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Microservices are hailed for their capabilities to tackle the challenge of breaking monolithic business systems down
into small, cohesive, and loosely-coupled services. Indeed, these systems are neither easy to maintain nor to replace
undermining organizations’ efforts to cope with user’s changing needs and governments’ complex regulations. Mi-
croservices constitute an architectural style for developing a new generation of systems as a suite of services that,
although they are separate, engage in collaborative execution and communication sessions. However, microservices
success depends, among many other things, on the existence of an approach that would automatically identify the
necessary microservices according to organizations’ requirements. In this paper, we present such an approach and
demonstrate its technical doability in the context of a case study, Bicing, for renting bikes. Some salient features
of this approach are business processes as input for the identification needs, three models known as control, data,
and semantic to capture dependencies between these processes’ activities, and, finally, a collaborative clustering
technique that recommends potential microservices. Conducted experiments in the context of Bicing clearly indi-
cate that our approach outperforms similar ones for microservices identification and reinforce the important role of
business processes in this identification. The approach constitutes a major milestone towards a better architectural
style for future microservices systems.

Keywords: Business process · Control/Data/Semantic dependency · Clustering · Microservice.

1 Introduction

One of the many challenges that today’s organizations have to tackle is how to adjust their business functions in response
to users’ new needs, competitors’ new products, authorities’ new regulations, to mention just some. Decomposing existing
applications is becoming a critical need for modern organizations [5, 35]. Indeed, despite the good will of organizations
to remain proactive, the monolithic nature of the information systems (systems for short) associated with their business5

functions, complicates the work of these organizations. Monolithic means one “sealed” block that encompasses strongly-
coupled components that are neither easy to replace nor to maintain. Many stories report on how organizations, e.g., Best
Buy, Cloud Elements, and Wix.com, had to “wrestle” with monolithic systems4.

Over the years, many Information and Communication Technologies (ICT) were put forward to address the ongo-
ing issue of monolithic systems including Service-Oriented Architecture (SOA) [8], Component-Based Software Engi-10

neering (CBSE) [23], and Commercial-Of-The-Shelf (COTS) [28]. However, many of these ICT did not live up to their
advocates’ expectations overlooking factors like resistance to change, legacy practices, and biased advices, and creating
more confusion about the best way to move forward. Lucklily new ICT regularly surface exemplified, in this paper, with
microservices [18]. The term microservice was coined in 2014 and constitutes an architectural style for developing applica-
tions as a suite of small services, having each a separate but collaborative execution and communication process [6]. Some15

adopters of microservices are Amazon and Netflix. In a recent post by NGINX5, Netflix shares its successful experience of
transitioning “from a traditional development model with 100 engineers producing a monolithic DVD-rental application to

4 tinyurl.com/y6ko2k8o.

5 tinyurl.com/ojm9zgp.
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a microservices architecture with many small teams responsible for the end-to-end development of hundreds of microservices
that work together to stream digital entertainment to millions of Netflix customers every day”.

It is clearly difficult to easily compare microservices architectures and Service oriented architectures (SOA) as they
both achieve similar objectives and adopt closed principles. SOA enables separate applications to communicate with one
another by allowing them to expose their services through standardized interfaces. Microservices scope is concerned by the5

application itself and focuses on the structure within the application. Microservices corresponds to an architectural style
for building an application with the objective to separate and decouple components within an application boundary. The
separation between identified components is absolute and each component encapsulates its own database. Indeed, SOA
and microservices are complementary. An existing application can expose its services through an SOA level. It can also
be restructured and migrated to microservices-based architectures. This latter can be then expose its services by using10

SOA level. All well established techniques of SOA (Interfaces description, service discovery, etc.) can then be used after a
microservices-based architecture exposes its services and not during the reorganization of a monolithic application into a
microservices-based application.

In fact, this is what we did and demonstrated in [10] where we designed and developed a collaborative clustering-based
approach to identify microservices from a set of Business Processes (BPs). To the best of our knowledge, only Amiri [2]15

identifies microservices using BPs while the rest use UML class diagrams [4], legacy databases [7], log files [12], and source
codes [13]. At the core of our collaborative clustering-based approach, that we extend in this paper, are first, activities
of BPs that indicate who does what, when, where, and why, second, models that capture structural, data, and semantic
dependencies between these activities, and finally, a collaborative clustering technique that combines these models. This
technique allowed us to apply separate techniques to the three dependency models prior to consolidating their respective20

results into a consensual solution.
This paper6 extends the approach we discussed in [10] from three perspectives. First, we add a new semantic dependency

model to the existing structural- and data-dependency models. The semantic model captures the semantic relationships
that could exist between a BP’s activities using three techniques. The first technique is word-driven and computes the
similarity between activities based on their names. The second technique is concept-driven and also computes the similarity25

between activities using the most similar concepts that would belong to the BP’s domain ontology. Finally, the third
technique is fragment-driven and, like the previous two techniques, computes the similarity between activities using a
set of the most similar, eventually overlapped, fragments that each encompasses concepts belonging to the BP’s domain
ontology. All these techniques are formalized and then, described with their respective algorithms. On top of the semantic
dependency model, we provide more details and algorithms about the collaborative clustering technique that underpins30

our multi-model based microservices identification approach. Last but not least, we present new experimental results that
take into account the new semantic dependency model with its different techniques.

The rest of this paper is organized as follows. Section 2 presents some related works. Section 3 discusses a case
study, provides an overview of our approach to automatically identify microservices from BPs, and finally, formalizes the
different models associated with this automatic identification. Section 4 presents the collaborative clustering technique that35

underpins our identification approach and then, discusses the implementation efforts and experimental results. Section 5
concludes the paper and presents future work.

2 Related work

There exist a good number of works that discuss monolithic systems’ limitations and how microservices could address these
limitations [31]. Such systems are known for incurring significant development, maintenance, and evolution costs [32]. We40

discuss in this section the works related to microservices identification, which constitutes a critical step when migrating
from monolithic applications to microservices-based applications.

In [1], Ahmadvand and Ibrahim propose a microservices decomposition methodology that maps functional requirements
onto microservices with taking into account non-functional requirements, mainly security and scalability. The application
to decompose is expressed as a set of functional requirements where each corresponds to a functionality of the system.45

The requirements are complemented by a set of security requirements captured by the use of misuse cases. Security re-
quirements elicitation mechanism is proposed to identify security policies that correspond to each functional requirement.
6 This work was supported by the French research association (ANRT)[grant number: 2018/0216]
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The scalability level (High, Medium, Low) required for each functional requirement is also given. A requirement reconcil-
iation algorithm based on rules is proposed where scalability and security are used as balancing factors for composing a
microservice.

In [2], a clustering-based approach is discussed where structural and data dependencies between tasks are extracted
from a given set of BPs. All these dependencies are merged into one dependency matrix that is, then, submitted to a5

classical clustering algorithm to identify candidate microservices. As stated in Section 1, we adopted BPs like in [2], but,
considered more dependencies and a mix of clustering algorithms.

In [3], Barbosa et al. propose a process to identify candidate microservices from a set of business rules implemented
as a set of stored procedures. There are three main steps to support this identification. The first one discovers the stored
procedures related to the requirements and their corresponding system features. An expert is in charge of indicating the10

requirements. The second step analyzes the discovered stored procedures to identify the candidate microservices. The last
step evaluates the source code of all these candidate microservices so, that, unnecessary ones are dropped while refactoring
others if deemed necessary. The proposed approach is even relevant for exploring and exploiting stored procedures artifacts
and can be extended to include other artifacts (triggers, view, etc.). The approach, unfortunately, remains manual relying
heavily on expert intervention which could be time consuming, tedious, and prone to errors.15

In [4], Baresi et al. proposed an approach to identify microservices. It uses the semantic similarity of functionalities
described in openAPI7 and a reference vocabulary. The necessary microservices are identified as a cohesive cluster of
operations extracted from an UML diagram class while the semantic similarity between functionalities’ names is based on
the pre-computed database DISCO (DIStributionally related words using CO-occurences)8.

In [26], Li et al. propose a data flow-driven approach for the microservice-oriented decomposition of existing applica-20

tions. The input of this approach is a set of Data Flow Diagrams (DFD) where each is generated from a business logic and
describes the data flow through business processes. A DFD is represented in terms of processes/operations, data store,
data flow, and external entities. The DFDs are transformed into sentences to make them machine-readable. A sentence
is in the form of (I → 0) meaning that there is a connection between input I and output O. Inputs and outputs could
be a process/operation, a data store, or an external entity. A clustering algorithm is then used to cluster sentences that25

include the same data stores to form a {microservice candidate.
In [16], Gysel et al. suggest Service Cutter framework as a systematic approach to service decomposition. The frame-

work constitutes a process for identifying a set of services and assigning all nanoentities (data, operation, and artifact)
to one and only one of these services so, that, service-coupling criteria are adopted. Sixteen of these criteria have been
proposed in terms of requirements and have been divided into four categories: cohesiveness, compatibility, constraint, and30

communication. The input to Service Cutter corresponds to various specifications of software engineering artifacts in-
cluding use cases, entity-relationship models, security access-groups, and separated security zones. These specifications are
represented as a set of System Specification Artifacts (SSAs). These SSAs instances are used to extract from them nanoen-
tities as well as coupling criteria instances. An un-directed and weighted graph is proposed to represent the link between
nanoentities (nodes of the graph). A weight link between two nodes indicates to what extent two nanoentities are cohesive35

and/or coupled. A clustering algorithm is finally used on the produced graph to generate candidate microservice cuts.
In [19], a functionality-oriented microservice extraction by clustering execution traces of programs collected at run-

time, is described. These traces are collected by using techniques of program execution monitoring and are used to collect
implicit and explicit programs’ functional behaviors. The traces also reveal which entities are used for which business
logic. The approach clusters source code entities that are related to the same functionalities. Even if the work in [19] is40

interesting, it suffers from its strong dependence on the quality of the generated execution traces, and consequently on
the quality of the test cases.

In [21], Knoche et al. refer to industrial case studies to stress out, in the context of monolithic system shift to
microservices-based systems, the importance of separating client-associated internal modules migration from platform
migration as several challenges still lie ahead. They, then, present an incremental migration process to gradually decompose45

an application into microservices by exploiting existing source codes. An important step in the approach is to define from
scratch an external and domain-oriented service facade to capture the main functionalities required by the client. All service

7 www.openapis.org.

8 www.commonspaces.eu/en/oer/disco-extracting-distributionally-related-words-us.

www.openapis.org.
www.commonspaces.eu/en/oer/disco-extracting-distributionally-related-words-us.
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operations are defined from a targeted domain model. Static analysis technique is also used to identify the entry points
accessed by other applications. Another step is dedicated to service operation implementation and the client application
migration to service facade. The existing accesses are replaced by the service invocations. Even the approach has no
foundations, it has the advantage to be applied and seems to be in production and implementations were developed for
some service operations.5

In [25], microservices were proposed as potential candidates to modernize a monolithic system that was described using
three types of objects: interfaces, business functions, and database tables. These objects are then linked in a dependency
graph using calls from interfaces to business functions, calls between business functions themselves, and accesses from
business functions to database tables. Potential microservices correspond to the business rules that depend on database
tables, and correspond to the facades connected to the database tables.10

Table 1 presents a concise summary of the approaches presented above. We use five criteria to categorize them:
main inputs, data modeling, identification algorithm, evaluation method that indicates whether the experiments adopted
industrial application or case-study, and metrics used to evaluate the performance of the approach. When we examined
the approaches presented above, we paid attention to initial inputs that could be business processes, API specifications,15

UML diagrams, domain ontologies, etc. Our approach considers business processes as a main input. In term of data
modeling, other approaches use dependencies between artifacts extracted from the inputs. Such modeling is often based
on graphs and relational data (matrices). Our approach considers relational data due to their simple nature. It also seems
from a global perspective that clustering algorithm is often used to identify microservices. While the studied approaches
adopt the same, we made this algorithm collaborative. Finally, most approaches rely on case studies to implement their20

solutions. A few works implemented their solution on industrial applications. We considered two case studies, one of them
was used to compare the performance of our approach to others. Different metrics are used in our work: Dunn Index,
Afferent Coupling, Efferent Coupling, Instability, and Relational Cohesion.

3 Our approach for identifying microservices

This section consists of five parts. The first part presents a case study that refers to Barcelona’s bike sharing system25

known as Bicing. The second part discusses our approach’s foundations in terms of dependencies between BPs’ activities
and collaborative clustering. Finally, the last parts formalize these dependencies.

3.1 Bicing case-study

Bicing is a system for renting bikes in the city of Barcelona with 400 anchor stations and 6000 bikes. Bicing’s monolithic
architecture is described in [14] along with the managerial and technical challenges, like coordinating large development30

teams and scaling application programs, that undermine its operations. For the needs of our work, we designed Fig. 1
that corresponds to a high-level BPMN representation of some key activities (ai), gateways, dependencies, and artefacts
associated with Bicing.
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Table 1: Synthesis view of microservices identification approaches
Approach Main Input Data modeling Identification algorithm Evaluation # of Metric details

(starting points) metrics
[1] Functional and non func-

tional requirements spec-
ifications

Dependency weight
between couple of
functions

Rule-based algorithm 1 case study: online movie
streaming system

0 No metrics

[2] Business Processes(BPs) Data and control ma-
trices dependencies

Centralized clustering 1 case study: Plan Approval
BPMN process

1 Accuracy

[3] System requirements
and existing stored
procedures codes

Stored procedures
discovery related to
the system require-
ments

Source code analysis Real large scale system 0 No metrics but implementa-
tion of a Proof of Concept

[4] OpenAPI specifications
of interfaces and a refer-
ence vocabulary

Co-occurrence prin-
ciple based-semantic
similarities between
functionalities

Centralized clustering three case studies: (1) on-
line movie streaming system,
(2) Transfer money application
combined to Kanban Board ap-
plication, and (3) real-world
OpenAPI specifications from
APIs. Guru

2 Precision/Recall

[26] Data Flow Diagram sen-
tences

dependency graph
between process,
data stores and
external entities

Rule-based algorithm 1 case study: cargo tracking 4 Afferent Coupling, Efferent
Coupling, Instability of cou-
pling, Relational Cohesion

[16] Use cases, Entity-
Relationship Models,
security access groups,
separated security zones,
etc.

Dependency graph
between nanoentities

Centralized clustering two case studies: cargo tracking
and Trading system

1 Microservice candidates rat-
ing (Excellent, Expected,
Unreasonable)

[19] Log of execution traces
of programs

Links between source
codes and business
logics

Centralized clustering four case studies (web appli-
cations): e-commerce, discus-
sion board system, blogging sys-
tem,blog sites

5 Functional Cohesion (Cohe-
sion at Domain level, Cohe-
sion at Message level), Func-
tional Coupling (Interface
Number, Operation Num-
ber, Interaction Number)

[21] Source code, domain
model

nothing special Static analysis Industrial application: customer
management application of an
insurance company

0 -

[25] Objects including inter-
faces, business functions,
and database tables

dependency graph of
object calls

Rules-based algorithm industrial application: Bank
transactions management

0 -

Our work Business Processes(BPs) Data, control, and se-
mantic matrices de-
pendencies

Collaborative clustering two case studies: Bike rental and
cargo tracking

5 Dunn Index, Afferent Cou-
pling, Efferent Coupling, In-
stability of coupling, Rela-
tional Cohesion

Fig. 1: An illustrative BPMN representation of Bicing
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It all starts when a user requests a bike (a1) at a certain anchor station. After checking the user’s credentials (a2) and
any late fee payment (a3), Bicing updates the user’s records (a4) and then, approves the user’s request (a5). If it turns out
that the bike is defective, the user puts it back (a6) and eventually requests another one. Otherwise, the user starts his
journey (a10). Regularly all bikes are serviced (a7) leading to either putting them back for rent (a8) or disposing them (a9).
When the user arrives to destination, he returns the bike at a certain anchor station (a11). Otherwise, Bicing blacklists5

the user (a14) due to bike inappropriate return, and geo-locates the bike (a12) so, that, it is collected by the competent
services and then, put back into service for other users (a13).

From a specification perspective, activities ({ai}) may require inputs ({ii}) and produce outputs ({oi}). We relate
both inputs and outputs to specific artefacts’ attributes. An activity acts upon both attributes and artefacts using
read(r)/write(w) and update(u)/create(c)/delete(d) operations, respectively. Table 2 lists activities, artefacts, attributes10

of artefacts, and the operations that artefacts/attributes are subject to. For instance, a5(get bike) applies write operation
to User_Destination and Rent_Date attributes, which leads to executing create operation whose outcome is Rental artefact.

Table 2: Bicing’s components
Activity Artefacts Attributes of artefacts

a1
Bike (u) Anchor_Point (r), Bike_ID (r), Bike_Status (w)
User (u) User_ID (r), User_Destination (r)

a2 User (u) User_ID (r), User_Credit (r), User_Destination
(r)

a3 User (u) User_ID (r), User_History (r), User_Validity (r)
a4 User (u) User_ID (r), User_History (w)

a5
Bike (u) Bike_ID (r), Bike_Status (w)
User (u) User_ID (r), User_Status (w)
Rental (c) User_Destination (w), Rent_Date (w)

a6
Bike (u) Anchor_Point (r), Bike_ID (r), Bike_Status (w)
User (u) User_ID (r), User_Status (w)
Rental (d) Rent_ID (r)

a7
Bike (u) Bike_Status (w)
Repair (c) estimated_Repair_Cost (w), agree_Repair (w)

a8 Bike (u) Anchor_Point (r), Bike_Status (w)
a9 Bike (d) Bike_ID (r)
a10 User (u) User_ID (r), User_Status (w)

a11
Bike (u) Anchor_Point (r), Bike_ID (r), Bike_Status (w)
User (u) User_ID (r)
Rental (u) Rent_ID (r), Rent_Cost (w), User_History (w)

a12 Bike (u) Bike_ID (r), Bike_Location (w)
a13 Bike (u) Bike_ID (r), Anchor_Point (r), Bike_Status (w)
a14 User (u) User_ID (r), User_Status (w), User_History (w)

3.2 Foundations

Compared to the works presented in Section 2, BPs are our main source of identifying microservices. These ones are
expected to be fine-grained, strongly cohesive (i.e., degree to which activities in a microservice belong together), and15

loosely-coupled (i.e., degree to which microservices can be easily replaced). According to Davenport, a BP is a set of
logically related activities that are performed to achieve goals [11]. “Logically related” refers to dependencies between
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activities such as control (with respect to an execution flow), data (with respect to an information flow), semantics (with
respect to a meaningful exchange flow) and functional (with respect to a collaboration flow).

- Control dependency refers to both the execution order (e.g., finish-to-start and start-to-start) between activities and
the logical operators (e.g., XOR and AND) between activities as well. Should two activities be directly connected
through a control dependency, then most probably they would form a highly-cohesive microservice to which they will5

belong. Contrarily, they would most probably be used to form separate microservices to which each will belong.
- Data dependency refers to associating activities’ outputs/inputs in a way that permits to illustrate data flowing from
one activity to another. These inputs/outputs correspond to artefacts’ attributes. Data dependency sheds light on both
artefacts and artefacts’ attributes that could be subject to operations illustrated in Table 2 like create (c) and write (w),
respectively. In addition to input/output association, data dependency could indicate to what extent artefacts and/or10

artefacts’ attributes are either mandatory or optional for a BP execution. We advocate that activities that exchange
mandatory artefacts’ attributes should be part of the same microservice allowing to avoid delaying this exchange, for
example.

- Semantic dependency uses activities’ names to establish their functional similarity in term of what they do. These
names refer to linguistic templates that must include a verb and object/result along with optional parameters like15

time and location. For instance, a11’s name includes place (verb), bike (object), and anchor point (location). To as-
sess activities’ names similarity, we rely on either a reference vocabulary or an ontology. A highest/lowest similarity
value would indicate strong/weak coupling between activities making them members of the same/different microser-
vice/microservices.

- Non-Functional dependency relies on non-functional requirements such as privacy, security, cost, and scalability that20

could impact the execution of a business process’s activities. Compared to the control-dependency model that focuses
on who executes what activities, when, where, and why (5 W’s), the non-functional dependency model focuses on the
quality of executing activities. Has a certain level of security achieved during execution, and has a certain cost be
maintained are examples of questions that the non-functional dependency model could address.

We focus on control, data, and semantic dependencies, only, and leave functional dependency for the future. Upon25

establishing such dependencies, we quantify them using specific metrics. The objective is to evaluate cohesion and coupling
among activities so, that, they are gathered in either same or separate microservices. To measure a control dependency
between two activities (ai, aj), we consider aj ’s occurrence probability after executing ai. This probability depends on the
execution order and/or logical operators between ai and aj . Let us consider the control dependency between a5 and a10
that is connected with a6 through XOR (Fig. 1). After executing a5, a10’s occurrence probability depends on the decision30

made at XOR (i.e., either a6 or a10). We note that any activity’s occurrence probability is calculated over time by using the
BP’s execution log. To measure a data dependency between two activities (ai, aj), we consider an artefact’s and attribute’s
criticality level that would reflect the importance of information shared between these activities. This level denotes to
what extent artefact/attribute unavailability would impact the continuity of business operations. To measure a semantic
dependency between two activities (ai,aj), we measure the distance between their respective semantic annotations using35

three annotation techniques, word-driven, concept-driven, and fragment-driven. The first relies on a reference vocabulary
to annotate activities with terms associated with these activities’ names. The second relies on a certain domain ontology
to annotate activities with concepts related to their respective names. Finally, the third refines the second by annotating
the activities with ontological fragments that would refer to functional domains. More details about formalizing control,
data, and semantic dependencies are given in the next sections.40

Based on dependencies among activities, we gather activities into microservices by using clustering techniques. In the
literature, clustering is either centralized or collaborative [17]. In the former, a single component manages the clustering
by utilizing all individuals’ features9 as inputs. In the latter, multiple components, each in charge of one type of features,
exchange some details during clustering so, that, appropriate clusters are jointly built. Performance and appropriateness
of clustering techniques are thoroughly discussed in the literature [9] and [34]. Many works like [9] and [17] advocate45

for collaborative clustering to identify microservices. It provides fine-grained and accurate results contrarily to centralized
clustering where individuals’ features need to be aggregated before initiating any clustering.

9 In our work, individuals are activities and features are control, data, and semantic dependencies.
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Fig. 2 depicts our three-step approach to identify microservices. The approach relies on the aforementioned depen-
dencies and collaborative clustering to group activities into potential fine-grained, highly-cohesive, and loosely-coupled
microservices. The steps denoted by collection, dependency analysis, and collaborative clustering proceed as follows. The
collection step gathers all necessary details from the BP specification and BP engineer, per dependency type (i.e., con-
trol, data, and semantics). Next, the dependency analysis step examines these details per dependency type allowing to5

define particular measures for storage in dedicated repositories. Finally, the collaborative clustering step applies differ-
ent clustering techniques (one per dependency type) to the stored measures. More details about how our collaborative
clustering algorithm was defined and implemented are given in Section 4.1.

Fig. 2: General representation of our microservices identification approach

3.3 Control dependency analysis

In Section 3.2, we mention that there are two types of control dependencies namely, direct and indirect. The former refers10

to a certain execution order (ExecOrder) between ai and aj that can be connected to other activities {ak} through a
certain Operator. An execution order between two activities could be exemplified with either finish-to-start (our focus and
denoted by SEQ)), finish-to-finish, start-to-start, or start-to-finish. The latter refer to an execution path (ExecPath) with
a certain execution order between ai and aj that involves other activities {ak} connected through two or more operators.

Direct. Let CD(ai, aj [Operator {ak}])ExecOrder be a direct control dependency.15

We start with a simple control dependency that stands for CD(ai, aj)SEQ (i.e., {ak} = ∅)). SEQ between ai and aj
means that aj starts only after ai has successfully completed (i.e., aj ’s execution remains uncertain). CD(ai, aj)SEQ,
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thus, denotes aj ’s occurrence probability (p) after ai’s completion as per Equation 1:

CD(ai, aj)SEQ = p (1)

where p ∈ ]0, 1].

We now examine the control dependency CD(ai, aj Operator {ak})SEQ (i.e., {ak} 6= ∅)). According to Operator’s
semantics, we assume that some r activities in {ak}∪ aj will be selected for execution. Equation 2 defines the number
of sets containing r activities that will be selected for execution as a combination C(n, r) where n corresponds to5

card({ak} ∪ aj).

C(n, r) =
n !

r !× (n− r) !
(2)

Depending on the semantics of Operator whether AND, XOR, or OR, CD(ai, aj Operator {ak})SEQ is calculated as
follows:
1. CD(ai, aj AND {ak})SEQ. This dependency means that aj will start only after ai has successfully completed

regardless of {ak}. Formally, Equation 3 computes CD(ai, aj AND {ak})SEQ as follows:10

CD(ai, aj AND {ak})SEQ = C(n, n) ∗ CD(ai, aj)SEQ (3)

where p ∈ ]0, 1] & C(n, n) = 1, as per Equation 2.
2. CD(ai, aj XOR {ak})SEQ. This dependency means that one activity from {ak} ∪ aj will be selected after ai has

successfully completed. Formally, Equation 4 computes CD(ai, aj XOR {ak})SEQ as follows:

CD(ai, aj XOR {ak})SEQ =
1

C(n, 1)
∗ CD(ai, aj)SEQ (4)

where C(n, 1) is the number of possibilities to select one activity from {ak} ∪ aj . As per Equation 2, C(n, 1) is
equal to n.15

3. CD(ai, aj OR {ak})SEQ. This dependency means that a set of r activities from 2{ak}∪aj (i.e., all possible multiple
choices) will be selected after ai has successfully completed. For the sake of simplicity, we assume that any activity
in {ak} ∪ aj has the same occurrence probability over 2{ak}∪aj , that is equal to r

n where r varies from 1 to n.
Formally, Equation 5 computes CD(ai, aj OR {ak})SEQ as follows.

CD(ai, aj OR {ak})SEQ =

∑
r=1,n(

r
n × C(n, r))∑

r=1,n C(n, r)
∗ CD(ai, aj)SEQ (5)

where
-
∑
r=1,n(

r
n × C(n, r)) represents the number of aj ’s occurrences among possible combinations of activities10.

-
∑
r=1,n C(n, r) corresponds to the total number of possible combinations of activities11.

Indirect. Let CD(ai, aj)ExecPath be an indirect control dependency between ai and aj . We start with a simple control
dependency that stands for CD(ai, aj)Pathi,j

where Pathi,j refers to a single set of other peers ({ak}) connected with20

operators. Here, CD(ai, aj)Pathi,j
denotes the probability of conjunctive events where each event refers to an ak’s

occurrence in Pathi,j as per Equation 6:

CD(ai, aj)Pathi,j
=

∏
al,am∈Pathi,j

CD(al, am Operator {akm})SEQ (6)

10 Let n be 3,
∑

r=1,n(
r
n
× C(n, r)) has the following value: ( 1

3
× 3 + 2

3
× 3 + 3

3
× 1=4).

11 Let n be 3,
∑

r=1,n C(n, r) has the following value: (3+ 3+ 1)=7.
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We now examine the control dependency CD(ai, aj)Pathsi,j where multiple possible execution paths ({Pathqi,j}) exist
between ai and aj . Here, CD(ai, aj)Pathsi,j denotes an aggregation of all simple control dependencies, each associated
with as per Equation 7:

CD(ai, aj)Pathsi,j = Agg(CD(ai, aj){Pathq
i,j
}q=1,...) (7)

where Agg refers to some common aggregate function like maximum used for our experiments.5

Table 3 depicts an excerpt of control dependencies in Bicing.

Table 3: Control dependencies with the occurrence probability (p) set to 0.5
Activity a1 a2 a3 a4 a5

a1 - 1/2 5/6 11/12 17/12
a2 1/2 - 1/3 7/12 11 /12
a3 5/6 1/3 - 1/4 3/4
a4 11/12 7/12 1/4 - 1/2
a5 7/12 11/12 3/4 1/2 -

3.4 Data dependency analysis

In Section 3.2, we considered the criticality of an artefact and attribute as a means for measuring data dependency
between two activities. In [30], Paulsen et al. provide a comprehensive criticality analysis for the benefit of organizations
that need to identify and prioritize assets (e.g., artefacts and processes) that are vital for achieving their goals. Taping into10

this analysis, we distinguish two types of criticality: functional (F) that refers to an artefact’s/attribute’s unavailability
which could hinder the BP’s proper execution, and non-functional (NF) that refers to an artefact’s/attribute’s corruption
which could undermine the BP’s Quality-of-Service (QoS). To assist BP engineers classify artefacts/attributes as (to
some degree) either critical or non-critical, we identify F- and NF-based critical attribute’s/artefact’s properties. First, we
consider strategic, tactical, and operational information levels as F criticality-related properties. For instance, a strategic15

attribute should be more critical than tactical and operational attributes. Second, we consider privacy, confidentiality,
integrity, and availability security levels as NF criticality-related properties. For instance, some BP’s operations can be
less concerned about confidentiality but more concerned about first availability and then, integrity . Table 4 illustrates
these properties with examples for Bicing. For instance, User_Credit attribute considered as both decision-making and
financial data would have operational and confidentiality as F and NF criticality-related properties, respectively.20

Table 4: Examples illustrating F and NF criticality-related properties
Criticality Properties Example

Functional
Operational Decision-making data
Tactical Concurrency data
Strategic Customer experience data

Non-functional
Privacy Protected personal data
Integrity Identity data
Confidentiality Financial data

To define an artefact (ar)/attribute (at)’s Degree of Criticality (DC(ar|at)), the BP engineer needs to work out the
priority among F and NF criticality-related properties by using three clusters, Low (L), Medium (M), and High (H). Then,
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she maps L, M, and H clusters onto [0, k[, [k, k′[, and [k′, k′′], respectively, after setting the values of k, k′, and k”.
Finally, the BP engineer sets DC(ar|at) based on the cluster’s range to which an ar|at’s property belongs. Since artefacts
and attributes can be associated with F and/or NF, for instance User_Credit, we refine DC(ar|at) into DCF(ar|at) and
DCNF(ar|at).

To calculate DC(ar|at), we define two strategies. The first strategy computes DC(ar|at) as a weighted sum of5

DCF(ar|at) and DCNF(ar|at) (Equation 8).

DC(ar|at) = w1 ×DCF(ar|at) + w2 ×DCNF(ar|at), w1 + w2 = 1 (8)

where w1 and w2 are weights (i.e., importance) associated with DCF (ar|at) | DCNF (ar|at), respectively, and set by the
BP engineer. Table 5 depicts artefacts/attributes associated with criticality degrees for Bicing. For instance, Bike_Status
has a higher DC than Anchor_Point.

Table 5: Artefact/Attribute criticality for Bicing
Artefact Attributes DCF

Bicycle
Anchor_Point M (k’1)
Bike_Status H (k”1)

User
User_Status H (k”2)
User_Destination L (k2)
User_History H (k”2)

Rental
Rent_ID H (k”3)
Rent_Cost M (k’3)

Repair agree_Repair M (k’4)

Artefact Attributes DCNF

Bicycle Bike_ID H (k”1)

User
User_ID H (k”2)
User_Validity M (k’2)

Repair estimated_Repair_Cost H (k”4)

Once all DC(ar|at) are established, we now specify data dependencies (DD1) between ai and aj (Equation 9).

DD1(ai, aj) =
∑

ari,j |ati,j∈DATAi,j

pair(ari,j |ati,j)×DC(ari,j |ati,j) (9)

where10

- ari,j |ati,j represents the artefact/attribute exchanged between ai and aj ,
- DATAi,j indicates the set of ari,j |ati,j , and
- pair(ari,j |ati,j) denotes the value associated with the operation pair (e.g., r/w, w/w, and c/r) between ai and aj ,
proposed by Amiri [2].

Table 6 depicts an excerpt of data dependencies for Bicing using Equation 8.

Table 6: Excerpt of data dependencies
Activity a1 a2 a3 a4 a5

a1 - 1/2 5/6 11/12 17/12
a2 1/2 - 1/3 7/12 11 /12
a3 5/6 1/3 - 1/4 3/4
a4 11/12 7/12 1/4 - 1/2
a5 7/12 11/12 3/4 1/2 -

15
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The second strategy considers DC(ar|at) as a tuple < DCF(ar|at), DCNF(ar|at) >. We, thus, specify data dependen-
cies (DD2) between ai and aj (Equation 10):

DD2(ai, aj) =
∑

ari,j |ati,j∈DATAi,j

F(pair(ari,j |ati,j), DCF(ari,j |ati,j), DCNF(ari,j |ati,j)) (10)

where F returns the data dependency value specified by the BP engineer for < pair(ari,j |ati,j), DCF(ari,j |ati,j),
DCNF(ari,j |ati,j) >.

3.5 Semantic dependency analysis

Semantic dependencies between activities define whether or not there are similarities between what activities are supposed5

to perform like ensuring the payment of fines and and blacklisting users. Such similarities could be extracted using
activities’ names defined with respect to a domain ontology. We advocate that activities’ names presenting semantic
similarities and/or referring to the same ontology concept(s) could be inter-related and the, would likely be part of the
same microservices.

Earlier, we mentioned three annotation techniques that we use to measure semantic dependencies between two activi-10

ties. Let X be an annotation technique and SDX (ai, aj) be a semantic dependency between ai and aj using X . Prior to
formalizing SDX , we describe these techniques.

Word-driven technique (W). Albeit being simple, this technique measures to what extent 2 words are similar. In our case,
word would refer to an activity’s name like “check user credentials” in our Bicing case-study. One of the advantages
of Word-driven technique is that it does not refer to a domain ontology but relies on the word co-occurrence1215

principle. Co-occurrence refers to the above-chance frequency of occurrence of two terms and is used as an indicator
to measure the semantic proximity of two terms. Algorithm 1 outlines how an activity ai is annotated using a set
of the n most similar words (Wai). To develop Wai , we adopt No et al.’s solution, DISCO [22], that assumes that
words with similar meaning (co-)occur in similar bag-of-words contexts. By adopting DISCO, the set of ai’s n most
distributionally similar words ({wk}) along with their respective similarity degrees (sdi,k) (i.e., Wai) are returned.20

Besides DISCO, any other semantic textual similarity technique can be adopted in our approach. Thus, ai will be
annotated with {< wk, sdi,k >}.

Algorithm 1: Word-driven annotation technique
Input: ai, n
Output: Wai

1 begin
2 Wai

← DISCO(ai, n)

3 return Wai

Concept-driven technique (C). It uses a domain ontology to annotate activities’ names with closed concepts. The semantic
dependency between activities is then highly dependent on the similarities that could exist between the annotated
concepts. Algorithm 2 outlines how an activity ai is annotated using a set of the most similar concepts (Cai) that25

would belong to the BP’s domain ontology (OBP ). Fig. 3 depicts our in-house OBP for bike rental. For each concept cj ,
Algorithm 5 first calls for No et al.’s semantic similarity measure between ai and cj namely, DISCO2

13, and then
stores DISCO2’s outcome into D[i, j]. To develop Cai , the maxs function will keep the concepts (ck) with the highest
similarity values stored in D[i] with respect to a certain precision σ. For instance, if the highest similarity value is 0.5
and σ is set to 0.1, then maxs will include all the concepts with a similarity value between 0.4 and 0.5, as well. Thus,30

ai will be annotated with {< ck, D[i, k] >}. Table 7 depicts similarity values associated with Bicing.
12 en.wikipedia.org/wiki/Co-occurrence.

13 DISCO2 computes semantic similarity (i.e., relation between concepts) while DISCO computes distributional similarity (i.e.,
relation between words).
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Algorithm 2: Concept-driven annotation technique
Input: ai, OBP , σ
Output: Cai

1 begin
2 foreach cj ∈ OBP do
3 D[i, j] ← DISCO2(ai, cj)

4 Cai
← maxs({D[i, j]}, σ)

5 return Cai

Fig. 3: Domain ontology for bike rental and its fragments Fi

Table 7: Excerpt of similarity values between activities and concepts

Activity
Concept

Bicycle BicycleRental User AchorPoint Station

a1 0.01818 0.02632 0.18076 0.04190 0.03621
a2 0.01924 0.04481 0.99997 0.05231 0.03667
a3 0.00421 0.01784 0.04266 0.12018 0.14423
a5 0.00718 0.00476 0.00962 0.05937 0.02105
a9 0.00968 0.01392 0.15772 0.0614 0.03038
a10 0.12016 0.06755 0.04724 0.04081 0.10965
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Fragment-driven technique (F). Instead of using the most closed concept, this technique annotates an activity’s name
using the most closed set of concepts called fragments. In this case, semantic dependencies between two activities is
highly dependent on the similarities that could exist between two fragments. Algorithm 3 outlines how an activity ai
is annotated using a set of the most similar (eventually overlapped) fragments (Fai) that each encompasses concepts
belonging to OBP . To develop Fai , Algorithm 3 first computes ai’s membership degrees (M[i]) to each fragment ∈ OBP5

based on the set of common concepts (cj) between this fragment and Cai along with D[i, j] obtained in Algorithm 2,
Line 2. Then, the maxm function considers the fragments (Fk) with the highest membership degrees (M[i]) with
respect to a certain precision σ. Thus, ai will be annotated with {< Fk,M[i, k] >}. Table 8 depicts an excerpt of
similarity values associated with Bicing.

Algorithm 3: Fragment-driven annotation technique
Input: Cai

, OBP , σ
Output: Fai

1 begin
2 foreach Fk ∈ OBP do
3 M[i, k] ←

∑
cj∈Fk∩Cai

D[i, j]

4 Fai
← maxm(M[i], σ) return Fai

Table 8: Excerpt of similarity values between activities and fragments

Activity

Fragment
F1 F2 F3 F4 F5

a1 0.98182 0.97368 0.9581 0.98182 0.97368

a2 0.98076 0.95519 0.94769 0.98076 0.96333

a3 0.99579 0.98216 0.95734 0.99579 0.98216

a5 0.99524 0.99524 0.99038 0.99282 0.99524

a9 0.99032 0.98608 0.9386 0.99032 0.98608

a10 0.93245 0.95276 0.95919 0.95919 0.93245

Formally, Equation 11 computes the Semantic Dependency (SeD) between ai and aj .10

SeD(ai, aj) = 1− dX (Xai ,Xaj ) (11)
where Xai corresponds to the annotation technique’s outcome (either Wai , Cai , or Fai) and dX represents the distance

between Xai and Xaj . We hereafter define dX per technique.

• Word-driven distance. The rationale of dW is to compare all the words in Wai to those in Waj . More Wai and Waj

contain similar private words (i.e., that exclusively belong to either Wai or Waj ) with higher similarity with ai and
aj , respectively, more ai and aj will be far away from each other. Formally, Equation 12 computes dW .

dW(Wai ,Waj ) =
∑

wk∈Wp
ai

sdi,k +
∑

wk∈Wp
aj

sdj,k (12)

where Wp
ai|aj represents Wai|aj ’s set of private words (i.e., Wai|aj −Wai ∩Waj ).

Equation 13 computes the normalized dW .

dnormW (Wai ,Waj ) =
dW(Wai ,Waj )

|Wp
ai |+ |W

p
aj |

(13)

Table 9 depicts an excerpt of semantic dependencies for Bicing using Equation 13.15
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Table 9: Excerpt of semantic dependencies using word-driven technique

Activity
Activity

a1 a2 a3 a4 a5 a6

a1 1 0.180 0.034 0.015 0.010 0.041
a2 0.180 1 0.042 0.012 0.009 0.020
a3 0.034 0.042 1 0.0019 0.266 0.120
a4 0.015 0.012 0.0019 1 0.0043 0.0021
a5 0.010 0.009 0.266 0.0043 1 0.0593
a6 0.041 0.020 0.120 0.0021 0.0593 1

• Concept-driven distance. The rationale of dC is to compare all the concepts in Cai with those in Caj . More Cai and
Caj contain closest concepts with higher similarity with ai and aj , respectively, more ai and aj will be close from each
other. Formally, Equation 14 computes dC .

dC(Cai , Caj ) =
∑

ck∈Cai

(1−D[i, k])∗

∑
cl∈Caj

(1−D[j, l]) ∗WU(ck, cl)
(14)

where WU(ck, cl) represents the distance between the two concepts ck and cl[36].

Equation 15 computes the normalized dC .

dnormC (Cai , Caj ) =
dC(Cai , Caj )
|Cai | ∗ |Caj |

(15)

Table 10 depicts an excerpt of semantic dependencies for Bicing using Equation 15.

Table 10: Excerpt of semantic dependencies between activities using concept-driven technique

Activity
Activity

a1 a2 a3 a4 a5

a1 - 0,488573 0,488843 0,390858 0,320864
a2 0,488573 - 0,488315 0,320517 0,320517
a3 0,488843 0,488315 - 0,495525 0,325429
a4 0,390858 0,320517 0,495525 - 0,275969
a5 0,320864 0,320517 0,325429 0,275969 -

• Fragment-driven distance. The rationale of dF is to compare all the fragments in Fai with those in Faj . More Fai and
Faj contain distinctive concepts with higher membership degrees for ai and aj , respectively, more ai and aj will be
far away from each other. Formally, Equation 16 computes dC .

dF (Fai ,Faj ) =
∏

Fk∈OBP

(1− |M[i, k]−M[j, k]|) (16)

Let P2(BP ) be the set of all distinct activity pairwises built from BP (i.e., ak 6= al). Formally, Equation 17 computes
the normalized dF as follows.

dnormF (Fai ,Faj ) =
dF (Fai ,Faj )

dmaxF
(17)

where
- dmaxF = max({dF (Fak ,Fal)}<ak,al>∈P2(BP ))5

Table 11 depicts an excerpt of semantic dependencies for Bicing using Equation 17.
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Table 11: Excerpt of semantic dependencies using fragment-driven technique

Activity
Activity

a1 a2 a3 a5 a9 a10

a1 - 0,97696 0,95914 0,90827 0,94119 0,90829
a2 0,97696 - 0,92116 0,87033 0,92959 0,90731
a3 0,95914 0,92116 - 0,94248 0,96703 0,83428
a5 0,90827 0,87033 0,94248 - 0,92845 0,82091
a9 0,94119 0,92959 0,96703 0,92845 - 0,82586
a10 0,90829 0,90731 0,83428 0,82091 0,82586 -

4 Collaborative clustering development and experimentation

In this section we discuss the technical details of our microservices identification approach with focus on the collaborative
clustering technique and the experiments that were carried out.

4.1 Collaborative clustering

Clustering is one of the well known Machine Learning (ML) techniques. Given a set of objects, it consists of classifying5

each object into a specific group called cluster. In our work, we consider each BP’s activity (ai) a distinct object. Activities
of the same cluster are expected to be as homogeneous as possible to ensure the cohesion property of a group. Contrarily,
activities belonging to different groups are expected to be as distinct as possible to ensure the loose coupling of a group.
Each group of activities could be a potential microservice.

10

Our collaborative clustering algorithm (cHAC) extends the classical Hierarchical agglomerative algorithm (HAC) [29].
cHAC is performed by N homogeneous clustering nodes (CN1, CN2, . . . , CNn) executing the same program. However
these nodes differ in terms of inputs. Each CN node handles one and only one dependency matrix. The chosen number k
of clusters at each CN is not necessary the same; it can be different from one CN to another one.

15

Our cHAC algorithm fosters collaboration between CN since each CN has its own dependency matrix along with
“keeping an eye" on what other CNs are doing by sharing some dependencies scores about activities, if deemed necessary.
Thus, prior to each new HAC clustering iteration, a CN uses both a Local Score Matrix (LSM) that stores dependency
scores between couple of activities and a Shared Score Matrix (SSM) that stores a global dependency score between each
couple of activities. Our cHAC algorithm goes over three phases:20

- Initialization phase (Algorithm 4). All CN nodes are launched with their respective number of clusters k, and their
respective local dependency score matrices. An empty shared dependency matrix is also created to store the shared
dependency score of activities. Each activity constitutes a cluster. A shared variable is also introduced to synchronize
the iteration of the nodes. A new iteration is launched at a given node if-and-only-if the other nodes have already
finished their current iterations.25

- Collaborative Iteration phase. A classical HAC clustering is extended to make it collaborative as per Algorithm 5.
The nearest pair of clusters Cu and Cv is computed by using both LSM and SSM based on calculating the distance
using the formula:

30

SMp (Cu, Cv) =

|Cu|∗|Cv|∑
(i,j)=(1,1)

SMp−1 (ai, aj) / (|Cu| ∗ |Cv|)

where the score matrix SMp designates either LSM or SSM matrix at the pth iteration.
Clusters Cu and Cv are merged if and only if:14

[distance(Cu, Cv)]
LSM
p >= [distance(Cu, Cv)]

SSM
p−1

14 [distance(Cu, Cv)]
SC
p computes any distance between two clusters Cu and Cv by using the score Matrix SM of the iteration p.
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Algorithm 4: cHAC - collaborative clustering initialization
Input: N - number of clustering node CN , Ki i = 1..N - targeted number of clusters of each node CNi, DMi[M,M ] i = 1..N - DMi

Dependency Matrix of CNi, SDSM [M,M ] - Shared dependency score matrix;
Output: final cluster result fc;

1 begin
2 SIC ← 0 ; // shared counter between CN nodes
3 cSET [i] ← cHACn(ki, DMi,@SDSM,@SIC), i = 1..M ; // parralel execution of CN nodes
4 ; fc← chooseFinalClusterResult(cSET );
5 return fc;

Algorithm 5: cHACn - collaborative clustering of each node CNi
Input: K - targeted number of clusters, N : number of clustering node CN, DM : Dependency matrix, @SDSM : Shared dependency score

matrix;
Output: C - clustering set

1 begin
2 Cu, Cv, Cp - cluster variables
3 C ← {{a1}, {a2}, ..., {aM}} ; // each activity is a cluster
4 while |C| > k do
5 (Cu, Cv) ← NearestPeerCluster(C);
6 if [distance(Cu;Cv)]

DM > [distance(Cu;Cv)]
SDSM then

7 Cp ← fusion(Cu, Cv) C ← C − (Cu ∪ Cv) C ← C ∪ Cp;
8 updateDM();
9 [SDSM(ti, tj)]p = Max([LDSM(ti, tj)]p[SDSM(ti, tj)]p−1);

10 @SIC ← @SIC + 1 mod N ; // The node indicate to other nodes that its current clustering iteration is done
11

12 WAIT (@SIC = 0) ; // the new iteration will be started only when all oher CN nodes have finished their current clustering
iteration

13 updateSDSM();

14 return C ;

.
Then, the node updates the LSM by calculating the new scores of activities using the formula:

SMp (ai, aj) =

|Cv|∑
j=1

SMp_1 (ai, aj) /|Cv|

To foster similarities between couples of activities (ai, aj), the shared score matrix is also updated as follows: [SSM(ai, aj)]p =

Max([LDSM(ai, aj)]p, [SSM(ai, aj)]p−1)

- Selection phase. Once the different clustering results are produced by the different CNs, the distance metrics are
applied to them (Algorithm 4, line 5) to choose the best one that fosters both cohesion and loose-coupling of groups.5

It is important to note that our cHAC algorithm can work either in a uniform collaboration strategy where each CN
collaborates with other CNss, or in diverse collaboration strategy where each CN node has its own collaborators. For the
latter case, different shared matrices are needed, one by CN node.

The cHAC algorithm we propose in this work is different from the distributed HAC (dHAC) [20]. Indeed, dHAC is
described in terms of two phases. In the first phase, the entire collection of objects is divided into n disjoint segments and10

distributed over n HAC processes. Each HAC process is dedicated to one and only one segment to generate one separate
clustering result. In the second phase, the individuals generated clusters are merged into one final cluster result. Instead
of merging individuals clustering results, our cHAC algorithm allows nodes to continuously collaborate to generate their
clustering results. The collaboration between the different HAC nodes is carried out between two successive iterations by
sharing intermediate clustering results.15

4.2 Potential microservices identification options from a set of business processes

One of the salient features of our approach and its collaborative clustering algorithm is, that, it can be applied to many BPs
when identifying potential microservices. Let us assume a set of n BPs {BP1, BP2, · · · , BPn} and a set of m dependency
models {M1,M2, · · · ,Mm} related to these BPs. Our approach generates n dependency matrices from each model, which
means n ∗m dependency matrices. Afterwards, these matrices would be used according to one of the following options:20
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- No merge option. It keeps each matrix independent from the rest and then, applies the collaborative clustering algo-
rithm to m ∗ n nodes where each node is related to m ∗ n independent matrices.

- Merge by model option. It merges all matrices that originate from the same model applied to the different BPs and
then, applies the collaborative clustering algorithm to m nodes where each node is related to a merged matrix.5

- Merge by BP option. It merges all matrices that originate from the different dependency models applied to one BP
and then, applies the collaborative clustering algorithm to m nodes where each node is related to a merged matrix.

Figure 4 illustrates these three main options for the case of n BPs and our three activity dependency models. Even if10

no merge option is more appropriate for the collaborative clustering algorithm as it makes the collaboration more larger,
the user can, for any reason, choose the other options or define new ones such as merging matrices in a random way.

Once microservices are identified, their implementation could be either proprietary or based on external resources. The
choice could be based on some requirements including security and privacy.

CD11

Control Dependency Model 

BPnBP3BP1 BP2
...

Data Dependency Model Semantic Dependency Model

CD12 CD1n... DD21 DD22 DD2n SD31 SD32 SD3n... ...

Collaborative Clustering Algorithm

CD11

Control Dependency Model 

BPnBP3BP1 BP2
...

Data Dependency Model Semantic Dependency Model

CD12 CD1n... DD21 DD22 DD2n SD31 SD32 SD3n... ...

CDbp1 DDbp2 SDbp3

Collaborative Clustering Algorithm

CD11

Control Dependency Model 

BPnBP3BP1 BP2
...

Data Dependency Model Semantic Dependency Model

CD12 CD1n... DD21 DD22 DD2n SD31 SD32 SD3n... ...

CM1 DM2 SM3

Collaborative Clustering Algorithm

(a) No Merge (b) Merge by model (c) Merge by BP

Fig. 4: Options for combining dependency matrices

4.3 System implementation15

A system demonstrating the technical doability of our approach for identifying microservices has been implemented. Fig. 5
shows the system’s architecture. Once a BP is modeled, its process model is converted into XML using Camunda plu-
gin. The system also includes two core modules, dependency analysis and microservice extraction. The first parses the
XML-based BP to extract all execution paths between any couple of activities < ai, aj > and their respective artefac-
t/attribute exchange, as well, and takes the BP’s OWL domain ontology developed under Protégé 5.515, as input. Note20

that artefacts/attributes will be associated with criticality values as per Section 3.4. To compute dependency values, the
dependency-analysis module implements all the equations and algorithms reported in Sections 3.3, 3.4, and 3.5. All these
values are stored as dependency graphs in XML. The second module, microservice extraction, implements our cHAC
algorithm (Section 4.1). It first imports all the XML files produced by the first module using Java DOM Parser16, a Java
API for Document Object Models. Then, it runs the cHAC with respect to the selected technique whether word-driven,25

concept-driven, or fragment-driven for the semantic perspective to build different clusters (i.e., microservices). Finally, this
module maps the obtained clusters onto a given XSD format.

15 protege.stanford.edu.

16 xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/xerces/parsers/DOMParser.html.30

protege.stanford.edu.
xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/xerces/parsers/DOMParser.html.
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Fig. 5: Architecture of the implemented system

4.4 Experiments

First experiment. We evaluated the cHAC algorithm using both the quality metric, Dunn index, and the conver-
gence time, Time index. Note that Dunn index permits to identify the clusters that are compact (i.e., minor variance
between activities belonging to the same cluster) and separate (i.e., large distance between clusters). Thus, a higher
Dunn index indicates better clustering. We applied the cHAC algorithm to dependencies produced by the dependency-5

analysis module from the BP’s Bicing. Initially, fourteen activities related to Bicing were used and then, more random
activities were added to the case study to capture the complexity of real BPs. In this first experiment, we proceed with
three nodes as per Section 4.1 namely, control, data, and semantic, another node, named cooperative, that aggregates all
dependencies. We noted that the semantic node can be refined into either word-driven, concept-driven, or fragment-driven.
In Fig. 6, we clearly observe that the Dunn index in the case of the control node is ten almost always better than the10

Dunn index the other two nodes (i.e., data and semantic (regardless of the annotation technique used)). This means that
for a given BP, the control node gives richer and more informative analysis than the rest. This confirms that aggregating
different dependencies (i.e., cooperative node) degrades the quality of the final clustering and the collaboration between
nodes is the most appropriate option for achieving better clustering results. Regarding the time index (Fig. 7), the control
node still gives the best results.15

(a) Control, data, word-driven, and cooper-
ative

(b) Control, data, concept-driven, and co-
operative

(c) Control, data, fragment-driven, and co-
operative

Fig. 6: Dunn Index - Bicing case
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(a) Control, data, word-driven, and cooper-
ative

(b) Control, data, concept-driven, and co-
operative

(c) Control, data, fragment-driven, and co-
operative

Fig. 7: Time Index - Bicing case

Note that Dunn index sheds light on the quality of clustering regardless of whether the obtained clusters (i.e., microser-
vices) are meaningful to the BP designer. To this end, we proceed with additional metrics for further analysis. As per
Section 3.2, coupling and cohesion are important aspects to consider when assessing the quality of microservices. To this
end, we rely on the work of [15] that quantifies both aspects using four metrics, Afferent Coupling (AC), Efferent Cou-
pling (EC), Instability (I), and Relational Cohesion (RC) (Table 12), with focus on AC and RC. Since these metrics refer5

to classes and class packages, we mapped them onto concepts relevant and applicable to our work. Therefore, class/package
becomes activity/cluster, service becomes refers to microservice, and internal relations among classes in the same package
becomes either connector type, data transfer, or semantic similarity between activities in the same cluster. Fig. 8 depicts
AC’s average values over clusters obtained at iteration K for the control, data, and word|concept|fragment-driven nodes.
We observe that the control node still outperforms the cooperative one, while it provides stronger coupling than data and10

semantic nodes. Regarding RC (Fig. 9), the control node outperforms significantly the three other nodes.

Table 12: Performance metrics extracted from [15]
Aspect Metrics Definition

Coupling

Afferent Coupling (AC) Measures the number of classes in other packages (services) that depend upon
classes within the package (service) itself, as such it indicates the package’s (ser-
vice’s) responsibility

([27]) Efferent Coupling (EC) Measures the number of classes in other packages (services), that the classes in a
package (service) depend upon, thus indicates its dependence on others

Instability (I) Measures a package’s (service’s) resilience to change and is calculated as EC
EC+AC .

I = 0 indicates a completely stable package (service) whereas I = 1 a completely
unstable package (service)

Cohesion

([24])

Relational Cohesion (RC)

Measures the ratio between the number of internal relations and the number of
types in a package (service). Internal relations include inheritance between classes,
invocation of methods, access to class attributes, and explicit references like creat-
ing a class instance. Higher numbers of RC indicate higher cohesion of a package
(service).

Specifically, we challenge the word-driven and concept-driven annotation technique for microservices identification (Ta-
ble 13). Both techniques yield into five microservices. However, the word-driven technique outperformed the concept-driven
one in many aspects. First, the obtained microservices in the word-driven are more strongly-cohesive and more or less
loosely-coupled compared to the second technique (i.e., higher AC and a bit lower RC). Moreover, the microservices in15

the word-driven are more meaningful (or consistent) than those obtained in the concept-driven. Note that due to this
inconsistency, we do not name the obtained microservices. For instance, ms#2 encompasses loosely-dependent activities
related to bike return and bike geo-localization, respectively. This can be explained by the lack of completeness of the
ontology used.
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(a) Control, data, word-driven, and cooper-
ative

(b) Control, data, concept-driven, and co-
operative

(c) Control, data, fragment-driven, and co-
operative

Fig. 8: Afferent coupling over K - Bicing case

(a) Control, data, word-driven, and cooper-
ative

(b) Control, data, concept-driven, and co-
operative

(c) Control, data, fragment-driven, and co-
operative

Fig. 9: Relational cohesion over K - Bicing case

Table 13: Metrics of candidate microservices using our approach - Bicing case
Microservice Activities

Metric
AC EC I RC

word-driven

RequestHandling a1, a2 13 0 0 2
Revision&V alidation a3, a4, a5 18 1 0.05 5
BikeAbandon a12, a13, a14 11 5 0.31 6
BikeReturn a10, a11 12 5 0.29 3
BikeReparation a6, a7, a8, a9 23 3 0.12 5

15.4 2.8 0.154 4 Avg

concept-driven

ms#1 a1, a2, a3, a4, a5 25 0 0 14
ms#2 a13, a14 14 1 0.07 2
ms#3 a11, a12 14 1 0.07 2
ms#4 a9, a10 14 1 0.07 2
ms#5 a8, a7, a6 21 1 0.05 3

17.6 0.8 0.052 5 Avg
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Second experiment. The objective here is to compare our approach to those presented in [4], [16], and [26] using
the case study of cargo tracking of Gysel et al. [16]. For the needs of the second experiment, we designed a BPMN-
based process model for cargo tracking (Fig. 10). In this process model, it starts when the shipping company ships a
customer’s containers (a

′

1) by land and sea. After checking the customer’s credentials (a
′

2) and doability of the shipping
options (a

′

3), the company either sends an invoice to the customer for payment (a
′

5) or notifies her of the rejection (a
′

4).5

Upon payment confirmation (a
′

6), additional activities are performed. First, a
′

7 arranges the routing of containers by road
and sea while a

′

8 tracks the warehouses’ incoming and outgoing flows. Second, a
′

9 loads the containers onto the vessel while
a
′

10 tracks the clearance of the containers during potential stopovers. Upon cargo arrival to destination, a
′

11 unloads the
containers from the vessel onto trucks. Finally, a

′

12 reports irregularities that, eventually, are issued by customs. Should
there be any irregularities, the containers’ sender would be subject to fines ending the process (a

′

13). to the sender with10

fine payment ending the process (a
′

13). Contrarily, a
′

14 arranges the routing of cargo by road while a
′

15 tracks containers
between warehouses before delivery.

Fig. 10: BPMN-based process model for cargo tracking

In conjunction with specifying the cargo tracking process-model, we identified artefacts between activities as per
Section 3.4 and adapted the Maritime Cargo Ontology (MCO) ([33], Appendix A) to define the semantic distance between
activities as per Section 3.5. We submitted these three inputs to the dependency-analysis module that produces dependency15

values between activities with respect to the control, data, and semantic perspectives (Appendix B - Tables 17-21).
After applying the collaborative clustering algorithm to the control, data, and word-driven dependencies, we obtained
five candidate microservices namely, Preparation, Handling, Planning&Tracking, Delivery, and Return.

For the needs of benchmarking, we considered the values of the metrics presented in [15] and applied them to the
candidate microservices (Table 14). For readability purposes, we merge the three sets of values, each associated with the20

corresponding approach, into Table 15.

Table 14: Metrics of candidate microservices using our approach - Cargo Tracking case

Microservice
Metric

AC EC I RC

Preparation 23 0 0 14
Handling 18 3 0.14 11
Planning&Tracking 16 2 0.11 23
Delivery 12 8 0.4 5
Return 7 5 0.4 -

15.2 3.6 0.21 13.25 Avg
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Table 15: Metrics of candidate microservices per approach

Microservice
Metric

AC EC I RC

[16]

Location 14 1 0.1 21.5
Tracking 11 3 0.2 16.7
V oyage&Planning 15 4 0.2 16.7

13.3 2.7 0.2 14.2 Avg

[4]

Planning 16 2 0.1 20.3
Product 13 4 0.2 1.8
Tracking 15 5 0.3 14.9
Trip 8 2 0.2 0

13 3.3 0.2 9.3 Avg

[26]

Cargo 13 4 0.2 1.8
Planning 10 3 0.2 11.5
Location 15 1 0.1 21.5
Tracking 16 5 0.2 14.1

13.5 3.3 0.2 12.2 Avg

Table 14 shows that our approach yields into five candidate microservices that are finer-grained compared to the
four microservices in Baresi et al.’s and Li et al.’s approaches and the three microservices in Gysel et al.’s approach.
Moreover, we observe that our approach’s microservices are more strongly-cohesive compared to Baresi et al.’s and Li et al.’s
approaches and less loosely-coupled compared to Gysel et al.’s approach. This demonstrates that our approach provides
better results when considering both AC and RC compared to the three other approaches. In addition, there is no real5

distinction for I on average across all the approaches. As for RC metric, our approach performs better than Li et al.’s and
Baresi et al.’s approaches, while less appealing than Gysel et al.’s approach. This can be explained as follows. Baresi et
al.’s approach has some limitations due to their assumption that interfaces are well-defined and described with meaningful
names whereas Li et al.’s approach constrains the analysts to make sure that they have a consistent viewpoint between the
control and data perspectives due to lack of semantics associated with whether processes or data. Since our approach heavily10

relies on the domain ontology at different levels (concept and fragment), ensuring the ontology quality (e.g., completeness
and accuracy) is critical for the decomposition results. To deal with the lack of ontology quality, additional factors like
data usage context should be incorporated into our analysis for a better microservices identification.

5 Conclusion

Microservices identification remains an important obstacle that is undermining ICT practitioners’ efforts when migrating15

existing applications to a better architectural style. Existing academic and industrial approaches exploit many sources
like databases, log files, UML diagrams, and domain ontologies to identify microservices. Contrarily, we adopted business
processes as a primary source offering a comprehensive view of what happens in organizations in terms of who does what,
when, where, and why. Thanks to this comprehensive view, we designed and demonstrated a multi-model approach for
microservices identification. These models are referred to as structural, data, and semantics, and capture dependencies20

between a BP’s activities. We also proposed a clustering algorithm to collaboratively combine all extracted dependencies
for the needs of identifying microservices. Our approach fosters decoupling and cohesion of future microservices and also
considers to some extent the non-functional requirements via the data dependencies model. The results are promising
showing how our collaborative clustering algorithm outperforms in term of precision the cooperative clustering algorithm.
In term of future work, we would like to examine the appropriateness of other activity dependency models for microservices25

identification. For instance, it could be interesting to examine to what extent security requirements could impact the
microservices identification. Also, it could be interesting to allow users to annotate their BPs and exploit such annotations
with advanced machine learning techniques including Natural Language Processing to generate new activities dependencies.
A third direction could be the exploration of BP’s activities code to extract useful details that could be complement to
the first models we already defined.30
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A Cargo tracking additional description

In this appendix, we list all the elements related to the dependency analysis performed on cargo tracking. Meanwhile,
Fig. 11 depicts an excerpt of the domain ontology for cargo tracking. For instance, in Table 16, a

′

9(transfer container to port)
applies write operation to Event_ID and Destination attributes, which leads to executing create operation whose outcome35

is Event artefact.

B Applying the 3 dependency models to Cargo tracking

Tables 17 and 18 depict an excerpt of the control and data dependencies for cargo tracking using Equations 7 and 8,
respectively.

Tables 19, 20, and 21 depict an excerpt of semantic dependencies for Cargo tracking using Equations 13, 15, and 17,40

respectively.
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Table 16: Cargo tracking’s components
Activity Artefacts Attributes of artefacts

a
′
1

Container (u) Container_ID (r), Container_Destination (r), Container_Status (w)

Customer (u) Customer_ID (r), Customer_Status (w)

a
′
2 Customer (u) Customer_ID (r), Customer_Credit (r) , Customer_Status (w)

a
′
3

Storage (u) Storage_ID (r), Check_Storage_Capacity (w)

Container (u) Container_ID (r), Container_Destination (r), Container_Status (w)

a
′
4

Event (c) Event_ID (w), Event_Content (w)

Customer (u) Customer_ID (r)

a
′
5

Invoice (u) Invoice_Validity (w)

Customer (u) Customer_ID (r), Customer_Notification (w)

a
′
6 Payment (u) Check_Payment_ID (r)

a
′
7 Container (u) Container_ID (r), Container_Destination (r), Container_Status (r)

a
′
8

Port (u) Port_ID (r), Port_Destination (r)

Container (c) Container_ID (r), Container_Status (w)

a
′
9

Vessel (u) Vessel_ID (r)

Container (c) Container_ID(r), Container_Destination (r)

a
′
10

Container (u) Container_ID (r)

Port (u) Port_ID (r), Location (r)

Event (c) Event_ID (w), Location (w)

a
′
11 Vessel (u) Vessel_ID (r), Vessel_Destination (r)

a
′
12

Control (u) Control_ID (r), Update_Control (w)

Customer (u) Customer_ID (r)

a
′
13 Event (c) Event_ID (w), Event_Type (w)

a
′
14

Trip (u) Trip_ID (r), Customer_Destination(r)

Storage (u) Storage_ID (r), Storage_UseRate (w), Storage_Destination (r)

a
′
15 Trip (u) Trip_ID (r), Customer_ID (r)

a
′
15

Event (c) Event_ID (w), Container (w), Event_Type (w)

Truck (u) Truck_ID (r)

Fig. 11: Excerpt of Cargo tracking’s domain ontology adapted from [33] [2011]
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Table 17: Control dependencies with the occurrence probability (p) set to 0.5

Activity

Activity
a
′
1 a

′
2 a

′
3 a

′
4 a

′
5 a

′
6

a
′
1 - 0.5 0.25 0.062 0.062 0.0312

a
′
2 0.5 - 0.5 0.125 0.125 0.0625

a
′
3 0.25 0.5 - 0.25 0.25 0.125

a
′
4 0.062 0.125 0.25 - 0.25 0.125

a
′
5 0.062 0.125 0.25 0.25 - 0.5

a
′
6 0.0312 0.0625 0.125 0.125 0.5 -

Table 18: Excerpt of data dependencies

Activity

Activity
a
′
1 a

′
2 a

′
3 a

′
4 a

′
5 a

′
6

a
′
1 0 0.1875 0.34375 0.03125 0.03125 0.21875

a
′
2 0.1875 0 0 0.1875 0.4375 0

a
′
3 0.3437 0 0 0 0 0.21875

a
′
4 0.3437 0.1875 0 0 0.1875 0

a
′
5 0.3425 0.4375 0 0.1875 0 0

a
′
6 0.21875 0 0.21875 0 0 0

Table 19: Semantic dependencies between activities using word-driven technique

Activity

Activity
a
′
1 a

′
2 a

′
3 a

′
4 a

′
5 a

′
6

a
′
1 1 0.0214 0.0186 0.0127 0.0217 0.0135

a
′
2 0.0214 1 0.042 0.012 0.009 0.020

a
′
3 0.0186 0.042 1 0.0019 0.266 0.120

a
′
4 0.0127 0.012 0.0019 1 0.0043 0.0021

a
′
5 0.0217 0.009 0.266 0.0043 1 0.0593

a
′
6 0.0135 0.020 0.120 0.0021 0.0593 1

Table 20: Semantic dependencies between activities using concept-driven technique

Activity

Activity
a
′
1 a

′
2 a

′
3 a

′
4 a

′
5 a

′
6

a
′
1 - 0.394576 0.397204 0.493221 0.493818 0.322241

a
′
2 0.394576 - 0.326376 0.392990 0.393466 0.272318

a
′
3 0.397204 0.326376 - 0.395607 0.396086 0.274131

a
′
5 0.493818 0.393466 0.396086 0.491833 - 0.321335

a
′
6 0.322241 0.272318 0.274131 0.320940 0.321335 -

Table 21: Semantic dependencies between activities using fragment-driven technique

Activity

Activity
a
′
1 a

′
2 a

′
3 a

′
4 a

′
5 a

′
6

a
′
1 - 0.735274 0.968140 0.735274 0.970280 0.789005

a
′
2 0.735274 - 0.724042 1,008878 0.753490 0.842985

a
′
3 0.968140 0.724042 - 0.724042 0.953346 0.780517

a
′
4 0.735274 1,008878 0.724042 - 0.753490 0.842985

a
′
5 0.970280 0.753490 0.953346 0.753490 - 0.820096

a
′
6 0.789005 0.842985 0.780517 0.842985 0.820096 -
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