to restrict

species  to  interactions  within  their  own  population  whilst  limiting  those  with

competitors,  and the equalizing mechanism tends to make species more similar in

competitiveness. For example, resource partitioning (the specialization of species on

different resources) is a stabilizing mechanism that increases niche differences. Many

trade-offs (a negative correlation between traits because the cell resources allocated to
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one trait result in a decrease in the fitness of another trait) can be seen as equalizing

mechanisms, because doing well in one respect often means doing less well in another

(Chesson 2013). For example, in order to  survive in a harsh environment, a species

may reduce its reproduction rate in exchange for survival (i.e., survival-reproduction

trade-offs), thus limiting the fitness differences between species.

Within  the  framework of  modern  coexistence  theory,  there  are  two methods  to

estimate  niche  difference  and  fitness  difference.  The  first  is  based  on  the  Lotka-

Volterra  competition  model  (Chesson  2000,2013).  Niche  difference  and  fitness

difference  between  species  can  be  estimated  by  intraspecific  and  interspecific

competition coefficients, which represent a species dependence on its own density and

the density of other species, respectively. The equations are as follows:

Niche difference = 1-ρ = 1-√
αij ×α ji

α jj× αii

Fitness difference = 
f j

f i

 = √
αii ×αij

α jj×α ji

where αij describes the per capita effect of species j on species i, as a proportion of the

maximum per capita growth rate of species i is decreased by increasing the density of

species j by one unit. The coefficient measures intraspecific density dependence if i =

j, and interspecific density dependence if j is different from i. The niche overlap, ρ, is

a measure of the relative strength of density-dependent feedback between species and

within  species.  Niche  difference  reflects  the  degree  of  intraspecific  competition
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(denominator)  relative  to  interspecific  competition  (numerator).  Fitness  difference

between competitors, f j / fi, describes the degree to which species i is more sensitive to

intraspecific and interspecific competitions than species  j.  The larger the ratio,  the

greater the fitness advantage of species  j relative to  i, and the faster species  j can

exclude  i in the absence of niche difference. Two species coexist stably when their

growth (and therefore their increase in density) has a greater inhibitory effect within

their own population than on the population of the other species. In other words, when

the  intraspecific  competition  coefficient  exceeds  the  interspecific  competition

coefficient, that is, when fitness difference is between ρ and 1/ρ, stable coexistence

occurs.

Another  way  to  measure  niche  difference  and  fitness  difference  is  based  on

MacArthur’s  consumer-resource  model  (Carroll  et  al.  2011).  In  this  model,  niche

difference  and  fitness  difference  are  calculated  by  the  effect  of  interspecific

interaction  on  population  dynamics,  that  is,  the  invasion  rate.  The  proportional

reduction in the growth rate of an invader i due to interspecific competition is called

i’s sensitivity (Si) to the native species j, which is defined as Si  = 
μi,0−μi,j

μi,0

. Where µi,0

and µi,j is the per capita growth rate of invader  i in the absence and presence of the

native species j, respectively. When Si < 1, i can invade j, but invasion is not possible

when Si > 1 (i.e., negative growth as invader). For Si approaches 1, a species would

show a sharp drop in growth rate when invading, whilst S i < 0 indicates facilitation
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(i.e., a special case in which the invader grows better in presence of the resident than

in monoculture). The niche difference and fitness difference between the invasive and

local  species  can  be  calculated  by  the  geometric  mean  and  geometric  standard

deviation of their sensitivities to competition. The formulae are as follows:

Niche difference = 1−∏
i=1

n

Si
1/n

Fitness difference = exp [ ( (lnS )
2− ( lnS )

2 )
1/2 ]

when  both  species  are  sensitive  to  interspecific  competition,  a  negative  invasion

growth rate and an unsuccessful invasion (i.e., the invader dies and in this case there

is no invasion) occurs. It means that Si > 1 and a negative niche difference in the

calculated values, suggesting strong competition between invasive and local species.

When the growth of a species as an invader is as good as that of the species alone, Si

→ 0 and niche difference → 1, it indicates that species are not negatively affected by

interspecific competition. Niche difference reduces the competition, corresponding to

the decrease of Si. If fitness difference > 1, the fitness of invaders is greater than that

of native species, while fitness difference < 1 is the opposite. If fitness difference is

close to 1, the growth rates of the two species are affected equally by each other,

which makes it possible to coexist stably, even with a small niche difference.

Most of the empirical tests of modern coexistence theory are carried out in annual

plant  communities  by calculating  niche  difference  and fitness  difference  based on

parametric  competition  models.  These  models  need  field  estimations  of  species
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germination fractions, per-germinant fecundities without neighbors, seed survival in

soil and all pairwise competition coefficients (Godoy et al. 2014; Godoy and Levine

2014; Kraft  et  al.  2015).  Some studies have also determined niche difference and

fitness difference between pairs of microbes by measuring invasion growth rates in

mutual invasion experiments with  bacterial strains  (Li et al. 2019; Tan et al. 2017),

yeast  (Grainger  et  al.  2019) and green algae  (Narwani et  al.  2013).  Based on the

monoculture and invasive growth rates, the sensitivity of each species to competition

was evaluated, and the niche difference and fitness difference were determined using

the  equation  described  by  Carroll et  al. (2011).  However,  in  complex  soil

environments, microbial communities are characterized by multi-species interactions.

A key obstacle to using these methods to measure the rate of invasion growth is that it

is difficult to do so in the soil microbiome. Empirical testing of modern coexistence

theory frameworks in the microbiomes of agricultural ecosystems faces great practical

challenges. Here, we suggest that future research on microbial interactions involving

two or more species in microcosms should be conducted not only in pure culture but

also with surface-reactive particles of soils, such as different clay minerals, in order to

test the modern coexistence theory (Bairey et al. 2016; Stotzky 1986).

Effects of biotic and abiotic factors on niche difference and fitness

difference

In  agricultural  ecosystems,  the  effects  of  biotic  interactions,  climate  change,

environmental  stress,  fertilization  and  soil  constraints  on  the  outcome  of  species
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competition have long been the focus of research  (Valladares  et  al.  2015;  Wardle

2006).  In  the  framework  of  modern  coexistence  theory,  these  factors  may  act  as

stabilizing  or/and equalizing  forces  for  coexistence (Figure 2).  Biotic  interactions,

including mutualistic and antagonistic interactions, have positive or negative on the

species involved, so they play different roles in determining the competitive outcome

within  communities  (Faust  and  Raes  2012).  In  theory,  mutualistic  interactions

promote  coexistence  by  increasing  niche  difference  (i.e.,  enabling  access  to  other

unavailable nutrients) and equalizing fitness difference (i.e., increasing the fitness of

inferior  species more than that of the dominant species).  However,  they may also

result  in  competitive  exclusion  by  reducing  niche  difference  (due  to  increasing

interspecific  to  intraspecific  competition,  since  the  mutualistic  commodities  are

themselves limited) and increasing fitness difference (i.e., increasing the fitness of the

superior  competitor  more  than  that  of  the  inferior)  (Bartomeus  and Godoy 2018;

Johnson 2021). The effects of mutualistic interactions on competitive outcomes and

the  mechanisms  by  which  they  occur  depend  on  the  response  of  species  to  the

interactions.  For  example,  using  pollination  and  mycorrhizal  mutualisms  as

illustrative systems, Johnson (2021) empirically quantify niche and fitness differences

between  competitors,  and  demonstrate  that species  might  appear  to  coexist  on

resources alone, when the simultaneous incorporation of mutualisms actually drives

competitive  exclusion,  or  competitive  exclusion  might  occur  under  resource

competition  when  in  fact,  the  incorporation  of  mutualisms  generates  coexistence.
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Arbuscular mycorrhizal fungi dependent plant species are more phenotypically similar

to  each  other  and  thus  compete  more  strongly  than  arbuscular  mycorrhizal  fungi

independent plant species, and different mycorrhizal dependent plant species are more

likely to coexist (Veresoglou et al. 2018). Mutualistic interactions between plants and

arbuscular mycorrhizal fungi act as both stabilizing and equalizing forces in plant

competition.  Plant  pathogens  have  antagonistic  interactions  with  plants.  However,

these  interactions  can  act  as  a  stabilizing  force,  thus  promoting  plant  species

coexistence.  They  achieve  this  by  enhancing  intraspecific  negative  interactions:

density dependent diseases are more likely to spread through dense host populations

and reduce their dominance (Parker et al. 2018). In addition, plant pathogens can act

as an equalizing force by reducing the competitive advantage of better competitors.

For example, plants with high growth rates, large seeds and fast leaf turnovers have

advantages  in  resource  acquisition  strategies.  However,  there  are  often  trade-offs

associated with such resource acquisition strategies, in the form of lower investments

in the protection against pathogens, which can result in reductions in their competitive

advantage  due  to  antagonistic  interactions  (Maron et  al.  2018;  Petry  et  al.  2018).

Indeed, fast-growing plant species experience greater fungal infection rates than slow-

growing species (Blumenthal et al. 2009; Parker et al. 2018). By changing the fitness

hierarchies  of  competitors,  antagonistic  interactions  may  therefore  promote

coexistence or exclusion.

Climate  change  (i.e., rising  temperature,  drought  and  elevated  CO2 [eCO2])  is
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expected to have a profound impact on the coexistence of species by changing niche

and fitness differences  (Valladares et al. 2015). Higher temperatures can change the

feeding and population growth rates of species (Brown et al. 2004; Zhou et al. 2016).

The asymmetric responses of species’ resource requirements as a function of rising

temperature  can  change  both  niche  partitioning  and  competitive  hierarchies

(Lewington Pearce et al. 2019). For example, a study using experimentally derived

energy  budgets  and  field  temperature  data  show  that  temperature-dependent

asymmetries in energetic performance between Hemimysis anomala (which increases

its  feeding rate  with temperature in  parallel  with growing metabolic  demand) and

Mysis salemaai (which maintains a constant feeding rate with temperature leading to

diminishing energy assimilation)  is  an  important  mechanism determining invasion

success under warming climates (Penk et al. 2016). Temperature can affect the growth

and competition among Microcystis aeruginosa, Planktothrix agardhii, and Cyclotella

meneghiniana,  but  the response is  dependent  on the species  (Gomes et  al.  2015).

Because different temperatures may result in production of distinct compounds that

affect the competition, and the vulnerability of target species to these compounds may

also depend on the temperature. Therefore, the sensitivity and the physiological status

of  competing  species  can  determine  their  lasting  coexistence.  On the  other  hand,

higher temperatures may lead to increases in resource inputs or decreases in resource

availability  (due  to  higher  decomposition  rates),  resulting  in  differences  in  the

quantity and quality of resources and thus directly changing the ecological habitat
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(Davidson and Janssens 2006; Liang et al. 2017). 

The soil water status controls microbial activities directly or indirectly by affecting

the availability of nutrients  (Keitt et al. 2016). Due to changes in precipitation or to

long term drought under climate change, the fitness of soil microorganisms may be

reduced by investment in resources to tolerate drying and rewetting stress  (Evans et

al. 2014). Bacteria may be more negatively affected by drought than fungi, which may

be attributed to their different tolerances to water stress (Preece et al. 2019). A number

of traits, including osmolytes, thick cell walls, β1,3-glucan, trehalose, melanin, and

budding growth, can allow fungi to maintain activity during drought  (Treseder and

Lennon 2015). Filamentous fungi can produce hyphae that extend up to meters and

forage for  water  across  small  matrix  of  dry soil  (Klein  and Paschke 2004).  Also,

drought can cause changes in nutrient cycling and carbon allocation in soils, which

may  influence  the  niche  for  microorganisms (Pugnaire  et  al.  2019).  Mutualistic

symbionts  such  as  N-fixing  bacteria, plant  growth-promoting  rhizobacteria  and

arbuscular  mycorrhizal  fungi  may increase  under  water  stress  to enhance  nutrient

acquisition and drought tolerance (Ngumbi and Kloepper 2016; Suri et al. 2017).

Elevated CO2 undoubtedly alters belowground C and nutrient allocation, resulting

in either positive or negative changes in growth rates and competitive abilities of soil

microorganisms  (Castro  et  al.  2010).  Heterotrophic  decomposers  and  mutualistic

mycorrhizal fungi are the two main groups of soil microbes that respond to changes in

C and nutrient cycling under eCO2 (Pugnaire et al. 2019). High concentration of CO2
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undermine  energy  acquisition  of  syntrophic  microorganisms,  but  not  that  of  the

aceticlastic methanogen in a model microbial consortium, resulting in dominance of

aceticlastic methanogen in the competitive interaction (Kato et al. 2014). In addition,

climate change can indirectly affect  niche difference and fitness difference among

competing species by changing biotic interactions.  For example,  climate change is

expected to alter host pathogen interactions by increasing pathogen reproduction and

host plant modulation such as altering host tissue size and texture (Singh et al. 2019).

Furthermore, the effects of  climate change on  soil microbes may be stronger under

multiple climate change factors, such as the additive or interactive effects of rising

temperature, drought and eCO2 (Gray et al. 2011; Thakur et al. 2019).

Environmental pollutant stress (such as antibiotics, metals, microplastics, etc.) is

known to affect the soil  biome and soil  functions. Environmental stress can cause

fitness  trade-offs in  microorganisms,  that  is,  a  loss  of  competitiveness  (i.e.,  a

reduction in growth rate or yield) due to greater investment in resistance (Andersson

and Levin 1999; Hall  et  al.  2015).  The reduction of fitness is highly specific and

environment dependent. A species may be resistant in one environment, but sensitive

in another, and the fitness cost of microbial resistance usually increases under more

stressful  growth  conditions  (Hall  et  al.  2011;  Petersen  et  al.  2009).  From  the

perspective of resistance evolution, stress affects not only fitness difference, but also

the niche overlap between species. There are frequently trade-offs between resistance

genes and metabolism (Martinez and Rojo 2011; Perkins and Nicholson 2008). The
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niche  difference  produced  by  the  change  of  resource  utilization  pattern  may  be

sufficient  to  offset  the  fitness  cost  of  resistant  mutations  and  allow  coexistence.

Unlike antibiotics and metals, the effects of microplastics on microorganisms seem to

be mediated by physical parameters, such as particle shape and size, rather than by

significant  chemical  mediated  toxicity  (Rillig  and  Lehmann  2020).  Therefore,

microplastics  can  act  as  stabilizing  factors  by  changing  the  spatial  structure  of

microbial activities, providing adsorbed nutrients and organics, and influencing the

flow of gas and water (Dussud et al. 2018; Yang et al. 2020).

Fertilization is a major anthropogenic activity in agricultural production. The direct

effect of fertilization is to create niches for soil  microbes and plants by providing

nutrients that increase the metabolic activity of specific bacteria (Jia et al. 2020; Lin et

al. 2020; Yu et al. 2019).  The addition of large quantities of nutrients can favor  r-

strategists,  while  K-strategists  prevail  in  nutrient-poor  soils  (Malý  et  al.  2009).  In

addition, fertilization may indirectly affect microbial fitness and niche by changing

soil properties such as soil pH and aggregates  (Geisseler and Scow 2014; Lin et al.

2019).  Physiological  and  ecological  studies  have  demonstrated  that  fertilization

induced changes in soil pH may drive niche specialization of microorganisms, such as

ammonia oxidizers,  as bacteria have rather  narrow pH ranges for optimal growth,

while  fungi  generally  exhibit  wider  pH ranges  for  optimal  growth  (Geisseler  and

Scow 2014; Rousk et al. 2010; Zhao et al. 2020). Long-term manure application could

increase  soil  aggregation  and  thus  create  more  ecological  niches,  because
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macroaggregates can result in more heterogeneous habitats and labile substrates than

microaggregates (Lin et al. 2019; Ye et al. 2021). Organic fertilizers, such as animal

manure, compost or sewage sludge, may introduce exogenous microorganisms into

the soil that are either beneficial or detrimental to the growth of soil native organisms

and  plant,  resulting  in  short-term  positive  or  negative  effects  on  microbial

interactions, although the microorganisms added to soil by fertilizers may be unable to

survive in  the  soil  conditions  (Lourenço et  al.  2018;  Suleiman et  al.  2019).  Such

effects due to long-term fertilizations have also been frequently reported (Ling et al.

2016; Windisch et al. 2021). Moreover, fertilization has a profound impact on plant-

microbial interactions by changing soil pH, organic C content and nutrient availability

(Huang et al.  2019). For example, flavonoids are important signaling molecules in

interactions between plants and N-fixing bacteria (best known as the legume-rhizobia

symbiosis),  as well  as  between plants  and mycorrhizal  and phytopathogenic fungi

(Cesco  et  al.  2012).  Soil  organic  amendments  may  interrupt  flavonoid  signaling

pathways through metal-mediated reaction between flavonoids and dissolved organic

C, and weaken the effectiveness of plant-microbe interactions based on flavonoids

(Del et al. 2020). Due to the high availability of nutrients and competition for limited

C  resources,  N  and  P  fertilization  may  reduce  arbuscular  mycorrhizal  fungi

colonization  and  increase  fungal  pathogen  infection  (Verbruggen  and  Toby  2010;

Veresoglou et  al.  2013).  It  should be noted that  the effects  of long-term fertilizer

application  on  soil  microbial  interactions  may  have  legacy  effects  in  subsequent
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seasons even if fertilizer application has been discontinued (Liu et al. 2020).

Soil acidity, salinity and compaction are important soil constraints for agricultural

productivity and sustainability. Such stress conditions may significantly change soil

physicochemical properties and fertility, resulting in impacts on species coexistence.

Soil acidity can influence microbial niche and fitness as the consequence of different

optimal pH ranges for microbial growth and activity (Rousk et al. 2010). Soil pH is a

key factor in regulating soil organic matter turnover, nutrient bioavailability and metal

transformation (Kemmitt et al. 2006). Increasing soluble and exchangeable Al in the

soil with acidity may affect species coexistence by reducing nutrient bioavailability

and inducing toxicity to microorganisms and plants  (Singh et  al.  2017). Also, soil

salinity has direct effects on microbial niche and fitness due to their different salinity

preferences and tolerances  (Rath et al. 2019; Zhang et al. 2019; Zhang et al. 2021).

Microbial  species  with  specialized  physiologies  adapted  to  the  high  extracellular

osmotic pressure may be resistant to soil salinity stress (Oren 2008). In addition, soil

salinity can affect the availability  of water,  organic carbon decomposition and the

biogeochemical cycling of nutrients, and thus may indirectly be a destabilizing factor

for plants and microorganisms  (De León-Lorenzana et al.  2018; Zhao et al.  2019).

Soil compaction mainly affects soil physical properties such as bulk density, strength,

and  porosity,  thereby  reducing  water  infiltration,  air  permeability  and aggregate

stability,  altering elements  mobility,  and changing N and C cycling  (Nawaz et  al.

2013;  Shah  et  al.  2017).  This  can  change  the  niche  properties  for  both  soil
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microorganisms and plant roots. On the other hand, these soil constraints may change

some biotic interactions among microbes and/or plants.  For example,  legumes and

their  rhizobia  exhibit  diverse  tolerances  and responses  to  soil  acidity  and salinity

(Zahran 2010). In general, strains of Bradyrhizobium are more acid tolerant than those

of Rhizobium (Castro et al. 2016).

Here, we only discuss some major factors affecting ecological niche difference and

fitness difference and their possible pathways. It is not a comprehensive survey of all

of the factors involved, however, it may help the reader to understand the coexistence

of soil microorganisms and plants in agricultural ecosystems under climate change

and human activities.

Modern coexistence theory in agricultural soil-microbe-plant systems

Numerous  studies  have  reported  complex  interactions  between  soil  microbes  and

plants in agroecosystems. Here, we attempt to disentangle the underlying mechanisms

driving these interactions from the perspective of modern coexistence theory (Figure

3). Soil harbors vast numbers of microbes, including bacteria, archaea, fungi, protozoa

and viruses, which participate in many ecological processes in agroecosystems, such

as organic matter decomposition, nutrient cycling, pesticide degradation, soil-borne

pathogen control  and abiotic  stress tolerance  (Sahu et  al.  2019). Microbe-microbe

interactions can occur through the transfer of molecular and genetic information, such

as  secondary  metabolites, siderophores,  cellular  transduction  signaling,  quorum

sensing and biofilm formation (Braga et al. 2016). It has even been suggested that the
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unculturability  of  many  soil  bacteria  is  due  to  the  establishment  of  intercellular

metabolic networks, which is a form of coexistence that could potentially have major

consequences  for  microbial  functioning  (Pande  and  Kost  2017).  Mutualistic

interactions  and  niche  creation,  that  contribute  to  coexistence,  can  occur  through

metabolic cross-feeding, where some microorganisms excrete available metabolites to

form new niches  that  can be occupied by others  for  their  growth (Douglas  2020;

D'Souza et al.  2018; San Roman and Wagner 2018). Antagonistic interactions can

occur  through  exploitative  competition  for  nutrients,  or  produce  antagonistic

metabolites through interference competition  (Ghoul and Mitri 2016; Hibbing et al.

2010). The types and extents of these interactions are largely influenced by various

abiotic and biotic factors, which in turn change the activities of soil microorganisms

and the ecological processes involved (Saleem and Moe 2014).

Using  multiple  microbial  consortia  consisting  of  bacteria  and  fungi  that  are

beneficial to plants and manipulating rhizosphere microbes to improve crop growth

and  resistance  is  expected  to  contribute  to  sustainable  agricultural  production

(Ahkami et al. 2017). Simple consortia (simple mixtures of plant beneficial bacteria

and/or fungi grown separately before inoculation, or growth of more than one plant

beneficial  bacteria  and/or  fungi  together  in  a  medium suitable  for  each  one)  and

complex  consortia  (reconstructing  functional  metaorganisms  based  of

microbiomes/metagenomics  analyses  and/or  combined  with  culture-dependent

approaches) are two known types of consortia formation  (Bashan et al. 2020). The
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various  steps  involved in  designing the ideal  artificial  microbial  consortia  include

selecting the origin of the microbes, obtaining and culturing the core microorganisms,

optimizing microbial interactions according to their compatibility, and assessing the

efficacy of these consortia  (Kong et al. 2018). One of the main challenges of such

consortia is to explore the interactions between microbial members, as well as specific

interactions  within  plant  holobiont  (Bashan et  al.  2020).  The more  species  in  the

consortia,  the  more  complex  the  outcomes  of  interactions  as  each  member  of  a

consortium can potentially affect the growth and production of metabolites of other

members. It has been shown experimentally that defined microscale spatial structure

is  both necessary and sufficient  for the stable coexistence of interacting microbial

species  in  synthetic  communities  (Kim et  al.  2008),  thus  further  complicating  the

picture.   In  addition  to  the  compatibility  of  multiple  microorganisms  and  plant

holobiont, more practical factors such as initial cell dosages and ratios, physiological

activity, growth conditions of the strains, suitable formulations for survival and shelf-

life of microorganisms, delivery approaches, colonization capacity, interaction with

native  microbiota,  and  potential  influence  of  abiotic  and  biotic  conditions  of  the

soil/plant environment are bottlenecks for the successful establishment of consortia

(Sessitsch et al. 2019). Nevertheless, some successful consortia have been achieved to

improve crop growth and stress tolerance. For example, a consortium of four bacterial

taxa  (Pseudomonas  putida,  Citrobacter  freundii,  Enterobacter  cloacae  and

Comamonas  testosteroni)  has  been  reported  to  mobilize  soil  P and  increase  crop
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productivity up to twofold (Baas et al. 2016). A bacterial consortium containing four

compatible  and  desiccation-tolerant  strains  (Pseudomonas  putida KT2440,

Sphingomonas sp.  OF178,  Azospirillum  brasilense Sp7  and  Acinetobacter sp.

EMM02) were able to colonize the rhizosphere of plants and enhance desiccation

stress tolerance in maize (Molina-Romero et al. 2017).

Soil microbes may have stabilizing or destabilizing effects on plants by generating

negative  or  positive  density-dependent  feedbacks,  thus  facilitating  or  hindering

coexistence (Bagchi et al. 2014,2010). Plant growth-promoting rhizobacteria such as

N-fixing  bacteria  (e.g.  some  species  in  the  genera  Rhizobia,  Azospirillum,

Azotobacter,  Azoarcus,  and  Cyanobacteria)  and  P-solubilizing  bacteria  (e.g.  some

species in the genera Azospirillum,  Azotobacter,  Pseudomonas,  Bacillus,  Rhizobium,

Burkholderia,  Enterobacter,  and  Streptomyces)  may  increase  the  availability  of

nutrients and expand the niche partitioning for plants and/or other microorganisms

(Gamalero  and  Glick  2019).  Host  specificity  in  plant-microbe  interactions  may

contribute to the niche differentiation and nutrient allocation of mycorrhizal plants

and  fungi  (Tedersoo  et  al.  2020).  Compared  with  intraspecific  competition,  it  is

expected to reduce interspecific competition and provide a stabilizing mechanism for

promoting  coexistence.  On the  other  hand,  plant-microbe interactions  can  provide

different fitness benefits for plants and act as equalizing factors. Root microbiota are

an important factor influencing host plants’ performance and competition in response

to  biotic  and  abiotic  stressors  (Berendsen  et  al.  2012;  Hodge  and  Fitter  2013).
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Microbial mediated fitness differences in plants may be due to their different tolerance

to  soil  borne  pathogens  or  the  different  benefits  they  get  from  interacting  soil

microorganisms  (Kandlikar et al. 2019).Some plant growth-promoting rhizobacteria

are able to tolerate abiotic stress and maintain plant fitness by regulating hormonal

and nutritional  balance and producing plant growth regulators  (Kumar and Verma

2018).  If  host  immunity shapes  associated microbiota,  or  if  host-microbiota  affect

immunity,  highly  similar  root  microbiota  between  host  plants  may  reduce  plant

performance due to transfer and coinfection with shared pathogenic bacteria, while

specific  microbial  taxa  in  the  root  may  influence  competitive  interactions  among

plants (Castrillo et al. 2017; Fitzpatrick et al. 2018; Hacquard et al. 2017). The plant

associated  microbiota  are  not  only  depend  on  host  species,  but  are  also  largely

affected by soil properties, which then in turn regulate plant performance under biotic

and abiotic stresses. For example, among 30 angiosperm species, 40% of the variation

in endosphere microbial diversity depend on the host species but only 17% in the

rhizosphere soil, and drought shifts the composition of these root microbiomes, with

host-specific changes in the relative abundance of specific bacterial taxa associated

with increased drought tolerance of host plants (Fitzpatrick et al. 2018). In arbuscular

mycorrhizal  fungi  plant  systems,  mycorrhizal  fungi  and  hyphal  networks  tend  to

enhance  plant  intraspecific  competition  and  alleviate  interspecific  competition  by

promoting  the  performance  of  inferior  competitors  and  suppressing  superior

competitors (Tedersoo et al. 2020). In the context of modern coexistence theory,  the
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extent  to which plants coexist  or repel  is  affected by microbial  density dependent

feedbacks  and  niche  differentiation,  as  well  as  fitness  advantages  provided  by

microbes for plant species (Kandlikar et al. 2019).

The rhizosphere is a unique niche for microorganisms that are influenced by plant

root  exudates  (Pinton  et  al.  2001).  When  the  rhizosphere  microorganisms  with

different substrate uptake patterns undergo niche differentiation of metabolic resource

allocation,  it  leads to stabilizing coexistence  (Baran et  al.  2015). On the contrary,

competition  for  the  same resource  may  occur  when  microorganisms  have  similar

substrate preferences, leading to competitive exclusion (Freilich et al. 2011). Also, the

substrate  concentration  is  important  because  microorganisms  with  low Michaelis-

Menten kinetics constants (Km) values of uptake for the target substrate can prevail at

low concentration  and the  opposite  for  microorganisms with  high Km values.  For

example,  the  slow-growing  K-strategic  microorganisms  with  enzymes  of  high

substrate affinity are better adapted for growth on poorly available substrates, but are

uncompetitive against  the r-strategic  microorganisms with higher  Km values in the

rhizosphere  (Tian  et  al.  2020).  The  kinetic  analysis  suggested  that  comammox

Nitrospira had  higher  affinity  for  ammonia  than  ammonia  oxidizing  archaea  and

bacteria, and thus might be more competitive under oligotrophic conditions (Kits et al.

2017). Some root exudates, such as phenolics and terpenoids, play an antimicrobial

role in selecting beneficial microbes and resisting soil-borne pathogens  (Baetz and

Martinoia 2014). Phenolic compounds can be used as specific substrates or signaling
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molecules for some bacterial groups and benefit the community by creating specific

chemical niches (Badri et al. 2013). In addition, plants can also indirectly affect soil

microbes  by secreting  exudates  such as  organic  acids,  thus  changing soil  pH and

nutrient availability (Chen et al. 2016; Dakora and Phillips 2002).

Taken  together,  the  effects  of  microbe-microbe  interactions  and  plant-microbe

interactions on species competitive outcomes in agroecosystem can be understood by

Bever’s model of pairwise plant-soil feedback model (Bever 2003; Bever et al. 1997;

Kandlikar  et  al.  2019;  Ke  and  Wan  2019).  Firstly,  microbial  mutualistic  and

antagonistic interactions can affect the niche difference and fitness difference among

competing microbes,  which is  crucial  for  maintaining  soil  microbial  diversity  and

ecosystem functioning. Second, both beneficial and pathogenic microbes can modify

niche difference and fitness difference between competing plants, thus affecting plant

growth  and  yield.  Thirdly,  plants  change  niche  difference  and  fitness  difference

among competing microbes by secreting root exudates that are beneficial or harmful

to  soil  microbes.  By  integrating  niche  competition  and  interaction  between

microorganisms  and  plants,  we  can  better  understand  the  effects  of  interactions

between microorganisms and plants on plant fitness.  Although these processes are

mainly stabilizing or/and equalizing, their impact on coexistence is integrative rather

than singular and varies with environmental conditions. Therefore, it  is difficult to

draw  a  general  conclusion  about  the  influence  of  soil  microorganism  on  plant

coexistence or the influence of plant on soil microorganism coexistence. However,
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this  framework  provides  an  insight  into  integrating  the  roles  of  multiple  soil

microorganisms and determining their contribution to plant coexistence, which can be

applied to the utilization of beneficial microorganisms in plants and the control of soil

borne diseases in crop production. More empirical studies are suggested to test the

framework in mesocosms involving two or more microbial species with and without

plants.

Conclusion and future perspectives

The  modern  coexistence  theory  framework  improves  our  understanding  of

coexistence and can be applied to microbial communities under different biotic and

abiotic conditions. Microbial coexistence plays an important role in promoting soil-

plant ecosystem health by stabilization and equalization. Here, we focus on the theory

underlying  coexistence  in  soil  microbe-plant  ecosystems  and  emphasize  some

challenges in the future. First of all, for empirical testing, it is difficult to estimate

experimentally the population growth rate of microorganisms in the community and

their sensitivity to intraspecific and interspecific densities. Population dynamics is the

result of complex species interactions in multiple species communities. It remains a

big  challenge  to  assess  the  interaction  coefficients  among  co-occurring  microbes,

especially  in  the  natural  range  of  high  population  density  and  heterogeneous

environment. Therefore, one of the next steps is to develop experimental methods to

quantitatively estimate the niche difference and fitness difference between competing

microorganisms in a community, and to predict the competitive outcome of pairwise
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interactions  between species to  more complex high-order interactions,  even across

multiple scales of space and time.

Second, modern coexistence theory provides an abstract concept of coexistence, but

it is difficult to apply to empirical studies. Niche difference and fitness difference are

simplified functional traits of species and lack specific information. By linking the

niche  and  fitness  of  plants  and  microorganisms  with  specific  functional

characteristics, physiological characteristics and biotic or abiotic factors that affect the

population  growth  rate,  we  can  deepen  our  understanding  of  coexistence.  For

example, temperature has a significant effect on the metabolic rate and motility of

organisms, which can have a special contribution to the population growth rate, thus

promoting species coexistence. The explanation of functional traits and physiological

attributes can be associated with niche difference and fitness difference among species

and explain the potential mechanism of coexistence.

When expanding the application of modern coexistence theory in soil  microbe-

plant  ecosystems,  it  is  necessary  to  incorporate  microbe-microbe  interactions  and

plant-microbe  interactions  into  the  stabilizing  and  equalizing  mechanisms.  Both

model and experimental studies should consider more thoroughly the role of plants in

mediating  microbial  interactions  and  the  effects  of  microbes  on  plant  niche  and

fitness. It has important practical significance and application value for maintaining

microbial  and plant  diversity  and its  function  in  agricultural  ecosystems.  In  plant

microbiome  engineering,  various  microbial  strains  that  promote  plant  growth  are
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usually screened for under highly artificial  conditions.  Successful field application

requires further consideration of the coexistence of synthetic microbial communities

and native soil  microorganisms, as well  as their diversity and ecological functions

under  the  influence  of  plant  root  exudates and  other  environmental  factors.  The

application of modern coexistence theory for plant microbiome research can bridge

the gap between laboratory results and field performance.
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Figure legends

Figure 1 The  conceptual  diagram of  modern  coexistence  theory.  The competitive

outcome is determined by the balance between niche difference and fitness difference,

which can be calculated based on the  Lotka-Volterra  competition model  (Chesson

2000,2013) or MacArthur’s consumer-resource model (Carroll et al. 2011). The dotted

and solid lines represent the boundaries where f j / fi equals 1/ρ or ρ, respectively. The

right area indicates the region where coexistence occurs; the top and bottom areas

indicate where species j or i is dominant, respectively. Figure modified from Ke and

Letten (2018).

Figure 2 Graphical presentation of possible effects of biotic and abiotic factors on

niche and fitness differences. ND: niche difference; FD: fitness difference. Bio: biotic

interactions; Cli: climate change; Env: environmental stress;  Fer:  fertilization; Soi:

soil  constraints.  Red  and  blue  lines  indicate  negative  and  positive  relationships,

respectively. Gray thin arrows indicate indirect impact pathways.

Figure 3 Schematic illustrating soil microbe-microbe interactions and plant-microbe

interactions through modern coexistence theory. The conceptual model of microbe-
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microbe interactions and plant-microbe interactions is modified after Bever’s model

of pairwise plant-soil feedback and its derived framework (Bever 2003; Bever et al.

1997; Kandlikar et  al.  2019; Ke and Wan 2019). The purple arrows represent mi-

crobe-microbe interactions, which can be either mutualistic or antagonistic. The up-

ward red arrows and downward green arrows represent the microbial effects on plants

and plant effects on microbes, respectively, which both can be either positive or nega-

tive. Thick arrows indicate stronger interactions/effects than thin arrows.
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