
HAL Id: hal-03336450
https://hal.science/hal-03336450v2

Submitted on 20 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Flexible and Portable Real-time DVB-S2 Transceiver
using Multicore and SIMD CPUs

Adrien Cassagne, Mathieu Leonardon, Romain Tajan, Camille Leroux,
Christophe Jégo, Olivier Aumage, Denis Barthou

To cite this version:
Adrien Cassagne, Mathieu Leonardon, Romain Tajan, Camille Leroux, Christophe Jégo, et al.. A
Flexible and Portable Real-time DVB-S2 Transceiver using Multicore and SIMD CPUs. The 11th
IEEE International Symposium on Topics in Coding (ISTC 2021), Aug 2021, Montréal, Canada.
�10.1109/ISTC49272.2021.9594063�. �hal-03336450v2�

https://hal.science/hal-03336450v2
https://hal.archives-ouvertes.fr


A Flexible and Portable Real-time DVB-S2
Transceiver using Multicore and SIMD CPUs

Adrien Cassagne∗†, Mathieu Léonardon‡, Romain Tajan∗, Camille Leroux∗, Christophe Jégo∗,
Olivier Aumage† and Denis Barthou†

∗University of Bordeaux, Bordeaux INP, IMS Lab, UMR CNRS 5218, France
†University of Bordeaux, Bordeaux INP, Inria / LaBRI, France

‡IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France

Abstract—Software implementation of digital communication
systems is more and more used in different contexts. In the
case of satellite communication standards, they are an appealing
alternative in ground stations. The challenge is to push the
performance of these digital communication systems to meet
the real time constraints. In this paper, we propose an open
source digital communication transceiver that enables to exploit
the parallelism of general purpose processors (multicore, SIMD).
It is also flexible, supporting several modulation and coding
schemes. Finally, it is portable, being able to adapt to the level
of parallelism of different CPU architectures (x86 and ARM).

Index Terms—Real-time system, SDR, Multicore CPU, SIMD,
DVB-S2 standard, Radio transceiver

I. INTRODUCTION

Software implementation of digital communication stan-
dards is a high-stakes research path for communication net-
work players. It is promising from many points of view:
hardware mutualization, energy savings, maintainability and
scaling. It is also an attractive choice when the production
volume is low and does not enable to compensate for non-
recursive engineering costs. In the case of the DVB-S2 stan-
dard, on which this article focuses, ground stations are good
candidates. However, the existing solutions for implementing
the DVB-S2 transceiver in software are not sufficient. They are
either flexibility oriented, as for example by using the GNU
radio software suite [1], but at the expense of performance, not
suitable with real time processing. On the other hand, highly
optimized solutions exist, but they sacrifice flexibility [2].
Moreover, the code is not available, which limits its reusability
and reproducibility. The main objective of this paper is to
provide a clear, structured, open and efficient code base, for
the implementation of all the elementary blocks of the DVB-
S2 system, from transmission to reception through the signal
acquisition and synchronization steps. The rest of the paper
is organized as follows. Sec. II presents the communication
system and its different parts. Sec. III details the real time
constraints and the optimizations that have been implemented
to achieve them, including multi-threading and SIMD paral-
lelization. Finally, Sec. IV presents the related works.

II. DVB-S2 TRANSCEIVER

The second generation of Digital Video Broadcasting stan-
dard for Satellite (DVB-S2) [3] is a flexible standard designed
for broadcast applications. DVB-S2 is typically used for the

digital television (HDTV with H.264 source coding). The full
DVB-S2 transmitter and receiver are implemented in a SDR-
compliant system. Two Universal Software Radio Peripherals
(USRPs) N320 have been used for the analog signal trans-
mission and reception while all the digital processing of the
system have been implemented on CPU.

A. Transmitter Software Implementation

Fig. 1 shows the DVB-S2 transmitter decomposition in
tasks. The filled tasks are intrinsically sequential. The initial
information bits are read from a binary file (tTx

1 ). Then, the
DVB-S2 coding scheme rests upon the serial concatenation
of a BCH code (tTx

3 ) and an LDPC code (tTx
4 ). The selected

modulation (tTx
6 ) is a Phase-Shift Keying (PSK). The scrambler

tasks (tTx
2 and tTx

8 ) apply predefined repeated sequences of
xor to the frame in order to avoid overly long sequences
of the same bit or symbol in the frames sent by the radio
(tTx
10). Depending on the DVB-S2 MODulation and CODing

scheme (MODCOD), the frame can be interleaved (tTx
5 ) after

the encoding process. If there is no interleaver, the frame is
just copied. After the modulation, PayLoad Header (PLH)
and pilots are inserted (tTx

7 ). These extra data are used by
the synchronization tasks at the receiver side. Before the
radio transmission (tTx

10), the signal bandwidth is rescaled by
a shaping filter (tTx

9 ).

TABLE I
SELECTED DVB-S2 CONFIGURATIONS (MODCOD).

Configuration Modulation K KLDPC Rate R

MODCOD 1 QPSK 9552 9720 3/5
MODCOD 2 QPSK 14232 14400 8/9
MODCOD 3 8-PSK 14232 14400 8/9

The DVB-S2 standard contains 32 different configurations
or MODCODs. This work focuses on 3 typical MODCODs
given in Tab. I. Depending on the MODCOD, the PSK modu-
lation and the LDPC code rate R vary. In MODCOD 1 and 2
there is no interleaver, MODCOD 3 includes a column/row
interleaver. K is the number of information bits and the
input size of the BCH encoder. KLDPC is the output size of
the BCH encoder and the input size of the LDPC encoder.
The LDPC codeword size is constant for the 3 MODCODs
(NLDPC = 16200).



generate
(tTx

1 )
scramble

(tTx
2 )

encode
(tTx

3 )
encode
(tTx

4 )
interleave

(tTx
5 )

modulate
(tTx

6 )
insert
(tTx

7 )
scramble

(tTx
8 )

filter
(tTx

9 )
send
(tTx

10 )

Source
Binary File

Scrambler
Binary

Encoder
BCH

Encoder
LDPC Interleaver

Modem
PSK

Framer
PLH

Scrambler
Symbol

Filter
Shaping Radio

USRP

Stage 1 Stage 2 Stage 3

Fig. 1. DVB-S2 transmitter software implementation.

B. Receiver Software Implementation

Fig. 2 and Fig. 3 describe the tasks decomposition of the
DVB-S2 receiver software implementation with five distinct
phases. The first one is called the waiting phase (see Fig. 2).
It consists in waiting until a transmitter starts to transmit. The
Synchronizer Frame task (tRx

8 ) possesses a frame detection
criterion. When a signal is detected, the acquisition (acq.)
phase 1 (see Fig. 2) is executed during 150 frames. After
that, the acq. phase 2 (see Fig. 2) is also executed during 150
frames. After the acq. phase 1 and 2, tasks have to be re-
bound for the acq. phase 3 (see Fig. 3). This last acq. phase
is applied over 200 frames. After the 500 frames of these acq.
phases, the final transmission phase is established (see Fig. 3).

In a real life transmission systems, radios internal clocks
can drift slightly. A specific processing has to be added in
order to be resilient. This is achieved by the Synchronizer
Timing tasks (tRx

5 and tRx
6 ). Similarly, the radio transmitter

carrier frequency does not perfectly match the receiver carrier
frequency. So, the Synchronizer Frequency tasks (tRx

3 , tRx
10 and

tRx
11) aims at estimating and compensating the carrier frequency

offset and the phase offset. Finally, LDPC FEC is a block
coding scheme that requires to know precisely the first and
last bits of a codeword. The Synchronizer Frame task (tRx

8 )
uses the PLH and pilot symbols inserted by the transmitter
(tTx
7 ) to recover the first and last symbols. One can notice

that the Synchronizer Timing module is composed by two
separated tasks (synchronize or tRx

5 and extract or tRx
6 ). This

behavior is different from the other Synchronizer modules. The
synchronize task (tRx

5 or tRx
3,4,5) has two outputs: one for the

regular data and another one for a mask. The regular data
and the mask are then used by the extract task (tRx

6 ) to screen
which data that is selected or not for the next task. This specific
implementation has been retained for two reasons. Firstly, the
Synchronizer Timing tasks (tRx

5 and tRx
6 ) have a high latency

compared to the others tasks, thus splitting the treatment in
two tasks is a way to increase the throughput of the pipeline
(this is further discussed below). Secondly, the extract task
(tRx
6 ) introduces a new possible behavior. In some cases the

task does not have enough samples to produce a frame. In
such cases, the extract task raises an exception. When this
exception is caught, the chain restarts from the first task (tRx

1 ).
This implies to manage a buffer of samples in the extract task
(tRx
6 ). If the buffer contains more than one frame then the next

task (tRx
7 ) is executed, otherwise the chain is restarted.

Fig. 4 shows the FER decoding performance results of
the 3 selected MODCODs. The shapes represent the channel

conditions: squares stand for a standard simulated AWGN
channel, triangles are also a simulated AWGN channel in
which frequency shift, phase shift and symbol delay have been
taken into account, circles are the real conditions measured
performances with the two USRPs. One can notice a 0.2
dB inaccuracy in the noise estimated by the tRx

13 task. It is
symbolized by the extra horizontal bars over the circles. For
each MODCOD, the LDPC decoder is based on the belief
propagation algorithm with horizontal layered scheduling (10
ite.) and with the min-sum node update rules. Each DVB-S2
configuration has a well-separated SNR predilection zone.

C. Open Source Integration with AFF3CT Toolbox

The proposed software implementation of the DVB-S2
digital transceiver is open source and available online1. It is
described with the help of the AFF3CT toolbox [4]. AFF3CT
is a library dedicated to the digital communication systems
and more specifically to the channel decoding algorithms. At
the time of the writing, the project focuses more on functional
simulations/evaluations than on real-time digital communica-
tion systems. In this paper, we extend AFF3CT to the SDR
use case while keeping the interoperability, reproducibility and
maintainability philosophy initiated in the toolbox.

Some components are directly used from the AFF3CT
library (black dashed-dotted tasks in Fig. 1 and Fig. 3). Thus,
the software implementations are optimized for efficiency and
the features have been checked. For instance, knowing that the
LDPC decoding is one of the most compute intensive task, an
existing high performance SIMD implementation is used. This
implementation decodes multiple frames in parallel to reach
very high throughputs. The Decoder LDPC task (tRx

16) is the
only one in the receiver that takes advantage of the multiple
frames to fill the SIMD registers (inter-frame SIMD strategy).
The other tasks simply process multiple frames sequentially.
This implementation choice negatively affects the latency of
these tasks by a factor equal to the number of frames. But, in
the targeted video streaming app., the latency is not important.

New tasks have been implemented specifically for this
project (blue plain boxes in Fig. 1, 2 and 3). They have been
described according to the AFF3CT interfaces. Thus, allowing
to take advantage of instrumentation for fine-grained through-
put and latency measurements, as well as tools to facilitate
debugging. The proposed implementations are mainly focusing
on two missing aspects in AFF3CT: 1) signal synchronizations
and filters, 2) real-time communications. Being open source,

1DVB-S2 digital transceiver repository: https://github.com/aff3ct/dvbs2.



receive
(tRx

1 )
imultiply

(tRx
2 )

synchronize (tRx
3,4,5)

filtersynchronize synchronize
extract
(tRx

6 )
imultiply

(tRx
7 )

synchronize
(tRx

8 )

USRP

Radio
Multiplier

AGC

Synchronizer
Pilot Feedback

Synchronizer
Freq. Coarse

Filter
Matched

Synchronizer
Timing (Gardner)

Multiplier
AGC

Synchronizer
Frame

Fig. 2. DVB-S2 software receiver: waiting phase and acquisition phase 1 & 2.

receive
(tRx

1 )
imultiply

(tRx
2 )

synchronize
(tRx

3 )
filter
(tRx

4 )
synchronize

(tRx
5 )

extract
(tRx

6 )
imultiply

(tRx
7 )

synchronize
(tRx

8 )
descramble

(tRx
9 )

synchronize
(tRx

10 )
synchronize

(tRx
11 )

remove
(tRx

12 )
estimate

(tRx
13 )

demodulate
(tRx

14 )
deinterleave

(tRx
15 )

decode SIHO
(tRx

16 )
decode HIHO

(tRx
17 )

descramble
(tRx

18 )
send
(tRx

19 )

USRP

Radio
Multiplier

AGC
Synchronizer
Freq. Coarse

Filter
Matched

Synchronizer
Timing (Gardner)

Multiplier
AGC

Synchronizer
Frame

Scrambler
Symbol

Synchronizer
Freq. Fine L&R

Synchronizer
Freq. Fine P/F

Framer
PLH

Noise
Estimator

Modem
PSK Interleaver

Decoder
LDPC

Decoder
BCH

Scrambler
Binary

Sink
Binary File

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Stage 6 Stage 7 Stage 8

End of the acquisition phase 3

Fig. 3. DVB-S2 software receiver: acquisition phase 3 & transmission phase.

1 2 3 4 5 6 7 8 9

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e
E

rr
or

R
at

e

Config. 1 2 3

AWGN

AWGN+

Real

Fig. 4. DVB-S2 FER decoding performance.

all of these software implementations, that are optimized for
real-time processing, are reusable for the community.

III. REAL TIME IMPLEMENTATION FEATURES

A. Reliable Sample Collection and Delivery

The processing rate of the whole system is determined by
the rate (in MS/s) at which USRP modules are set to run. The
transmitter part has to provide samples at a sufficient rate,
whereas the receiver part must consume them. In our study,
the real time constraint was imposed by our industrial partner
whose goal was that the complete chain reach several tens
of MB/s. Furthermore, there should be a very limited jitter
in the samples delivering and gathering rates at both sides.
Indeed, the inner buffers of the USRP modules are limited.
Precautionary measures are necessary to avoid temporary rate
drops, that would cause underflows at the transmitter side,
or overflows at the receiver side. Firstly, the corresponding
threads are pinned to a dedicated core (in tTx

10 and in tRx
1 ). Then,

preemption of these threads has to be avoided. To this purpose,
we chose to isolate the CPU core to which these threads are
pinned, using the isolcpus Linux kernel option.

Provided with sufficient buffers on the host side, these
threads efficiently handle the data exchange between the host
and the USRP modules. Accessing real time processing is now
just a matter of getting sufficient throughput for other tasks.

The transmitter is not the most resources consuming part
that is why delivering high data rate is not as challenging
as the receiver counterpart. The DVB-S2 transmitter soft-
ware implementation has been split into 3 pipeline stages.
Stages 1 and 3 are sequential, stage 2 is parallel. An Intel®

Core™ i7 CPU with 4 cores (SMT was switched on) has
been selected (Haswell architecture). One entire core has
been reserved for the radio thread (stage 3), one hardware
thread has been assigned to the source (stage 1) and the
five remaining hardware threads have been dedicated to the
stage 2. The pipeline implementation is a copy-less and lock-
free producer/consumer using a passive waiting strategy.

B. SIMD Implementations of Synchronization and Filter Steps

The synchronization and filter tasks extensively rely on
vectorized implementations. SIMD instructions are used to
speedup the processing inside a frame (intra-frame SIMD
strategy). The synchronization tasks are working on complex
numbers. Actually, we have chosen to represent these numbers
as an Array of Structures (AoS) in memory. To guarantee
the portability and the flexibility of the code, the MIPP
SIMD library [5] is used. Additional reordering operations
(mipp::deinterleave and mipp::interleave) were
necessary to manage the AoS representation. The filter task
(tRx
4 ) mainly perform linear algebra operations. Thus, the

proposed implementation extensively rely on efficient Fused
Multiply-Add (FMA) instructions (mipp::fmadd).



TABLE II
RECEIVER SEQUENTIAL TASK CHARACTERISTICS ON THE X86 CPU.

SEQUENTIAL TASKS ARE REPRESENTED BY BLUE ROWS. THE SLOWEST

SEQ. STAGE IS IN RED WHILE THE SLOWEST OF ALL IS IN ORANGE .

Stages and Tasks Throughput Latency Time
(Mb/s) (µs) (%)

Radio - receive (tRx
1 ) 431.83 527.32 0.94

Stage 1 431.83 527.32 0.94

Multiplier AGC - imultiply (tRx
2 ) 367.45 619.71 1.11

Synch. Freq. Coarse - synchronize (tRx
3 ) 841.32 270.66 0.48

Filter Matched - filter (tRx
4 ) 116.41 1956.08 3.49

Stage 2 80.00 2846.45 5.08

Synch. Timing - synchronize (tRx
5 ) 55.42 4108.52 7.34

Stage 3 55.42 4108.52 7.34

Synch. Timing - extract (tRx
6 ) 281.83 807.97 1.44

Multiplier AGC - imultiply (tRx
7 ) 685.51 332.18 0.59

Synch. Frame - synchronize (tRx
8 ) 159.41 1428.51 2.55

Stage 4 88.65 2568.66 4.58

Scrambler Symbol - descramble (tRx
9 ) 1682.89 135.31 0.24

Synch. Freq. Fine L&R - synchronize (tRx
10) 1246.85 182.63 0.33

Synch. Freq. Fine P/F - synchronize (tRx
11) 112.56 2022.98 3.61

Stage 5 97.27 2340.92 4.18

Framer PLH - remove (tRx
12) 1008.60 225.77 0.40

Noise Estimator - estimate (tRx
13) 550.06 413.98 0.74

Stage 6 355.94 639.75 1.14

Modem PSK - demodulate (tRx
14) 40.47 5626.34 10.05

Interleaver - deinterleave (tRx
15) 1347.25 169.02 0.30

Decoder LDPC - decode SIHO (tRx
16) 164.21 1386.74 2.48

Decoder BCH - decode HIHO (tRx
17) 6.92 32905.37 58.79

Scrambler Binary - descramble (tRx
18) 91.11 2499.41 4.47

Stage 7 5.35 42586.88 76.09

Sink Binary File - send (tRx
19) 1838.31 123.87 0.22

Stage 8 1838.31 123.87 0.22

Total 4.09 55742.37 99.57

C. High Throughput Receiver

This section details the receiver part of the system in which
achieving high data rates is clearly challenging. The presented
results have been obtained on two high-end NUMA machines.
The first one is composed by two Intel® Xeon™ Platinum 8168
CPUs (denoted as x86). The frequency of the CPUs is 2.70
GHz (24 cores, 128 GB of RAM) and the Turbo Boost mode
has been disabled for the reproducibility of the experiment
results. Each core is powered by AVX-512F SIMD ISA. The
second architecture is composed by two Cavium ThunderX2®

CN9975 v2.1 CPUs (denoted as ARM). The frequency of the
CPUs is 2.00 GHz (28 cores, 256 GB of RAM). Each core
is powered by NEON SIMD ISA. In both targets the SMT
was switched off. In the proposed implementation, the data
are represented by 32-bit numbers. Thus, the data parallelism
level is 16 for AVX-512F ISA and 4 for NEON ISA.

Tab. II presents the task throughputs and latencies measured
from a sequential execution of the MODCOD 2 in the trans-
mission phase and on the x86 target. The tasks have been
regrouped per stage in order to introduce the future decompo-
sition when the parallelism is applied. The throughputs have
been normalized to the number of information bits (K). This
enables the comparison among all the reported throughputs.

The stage 7 takes 76% of the time with especially the
Decoder BCH task (tRx

17) that takes 59% of the time. tRx
17

should not take so much time compared to the other tasks.

However, we chose to not spend time in optimizing the BCH
decoding process as the stage 7. Indeed, throughput can easily
be increased by running the tasks on multiple threads. The
second slower stage is the stage 3. This stage is the main
hotspot of the implemented receiver. The stage 3 contains only
one synchronization task (tRx

5 ). In the current implementation,
this task cannot be duplicated (or parallelized) because there is
an internal data dependency with the previous frame (state-full
task). The stage 3 is the real limiting factor of the receiver.
For information, considering a CPU with an infinite number
of cores, the maximum reachable throughput is 55.42 Mb/s.

We did not try to parallelize the waiting and the acq.
phases. We measured that the whole acq. phase (1, 2 and 3)
takes about one second (on x86). During the acq. phase, the
receiver is not fast enough to process the received samples
in real time. To fix this problem, the samples are buffered
in the Radio - receive task (tRx

1 ). Once the acq. phase is
done, the transmission phase is parallelized. Thus, the receiver
becomes fast enough to absorb the radio buffer and samples
in real time. During the transmission phase, the receiver is
split into 8 consecutive pipeline stages as presented in Fig. 3.
This decomposition has been motivated by the nature of the
tasks (sequential or parallel) and by the sequential measured
throughput. The number of stages has been minimized in order
to limit the pipeline overhead. Consequently, sequential and
parallel tasks have been regrouped in common stages. The
slowest sequential task (tRx

5 ) has been isolated in the dedicated
stage 3. The other sequential stages have been formed to
always have a higher normalized throughput than the stage 3.
The sequential throughput of the stage 7 (5.35 Mb/s) is lower
than the throughput of the stage 3 (55.42 Mb/s). This is
why we duplicated this stage to run over 28 threads. This
looks overkill but the machine was dedicated to the DVB-
S2 receiver and the throughput of the Decoder LDPC task
(tRx
16) varies depending on the SNR. One can notice that an

early termination criterion was activated. When the signal
quality is very good, the Decoder LDPC task runs fast and
the threads can spend a lot of time in waiting. In Tab. II,
the presented Decoder LDPC task throughputs and latencies
are optimistic because we are in a SNR error-free zone. All
the threads are pinned to a single core with the hwloc [6]
library. The 28 threads of the stage 7 are pinned in round-robin
between the CPU sockets. By this way, the memory bandwidth
is maximized thanks to the two NUMA memory banks. During
the duplication process, the thread pinning is known and the
data are copied into the right memory bank (first touch policy).
All the other pipeline stages (1, 2, 3, 4, 5, 6 and 8) are
running on a single thread. Because of the synchronizations
between the pipeline stages, the threads have been pinned on
the same socket. The idea is to minimize the pipeline stage
latencies in maximizing the CPU cache performance. It avoids
the extra-cost of moving the cache data between the sockets.
On the ARM target, the pipeline has been decomposed in 12
sequential stages and 1 parallel stage of 40 threads (stage 7).

The receiver program assigned around 1.3 GB of the global
memory when running in sequential while it assigned around



TABLE III
THROUGHPUTS DEPENDING ON THE SELECTED DVB-S2 CONFIGURATION.

Throughput (Mb/s)

Sequential Parallel Latency (ms)

Configuration x86 ARM x86 ARM x86 ARM

MODCOD 1 3.4 1.0 37 19 – 37
MODCOD 2 4.1 1.4 55 28 56 41
MODCOD 3 4.0 1.1 80 42 – 51

30 GB in parallel. The memory usage increases because of
the chain duplications in the stage 7. The duplication operation
takes about 20 seconds on the x86 and ARM targets. It is made
at the very beginning of the program. It is worth mentioning
that the amount of memory was not a critical resource.

Tab. III summarizes the obtained throughputs for the 3
MODCODs presented in Tab. I. Each time, sequential and
parallel throughput are given. To measure the maximum
achievable throughput, the USRP modules have been replaced
by pre-registered samples. This is because the pipeline stages
are naturally adapting to the slowest one. It means that in
a real communication, the throughput of the radio is always
configured according to the slowest stage. Indeed, it is nec-
essary for real time communication otherwise the radio task
has to indefinitely buffer the samples while the amount of
available memory in the machine is finite. The throughput
value is the final useful information throughput (K bits) for
the user. Between the MODCOD 1 and 2, only the LDPC code
rate varies (R = 3/5 and R = 8/9 resp.). It has a direct impact
on the information throughputs. Between the MODCOD 2
and 3, the modulation varies (QPSK and 8-PSK resp.) and
the frames have to be deinterleaved (column/row). High order
modulation reduces the amount of samples processed by
the Synchronizer Timing task (tRx

5 ). This results in higher
throughput in the slowest stage 3 (80 Mb/s for the 8-PSK on
the x86 target). In the parallel implementations, the pipeline
stage throughputs are adapting to the slowest stage 3. It results
in an important speedup. In the sequential implementations,
we observe a slowdown. This is mainly due to the demodulate
task (tRx

14) which takes a higher amount of time. This additional
demodulation cost is absorbed by the 28 threads of the stage 7
when running in parallel. For MODCOD 2 in parallel, one can
note that the achieved information throughput is 55 Mb/s on
the x86 target. This is very close to the sequential throughput
of tRx

5 on the same target (55.42 Mb/s). Knowing that this
task is the limiting factor in the pipeline, it demonstrates the
efficiency of the proposed multi-threaded implementation.

The throughputs obtained on the ARM target are lower than
on the x86 CPUs (by a factor of ≈ 2 when running in parallel).
It can be explained by the limited mono-core performance of
the ThunderX2 architecture: the frequency is lower (2.0 GHz
versus 2.7 GHz) and the SIMD width is smaller (128-bit in
NEON versus 512-bit in AVX-512F).

IV. RELATED WORKS

Some other works are focusing on SDR implementations
of a DVB-S2 transceiver. To the best of our knowledge, the

competitive existing projects are discussed thereafter.
gr-dvbs2rx [1] is an open source extension to GNU Radio.

The project sounds promising but lacks efficiency. Its main
maintainer affirms that the receiver is not yet able to meet
the satellite real time constraints on a Xeon™ Gold/Platinum
processor. The use of a dedicated GPU or an FPGA for the
LDPC decoding is advised.

leansdr [7] is a standalone open source project. The project
creation was motivated to reach higher receiver throughput
than GNU Radio at the cost of decoding performance degrada-
tion. For instance, a low complexity LDPC bit-flipping decoder
is chosen. At the time of the writing, the project does not
support multi-threading.

Grayver and Utter recently published a paper [2] in which
they succeed to build a 10 Gb/s DVB-S2 receiver on a cluster
of server-class CPUs. On a comparable CPU, their work is able
to double or even triple the throughput of our implementation
(approximately 185 Mb/s on 20 cores). This is mainly due
to new algorithmic improvements in the synchronization tasks
and the use of a very fast LDPC decoder [8], [9]. They are able
to express more parallelism in the Synchronizer Timing task
(tRx
5 ). In our work, we could have split tRx

5 in multiple pipeline
stages to increase its throughput but we preferred to stop the
optimization process since we met the industrial constraints.
One may note that Grayver and Utter’s work focuses on a
single DVB-S2 MODCOD (8-PSK, N = 64800 and R = 1/2)
and the achieved decoding performances are not reported.

V. CONCLUSION

This paper deals with the software implementation of real-
time DVB-S2 transceiver. For this purpose, USRP modules
were combined with multicore and SIMD CPUs. The im-
plementations were done thanks to the AFF3CT toolbox.
Thus, some components are directly from the AFF3CT library
and others such as the synchronization functions have been
described. Experiment results show the performance but also
the flexibility and the portability of the transceiver. An obvious
strength of this work is also its collaborative context and the
code publicly released.

REFERENCES

[1] R. Economos. (2018) gr-dvbs2rx: GNU Radio Extensions for the
DVB-S2 and DVB-T2 Standards. [Online]. Available: https://github.com/
drmpeg/gr-dvbs2rx

[2] E. Grayver and A. Utter, “Extreme Software Defined Radio – GHz in
Real Time,” in Aerospace Conference. IEEE, 2020.

[3] ETSI, “EN 302 307 - Digital Video Broadcasting (DVB),” 2005.
[Online]. Available: https://www.etsi.org/deliver/etsi en/302300 302399/
302307/01.02.01 60/en 302307v010201p.pdf

[4] A. Cassagne et al., “AFF3CT: A Fast Forward Error Correction Toolbox!”
Elsevier SoftwareX, vol. 10, 2019.

[5] ——, “MIPP: A Portable C++ SIMD Wrapper and its use for Error
Correction Coding in 5G Standard,” in WPMVP. ACM, 2018.

[6] F. Broquedis et al., “hwloc: A Generic Framework for Managing Hard-
ware Affinities in HPC Applications,” in PDP. IEEE, 2010.

[7] pabr. (2016) leansdr: Lightweight, Portable Software-defined Radio.
[Online]. Available: https://github.com/pabr/leansdr

[8] B. Le Gal and C. Jégo, “High-Throughput Multi-Core LDPC Decoders
Based on x86 Processor,” TPDS, vol. 27, no. 5, pp. 1373–1386, 2016.

[9] E. Grayver, “Scaling the Fast x86 DVB-S2 Decoder to 1 Gbps,” in
Aerospace Conference. IEEE, 2019.


