
HAL Id: hal-03336287
https://hal.science/hal-03336287v1

Submitted on 7 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Microservices Identification from a set of
Business Processes

Mohamed Daoud, Asmae El Mezouari, Noura Faci, Djamal Benslimane,
Zakaria Maamar, Aziz El Fazziki

To cite this version:
Mohamed Daoud, Asmae El Mezouari, Noura Faci, Djamal Benslimane, Zakaria Maamar, et al..
Automatic Microservices Identification from a set of Business Processes. The International Conference
on Smart Applications and Data Analysis for Smart Cyber-Physical Systems (SADASC’20), Jan 2020,
MARRAKECH, Morocco. �hal-03336287�

https://hal.science/hal-03336287v1
https://hal.archives-ouvertes.fr


Automatic Microservices Identification
from a set of Business Processes

Mohamed Daoud1, Asmae El Mezouari2, Noura Faci1, Djamal Benslimane1

Zakaria Maamar3 and Aziz El Fazziki2

1 Claude Bernard Lyon 1 University, Lyon, France
2 Caddi Ayyad University, Marrakesh, Morocco

3 Zayed University, Dubai, U.A.E

Abstract. All organizations engage in ongoing maintenance of their information systems
due to constant changes in users’ needs and governments’ regulations. However these systems
are monolithic making this maintenance a nightmare. To address this monolithic nature
different technologies like commercial-of-the-shelf, service-oriented architecture, and lately
microservices are proposed. This paper focuses on microservices by discussing their automatic
identification from a set of business processes. Thanks to business processes, control and data
dependencies between their activities are extracted and then clustered together. Each cluster
constitutes a candidate microservice. To illustrate and demonstrate microservice automatic
identification, a case study about renting bikes in the city of Barcelona is adopted and then
implemented. In term of precision, the results show how business processes as inputs permit
to generate better microservices compared to other approaches discussed in the paper, as well.

Keywords: Business Process · Control dependencies · Data dependencies · Microservice.

1 Introduction

Modern organizations’ information systems (systems for short) are continuously subject to func-
tional and architectural changes so these organizations can address users’ new requirements and
tap into the latest developments in Information and Communication Technologies (ICT). An exam-
ple of functional change is when organizations deploy mobile services for users-on-the-move. And,
an example of architectural change is when organizations adopt cloud for its elasticity and pay-
as-you-go benefits. Although functional and architectural changes are a must, many organizations
continue running their existing (legacy) systems despite the high maintenance cost along with miss-
ing the opportunities of improving their competitiveness posture. Many reasons justify this resisting
“attitude” with focus in this paper on the monolithic nature of systems. Monolithic means one
block that encompasses strongly-coupled components and that is sometimes “sealed” preventing its
analysis for the sake of improvement.

Over the years many technologies were put forward to address monolithic systems including
Commercial-Of-The-Shelf (COTS) [19], Component-Based Software Engineering (CBSE) [17], and
lately Service-Oriented Architecture (SOA) [5]. Unfortunately many of these technologies did not
live up to their expectations due to many reasons such as making organizations change to accom-
modate technologies, lack of capturing organizations’ unique features, and complexity of adoption
amplified with resistance to change. A recent trend referred to as microservices seems surging from
the “ashes” of SOA [13].
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Although microservices could be confused to SOA-based Web services and/or Restful services,
Cerny et al. shed light on these 2 architectural styles’ strengths and weaknesses in [3]. Both µServices
with reference to Microservice Architecture and SOA have the same objective that is service coop-
eration through their integration across many independent platforms, but adopt different ways of
achieving this cooperation. These architectures’ strengths and weaknesses are related to 18 concerns
that range from deployment and scalability to versioning and administration till business-rules lo-
cation. While the 18 concerns provide a comprehensive coverage of how ICT practitioners could
adopt either architecture, the identification of microservices and SOA services does not seem to
be a concern. SOA is a well-established discipline so µServices could have benefited from its best
practices when it comes to service identification, but this is not the case until now. In this paper
we address this gap with a collaborative clustering-based approach to identify microservices from
a set of Business Processes (BPs).

For a successful adoption of microservices, guidelines for identifying them are deemed necessary.
The objective is to avoid system designers’ disappointments in microservices, which could put them
at risk of no-adoption like other technologies. The literature refers to different works on microservices
identification using log files [8], source codes [9], UML class diagram [2], and legacy databases [4]
as inputs to the identification exercise. While all these works have the same objective, automatic
identification of microservices, none of them considers BPs as input. Referred to as organizations’
main assets, BPs could constitute an important source for identifying microservices. According to
Weske, ”... A business process consists of a set of activities that are performed in coordination in
an organizational and technical environment. These activities jointly realize a business goal. Each
business process is enacted by a single organization, but it may interact with business processes
performed by other organizations” [24]. Despite being a rich reservoir of many details like who does
what, when, where, and why, BPs seem overlooked during the exercise of identifying microservices.
To the best of our knowledge, Amiri is the only one who adopted BPs in this exercise [1].

Although the pioneering nature of Amiri’s work, it suffers from many limitations. First, struc-
tural activity dependencies model is not defined to show how dependencies are formally obtained
with respect to business process modeling languages’ operators. Secondly, the data dependencies
model is very simple and limited to read and write operations. Thirdly, only structural and data
dependencies are considered while other dependencies like semantics between activities are over-
looked. Fourthly, aggregating all dependency types into a single data structure (matrix in our case)
to be used for clustering needs will lead to data quality degradation in the sense that strengths
and/or weaknesses of each dependency type are potentially hidden.

In this paper, we design and develop a collaborative clustering-based approach to automatically
identify microservices. At the core of our approach is the idea of extracting microservices from
BPs’ activities by using first, a set of separate models that individually identify different kinds of
information related to these activities and their dependencies and second, a collaborative clustering
technique instead of a classical clustering technique to avoid aggregating extracted data that could
lead to losing some implicit details. Our approach is multi-models in the sense that it combines
independent models to represent a BP’s structural dependencies, data dependencies, semantic de-
pendencies, and so on. It is also based on collaborative clustering in the sense that all data that
could be extracted from the different models are kept independent instead of aggregating them.
Each data set is then handled by a separate clustering algorithm. At the end, the collaborative
clustering allows to each clustering component algorithm to benefit from the work done by other
clustering components [6].
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The rest of the paper is organized as follows. Section 2 describes related work. Section 3 presents
a case study, gives an overview of our approach to automatically identify microservices from existing
BPs, and formalizes the structural and data dependencies models. Section 4 details the collaborative
clustering in this approach and then, the system implementing this approach along with some
experiments’ results. Section 5 concludes the paper.

2 Related work

There exist a good number of works that discuss monolithic systems’ limitations and how mi-
croservices could address them. These systems are known for incurring significant development,
maintenance, and evolution cost [22].

In [11], a service-cutter system is presented allowing to decompose monolithic systems into small
services. The decomposition uses the systems’ functions and considers three criteria that are between
entities at the property level, coherence between data of each microservice, and communication cost
between services. In [4], an approach to identify microservices is proposed. The approach uses the
semantic similarity of functionalities that are described in openAPI4 and a reference vocabulary.
Microservices are identified as a cohesive cluster of operations extracted from an UML diagram
class. The semantic similarity is based on the pre-computed database DISCO (DIStributionally
related words using CO-occurences)5.

In [18], modernizing a monolithic system using microservices is proposed. This system is de-
scribed using three types of objects: interfaces, business functions, and database tables. These
objects are then linked in a dependency graph by means of calls from interfaces to business func-
tions, calls between business functions themselves, and accesses from business functions to database
tables. Candidate microservices correspond to the business rules that depend on database tables,
and correspond to the facades connected to the database tables.

In [16], clustering techniques are used to optimize the performance and scalability of an existing
microservice architecture. Given this architecture as an input, its current deployment, workload,
features (a check of functionalities that deliver a business value) model that describes properties
and their dependencies, an automatic approach is proposed to recommend a new deployment that
optimizes the performance and scalability of the architecture. Some features can then be moved from
one microservice to another. The results of experimenting the approach highlight the importance of
considering performance metrics when generating a microservice architecture. A study that analyses
microservices architectures with detailed performance profile data is also presented in [23].

In [14], a functionality-oriented microservice extraction by clustering execution traces of pro-
grams collected at run-time is described. These traces are collected by using techniques of program
execution monitoring and are used to collect implicit and explicit program functional behavior.
They also reveal which entities are used for which business logic. The approach clusters source code
entities that are related to the same functionalities. Even if the work in [14] is interesting, it suffers
from its strong dependence on the quality of the generated execution traces, and consequently on
the quality of the test cases.

4 www.openapis.org.
5 www.commonspaces.eu/en/oer/disco-extracting-distributionally-related-words-us.
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3 Our approach for identifying microservices

This section consists of 4 parts. The first part presents a case study that refers to Barcelona’s bike
sharing system known as Bicing. The second and third parts discuss our approach’s foundations in
terms of dependencies between BPs’ activities and collaborative clustering. Finally, the last part
formalizes these dependencies.

3.1 Bicing case-study

Bicing includes more than 400 bike anchor-stations spread across Barcelona and about 6000 bikes
that users rent for a fee. Bicing’s monolithic system is described in [10] along with the managerial
and technical challenges that undermine its operations. For the needs of our work, we suggest in
Fig. 1 a high-level representation of Bicing from a BP perspective. We resorted to the standard
Business Process Model and Notation (BPMN) to illustrate this representation. We have identified
different activities (a1: request bike and a9: dismantle bike), different dependencies (between a1
and a2), different logical operators (XOR between a6 and a10 and OR between a2 and a3), and,
finally, different artefacts (bike and user) and their respective attributes (e.g., ID and status). In the
rest of this paper the discussion about Bicing is not restricted to renting bikes but includes other
aspects like reporting and fixing bikes’ defects and disposing bikes, if necessary. It all starts when a

Fig. 1: An illustrative BPMN-based representation of the Bicing system

user requests a bike (a1) at a certain anchor station. After checking the user’s credentials (a2) and
any late fee payment (a3), the Bicing system updates the user’s records (a4) and then, approves
the user’s request (a5). If it turns out that the bike is defective, the user puts it back (a6) and
eventually requests another one. Otherwise, the user starts his journey (a10). Regularly all bikes are
serviced (a7) leading to either putting them back for rent (a8) or disposing them (a9). When the
user arrives to destination, he returns the bike at a certain anchor point (a11). Otherwise, the Bicing
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system blacklists the user (a14) due to bike inappropriate return and geo-locates the bike (a12) so
that it is collected by the competent services and then made available to other users (a13).

From a specification perspective, activities ({ai}) may require inputs ({ii}) and produce out-
puts ({oi}) that both correspond to specific artefacts’ attributes. An activity acts upon an attribute
through 2 operations that are read (r) and/or write (w), which could lead to updating (u), creat-
ing (c), and/or deleting (d) artefacts. Table 1 lists activities, artefacts, attributes of artefacts, and
also the operations that artefacts/attributes are subject to.

Table 1: Bicing’s BPs as a set of activities, artefacts, attributes, and operations

Activity Artefacts Attributes

a1
Bike (u) Anchor Point (r), Bike ID (r), Bike Status (w)

User (u) User ID (r), User Destination (r)

a2 User (u) User ID (r), User Credit (r), User Destination (r)

a3 User (u) User ID (r), User History (r), User Validity (r)

a4 User (u) User ID (r), User History (w)

a5

Bike (u) Bike ID (r), Bike Status (w)

User (u) User ID (r), User Status (w)

Rental (c) User Destination (w), Rent Date (w)

a6

Bike (u) Anchor Point (r), Bike ID (r), Bike Status (w)

User (u) User ID (r), User Status (w)

Rental (d) Rent ID (r)

a7
Bike (u) Bike Status (w)

Repair (c) estimated Repair Cost (w), agree Repair (w)

a8 Bike (u) Anchor Point (r), Bike Status (w)

a9 Bike (d) Bike ID (r)

a10 User (u) User ID (r), User Status (w)

a11

Bike (u) Anchor Point (r), Bike ID (r), Bike Status (w)

User (u) User ID (r)

Rental (u) Rent ID (r), Rent Cost (w), User History (w)

a12 Bike (u) Bike ID (r), Bike Location (w)

a13 Bike (u) Bike ID (r), Anchor Point (r), Bike Status (w)

a14 User (u) User ID (r), User Status (w), User History (w)

3.2 Foundations

It is largely known that BP automation helps organizations track events, assign activities, manage
resources, etc. In this work we adopt the definition of BP given in [7] stating that a BP is a
set of logically related activities that are performed to achieve goals. “Logically related” refers to
dependencies between activities such as control (with respect to an execution order), data (with
respect to information sharing), and functional (with respect to horizontal- and vertical-business
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operations). By using BPs as an input to identifying microservices, we would like to ensure that these
microservices are fine-grained, strongly cohesive (i.e., degree to which activities in a microservice
belong together), and loosely-coupled (i.e., degree to which microservices can be easily replaced).
These 3 dependencies are illustrated below.

- Control dependency refers to both the execution order (e.g., finish-to-start and start-to-start)
between activities and the logical operators (e.g., XOR and AND) between activities as well.
Should 2 activities be directly connected through a control dependency, then most probably
they would form a highly-cohesive microservice to which they will belong. Contrarily, they
would most probably be used to form separate microservices to which each will belong.

- Data dependency refers to associating activities’ outputs/inputs in a way that permits to illus-
trate data flowing from one activity to another. These inputs/outputs correspond to artefacts’
attributes. Data dependency sheds light on both artefacts and artefacts’ attributes that could
be subject to operations illustrated in Table 1 like create (c) and write (w). In addition to
input/output association, data dependency could indicate to what extent artefacts and/or arte-
facts’ attributes are either mandatory or optional for BP execution. We advocate that activities
that exchange mandatory artefacts’ attributes should be part of the same microservice allowing
to avoid delaying this exchange, for example.

- Functional dependency refers to horizontal (cross) and vertical (silo) business operations. The
former denotes activities whose execution would cross multiple departments in the same or-
ganization. The latter denotes activities whose execution would be confined into the same
department. We advocate that activities that would take part in horizontal interactions would
less likely be part of the same microservices.

We focus on control and data dependencies, only. Upon establishing such dependencies, we
quantify them using specific metrics. The objective is to evaluate cohesion and coupling among
activities so that they are gathered in either same or separate microservices. To measure a control
dependency between 2 activities (ai, aj), we consider aj ’s occurrence probability after executing ai.
This probability depends on the execution order and/or logical operators between ai and aj . Let us
consider the control dependency between a5 and a10 that is connected with a6 through XOR (Fig. 1).
After executing a5, a10’s occurrence probability depends on the decision made at XOR (i.e., either
a6 or a10). We note that any activity’s occurrence probability is calculated over time by using
BP’s execution logs. To measure a data dependency between 2 activities (ai, aj), we consider an
artefact’s and attribute’s criticality level that would reflect the importance of information shared
between these activities. This level denotes the impact of artefact/attribute unavailability on the
continuity of business operations. More details are given in the next sections.

Based on dependencies among activities, we gather activities into microservices by using cluster-
ing techniques. In the literature, clustering is either centralized or collaborative [12]. In the former,
a single component manages the clustering by utilizing all individuals’ features6 as inputs. In the
latter, multiple components, each in charge of one type of features, exchange some details during
clustering so that appropriate clusters are jointly built. Performance and appropriateness of cluster-
ing techniques are thoroughly discussed in the literature [6] and [25]. Many works like [6] and [12]
advocate for collaborative clustering to identify microservices. It provides fine-grained and accurate
results contrarily to centralized clustering where individuals’ features need to be aggregated before
initiating any clustering.

6 In our work, individuals are activities and features are control and data dependencies.
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Fig 2 depicts our approach for microservices identification. It relies on the aforementioned de-
pendencies and collaborative clustering to group activities that would form fine-grained, highly-
cohesive, and loosely-coupled microservices. Our approach consists of the following steps. After
examining activity dependencies, their details are stored in dedicated repositories. Then, these
repositories’ contents are submitted for collaborative clustering where different clustering tech-
niques (one per dependency) are used to obtain consensual clustering solutions. More details are
given in Section 4.1.

Fig. 2: General representation of our microservice identification approach

3.3 Control dependency analysis

Let CD(ai, aj [Operator {ak}])ExecOrder be a a direct control dependency referring to a certain execu-
tion order between ai and aj that is connected to other activities {ak} through a certain Operator.
An execution order between 2 activities could be exemplified with either finish-to-start (our focus
and denoted by SEQ)), finish-to-finish, start-to-start, or start-to-finish.

Let us start with the control dependency CD(ai, aj)SEQ (i.e., {ak} = ∅)). Since SEQ between ai
and aj means that aj starts only after ai has successfully completed, CD(ai, aj)SEQ denotes aj ’s
occurrence probability (p) after ai’s completion as per Equation 1:

CD(ai, aj)SEQ = p (1)

where p ∈ ]0, 1].
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We now examine the control dependency CD(ai, aj Operator {ak})SEQ (i.e., {ak} 6= ∅)). Ac-
cording to Operator’s semantics, we assume that some r activities in {ak} ∪ aj will be selected
for execution. Equation 2 defines the number of activities that will be selected for execution as a
combination C(n, r) where n corresponds to card({ak} ∪ aj).

C(n, r) =
n !

r !× (n− r) !
(2)

Depending on the semantics of Operator whether AND, XOR, or OR, CD(ai, aj Operator {ak})SEQ
is calculated as follows:

1. CD(ai, aj AND {ak})SEQ. This dependency means that aj will start only after ai has success-
fully completed regardless of {ak}. Formally, Equation 3 computes CD(ai, aj AND {ak})SEQ as
follows:

CD(ai, aj AND {ak})SEQ = C(n, n) ∗ CD(ai, aj)SEQ (3)

where p ∈ ]0, 1] & C(n, n) = 1, as per Equation 2.
2. CD(ai, aj XOR {ak})SEQ. This dependency means that one activity from {ak} ∪ aj will be se-

lected after ai has successfully completed. Formally, Equation 4 computes CD(ai, aj XOR {ak})SEQ
as follows:

CD(ai, aj XOR {ak})SEQ =
1

C(n, 1)
∗ CD(ai, aj)SEQ (4)

where C(n, 1) is the number of possibilities to select one activity from {ak} ∪ aj . As per Equa-
tion 2, C(n, 1) is equal to n.

3. CD(ai, aj OR {ak})SEQ. This dependency means that a set of r activities from 2{ak}∪aj (i.e., all
possible multiple choices) will be selected after ai has successfully completed. For the sake
of simplicity, we assume that any activity in {ak} ∪ aj has the same occurrence probability
over 2{ak}∪aj , that is equal to r

n where r varies from 1 to n. Formally, Equation 5 computes
CD(ai, aj OR {ak})SEQ as follows.

CD(ai, aj OR {ak})SEQ =

∑
r=1,n( r

n × C(n, r))∑
r=1,n C(n, r)

∗ CD(ai, aj)SEQ (5)

where
-
∑

r=1,n( r
n×C(n, r)) represents the number of aj ’s occurrences among possible combinations

of activities7.
-
∑

r=1,n C(n, r) corresponds to the total number of possible combinations of activities8.

We now look into indirect control dependency between ai and aj where there is a set of other
peers connected with operators. This dependency, denoted as CD(ai, aj)path1

i,j
, refers to a certain

execution path (path1i,j) and is computed as per Equation 6:

CD(ai, aj)path1
i,j

=
∏

al,am∈path1
i,j

CD(al, am Operator {akm})SEQ (6)

7 Let n be 3,
∑

r=1,n( r
n
× C(n, r)) has the following value: ( 1

3
× 3 + 2

3
× 3 + 3

3
× 1=4).

8 Let n be 3,
∑

r=1,n C(n, r) has the following value: (3+ 3+ 1)=7.
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When multiple execution paths exist between ai and aj , we refer to this control dependency as
CD(ai, aj)pathsi,j and is computed as per Equation 7:

CD(ai, aj)pathsi,j = max
q=1,...

(CD(ai, aj)pathq
i,j

) (7)

where pathqi,j represents the qth possible execution path between ai and aj . Table 2 depicts an
excerpt of control dependencies in the Bicing system.

Table 2: Control dependencies with p = 0.5
Activity a1 a2 a3 a4 a5

a1 - 1/2 5/6 11/12 17/12

a2 1/2 - 1/3 7/12 11 /12

a3 5/6 1/3 - 1/4 3/4

a4 11/12 7/12 1/4 - 1/2

a5 7/12 11/12 3/4 1/2 -

3.4 Data dependency analysis

As mentioned in Section 3.2, we consider artefact’s and attribute’s criticality as a metric for
measuring data dependency between 2 activities. In [21], Paulsen et al. describe a comprehen-
sive criticality analysis for helping organizations identify and prioritize assets (e.g., artefacts and
processes) that are vital for the success of organizational goals. Based on this analysis, we distin-
guish 2 types of criticality: functional and non-functional. The former refers to artefact/attribute’s
unavailability that would hinder the BP’s proper execution while the latter refers to artefact/at-
tribute’s corruption would undermine the BP’s QoS. On the one hand, we rely on the traditional
3 information levels (i.e., strategic, tactical, and operational) to define artefact’s and attribute’s
functional-criticality level. A strategic attribute’s criticality should be higher than an operational
attribute. On the other hand, we rely on security, privacy, and safety levels to define artefact’s and
attribute’s non-functional-criticality level. Table 3 depicts certain attributes per type of criticality
for the Bicing case-study.

Table 3: Attribute examples per criticality type

Type Level Example

Functional

Operational Decision-making data

Tactical Concurrency data

Strategic Customer experience data

Non-functional
Privacy

Protected personal data

Stakeholder’s identity

Confidentiality Financial data
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We define 3 criticality degrees, high (H), medium (M), and low (L) that have, respectively, k, k′ <
k, and k′′ < k′ as quantitative value. Note that the BP designer specifies artefact’s and attribute’s
criticality level with respect to Table 3. Since artefacts and attributes can be associated with both
types of criticality (i.e., functional and non-functional), we define 2 strategies for calculating an
artefact (ar)’s and attribute (at)’s criticality (C(ar|at)). The first strategy computes C(ar|at) as a
weighted sum (Equation 10).

C(ar|at) = w1 × CF (ar|at) + w2 × CNF (ar|at), w1 + w2 = 1 (8)

where:

- CF (ar|at) | CNF (ar|at) corresponds to ar|at’s functional/non-functional criticality degree, and
- w1 | w2 is the weight (i.e., importance) the BP designer associates with CF (ar|at) | CNF (ar|at).

Considering k, k′, and k′′ as parameters gives more flexibility and generality to our approach.
Some simulations will show how k’s and k′’s values impact the cohesion among activities within
the identified microservices and fine-coupling among those microservices.

Table 4: Artefact/Attribute criticality for Bicing case-study

Artefact Attributes CF

Bicycle
Anchor Point M (k’1)

Bike Status H (k1)

User

User Status H (k2)

User Destination L (k”2)

User History H (k2)

Rental
Rent ID H (k3)

Rent Cost M (k’3)

Repair agree Repair M (k’4)

Artefact Attributes CNF

Bicycle Bike ID H (k1)

User
User ID H (k2)

User Validity M (k’2)

Repair estimated Repair CostH (k4)

Once ar|at’s criticality is established, we specify data dependencies (DD) between ai and aj as
follows:

DD(ai, aj) =
∑

dp∈DATAi,j

pair(dp)i,j × C(dp) (9)

where

- DATAi,j indicates the set of artefacts/attributes exchanged between ai and aj ,
- dp represents the artefact/attribute exchanged between ai and aj ,
- pair(dp)i,j denotes the value associated with the operation pair (e.g., r/w and w/w) between
ai and aj , proposed by Amiri [1].

The second strategy considers C(ar|at) as a tuple < CF (ar|at), CNF (ar|at) >. We, thus, specify
data dependencies (DD) between ai and aj as follows:

DD(ai, aj) =
∑

dp∈DATAi,j

F(pair(dp)i,j , CF (dp), CNF (dp)) (10)
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where F returns the data dependency value specified by the BP designer for the tuple <
pair(dp)i,j , CF (dp), CNF (dp) >.

Table 5: Excerpt of data dependencies for the 1st strategy
Activity a1 a2 a3 a4 a5

a1 - 1/2 5/6 11/12 17/12

a2 1/2 - 1/3 7/12 11 /12

a3 5/6 1/3 - 1/4 3/4

a4 11/12 7/12 1/4 - 1/2

a5 7/12 11/12 3/4 1/2 -

4 Experimenting the collaborative clustering

In this section we detail the collaborative clustering approach and then present how it was imple-
mented and evaluated.

4.1 Collaborative clustering

Clustering is about partitioning a set of objects into groups called clusters. Each cluster regroups
similar objects in the sense that objects of a group are more similar to each other than objects of
other groups. In our approach, objects represent activities “expecting” that activities of the same
group would form a highly-cohesive candidate mircoservice. Contrarily, activities in different groups
would form loosely-coupled microservices.

We extended the classical Hierarchical agglomerative algorithm (HAC) [20] to design our collab-
orative clustering algorithm (cHAC). cHAC runs over n clustering nodes (CN1, CN2, , CNn), where
a CN partitions the whole set of activities into clusters of activities by using one given dependency
matrix. The chosen number k of clusters at each CN is not necessary the same; it can be different
from one CN to another. cHAC fosters collaboration between CN since each CN will have its own
dependency matrix along with “keeping an eye” on what other CNs are doing by sharing some
dependencies scores of activities, if deemed necessary. Thus, prior to each new HAC clustering iter-
ation, a CN uses both a Local Score Matrix (LSM) that stores dependency scores between couple
of activities and a Shared Score Matrix (SSM) that stores a global dependency score between each
couple of activities.

– cHAC’s first iteration: creation of the local dependence score matrix. It corresponds to the
dependency matrix used as input. An empty shared dependence matrix is also created to store
the shared dependency score of activities. Each activity constitutes a cluster.

– cHAC’s pth iteration: the nearest pair of clusters Cu and Cv is computed by using both LDSM
and SDSM. Cu and Cv are merged if and only if9 [distance(Cu, Cv)]pLDSM >= [distance(Cu, Cv)]p−1SDSM .
To foster similarities between couples of activities (ti, tj), the shared score matrix is also updated
as follows: [LDSM(ti, tj)]p = Max([LDSM(ti, tj)]p, [MSP (ti, tj)]p−1)

9 distance[distance(Cu, Cv)]pM computes any distance between 2 clusters Cu and Cv by using the score
Matrix M of the iteration p.
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Once the different clustering results are produced by the different CNs, the distance metrics are
applied to them to choose the best one that fosters both cohesion and loose-coupling of groups. It
is important to note that our cHAC algorithm can work either in a uniform collaboration strategy
whereh each CN collaborates with other CNss, or in diverse collaboration strategy where each CN
node has its own collaborators. For the latter case, different shred matrices are needed, one by
CN node.

Our cHAC is different from the distributed HAC (dHAC) [15]. dHAC consists of 2 phases. In
the first phase, the entire collection of objects is divided into n disjoint segments and distributed
over n HAC processes. Each HAC process generates a separate clustering. In the second phase, the
previous generated clusters are merged into one final cluster result. In our cHAC, and contrarily
to dHAC, the collaboration between the different HAC nodes is realized between two successive
iterations by sharing intermediate clustering results.

(a) Dunn Index of the clustering results (b) Execution time of the clustering algorithm

Fig. 3: Bicing system’s 14 activities analysis

4.2 Experiments

We implemented the collaborative clustering approach in Java. To this end, different modules
have been developed. Some of these modules permitted to extract control dependencies and data
dependencies from BPs and to run the collaborative clustering algorithm that took the number
of clusters and dependency matrices as inputs. Bicing system’s 14 activities were initially used to
test the algorithm. Then, more activities were randomly generated to capture the complexity of
real BPs.

For evaluation needs we considered the internal validation metric Dunn index that measures the
quality of clustered results by identifying the clusters that are compact (minor variance between
activities of the same cluster) and separate (clusters are enough far apart). A higher Dunn index
indicates better clustering.

In the first experiment, we measured the Dunn index of the clustering algorithm with respect to
the “Control Dependencies” CN node (CDCN) and the “Data Dependencies” CN node (DDCN).



Automatic microservices identification 13

(a) Dendogram at the control dependency CN node (b) Dendogram at the data dependency CN node

Fig. 4: Dendograms at CN nodes

Fig. 3a illustrates the obtained results clearly showing that the Dunn index that results from the
CDCN node is almost always better than the Dunn index that results from the DDCN node. This
means that for a given BP, the control dependency model is richer and more informative than the
data dependency model. We also computed the Dunn index of the clustering result by aggregating
both control and data dependencies in one matrix.

Fig. 3b illustrates the obtained results showing that the clustering quality of the CDCN node
is often better than the one obtained by merging control and data dependencies. It confirms that
aggregating different dependency matrices degrades the quality of the final microservice generation
and the collaboration between nodes is the appropriate option. Fig. 4 illustrates the obtained
dendograms at both control and data dependency nodes. Ci refers to teh activity ai.

5 Conclusion

To address monolithic systems’ limitations, this paper examined microservices as a novel way for
breaking down these systems into “small” manageable units. We shed light on how to identify
necessary microservices from a set of BPs. Compared to other approaches that adopt log files, source
codes, among others as inputs to identifying microservices, BPs constitute a better alternative to
these inputs. Indeed, referred to as organizations’ know how, BPs’ activities allow to define who
does what, when, where, and why. We firstly capture these details into different kinds of separate
dependencies known as control and data. We then process these dependencies using our designed
collaborative clustering algorithm. Each cluster of activities constitutes a microservice candidate.

The technical doability of our work has been verified using the Bicing system that allows users
to rent bikes in the city of Barcelona. The results are promising showing how our collaborative
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clustering algorithm outperforms in term of precision the cooperative clustering algorithm. In term
of future work we would like to consider a larger dataset for testing the collaborative clustering
algorithm, examine other forms of dependencies like semantics dependencies between activities,
benchmark our identified microservices to other approaches that do not use BPs, and finally rec-
ommend clustering techniques with respect to the nature of these dependencies.
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10. Estañol, M.: Artefact-centric Business Process Models in UML: Specification and Reasoning. Ph.D.
thesis, Universitat Politècnica de Catalunya (2016)
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