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COMPUTING THE ASSOCIATED CYCLES

OF CERTAIN HARISH-CHANDRA MODULES

SALAH MEHDI, PAVLE PANDŽIĆ, DAVID VOGAN, AND ROGER ZIERAU

Abstract. Let GR be a simple real linear Lie group with maximal compact

subgroup KR and assume that rank(GR) = rank(KR). In [MPVZ] we proved

that for any representation X of Gelfand-Kirillov dimension 1
2

dim(GR/KR),

the polynomial on the dual of a compact Cartan subalgebra given by the
dimension of the Dirac index of members of the coherent family containing X

is a linear combination, with integer coefficients, of the multiplicities of the

irreducible components occurring in the associated cycle. In this paper we
compute these coefficients explicitly.

1. Introduction

Let GR be a simple real linear Lie group with a Cartan involution θ and maximal
compact subgroup KR = GθR. Let g = k ⊕ p be the Cartan decomposition of the
complexified Lie algebra g of GR; this decomposition is orthogonal with respect to
the Killing form B. Let K be the complexification of KR and G a complex Lie
group (with Lie algebra g) containing K as the set of fixed points of the complex
extension of θ. We assume throughout the paper that g and k have equal rank, i.e.,
there is a Cartan subalgebra h of g contained in k. We fix such h and write W for
the Weyl group of (g, h).

In this paper we are concerned with comparing two important invariants of
(g,KR)-modules. One is the Dirac index studied in [MPV]. It is defined using the
Dirac operator D ∈ U(g)⊗C(p), where U(g) is the universal enveloping algebra of
g and C(p) is the Clifford algebra of p with respect to B. If M is a (g,KR)-module,
then D acts on M ⊗ S where S is a spin module for C(p). The Dirac cohomology
of M is defined as

HD(M) = Ker(D)/(Im(D) ∩Ker(D);

it is a module for the spin double cover K̃ of KR (finite-dimensional if M is admis-
sible). This invariant was introduced in [V2], it turned out to be very interesting
and also quite computable; see for example [HP1], [HP2], [HKP], [HPR], [HPP],
[HPZ], [BP1], [BP2], [BPT], [MP], [MZ], [DH].
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Decomposing the K̃-module S as S = S+⊕S− induces a decomposition of Dirac
cohomology

HD(M) = HD(M)+ ⊕HD(M)−.

The Dirac index of M is then defined as the virtual K̃-module

DIv(M) = HD(M)+ −HD(M)−.

It is proved in [MPV] that Dirac index varies nicely over coherent families of (g,KR)-
modules. In particular, if {Mλ} is such a coherent family, attached to a module M ,
then the function

λ 7→ dimDIv(Mλ)

extends to a polynomial on h∗, which we denote by DIp(M).
Another very useful invariant of a Harish-Chandra module M is its associated

cycle AC(M), defined in [V1]. See [MPVZ] for a short review of the definition.
In concrete terms, for irreducible M , AC(M) can be written as the formal sum

AC(M) =
∑
i

mi(M)Oi,

where Oi ⊂ p are the real forms of a complex nilpotent G-orbit OC ⊂ g, and the
multiplicities mi(M) are nonnegative integers. The orbit OC is specified by the

requirement that OC is the associated variety of the annihilator of M .
If M is put into a coherent family {Mλ}, then the corresponding multiplicities

extend to polynomials mi(M) on h∗. It was conjectured in [MPV], and proved in
[MPVZ], that in certain special circumstances these multiplicity polynomials are
related to the Dirac index polynomial by

DIp(M) =
∑
i

cimi(M)

for some integers ci. Such a relationship is true when the associated variety of the

annihilator of M is contained in OC, with OC corresponding via Springer corre-
spondence to the W -representation generated by the Weyl dimension polynomial
PK for K (PK is defined by (3.1)).

The purpose of this paper is to complement [MPVZ] by explicitly computing the
constants ci in the classical cases other than SU(p, q). The case GR = SU(p, q) as
well as the case of exceptional groups are done in [MPVZ]

We start by reviewing some facts about real forms of nilpotent orbits in Section
2, and assembling a few useful general facts about the computations in Section 3.
Then we do the case-by-case computations in Sections 4 – 8.

2. Nilpotent orbits and their real forms

We recall that the list of the classical real groups for which the conjecture from
[MPV] applies is given in [MPVZ], Section 6, Table 1, along with the relevant
explanations. The groups on the list are the connected classical equal rank groups
such that the W -representation σK generated by the Weyl dimension polynomial
PK for K is Springer. The list consists of

• SU(p, q), q ≥ p ≥ 1;
• SOe(2p, 2q + 1), q ≥ p− 1 ≥ 0;
• Sp(2n,R), n ≥ 1;
• SO∗(2n), n ≥ 1;
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• SOe(2p, 2q), q ≥ p ≥ 1.

The table in [MPVZ] also includes the nilpotent orbits OC corresponding to σK
in each of the cases, as well as the number of real forms of these orbits. Here
we explain how to get these real forms, and in particular how to write down the
semisimple elements h of the corresponding sl2-triples, which we need to begin our
computations.

We start by recalling that complex nilpotent orbits in classical Lie algebras are
in one-to-one correspondence with the set of partitions [d1, · · · , dk] with d1 ≥ d2 ≥
· · · ≥ dk ≥ 1 (if dj occurs m times, we will simply write dmj ) such that (see [CM],
Chapter 5):

• d1 + d2 + · · ·+ dk = n, when g ' sl(n,C);
• d1 + d2 + · · · + dk = 2n + 1 and the even dj occur with even multiplicity,

when g ' so(2n+ 1,C);
• d1 + d2 + · · ·+ dk = 2n and the odd dj occur with even multiplicity, when
g ' sp(2n,C);
• d1 + d2 + · · · + dk = 2n and the even dj occur with even multiplicity,

when g ' so(2n,C); except that the partitions having all the dj even and
occurring with even multiplicity are each associated to two orbits.

We now recall the procedure which attaches sl2-triples to complex nilpotent
orbits (see Chapter 3 in [CM]). For a positive integer i, define the Jordan block Ji
to be the i× i matrix

Ji =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
· · · · · · · ·
· · · · · · · ·
0 0 0 · · · 0 1
0 0 0 0 · · · 0


For a postive integer n, write [d1, d2, · · · , dk] for a partition of n. Define the n× n
matrix

X[d1,d2,··· ,dk] =


Jd1

0 0 0 · · · 0
0 Jd2

0 0 · · · 0
· · · · · · · ·
· · · · · · · ·
0 0 0 0 · · · Jdk


Then X[d1,d2,··· ,dk] is a nilpotent element in the complex Lie algebra sln. Write
O[d1,d2,··· ,dk] for the complex nilpotent orbit under the adjoint group PSLn of sln.
It is convenient to attach to O[d1,d2,··· ,dk] a Young tableau, i.e a left-justified ar-
rangement of empty boxes of rows with size in the non-increasing order d1, d2, ...,
dk.

Let H =

(
1 0
0 −1

)
, X = J2 =

(
0 1
0 0

)
and Y = J t2 =

(
0 0
1 0

)
. Then [H,X] =

2X, [H,Y ] = −2Y and [X,Y ] = H, so that H,X, Y span, over C, the simple Lie
algebra sl2 of 2 × 2 complex matrices with zero trace. For a non-negative integer
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r, define the linear map ρr : sl2 → slr+1 by

ρr(H) =


r 0 0 0 · · · 0
0 r − 2 0 0 · · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · −r + 2 0
0 · · · 0 −r


ρr(X) = Jr+1

ρr(Y ) =


0 0 0 0 · · · 0
µ1 0 0 0 · · · 0
0 µ2 0 0 · · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · µr 0


with µi = i(r + 1− i) for 1 ≤ i ≤ r

ρr defines an irreducible representation of sl2 of dimension r + 1, and any finite
dimensional irreducible representation of sl2 is equivalent to ρr for some r. The
map ρr induces the homomorphism ΦO : sl2 → sln defined by:

ΦO =
⊕

1≤j≤k

ρdj−1

so that ΦO(X) = X[d1,d2,··· ,dk]. The standard sl2-triple associated with the com-
plex nilpotent orbit O[d1,d2,··· ,dk] is {H[d1,d2,··· ,dk];X[d1,d2,··· ,dk];Y[d1,d2,··· ,dk]} where
H[d1,d2,··· ,dk] := ΦO(H), X[d1,d2,··· ,dk] := ΦO(X) and Y[d1,d2,··· ,dk] := ΦO(Y ). Choose
the Cartan subalgebra consisting of n × n diagonal matrices diag(a1, a2, · · · , an)
with zero trace, and fix the positive system of roots {εi − εj | 1 ≤ i < j ≤ n}
whose corresponding Borel subalgebra consists of the upper tringular matrices of
zero trace. Here εi is the complex linear form defined on the Cartan subalgebra
such that εi(diag(a1, a2, · · · , an)) = ai. Then up to a Weyl group element of sln,
the element H[d1,d2,··· ,dk] is conjugate to a dominant element

(h1, h2, · · · , hn) := diag(h1, h2, · · · , hn)

with h1 ≥ h2 ≥ · · · ≥ hn and h1 + h2 + · · · + hn = 0. Associated with the orbit
O[d1,d2,··· ,dk] is the weighted Dynkin diagram

h1−h2◦
h2−h3◦ · · · · · ·

hn−1−hn◦

Suppose now that GR = SU(p, q), KR = S(U(p) × U(q)) and g = slp+q, with
q ≥ p ≥ 1 and p + q = n. The dominant h associated with the complex nilpotent
orbit OC = O[2p;1q−p] is given by

h = (1, 1, · · · , 1︸ ︷︷ ︸
p

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p

,−1,−1, · · · ,−1︸ ︷︷ ︸
p

)

along with the weighted Dynkin diagram
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0
◦

ε1−ε2
· · · · · ·

1
◦

εp−εp+1

0
◦

εp+1−εp+2

· · · · · ·
1
◦

εq−εq+1

0
◦

εq+1−εq+2

· · · · · ·
0
◦

εp+q−εp+q−1

Moreover, by Kostant-Sekiguchi, it is known that the nilpotent orbit OC has
p+ 1 real forms which are in one to one correspondence with nilpotent K-orbits in
p. More precisely, for k = 0, 1, 2, · · · , p, let I0 = 0 and

ek =

 0p
Ik 0
0 0

0 0
0 Ip−k

0q


For each k, the element ek belongs to OC. On the other hand, the K-orbit of ek
consists of matrices of the form(

0 A
B 0

)
with rank(A) = k and rank(B) = p− k

In particular, if k 6= k′ then the K-orbits of ek and ek′ are disjoint. Choosing the
positive system {εi − εj | 1 ≤ i < j ≤ p or p + 1 ≤ i < j ≤ p + q}, the (dominant)
neutral element of the sl2-triple corresponding to the real form K · ek is

hk = (1, 1, · · · , 1︸ ︷︷ ︸
k

,−1,−1, · · · ,−1︸ ︷︷ ︸
p−k

, 1, 1, · · · , 1︸ ︷︷ ︸
p−k

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p

,−1,−1, · · · ,−1︸ ︷︷ ︸
k

)

The description in terms of Young tableaux of the complex orbit OC and of its real
forms is as follows:

OC : :

p

:

 q − p

real forms for OC
+ −
: :
+ −

k ∈ {0, . . . , p}

− +
: :
− +

p− k

−
:
−

 q − p

Consider GR = Sp(2n,R) and KR = U(n). The complexification g = sp2n of GR
is realized as the following set of matrices{(Z1 Z2

Z3 −Zt1

)
| Z1 n× n complex matrices, Z2, Z3 symmetric complex matrices

}
A Cartan subalgebra in g consists of diagonal complex matrices of the form
diag(a1, a2, · · · , an,−a1,−a2, · · · ,−an). Fix the standard system of positive roots
{εi ± εj | 1 ≤ i < j ≤ n} ∪ {2εk | 1 ≤ k ≤ n}. As in type A, there is an explicit
recipe which attaches an sl2-triple to a complex nilpotent orbit (see 5.2.2 in [CM]).
We apply this recipe to the nilpotent orbit OC = O[2n], using n chunks coninciding
with {2}. We obtain (viewing sp2n as a subalgebra of sl2n)
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h := diag(1, 1, · · · , 1︸ ︷︷ ︸
n

,−1,−1, · · · ,−1︸ ︷︷ ︸
n

)

which we will simply write

h = (1, 1, · · · , 1︸ ︷︷ ︸
n

)

along with the weighted Dynkin diagram

0
◦

ε1−ε2

0
◦

ε2−ε3
· · · · · ·

0
◦

εn−1−εn

2
◦

2εn

The same argument as in type A shows that OC possesses n+ 1 real forms with

hk = (1, 1, · · · , 1︸ ︷︷ ︸
k

,−1,−1, · · · ,−1︸ ︷︷ ︸
n−k

,−1,−1, · · · ,−1︸ ︷︷ ︸
k

, 1, 1, · · · , 1︸ ︷︷ ︸
n−k

)

The description in terms of Young tableaux of the complex orbit OC and of its real
forms is as follows:

OC : :

n real forms

+ −
: :
+ −

k ∈ {0, . . . , n}

− +
: :
− +

 n− k

Consider GR = SOe(2p, 2q+ 1) and KR = S(O(2p)×O(2q+ 1)). The complexi-
fication g = so2n+1 of GR, with n = p+ q and q ≥ p ≥ 1, is realized as the following
set of matrices

{ 0 u v
−vt Z1 Z2

−ut Z3 −Zt1

 | u, v ∈ Cn, Z1 n× n complex, Z2, Z3 skew-symmetric
}

A Cartan subalgebra in g consists of diagonal complex matrices of the form
diag(0, a1, a2, · · · , an,−a1,−a2, · · · ,−an) (first row and column of zeros). Fix the
standard system of positive roots {εi ± εj | 2 ≤ i < j ≤ n + 1} ∪ {εk | 2 ≤
k ≤ n + 1}. There is an explicit recipe which attaches an sl2-triple to a complex
nilpotent orbit (see 5.2.4 in [CM]). We apply this recipe to the nilpotent orbit
OC = O[3,22p−2,12(q−p+1)], using the following chunks : {3}, p−1 {2; 2}’s and q−p+1

{1; 1}’s. We obtain (viewing so2n+1 as a subalgebra of sl2n+1)

h := diag(0, 2, 1, 1, · · · , 1︸ ︷︷ ︸
2p−2

, 0, 0, · · · , 0︸ ︷︷ ︸
2(q−p+1)

,−1,−1, · · · ,−1︸ ︷︷ ︸
2p−2

,−2)
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which we will simply write (dropping the first zero coordinate and shifting indices
of εi’s)

h = (2, 1, 1, · · · , 1︸ ︷︷ ︸
2p−2

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)

along with the weighted Dynkin diagram

1
◦

ε1−ε2

0
◦

ε2−ε3
· · · · · ·

1
◦

ε2p−ε2p+1

0
◦

ε2p+1−ε2p+2

· · · · · ·
0
◦

εp+q−1−εp+q

> >
0
◦

εp+q

The nilpotent orbit OC possesses 2 or 3 real forms depending wether q > p − 1
or not. The description in terms of Young tableaux of the complex orbit OC and
of its real forms is given below. The recipe to produce the real h’s from the signed
tableau can be stated as follows: the first row of length 3 gives a 2 in the first p
coordinates if the row starts with a ”+” and a 2 in the p+ 1 coordinate if it starts
with a ”-”. For the rows of length two, a ”+” (resp. ”-”) sign in the leftmost box
provides +1 in the first p coordinates (resp. in the second group of coordinates
p + 1, · · · ); a ”+” (resp. ”-”) sign in the rightmost box provides −1 in the first p
coordinates (resp. in the second group of coordinates p+ 1, · · · ). In particular, we
get

hI1 = (2, 1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)

hII1 = (2, 1, 1, · · · ,−1︸ ︷︷ ︸
p−1

, 1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)

h2 = (1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 2, 1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p

) only if q > p− 1

hII1 is obtained from hI1 by the outer automorphism εp−1 + εp ←→ εp−1 − εp:

◦
ε1−ε2

◦
ε2−ε3

· · · ◦�
◦ εp−1+εp

�◦ εp−1−εp

The description of the orbit OC and its real forms in terms of Young tableaux is
as follows:
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OC : :

2p− 2

:

2(q − p+ 1)

+ − +

real forms for OC
+ −
: :
+ −

2p− 2 I, II

−
:
−

2(q − p+ 1)

− + −
+ −
: :
+ −

2p− 2 only if q > p− 1 +

−
:
−

2(q − p) + 1

Consider GR = SOe(2p, 2q) and KR = SO(2p) × SO(2q). The complexification
g = so2n of GR, with n = p + q and q ≥ p ≥ 1, is realized as the following set of
matrices

{(Z1 Z2

Z3 −Zt1

)
| Zi n× n complex matrices, Z2, Z3 skew-symmetric

}
A Cartan subalgebra in g consists of diagonal complex matrices of the form
diag(a1, a2, · · · , an,−a1,−a2, · · · ,−an). Fix the standard system of positive roots
{εi ± εj | 1 ≤ i < j ≤ n}. There is an explicit recipe which attaches an sl2-triple to
a complex nilpotent orbit (see 5.2.6 in [CM]). We apply this recipe to the nilpotent
orbit OC = O[3,22p−2,12(q−p)+1], using the following chunks : {3; 1}, p−1 {2; 2}’s and

q − p {1; 1}’s. We obtain (viewing so2n as a subalgebra of sl2n)

h := diag(2, 1, 1, · · · , 1︸ ︷︷ ︸
2p−2

, 0, 0, · · · , 0︸ ︷︷ ︸
2(q−p+1)

,−1,−1, · · · ,−1︸ ︷︷ ︸
2p−2

,−2)

which we will simply write

h = (2, 1, 1, · · · , 1︸ ︷︷ ︸
2p−2

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)

along with the weighted Dynkin diagram

ε1−ε2◦
2

◦
0

· · ·
ε2p−1−ε2p◦

1

ε2p−ε2p+1◦
0

· · · ◦
0

◦ 0 εp+q−1−εp+q

◦
0

The nilpotent orbit OC possesses 3 or 4 real forms depending whether q > p or
not. Using a recipe analogous to the one used for type B, we get
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hI1 = (2, 1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)

hII1 = (2, 1, 1, · · · ,−1︸ ︷︷ ︸
p−1

, 1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)

hI2 = (1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 2, 1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p

)

hII2 = (1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 2, 1, 1, · · · ,−1︸ ︷︷ ︸
p−1

, 0, 0, · · · , 0︸ ︷︷ ︸
q−p

) only if q = p

As before, hIIi is obtained from hIi by the outer automorphism:

◦
ε1−ε2

◦
ε2−ε3

· · · ◦�
◦ εp−1+εp

�◦ εp−1−εp

The description of the complex orbit OC and its real forms in terms of Young
tableaux is as follows:

OC : :

2p− 2

:

2(q − p) + 1

+ − +

real forms for OC
+ −
: :
+ −

2p− 2 I, II

−
:
−

2(q − p) + 1

− + −
+ −
: :
+ −

2p− 2 (I, II if q = p) +

−
:
−

 q − p

Consider GR = SO∗(2n) = SO(2n,C) ∩ gl(n,H), KR = U(n) and g = so∗2n.

For so2n, a Cartan subalgebra in g consists of diagonal complex matrices of the
form diag(a1, a2, · · · , an,−a1,−a2, · · · ,−an). Fix the standard system of positive
roots {εi ± εj | 1 ≤ i < j ≤ n}. Using an recipe analogous to that of type D, one
can attache an sl2-triple to a complex nilpotent orbit. We apply this recipe to the
nilpotent orbit OC = O[2n] to obtain (viewing so∗2n as a subalgebra of sl2n)

h := diag(1, 1, · · · , 1︸ ︷︷ ︸
n

,−1,−1, · · · ,−1︸ ︷︷ ︸
n

)
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which we will simply write
h = (1, 1, · · · , 1︸ ︷︷ ︸

n

)

along with the weighted Dynkin diagram

ε1−ε2◦
0

◦
0

· · · · · · ◦
0

◦ 0 εn−1−εn

◦
2

The nilpotent orbit OC possesses n
2 + 1 real forms if n is even, and n+1

2 real
forms otherwise. Using a recipe analogous to the one used for type D, we get

hk = (1, 1, · · · , 1︸ ︷︷ ︸
2k

,−1,−1, · · · ,−1︸ ︷︷ ︸
n−2k

) for n even, and k = 0, · · · , n
2

hk = (1, 1, · · · , 1︸ ︷︷ ︸
2k

, 0,−1,−1, · · · ,−1︸ ︷︷ ︸
n−2k−1

) for n odd, and k = 0, · · · , n− 1

2

Finally, the description of the complex orbit OC and its real forms in terms of
Young tableaux is as follows:

n even:

OC : :

n real forms

+ −
: :
+ −

k ∈ {0, . . . , n2 }
− +
: :
− +

 n
2 − k

n odd:

OC : :

n− 1}
2

real forms
+ −
: :
+ −

k ∈ {0, . . . , n−1
2 }

− +
: :
− +

 n−1
2 − k

+

3. Some general facts

Let Oi be a real form of the orbit OC, and denote the corresponding semisimple
element of the (normal) sl(2)-triple by h ∈ h. As in [MPVZ], we attach to h the
θ-stable parabolic subalgebra q = l⊕u such that l is the centralizer of h in g, and u
is the sum of negative eigenspaces for adh on g. We fix a choice of ∆+ = ∆+(g, h);
in examples, this will always be the standard positive root system. This defines a
choice ∆+

c = ∆+(k, h) = ∆(k, h)∩∆+ of positive compact roots. Let ∆+
n := ∆+\∆+

c
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be the set of positive noncompact roots. Denote by ρc (resp. ρn) half the sum of
positive compact (resp. noncompact) roots. The Weyl dimension polynomial

(3.1) PK(λ) =
∏
α∈∆+

c

〈λ, α〉
〈ρc, α〉

will always be defined with respect to this fixed positive root system ∆+
c . If A is a

subset of ∆(g, h), write ρ(A) for half the sum of the roots in A.
We choose ∆+(l) compatibly with ∆+, i.e., ∆+(l) = ∆(l) ∩∆+. This also gives

a choice for positive roots of l∩ k, and fixes the Weyl dimension polynomial PL∩K .
Denote by ∆+

n (l) the set of noncompact roots in ∆+(l), and by ∆(p1) the set of
noncompact roots that are 1 on h.

The constant c = ci we are going to compute is attached to Oi as in [MPVZ].
It is defined by equation (6.4) of [MPVZ]; this is up to sign the same equation as
(5.9) of [MPVZ], but the sign is made precise using [MPVZ], Remark 3.8, equation
(6.1) and the discussion around (6.1). The equation is

(3.2) (−1)N
∑

A⊆∆
+
n (l)

C⊆∆(p1)

(−1)#A+#CPK(λ− ρn(l) + 2ρ(A)− 2ρ(C)) = cPL∩K(λ),

where

(3.3) N = #{α ∈ ∆+
∣∣α(h) > 0}.

The computations we are going to make will be easier if equation (3.2) is turned
into an analogue of equation (6.5) of [MPVZ]:

Proposition 3.4. Assume that ρn(l) is orthogonal to all roots of l ∩ k. Then

(3.5) (−1)N+#∆+
n (l)

∑
A⊆∆

+
n (l)

C⊆∆(p1)

(−1)#A+#CPK(λ− 2ρ(A)− 2ρ(C)) = cPL∩K(λ).

Proof. This follows by passing from summation over A to summation over the
complement of A in ∆+

n (l). For any A ⊆ ∆+
n (l),

−ρn(l) + 2ρ(A) = ρn(l)− 2ρ(∆+
n (l) \A)

and
(−1)#A = (−1)#∆+

n (l)(−1)#(∆+
n (l)\A),

so (3.2) can be rewritten as

(−1)N+#∆+
n (l)

∑
A⊆∆

+
n (l)

C⊆∆(p1)

(−1)#A+#CPK(λ+ ρn(l)− 2ρ(A)− 2ρ(C)) = cPL∩K(λ).

We now replace λ by λ − ρn(l); since ρn(l) is orthogonal to the roots of l ∩ k,
PL∩K(λ− ρn(l)) = PL∩K(λ), and the statement follows. �

In each of the examples we will consider, one can check directly that indeed ρn(l)
is orthogonal to all roots of l ∩ k, and hence we can compute the constant c using
(3.5). A little more systematic way of checking this assumption, which will be easy
to apply in all cases we consider, is given by the following lemma.

Lemma 3.6. Suppose that all simple factors of l0 are either compact or noncompact
Hermitian. Assume also that ∆+(l) (induced by ∆+) is Borel - de Siebenthal for
each noncompact factor of l. Then ρn(l) is orthogonal to all roots of l ∩ k.



12 SALAH MEHDI, PAVLE PANDŽIĆ, DAVID VOGAN, AND ROGER ZIERAU

Proof. Since ρn of any compact factor is 0, it is enough to prove the statement for
each of the noncompact factors. Denote by d one of these factors, and let d = c⊕ s
be its Cartan decomposition (so c = d ∩ k and s = d ∩ p). Since d is Hermitian,

s = s+ ⊕ s−

as a c-module. If ∆+(d) is a Borel-de Siebenthal positive root system with respect to
a compact Cartan subalgebra of d, then ∆+

n (d) must be equal to ∆(s+) or ∆(s−),
and we can assume ∆+

n (d) = ∆(s+). It follows that ρn(d) is the weight of the

one-dimensional c-module
∧top

s+, and so it must be orthogonal to the roots of
c. �

Remark 3.7. If l has a simple noncompact factor that is not Hermitian, and if
∆+(l) is any positive root system for l, then ρn(l) is not orthogonal to all roots of
l ∩ k. Indeed, if d = c⊕ s is the Cartan decomposition of one such factor, then c is
semisimple and hence has no nontrivial one-dimensional modules. So if ρn(d) were
orthogonal to all roots of c, it would have to be 0, but that is not possible since d
is noncompact.

The following proposition will enable us to get our constants for some of the real
forms of OC without having to do computations.

Proposition 3.8. Let h1 and h2 correspond to two real forms of OC. Assume that
there is an automorphism σ of g such that

(1) σ preserves the compact Cartan subalgebra h of g;
(2) σ commutes with the Cartan involution, so it preserves k and p;
(3) σ(∆+

c ) = ∆+
c ;

(4) σ(h1) = h2.

Then the constants c1, c2 corresponding to h1, h2 are related by

c2 = (−1)n+N1+N2 c1,

where

n = #[∆+
n (l2) ∩ (−σ(∆+

n (l1)))] = #{α ∈ ∆+
n (l1)

∣∣σα ∈ (−∆+)},

and N1, N2 are defined as in (3.3), i.e.,

Ni = #{α ∈ ∆+
∣∣α(hi) > 0}, i = 1, 2.

Proof. If li denotes the centralizer of hi in g, then it is clear that σ(l1) = l2.
Moreover, the conditions we put on σ ensure that PK◦σ = PK , and also PL2∩K◦σ =
PL1∩K .

We let σ act on roots by

σ(α) = α ◦ σ−1.

Then it is clear that σ takes ∆(p1)1 (the set of noncompact roots that are 1 on h1)
to ∆(p1)2 (the set of noncompact roots that are 1 on h2). Furthermore, σ takes

∆+
n (l1) to ∆̃+

n (l2), where ∆̃+
n (l2) is a positive root system for l2, possibly different

from ∆+
n (l2) which is defined using ∆+. It follows that σ(ρn(l1)) = ρ̃n(l2), where

ρ̃n(l2) is the half sum of roots in ∆̃+
n (l2).

Also, for any A ⊆ ∆+
n (l1), C ⊆ ∆(p1)1, we clearly have

2ρ(σ(A)) = σ(2ρ(A)), 2ρ(σ(C)) = σ(2ρ(C)).
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Writing the equation (3.2) for c1, we get

(−1)N1

∑
A⊆∆

+
n (l1)

C⊆∆(p1)1

(−1)#A+#CPK(λ− ρn(l1) + 2ρ(A)− 2ρ(C)) = c1PL1∩K(λ).

We now replace λ by σ−1(λ) and use the equalities PL1∩K ◦ σ−1 = PL2∩K , PK ◦
σ−1 = PK . We also replace summing over A and C by summing over σ(A) and
σ(C). We obtain

(3.9)

(−1)N1

∑
σ(A)⊆∆̃

+
n (l2)

σ(C)⊆∆(p1)2

(−1)#σ(A)+#σ(C)PK(λ− ρ̃n(l2) + 2ρ(σ(A))− 2ρ(σ(C)))

= c1PL2∩K(λ).

We now want to pass from summing over σ(A) ⊆ ∆̃+
n (l2) to summing over A′ ⊆

∆+
n (l2). To do this, we define

∆1 = ∆+
n (l2) ∩ ∆̃+

n (l2); ∆2 = ∆+
n (l2) \∆1 = ∆+

n (l2) ∩ (−∆̃+
n (l2));

so

∆+
n (l2) = ∆1 ∪∆2; ∆̃+

n (l2) = ∆1 ∪ (−∆2).

It follows that for the half sums of roots ρn(l2), ρ̃n(l2) we have

(3.10) ρ̃n(l2) = ρn(l2)− 2ρ(∆2).

For any A′ ⊆ ∆+
n (l2), let

A′1 = A′ ∩∆1; A′2 = A′ ∩∆2;

so A′ = A′1 ∪A′2. To each such A′ we attach

Ã = A′1 ∪ (−(∆2 \A′2)) ⊆ ∆̃+
n (l2).

Then the correspondence A′ ↔ Ã defines a bijection between the subsets of ∆+
n (l2)

and the subsets of ∆̃+
n (l2). Using (3.10), we see that

2ρ(Ã)− ρ̃n(l2) = 2ρ(A′1)− (2ρ(∆2)− 2ρ(A′2))− (ρn(l2)− 2ρ(∆2)) =(3.11)

2ρ(A′1) + 2ρ(A′2)− ρn(l2) = 2ρ(A′)− ρn(l2).

It follows that we can rewrite (3.9) into a sum over A′ instead of a sum over

Ã = σ(A), taking into account that

(−1)#Ã = (−1)n(−1)#A′ ,

with n as in the statement of the proposition. If we also rename A′ by A and σ(C)
by C, we get

(−1)N1+n
∑

A⊆∆
+
n (l2)

C⊆∆(p1)2

(−1)#A+#CPK(λ− ρn(l2) + 2ρ(A)− 2ρ(C)) = c1PL∩K(λ).

If we compare this with the equation (3.2) written for c2, we immediately get the
statement of the proposition. �
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4. The case GR = SU(p, q), p ≤ q

This case was treated in [MPVZ] and we just record the results here. The real
forms of OC correspond to

(4.1) hk = (1, . . . , 1︸ ︷︷ ︸
k

, −1, . . . ,−1︸ ︷︷ ︸
p−k

| 1, . . . , 1︸ ︷︷ ︸
p−k

, 0, . . . , 0︸ ︷︷ ︸
q−p

, −1, . . . ,−1︸ ︷︷ ︸
k

),

with k = 0, 1, . . . , p. The corresponding constants c = cp,qk can be computed from
the formula (3.5).

The set ∆+
n (l) is

∆+
n (l) = {εi − εj

∣∣ 1 ≤ i ≤ k, p+ 1 ≤ j ≤ 2p− k}∪
∪ {εi − εj

∣∣ k + 1 ≤ i ≤ p, p+ q − k + 1 ≤ j ≤ p+ q}.

The set ∆(p1) is empty if q = p, and if q > p, then

∆(p1) = {εi − εj
∣∣ 1 ≤ i ≤ k, 2p− k + 1 ≤ j ≤ p+ q − k}∪

∪ {εi − εj
∣∣ 2p− k + 1 ≤ i ≤ p+ q − k, k + 1 ≤ j ≤ p}.

We evaluate (3.5) at λ = λ0, where

λ0 = (q, q−1, . . . , q−k+1, p, p−1, . . . , k+1 | p−k, . . . , 1, q−k, . . . , p−k+1, k, . . . , 1).

For each choice of A ⊆ ∆+
n (l) and C ⊆ ∆(p1), we set

Λ = λ0 − 2ρ(A)− 2ρ(C).

For q > p, we show that there is exactly one C ⊆ ∆(p1) for which PK(Λ) can be
nonzero:

C = {εi − εj
∣∣ 1 ≤ i ≤ k; 2p− k + 1 ≤ j ≤ p+ q − k},

with #C = k(q − p).
Then we show that all Λ as above, with PK(Λ) 6= 0, are of the form

Λ = (i1, . . . , ik; j1, . . . , jp−k | j1, . . . , jp−k; q, . . . , p+ 1; i1, . . . , ik),

with i1, . . . , ik; j1, . . . , jp−k a shuffle of p, . . . , 1, i.e.,

i1 > · · · > ik; j1 > · · · > jp−k; {i1, . . . , ik; j1, . . . , jp−k} = {p, . . . , 1}.

For each such Λ there is a unique corresponding A, consisting of roots αa,b, 1 ≤
a ≤ k, 1 ≤ b ≤ p− k, where

αa,b =

{
εa − εp+b, if ia < jb;

εk+a − εp+q−k+b, if ia > jb.

In particular, for each A involved, #A = k(p− k).
This leads to

Theorem 4.2. Let GR = SU(p, q), and let k ∈ {0, 1, . . . , p} correspond to the real
form of OC given by (4.1). Then cp,qk = (−1)k(p+q−k)

(
p
k

)
.

5. The case GR = SOe(2p, 2q + 1), q ≥ p− 1 ≥ 0

There are three real forms of OC if q ≥ p ≥ 1, and two real forms if q = p− 1.
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5.1. The first real form. This real form exists for all q ≥ p − 1 ≥ 0. The
corresponding h is

h1 = (2, 1, . . . , 1︸ ︷︷ ︸
p−1

| 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, . . . , 0︸ ︷︷ ︸
q−p+1

).

Since l = l1 is built from roots that vanish on h1, we see that

∆+
n (l) = {εi − εj

∣∣ 2 ≤ i ≤ p, p+ 1 ≤ j ≤ 2p− 1}.
It follows that for any A ⊆ ∆+

n (l),

(5.1) 2ρ(A) = (0; a1, . . . , ap−1 | − b1, . . . ,−bp−1; 0, . . . , 0),

with

(5.2) 0 ≤ ai, bj ≤ p− 1;
∑
i ai =

∑
j bj .

Furthermore, recall that ∆(p1) consists of noncompact roots that are 1 on h1. So

∆(p1) = {ε1 − εj
∣∣ p+ 1 ≤ j ≤ 2p− 1}∪
∪ {εi ± εj

∣∣ 2 ≤ i ≤ p, 2p ≤ j ≤ p+ q} ∪ {εi
∣∣ 2 ≤ i ≤ p}.

It follows that for any C ⊆ ∆(p1),

(5.3) 2ρ(C) = (c; d1, . . . , dp−1 | − c1, . . . ,−cp−1; e1, . . . , eq−p+1),

with

0 ≤ cj ≤ 1; 0 ≤ c ≤ p− 1; c =
∑
j cj ;(5.4)

0 ≤ di ≤ 2(q − p+ 1) + 1; −(p− 1) ≤ ej ≤ p− 1.

Note that for q = p− 1, there are no coordinates after 2p− 1, so there are no zeros
at the end of 2ρ(A), and there are no ej . Otherwise, all of the above holds in this
special case.

By (5.1),

ρn(l) = (0, p− 1, . . . , p− 1 | − p+ 1, . . . ,−p+ 1, 0, . . . , 0).

This is clearly orthogonal to all roots of l ∩ k, which are equal to

∆(l ∩ k) = {εi − εj
∣∣ 2 ≤ i, j ≤ p} ∪ {εi − εj ∣∣ p+ 1 ≤ i, j ≤ 2p− 1}∪(5.5)

∪{εi ± εj
∣∣ 2p ≤ i, j ≤ p+ q}.

By Proposition 3.4, this means that we can determine the constant c = cp,q1 from
the equation (3.5). To do this, we take λ = λ0, where

λ0 = (
1

2
; q +

1

2
, q − 1

2
. . . , q − p+

5

2
| − 1,−2, . . . ,−(p− 1); q − p+ 1, q − p, . . . , 1)

(5.6)

if q ≥ p ≥ 2;

λ0 = (
1

2
| q, q − 1, . . . , 1) if p = 1, q ≥ 1;

λ0 = (
1

2
; p− 1

2
, p− 3

2
. . . ,

3

2
| − 1,−2, . . . ,−(p− 1)) if p ≥ 2, q = p− 1;

λ0 = (
1

2
| ) if p = 1, q = 0.

Proposition 5.7. Let Λ = λ0 − 2ρ(A) − 2ρ(C), with λ0 given by (5.6), and with
A ⊆ ∆+

n (l) and C ⊆ ∆(p1). If PK(Λ) 6= 0, then:
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(1) If p = 1, then A = C = ∅ and Λ = λ0.
(2) If p ≥ 2 and q = p− 1, then A = C = ∅ and Λ = λ0.
(3) If q ≥ p ≥ 2, then

A = ∅;
C = {εi − εj

∣∣ 2 ≤ i ≤ p, 2p ≤ j ≤ p+ q};

Λ = (
1

2
; p− 1

2
, p− 3

2
, . . . ,

3

2
| − 1,−2, . . . ,−(p− 1); q, q − 1, . . . , p).

Proof. We first note that if p = 1, then

h1 = (2 | 0, . . . , 0) or h1 = (2),

so ∆+
n (l) = ∆(p1) = ∅ and both A and C are automatically empty. It follows

that the only possible Λ is Λ = λ0, and this proves the proposition for p = 1. We
continue by induction on p. Let us assume that p ≥ 2, that q ≥ p− 1 is arbitrary,
and that the statement of the proposition is true for GR = SOe(2p− 2, 2p− 3), i.e.,
when p, q are replaced by p′ = p− 1, and q′ = p− 2.

By (5.6), (5.1) and (5.3), we have

Λ = (1
2 − c; q + 1

2 − a1 − d1, q − 1
2 − a2 − d2, . . . , q − p+ 5

2 − ap−1 − dp−1 |(5.8)

| − 1 + b1 + c1,−2 + b2 + c2, . . . ,−(p− 1) + bp−1 + cp−1;

q − p+ 1− e1, q − p− e2, . . . , 1− eq−p+1).

(The third row of the above equation is not there if q = p− 1.)
Using (5.2) and (5.4), we see that the coordinates Λp+1, . . . ,Λp+q are in the

following intervals:

Λ = (. . . | −1 + b1 + c1︸ ︷︷ ︸
[−1,p−1]

,−2 + b2 + c2︸ ︷︷ ︸
[−2,p−2]

, . . . ,−(p− 1) + bp−1 + cp−1︸ ︷︷ ︸
[−(p−1),1]

;

q − p+ 1− e1︸ ︷︷ ︸
[q−2p+2,q]

, q − p− e2︸ ︷︷ ︸
[q−2p+1,q−1]

, . . . , 1− eq−p+1︸ ︷︷ ︸
[−(p−2),p]

).

(The second row of the above equation is not there if q = p− 1.)
So Λp+1, . . . ,Λp+q are q integers between −(p− 1) and q. Moreover, PK(Λ) 6= 0

implies that these integers are nonzero, different from each other, and no two of
them are opposite integers. If q ≥ p, it follows that q, q − 1, . . . , p must each be
equal to some Λi, and the only possibility for that is

Λ2p = q, Λ2p+1 = q − 1, . . . , Λp+q = p.

So e1, . . . , eq−p+1 are all equal to −(p− 1), and hence

εi − εj ∈ C, εi + εj /∈ C, 2 ≤ i ≤ p, 2p ≤ j ≤ p+ q.

(If q = p− 1, the above says nothing and should be skipped.)
This implies

(5.9) q − p+ 1 ≤ di ≤ q − p+ 2, 1 ≤ i ≤ p− 1,

with di = q − p+ 1 if εi+1 /∈ C, and di = q − p+ 2 if εi+1 ∈ C. (If q = p− 1, this
gives no new information about the di. The following arguments all work also in
case q = p− 1 if we delete the last group of coordinates, q, q − 1, . . . , p.)
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Using (5.9) together with the inequalities (5.2), (5.4) for ai and c, we go back to
(5.8) and conclude that Λ1, . . . ,Λp are in the following intervals:

Λ = ( 1
2 − c︸ ︷︷ ︸

[−p+ 3
2 ,

1
2 ]

; q + 1
2 − a1 − d1︸ ︷︷ ︸
[− 1

2 ,p−
1
2 ]

, q − 1
2 − a2 − d2︸ ︷︷ ︸
[− 3

2 ,p−
3
2 ]

, . . . , q − p+ 5
2 − ap−1 − dp−1︸ ︷︷ ︸
[−p+ 3

2 ,
3
2 ]

| . . . )

So Λ1, . . . ,Λp are p half-integers between −p+ 3
2 and p− 1

2 . Moreover, PK(Λ) 6= 0
implies that these half-integers are different from each other, and no two of them
are opposite. It follows that one of them must be equal to p − 1

2 , and the only
possibility is

Λ2 = p− 1

2
.

So a1 = 0 and d1 = q − p+ 1. It follows that

ε2 − εj /∈ A, p+ 1 ≤ j ≤ 2p− 1;

ε2 /∈ C,

and hence

0 ≤ bj ≤ p− 2, 1 ≤ j ≤ p− 1.

These improved inequalities for the bj together with inequalities (5.4) for the cj
imply

Λ = (. . . | −1 + b1 + c1︸ ︷︷ ︸
[−1,p−2]

,−2 + b2 + c2︸ ︷︷ ︸
[−2,p−3]

, . . . ,−(p− 1) + bp−1 + cp−1︸ ︷︷ ︸
[−(p−1),0]

; q, q − 1, . . . , p).

Since Λp+1, . . . ,Λ2p−1 are p− 1 nonzero integers between −(p− 1) and p− 2, with
no two of them equal or opposite to each other, we conclude that

Λ2p−1 = −(p− 1).

This implies

bp−1 = cp−1 = 0,

and hence

εi − ε2p−1 /∈ A, 2 ≤ i ≤ p;
ε1 − ε2p−1 /∈ C,

and

0 ≤ ai ≤ p− 2, 2 ≤ i ≤ p− 1;

0 ≤ c ≤ p− 2.

We see that

Λ = (1
2 − c; p−

1
2 , q −

1
2 − a2 − d2, . . . , q − p+ 5

2 − ap−1 − dp−1 |
| − 1 + b1 + c1, . . . ,−(p− 2) + bp−2 + cp−2,−(p− 1);

q, q − 1, . . . , p).

(The third row is not there if q = p− 1.)
We now consider the subalgebra g′ ∼= so(2p− 2, 2p− 3) of g built on coordinates

ε1, ε3, . . . , εp; εp+1, . . . , ε2p−2,
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so the coordinates 2 and 2p− 1, 2p, . . . , p+ q are deleted. We also consider the real
form of OK′ given by

h′1 = (2, 1, . . . , 1︸ ︷︷ ︸
p−2

| 1, . . . , 1︸ ︷︷ ︸
p−2

),

with centralizer l′ = l ∩ g′. Then

∆+
n (l′) = ∆+

n (l) \ {εi − εj
∣∣ i = 2 or j = 2p− 1};

∆(p′1) = {ε1 − εp+1, . . . , ε1 − ε2p−2; ε3, . . . , εp}.

We set

A′ = A ∩∆+
n (l′) = A;

C ′ = C ∩∆(p′1) = C \ {εi − εj
∣∣ 2 ≤ i ≤ p, 2p ≤ j ≤ p+ q}.

Then

2ρ(A′) = (0; a2, . . . , ap−1 | − b1, . . . ,−bp−2) = (0; a′1, . . . , a
′
p−2 | − b′1, . . . ,−b′p−2);

2ρ(C ′) = (c; d2 − (q − p+ 1), . . . , dp−1 − (q − p+ 1) | − c1, . . . ,−cp−2) =

(c′; d′1, . . . , d
′
p−1 | − c′1, . . . ,−c′p−2),

where we define

a′i = ai+1; b′i = bi; c′i = ci; c′ = c; d′i = di+1 − (q − p+ 1).

The numbers a′i, b
′
i, c
′
i, c
′, d′i satisfy analogues of (5.2) and (5.4). We define λ′0 by

(5.6), but for GR = SOe(2p− 2, 2p− 3), i.e.,

λ′0 = (
1

2
; p− 3

2
, . . . ,

3

2
| − 1,−2, . . . ,−(p− 2)).

Then A′, C ′ and

Λ′ = λ′0 − 2ρ(A′)− 2ρ(C ′)

satisfy all conditions of the proposition, but p, q are reduced to p′ = p − 1, q′ =
p− 2. Moreover, PK(Λ) 6= 0 is equivalent to PK′(Λ

′) 6= 0. Therefore the inductive
assumption implies that A′ = C ′ = ∅, and that Λ′ = λ′0. This implies the statement
of the proposition for A, C and Λ. �

To compute the constant cp,q1 , we have to compute PL∩K(λ0) where λ0 is given
by (5.6), and PK(Λ) for Λ determined in Proposition 5.7. The main ingredients for
this computation are given in the following lemma.

Lemma 5.10. (i) Let P 1
p be the Weyl dimension formula polynomial for so(2p),

p ≥ 1, and let λp = (p− 1
2 , p−

3
2 , . . . ,

1
2 ). Then

P 1
p (λp) = 2p−1.

(ii) Let P 2
q be the Weyl dimension formula polynomial for so(2q + 1), q ≥ 1, and

let P 2
0 be the constant polynomial 1. Furthermore, let µq = (q, q−1, . . . , 1) if q ≥ 1,

and µ0 = 0. Then

P 2
q (µq) = 2q.

Proof. (i) Let n1
p be the numerator of P 1

p ; the denominator is then

d1
p = n1

p(ρso(2p)) = n1
p(p− 1, p− 2, . . . , 1, 0).
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The factors of n1
p(λp) that correspond to the roots εi − εj clearly cancel with the

corresponding factors of d1
p. Denoting by m1

p(λp) respectively e1
p the product of

factors of n1
p(λp) respectively d1

p corresponding to the roots εi + εj , we have

m1
p(λp) = (2p− 2)(2p− 3) . . . (p+ 1)pm1

p−1(λp−1);

e1
p = (2p− 3)(2p− 4) . . . p(p− 1) e1

p−1.

It follows that

P 1
p (λp) =

m1
p(λp)

e1
p

=
(2p− 2)m1

p−1(λp−1)

(p− 1)e1
p−1

= 2P 1
p−1(λp−1).

Since P 1
1 is the constant polynomial 1, this proves (i).

(ii) There is nothing to prove for q = 0, and it is obvious that

P 2
1 (µ1) =

1

1/2
= 2.

For q ≥ 2, let n2
q be the numerator of P 2

q ; the denominator is then

d2
q = n2

q(ρso(2q+1)) = n2
q(q −

1

2
, q − 3

2
, . . . ,

3

2
,

1

2
).

The factors of n2
q(µq) that correspond to the roots εi − εj clearly cancel with the

corresponding factors of d2
q. Denoting by m2

q(µq) respectively e2
q the product of

factors of n2
q(µq) respectively d2

q corresponding to the roots εi + εj and εi, we have

m2
q(µq) = (2q − 1)(2q − 2) . . . (q + 2)(q + 1)q m2

q−1(µq−1);

e2
q = (2q − 2)(2q − 3) . . . (q + 1)q(q − 1

2
) e2
q−1.

It follows that

P 2
q (µq) =

m2
q(µq)

e2
q

=
(2q − 1)m2

q−1(µq−1)

(p− 1
2 )e2

q−1

= 2P 2
q−1(µq−1).

The statement now follows by induction. �

To compute PL∩K(λ0), we recall (5.5), which shows that l ∩ k is up to center
typically a product of three factors: the u(p− 1) on coordinates 2, . . . , p, the u(p−
1) on coordinates p + 1, . . . , 2p − 1, and the so(2(q − p + 1) + 1) on coordinates
2p, . . . , p+ q. (If p = 1, then the first two factors are missing, if q = p− 1 then the
third factor is missing, and if p = 1 and q = 0, then l∩ k is one-dimensional. What
we say below applies also to these cases with obvious modifications.)

It is clear from the definition (5.6) of λ0 that for each of the first two factors,
the corresponding coordinates of λ0 differ from the ρ of the factor by a weight
orthogonal to the roots of the factor, so in the notation of Lemma 5.10,

(5.11) PL∩K(λ0) = P 2
q−p+1(µq−p+1) = 2q−p+1.

To compute PK(Λ), we first write Λ = (ΛL |ΛR) and note that

PK(Λ) = P 1
p (ΛL)P 2

q (ΛR).

To use Lemma 5.10, we have to rearrange coordinates of ΛL and ΛR, and use the
fact that P 1

p is skew for the Weyl group of so(2p), while P 2
q is skew for the Weyl
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group of so(2q + 1). To rearrange ΛL to λp, we only need to bring the 1
2 from the

first coordinate to the p-th coordinate, and hence

(5.12) P 1
p (ΛL) = (−1)p−12p−1.

To bring ΛR to µq = (q, . . . , 1), we need to change p − 1 signs, and then bring
coordinates p − 1, p − 2, . . . , 1, in that order, all the way to the right. The sign
produced in this way is

(−1)(p−1)+(q−p+1)+(q−p+2)+···+(q−1) = (−1)(p−1)(q−p+1)+
(p−1)p

2 .

Since

(5.13)
(p− 1)p

2
≡ [

p

2
] mod 2,

Lemma 5.10 implies that

(5.14) P 2
q (ΛR) = (−1)(p−1)(q−p+1)+[ p2 ]2q.

Now we substitute (5.11), (5.12) and (5.14) into (3.5). Since

#A+ #C = #C = (p− 1)(q − p+ 1),

and since N from (3.3) is easily checked to satisfy

(5.15) N ≡ p mod 2,

we see that the total sign is (−1)[ p2 ]+1, and we conclude

Theorem 5.16. Let GR = SOe(2p, 2q + 1), q ≥ p − 1 ≥ 0, and let cp,q1 be the
constant corresponding to the first real form of OC. Then

cp,q1 = (−1)[ p2 ]+122p−2.

�

5.2. The second real form. This real form exists for all q ≥ p − 1 ≥ 0. The
corresponding h is

h2 = (2, 1, . . . , 1︸ ︷︷ ︸
p−2

,−1 | 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, . . . , 0︸ ︷︷ ︸
q−p+1

).

This real form is conjugate to the first real form by the automorphism σ = sεp , the
reflection with respect to the short noncompact root εp. The automorphism σ of
g clearly satisfies the conditions of Proposition 3.8. Moreover, the number n from
Proposition 3.8 is p− 1; the roots from ∆+

n (l1) that σ sends to −∆+ are

εp − εj , p+ 1 ≤ j ≤ 2p− 1.

Moreover, by (5.15), N1 ≡ p mod 2, and another short computation shows that
N2 is always even. The total sign in Proposition 3.8 is thus

(−1)n+N1+N2 = −1,

so

(5.17) cp,q2 = −cp,q1 = (−1)[ p2 ]22p−2.
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5.3. The third real form. This real form exists for q ≥ p ≥ 1, so we assume this
condition in the following. The corresponding h is

h3 = (1, . . . , 1︸ ︷︷ ︸
p−1

, 0 | 2, 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, . . . , 0︸ ︷︷ ︸
q−p

).

Since l = l3 is built from roots that vanish on h3, we see that

∆+
n (l) = {εi−εj

∣∣ 1 ≤ i ≤ p−1, p+2 ≤ j ≤ 2p}∪{εp±εj
∣∣ 2p+1 ≤ j ≤ p+q}∪{εp}.

It follows that for any A ⊆ ∆+
n (l),

(5.18) 2ρ(A) = (a1, . . . , ap−1;x | 0;−b1, . . . ,−bp−1; y1, . . . , yq−p),

with

0 ≤ ai, bj ≤ p− 1;
∑
i ai =

∑
j bj ;(5.19)

0 ≤ x ≤ 2(q − p) + 1; −1 ≤ yj ≤ 1.

Furthermore, recall that ∆(p1) consists of noncompact roots that are 1 on h3. So

∆(p1) = {εi ± εj
∣∣ 1 ≤ i ≤ p− 1, 2p+ 1 ≤ j ≤ p+ q} ∪ {εi

∣∣ 1 ≤ i ≤ p− 1}∪
∪ {εj ± εp

∣∣ p+ 2 ≤ j ≤ 2p} ∪ {εp+1 − εi
∣∣ 1 ≤ i ≤ p− 1}.

It follows that for any C ⊆ ∆(p1),

(5.20) 2ρ(C) = (c1, . . . , cp−1;u | v; d1, . . . , dp−1; e1, . . . , eq−p),

with

− 1 ≤ ci ≤ 2(q − p) + 1; −(p− 1) ≤ u ≤ p− 1;(5.21)

0 ≤ v ≤ p− 1; 0 ≤ dj ≤ 2; −(p− 1) ≤ ej ≤ p− 1.

If we write (5.18) for A = ∆+
n (l), we get

ρn(l) = (p− 1, . . . , p− 1; 2(q − p) + 1 | 0;−p+ 1, . . . ,−p+ 1; 0, . . . , 0).

This is clearly orthogonal to all roots of l ∩ k, which are equal to

∆(l ∩ k) = {εi − εj
∣∣ 1 ≤ i, j ≤ p− 1} ∪ {εi − εj

∣∣ p+ 2 ≤ i, j ≤ 2p}∪(5.22)

∪{εi ± εj
∣∣ 2p+ 1 ≤ i, j ≤ p+ q} ∪ {ε2p+1, . . . , εp+q}.

By Proposition 3.4, this means that the constant c = cp,q3 satisfies (3.5) for any
λ, and we will compute cp,q3 by using this for λ = λ0, where
(5.23)

λ0 = (q−3

2
, q−5

2
. . . , q−p+1

2
; q−p+1

2
| p−1; 0,−1, . . . ,−(p−2); q−p, q−p−1, . . . , 1).

(Out of the 5 groups of coordinates separated by semicolons and the bar, the first
and the fourth group are missing if p = 1, and the fifth group is missing if q = p.)

Proposition 5.24. Let Λ = λ0−2ρ(A)−2ρ(C), with λ0 given by (5.23), and with
A ⊆ ∆+

n (l) and C ⊆ ∆(p1). Then Λp+1 = 0. In particular, PK(Λ) = 0.

Proof. By (5.23), (5.18) and (5.20), we have

Λ = (q − 3
2 − a1 − c1, . . . , q − p+ 1

2 − ap−1 − cp−1; q − p+ 1
2 − x− u |

| p− 1− v; b1 − d1,−1 + b2 − d2, . . . ,−(p− 2) + bp−1 − dp−1;

q − p− y1 − e1, q − p− 1− y2 − e2, . . . , 1− yq−p − eq−p).
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If p = 1, then the situation is much simpler; in particular, since the coordinates of
h3 are 0 or 2, ∆(p1) is empty, so C = ∅ and 2ρ(C) = 0. It follows that Λp+1 =
Λ2 = p− 1 = 0, and so PK(Λ) = 0 as claimed.

So the proposition is true for p = 1. We continue by induction on p. Let
us assume that p ≥ 2, that q ≥ p is arbitrary, and that the statement of the
proposition is true for GR = SOe(2p − 2, 2p − 1), i.e., when p, q are replaced by
p′ = p− 1, q′ = p− 1.

By (5.23), (5.19) and (5.21), the coordinates Λp+1, . . . ,Λp+q are in the following
intervals:

Λ = (. . . | p− 1− v︸ ︷︷ ︸
[0,p−1]

; b1 − d1︸ ︷︷ ︸
[−2,p−1]

,−1 + b2 − d2︸ ︷︷ ︸
[−3,p−2]

, . . . ,−(p− 2) + bp−1 − dp−1︸ ︷︷ ︸
[−p,1]

;(5.25)

q − p− y1 − e1︸ ︷︷ ︸
[q−2p,q]

, q − p− 1− y2 − e2︸ ︷︷ ︸
[q−2p−1,q−1]

, . . . , 1− yq−p − eq−p︸ ︷︷ ︸
[−(p−1),p+1]

).

So Λp+1, . . . ,Λp+q are q integers between −p and q. Moreover, PK(Λ) 6= 0 implies
that these integers are nonzero, and no two of them are equal or opposite to each
other. It follows that q, q − 1, . . . , p + 1 must each be equal to some Λi, and the
only possibility for that is

Λ2p+1 = q, Λ2p+2 = q − 1, . . . , Λp+q = p+ 1.

It follows that y1, . . . , yq−p are all equal to −1, and that e1, . . . , eq−p are all equal
to −(p− 1). So

εp − εj ∈ A, εp + εj /∈ A, 2p+ 1 ≤ j ≤ p+ q;

εi − εj ∈ C, εi + εj /∈ C, 1 ≤ i ≤ p− 1, 2p+ 1 ≤ j ≤ p+ q.

This implies

q − p ≤ x ≤ q − p+ 1;(5.26)

q − p− 1 ≤ ci ≤ q − p+ 1, 1 ≤ i ≤ p− 1.

Note that x = q−p if εp /∈ A and x = q−p+ 1 if εp ∈ A. Similarly, ci = q−p−1 if
εp+1 − εi ∈ C, εi /∈ C; ci = q − p if εp+1 − εi ∈ C, εi ∈ C or εp+1 − εi /∈ C, εi /∈ C;
and ci = q − p+ 1 if εp+1 − εi /∈ C, εi ∈ C.

Using the same arguments as above, we can also conclude from (5.25) that

Λ2p = −p.

This implies that bp−1 = 0 and dp−1 = 2. It follows that

εi − ε2p /∈ A, 1 ≤ i ≤ p− 1;

ε2p ± εp ∈ C,

so

0 ≤ ai ≤ p− 2, 1 ≤ i ≤ p− 1;(5.27)

− (p− 2) ≤ u ≤ p− 2.
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Using the improved inequalities (5.26) and (5.27), we see that Λ1, . . . ,Λp are in the
following intervals:

Λ = (q − 3
2 − a1 − c1︸ ︷︷ ︸

[− 1
2 ,p−

1
2 ]

, q − 5
2 − a2 − c2︸ ︷︷ ︸

[− 3
2 ,p−

3
2 ]

, . . . , q − p+ 1
2 − ap−1 − cp−1︸ ︷︷ ︸

[−(p− 3
2 ), 32 ]

;

q − p+ 1
2 − x− u︸ ︷︷ ︸

[−(p− 3
2 ),p− 3

2 ]

| . . .

So Λ1, . . . ,Λp are p half-integers between −(p− 3
2 ) and p− 1

2 , such that no two of
them are equal or opposite to each other. It follows that

Λ1 = p− 1

2
,

and consequently a1 = 0, c1 = q − p+ 1. Therefore,

ε1 − εj /∈ A, p+ 2 ≤ j ≤ 2p;

εp+1 − ε1 ∈ C, ε1 /∈ C,

and we conclude that

0 ≤ bj ≤ p− 2, 1 ≤ j ≤ p− 1;

1 ≤ v ≤ p− 1.

We see that

Λ = (p− 1
2 , q −

5
2 − a2 − c2, . . . , q − p+ 1

2 − ap−1 − cp−1; q − p+ 1
2 − x− u |

| p− 1− v; b1 − d1, . . . ,−(p− 3) + bp−2 − dp−2,−p;
q, q − 1, . . . , p+ 1).

(If q = p, the coordinates q, . . . , p+1 are not there; if p = 2 there are no coordinates
involving ai, ci, bi or di.)

We now consider the subalgebra g′ ∼= so(2p− 2, 2p− 1) of g built on coordinates

ε2, ε3, . . . , εp; εp+1, . . . , ε2p−1,

so the coordinates 1 and 2p, 2p+ 1, . . . , p+ q are deleted. We also consider the real
form of OK′ given by

h′3 = (1, . . . , 1︸ ︷︷ ︸
p−2

, 0 | 2, 1, . . . , 1︸ ︷︷ ︸
p−2

),

with centralizer l′ = l ∩ g′. Then

∆+
n (l′) = {εi − εj

∣∣ 2 ≤ i ≤ p− 1, p+ 2 ≤ j ≤ 2p− 1} ∪ {εp};
∆(p′1) = {ε2, . . . , εp−1} ∪ {εj ± εp

∣∣ p+ 2 ≤ j ≤ 2p− 1}∪
∪ {εp+1 − εi

∣∣ 2 ≤ i ≤ p− 1}.

We set

A′ = A ∩∆+
n (l′) = A \ {εp − εj

∣∣ 2p+ 1 ≤ j ≤ p+ q};
C ′ = C ∩∆(p′1) =

C \ {ε2p ± εp; εp+1 − ε1; εi − εj
∣∣ 1 ≤ i ≤ p− 1, 2p+ 1 ≤ j ≤ p+ q}.
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Then

2ρ(A′) = (a2, . . . , ap−1;x− (q − p) | 0;−b1, . . . ,−bp−2) =

(a′1, . . . , a
′
p−2;x′ | 0;−b′1, . . . ,−b′p−2);

2ρ(C ′) = (c2 − (q − p), . . . , cp−1 − (q − p);u | v − 1; d1, . . . , dp−2) =

(c′1, . . . , c
′
p−2;u′ | v′; d′1, . . . , d′p−2),

where we define

a′i = ai+1; x′ = x− (q − p); b′i = bi;

c′i = ci+1 − (q − p); u′ = u; v′ = v − 1; d′i = di.

The numbers a′i, x
′, b′i, c

′
i, u
′, v′, d′i satisfy analogues of (5.19) and (5.21).

We define λ′0 by (5.23), but for GR = SOe(2p− 2, 2p− 1), i.e.,

λ′0 = (p− 5

2
, p− 7

2
, . . . ,

1

2
;

1

2
; | p− 2; 0,−1, . . . ,−(p− 3)).

Then A′, C ′ and

Λ′ = λ′0 − 2ρ(A′)− 2ρ(C ′)

satisfy all conditions of the proposition, but p, q are reduced to p′ = p−1, q′ = p−1.
Therefore the inductive assumption implies that Λ′p = 0. So v′ = p−2, and therefore
v = p − 1 and Λp+1 = 0. It follows that PK(Λ) = 0, since Λ is orthogonal to the
compact root εp+1. �

Proposition 5.24 implies that the left hand side of (3.5) is 0 in this case. On the
other hand,

PL∩K(λ0) 6= 0

by (5.23) and (5.22). We conclude

Theorem 5.28. For GR = SOe(2p, 2q+ 1), q ≥ p ≥ 1, the constant corresponding
to the third real form is

cp,q3 = 0.

6. The case GR = Sp(2n,R), n ≤ 1

The real forms of OC correspond to integers p such that 0 ≤ p ≤ n. We denote
n− p by q. The h corresponding to p is

hp = (1, . . . , 1︸ ︷︷ ︸
p

, −1, . . . ,−1︸ ︷︷ ︸
q

), p = 0, 1, . . . , n.

Since l = lp is built from roots that vanish on hp, we see that

∆+
n (l) = {εi + εp+j

∣∣ 1 ≤ i ≤ p, 1 ≤ j ≤ q}.

It follows that for any A ⊆ ∆+
n (l),

(6.1) 2ρ(A) = (a1, . . . , ap | b1, . . . , bq),

with

0 ≤ ai ≤ q, 0 ≤ bj ≤ p,
∑
i ai =

∑
j bj .(6.2)

In particular,

ρn(l) = (q, . . . , q | p, . . . , p),
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and this is clearly orthogonal to the roots of l ∩ k, which are given by

∆+(l ∩ k) = {εi − εj
∣∣ 1 ≤ i < j ≤ p} ∪ {εp+i − εp+j

∣∣ 1 ≤ i < j ≤ q}.

So the constants c = cnp can be calculated from (3.5). Since it is clear that in our
present case

∆(p1) = ∅,
(3.5) becomes

(6.3)
∑

A⊆∆+
n (l)

(−1)#APK(λ− 2ρ(A)) = cPL∩K(λ).

We take λ = λ0, where

(6.4) λ0 = (n, n− 1, . . . , q + 1 |n, n− 1, . . . , p+ 1),

(If p is 0 or n, then there is only one group of coordinates in the above expression,
and λ0 = (n, n− 1, . . . , 1).)

Since λ0 differs from ρl∩k by a weight orthogonal to all roots of l ∩ k,

PL∩K(λ0) = 1.

So to compute cnp we have to compute the left side of (6.3). The following propo-
sition describes the relevant A and the corresponding Λ.

Proposition 6.5. Let Λ = λ0−2ρ(A), with λ0 given by (6.4), and with A ⊆ ∆+
n (l).

(i) If p and q are both odd, then PK(Λ) = 0 for all Λ as above.
(ii) Suppose that at least one of p, q is even, and suppose that for some A the

corresponding Λ satisfies PK(Λ) 6= 0. Then:

(1) If p = 0 or q = 0, then A = ∅ and Λ = λ0 = (n, n− 1, . . . , 1).
(2) If 0 < p < n, let r = [p2 ] and s = [ q2 ]. Then there is a shuffle

1 ≤ i1 < · · · < ir ≤ r + s; 1 ≤ j1 < · · · < js ≤ r + s

of 1, 2, . . . , r + s such that

A = {αu,v, βu,v
∣∣ 1 ≤ u ≤ r, 1 ≤ v ≤ s} ∪B,

where

αu,v = εp+1−u + εn+1−v; βu,v =

{
εp+1−u + εp+v, iu < jv;
εu + εn+1−v, iu > jv.

and

B =

 ∅, p, q even;
{εr+1 + εp+j | s+ 1 ≤ j ≤ q}, p odd;
{εi + εp+s+1 | r + 1 ≤ i ≤ p}, q odd.

The corresponding Λ has coordinates

Λ1 = n+ 1− i1, . . . ,Λr = n+ 1− ir; Λp−r+1 = ir, . . . ,Λp = i1;

Λp+1 = n+ 1− j1, . . . ,Λp+s = n+ 1− js; Λn−s+1 = js, . . . ,Λn = j1,

and possibly in addition

Λp−r = n− r − s, if p is odd; Λn−s = n− r − s, if q is odd.



26 SALAH MEHDI, PAVLE PANDŽIĆ, DAVID VOGAN, AND ROGER ZIERAU

Proof. The statement is obviously true for any n if p = 0 or q = 0. Hence it is true
for n = 1. If n = 2 and p = q = 1, there are two cases:

A = ∅, or A = {ε1 + ε2}.

If A = ∅, then Λ = Λ0 = (n |n), so PK(Λ) = 0. If A = {ε1 + ε2}, then Λ =
(n− 1 |n− 1), and again PK(Λ) = 0. So the proposition is true for n = 2.

We proceed by induction on n. Assume that n > 2 and p, q ≥ 1, and assume
that the proposition is true for n− 2.

Using the definitions and the inequalities (6.2), we see that

Λ = (n− a1︸ ︷︷ ︸
[p,n]

, n− 1− a2︸ ︷︷ ︸
[p−1,n−1]

, . . . , q + 1− ap︸ ︷︷ ︸
[1,q+1]

|n− b1︸ ︷︷ ︸
[q,n]

, n− 1− b2︸ ︷︷ ︸
[q−1,n−1]

, . . . ,

p+ 1− bq︸ ︷︷ ︸
[1,p+1]

).

So the coordinates of Λ are n integers between 1 and n, and assuming that PK(Λ) 6=
0, they have to be different from each other, i.e., Λ has to be a permutation of
(n, . . . , 1). In particular, some Λi must be equal to n and there are two possibilities:

(6.6) Λ1 = n or Λp+1 = n.

Assume first that Λ1 = n. Then

a1 = 0,

and it follows that

ε1 + εp+j /∈ A, 1 ≤ j ≤ q.
This implies that

0 ≤ bj ≤ p− 1, 1 ≤ j ≤ q,
and so

Λ = (n, n− 1− a2︸ ︷︷ ︸
[p−1,n−1]

, . . . , q + 1− ap︸ ︷︷ ︸
[1,q+1]

|n− b1︸ ︷︷ ︸
[q+1,n]

, n− 1− b2︸ ︷︷ ︸
[q,n−1]

, . . . ,

p+ 1− bq︸ ︷︷ ︸
[2,p+1]

).

If p = 1, then there is only Λ1 = n in the left group of coordinates, and we see
there is no place to put the coordinate 1. Therefore, if p = 1 then Λ1 can not be n,
hence Λp+1 = n, so we are in the second case which we treat below. If p > 1, then
there is exactly one place where 1 can be, i.e.,

Λp = 1.

This implies

ap = q,

and therefore

εp + εp+j ∈ A, 1 ≤ j ≤ q.
It follows that

1 ≤ bj ≤ p− 1, 1 ≤ j ≤ q,
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and so

Λ = (n, n− 1− a2︸ ︷︷ ︸
[p−1,n−1]

, . . . , q + 2− ap−1︸ ︷︷ ︸
[2,q+2]

, 1 | n− b1︸ ︷︷ ︸
[q+1,n−1]

, n− 1− b2︸ ︷︷ ︸
[q,n−2]

, . . . ,

p+ 1− bq︸ ︷︷ ︸
[2,p]

).

Let now g′ ∼= sp(2(n− 2),R) be the subalgebra of g built on coordinates 2, . . . , p−
1, p+ 1, . . . , n, and let l′ = l ∩ g′. Then

∆+
n (l′) = ∆+

n (l) \ {ε1 + εp+j , εp + εp+j
∣∣ 1 ≤ j ≤ q},

and we set

A′ = A \ {εp + εp+j
∣∣ 1 ≤ j ≤ q}.

We define λ0 as in (6.4), but with n replaced by n − 2 and p replaced by p − 2.
Then Λ′ corresponding to A′ can be obtained from Λ by deleting coordinates Λ1

and Λp, and decreasing all the other coordinates by 1. We now see that Λ is a
permutation of (n, . . . , 1) if and only if Λ′ is a permutation of (n − 2, . . . , 1). By
inductive assumption, this is equivalent to A′ and Λ′ being defined by a shuffle as
in the statement of the proposition, and this clearly implies the same statement for
A and Λ.

The other possibility in (6.6) is handled analogously: Λp+1 = n implies

b1 = 0,

and it follows that

εi + εp+1 /∈ A, 1 ≤ i ≤ p.
This implies that

0 ≤ ai ≤ q − 1, 1 ≤ i ≤ p,
and so

Λ = (n− a1︸ ︷︷ ︸
[p+1,n]

, n− 1− a2︸ ︷︷ ︸
[p,n−2]

, . . . , q + 1− ap︸ ︷︷ ︸
[2,q]

|n, n− 1− b2︸ ︷︷ ︸
[q−1,n−1]

, . . . ,

p+ 1− bq︸ ︷︷ ︸
[1,p+1]

).

If q = 1, then there is only Λp+1 = n in the right group of coordinates, and we see
there is no place to put the coordinate 1. Therefore, if q = 1, Λp+1 can not be n
and we are back to the first case that we already handled. If q > 1, then there is
exactly one place where 1 can be, i.e.,

Λn = 1.

This implies

bq = p,

and therefore

εi + εn ∈ A, 1 ≤ i ≤ p.
It follows that

1 ≤ ai ≤ q − 1, 1 ≤ i ≤ p,
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and so

Λ = ( n− a1︸ ︷︷ ︸
[p+1,n−1]

n− 1− a2︸ ︷︷ ︸
[p,n−2]

, . . . , q + 1− ap︸ ︷︷ ︸
[2,q]

|n, n− 1− b2︸ ︷︷ ︸
[q−1,n−1]

, n− 2− b3︸ ︷︷ ︸
[q−2,n−2]

, . . . ,

p+ 2− bq−1︸ ︷︷ ︸
[2,p+1]

, 1).

We now reason in the same way as in the first case, and conclude that the propo-
sition follows from the inductive assumption for n− 2 with p staying the same and
q being replaced by q − 2. �

To finish the computation of the constant cnp , we first note that for every A
described in Proposition 6.5(ii)

(6.7) #A =
pq

2
.

Namely, the αu,v and βu,v make for 2rs elements of A. In addition, the set B has
0 elements if p and q are even, s elements if p is odd, and r elements if q is odd. So
the total number of elements is

2rs =
pq

2
, p, q even;

2rs+ s = (2r + 1)s = p
q

2
, p odd;

2rs+ r = r(2s+ 1) =
p

2
q, q odd.

On the other hand, since Λ is a permutation of (n, . . . , 1), PK(Λ) is equal to ±1.
To compute the sign, we need to find the parity of the permutation bringing Λ to
(n, . . . , 1). This parity can be found by counting the number of inversions in Λ when
compared with (n, . . . , 1), i.e., counting the number of pairs (i, j), 1 ≤ i < j ≤ n,
such that Λi < Λj . We know from Proposition 6.5 that

(6.8) Λ = (n+ 1− i1, . . . , n+ 1− ir, ir, . . . , i1 |n+ 1− j1, . . . , n+ 1− js, js, . . . , j1)

if p and q are both even. It is clear that ir, . . . , i1 are in inversion with n + 1 −
j1, . . . , n + 1 − js; that is rs inversions. The further inversions are possible only
between groups

(6.9) n+ 1− i1, . . . , n+ 1− ir and n+ 1− j1, . . . , n+ 1− js,
and

(6.10) ir, . . . , i1 and js, . . . , j1.

If iu is in inversion with jv, i.e., iu < jv, then n+ 1− iu > n+ 1− jv, i.e., n+ 1− iu
is not in inversion with n + 1 − jv. The converse also holds, and it follows that
the total number of inversions in groups (6.9) and (6.10) is again rs. So the total
number of inversions in case p and q are even is

2rs =
pq

2
.

If p is odd, then Λ is again given by (6.8), except that there is in addition r+ s+ 1
between n− ir and ir. This coordinate is in inversion with the coordinates n+ 1−
j1, . . . , n+ 1− js, and with no others, so the total number of inversions in this case
is

2rs+ s =
pq

2
.
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Similarly, if q is odd, then Λ is given by (6.8), with the addition of r+s+1 between
n + 1 − js and js. This coordinate is in inversion with the coordinates ir, . . . , i1,
and with no others, so the total number of inversions in this case is

2rs+ r =
pq

2
.

So we have proved that for each Λ from Proposition 6.5,

PK(Λ) = (−1)
pq
2 .

Combined with (6.7), and with the fact that N from (3.3) is in this case

N =

(
p

2

)
+ pq + p ≡ [

p+ 1

2
] mod 2,

this tells us that the nonzero contributions to the sum in (6.3) are all equal to

(−1)[ p+1
2 ]. Since the number of nonzero summands is by Proposition 6.5 equal to

the number of (r, s)-shuffles of r + s, i.e., to
(
r+s
r

)
, we have proved:

Theorem 6.11. Let GR = Sp(2n,R), n ≥ 1, and let p, 0 ≤ p ≤ n, be an integer.
Let r = [p2 ] and let s = [n−p2 ]. Then the constant cnp for the real form of OC

corresponding to p is

cnp =

{
0, if n is even and p is odd;

(−1)[ p+1
2 ]
(
r+s
r

)
, if n is odd, or if n is even and p is even.

7. The case GR = SOe(2p, 2q), q ≥ p ≥ 1

There are three real forms of OC if q > p > 1, four if q = p > 1, and two if p=1.

7.1. The first real form. This real form is defined in all cases; it corresponds to

h1 = (2, 1, . . . , 1︸ ︷︷ ︸
p−1

| 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, . . . , 0︸ ︷︷ ︸
q−p+1

).

Since l = l1 is built from roots that vanish on h1, we see that

∆+
n (l) = {εi − εj

∣∣ 2 ≤ i ≤ p, p+ 1 ≤ j ≤ 2p− 1}.

It follows that for any A ⊆ ∆+
n (l),

(7.1) 2ρ(A) = (0; a1, . . . , ap−1 | − b1, . . . ,−bp−1; 0, . . . , 0),

with

(7.2) 0 ≤ ai, bj ≤ p− 1;
∑
i ai =

∑
j bj .

Furthermore, recall that ∆(p1) consists of noncompact roots that are 1 on h1. So

∆(p1) = {ε1 − εj
∣∣ p+ 1 ≤ j ≤ 2p− 1} ∪ {εi ± εj

∣∣ 2 ≤ i ≤ p, 2p ≤ j ≤ p+ q}.
It follows that for any C ⊆ ∆(p1),

(7.3) 2ρ(C) = (c; d1, . . . , dp−1 | − c1, . . . ,−cp−1; e1, . . . , eq−p+1),

with

0 ≤ cj ≤ 1; 0 ≤ c ≤ p− 1; c =
∑
j cj ;(7.4)

0 ≤ di ≤ 2(q − p+ 1); −(p− 1) ≤ ej ≤ p− 1.
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(If p = 1, then

h1 = (2 | 0, . . . , 0),

so ∆+
n (l) = ∆(p1) = ∅.)

By (7.1),

ρn(l) = (0, p− 1, . . . , p− 1 | − p+ 1, . . . ,−p+ 1, 0, . . . , 0).

This is clearly orthogonal to all roots of l ∩ k, which are equal to

∆(l ∩ k) = {εi − εj
∣∣ 2 ≤ i, j ≤ p} ∪ {εi − εj ∣∣ p+ 1 ≤ i, j ≤ 2p− 1}∪(7.5)

∪{εi ± εj
∣∣ 2p ≤ i, j ≤ p+ q}.

By Proposition 3.4, this means that we can determine the constant c = cp,q1 from
the equation (3.5). We apply (3.5) for λ = λ0, where

λ0 = (
1

2
; q − 1

2
, q − 3

2
. . . , q − p+

3

2
|(7.6)

| − 3

2
,−5

2
, . . . ,−(p− 1

2
); q − p+

1

2
, . . . ,

3

2
,

1

2
) if p ≥ 2;

λ0 = (
1

2
| q − 1

2
, q − 3

2
, . . . ,

1

2
) if p = 1.

Proposition 7.7. Let Λ = λ0 − 2ρ(A) − 2ρ(C), with λ0 given by (7.6), and with
A ⊆ ∆+

n (l) and C ⊆ ∆(p1). If PK(Λ) 6= 0, then:

(1) If p = 1, then A = C = ∅ and Λ = λ0.
(2) If p ≥ 2, then

A = ∅;
C = {εi − εj

∣∣ 2 ≤ i ≤ p, 2p ≤ j ≤ p+ q − 1};

Λ = (
1

2
; p− 1

2
, p− 3

2
, . . . ,

3

2
| − 3

2
,−5

2
, . . . ,−(p− 1

2
); q − 1

2
, q − 3

2
, . . . , p+

1

2
,

1

2
).

Proof. The proposition is clear if p = 1, since in that case ∆+
n (l) = ∆(p1) = ∅. We

continue by induction on p. Let p ≥ 2 and let q ≥ p be arbitrary. We assume that
the proposition is true for p′ = p − 1 and q′ = p − 1, and we show it is then also
true for p and q.

By (7.6), (7.1) and (7.3), we have

Λ = (1
2 − c; q −

1
2 − a1 − d1, q − 3

2 − a2 − d2, . . . , q − p+ 3
2 − ap−1 − dp−1 |

| − 3
2 + b1 + c1,− 5

2 + b2 + c2, . . . ,−(p− 1
2 ) + bp−1 + cp−1;

q − p+ 1
2 − e1, q − p− 1

2 − e2, . . . ,
3
2 − eq−p,

1
2 − eq−p+1).

Using (7.2) and (7.4), we see that the coordinates Λp+1, . . . ,Λp+q are in the
following intervals:

Λ = (. . . | − 3
2 + b1 + c1︸ ︷︷ ︸
[− 3

2 ,p−
3
2 ]

,− 5
2 + b2 + c2︸ ︷︷ ︸
[− 5

2 ,p−
5
2 ]

, . . . ,−(p− 1
2 ) + bp−1 + cp−1︸ ︷︷ ︸
[−(p− 1

2 ), 12 ]

;

q − p+ 1
2 − e1︸ ︷︷ ︸

[q−2p+ 3
2 ,q−

1
2 ]

, q − p− 1
2 − e2︸ ︷︷ ︸

[q−2p+ 1
2 ,q−

3
2 ]

, . . . , 3
2 − eq−p︸ ︷︷ ︸

[−(p− 5
2 ),p+ 1

2 ]

1
2 − eq−p+1︸ ︷︷ ︸

[−(p− 3
2 ),p− 1

2 ]

).

So Λp+1, . . . ,Λp+q are q half-integers between −(p − 1
2 ) and q − 1

2 . Moreover,
PK(Λ) 6= 0 implies that no two of these half-integers are equal or opposite to each
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other. If q > p, it follows that q − 1
2 , q −

3
2 , . . . , p + 1

2 must each be equal to some
Λi, and the only possibility for that is

Λ2p = q − 1

2
, Λ2p+1 = q − 3

2
, . . . , Λp+q−1 = p+

1

2
.

So e1, . . . , eq−p are all equal to −(p− 1), and hence

εi − εj ∈ C, εi + εj /∈ C, 2 ≤ i ≤ p, 2p ≤ j ≤ p+ q − 1.

(If q = p, the above says nothing and should be skipped.)
This implies

(7.8) q − p ≤ di ≤ q − p+ 2, 1 ≤ i ≤ p− 1,

with di being q − p if εi+1 ± εp+q /∈ C, di = q − p + 2 if εi+1 ± εp+q ∈ C, and
di = q − p + 1 if one of the roots εi+1 ± εp+q is in C while the other is not in C.
(If q = p, this gives no new information about the di. The following arguments all
work also in case q = p if we delete the group of coordinates from place 2p to place
p+ q − 1.)

Looking at the bounds for coordinates Λp+1, . . . ,Λ2p−1 and Λp+q, we see that
they are p half-integers between −(p− 1

2 ) and p− 1
2 , such that no two of them are

equal or opposite to each other. It follows that some of these Λj must be equal to
±(p− 1

2 ). There are two possibilities:

Λ2p−1 = −(p− 1

2
) or Λp+q = p− 1

2
.

Let us first examine the possibility that Λp+q = p− 1
2 . If this is true, then ep+q =

−(p− 1), so

εi+1 − εp+q ∈ C, εi+1 + εp+q /∈ C, 1 ≤ i ≤ p− 1,

and it follows that
di = q − p+ 1, 1 ≤ i ≤ p− 1.

Using this together with the inequalities (7.2), (7.4) for ai and c, we see

Λ = ( 1
2 − c︸ ︷︷ ︸

[−(p− 3
2 ), 12 ]

; p− 3
2 − a1︸ ︷︷ ︸

[− 1
2 ,p−

3
2 ]

, p− 5
2 − a2︸ ︷︷ ︸

[− 3
2 ,p−

5
2 ]

, . . . , 1
2 − ap−1︸ ︷︷ ︸

[−(p− 3
2 ), 12 ]

| . . . ).

So Λ1, . . . ,Λp are p half-integers between −(p− 3
2 ) and p− 3

2 . Moreover, PK(Λ) 6= 0
implies that no two of these half-integers are equal or opposite to each other. This
is impossible, and so Λp+q can not be p− 1

2 .
It follows that

Λ2p−1 = −(p− 1

2
),

and hence
bp−1 = 0; cp−1 = 0.

This implies that

εi − ε2p−1 /∈ A, 2 ≤ i ≤ p;
ε1 − ε2p−1 /∈ C,

and therefore

0 ≤ ai ≤ p− 2, 1 ≤ i ≤ p− 1;(7.9)

0 ≤ c ≤ p− 2.
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Using (7.9) and (7.8), we see that Λ1, . . . ,Λp are in the following intervals:

Λ = ( 1
2 − c︸ ︷︷ ︸

[−(p− 5
2 ), 12 ]

; q − 1
2 − a1 − d1︸ ︷︷ ︸
[− 1

2 ,p−
1
2 ]

, q − 3
2 − a2 − d2︸ ︷︷ ︸
[− 3

2 ,p−
3
2 ]

, . . . , q − p+ 3
2 − ap−1 − dp−1︸ ︷︷ ︸

[−(p− 3
2 ), 32 ]

| . . . ).

So Λ1, . . . ,Λp are p half-integers between −(p − 3
2 ) and p − 1

2 . As before, these
half-integers must be different from each other, and no two of them are opposite,
so one of them must be equal to p− 1

2 , and the only possibility is

Λ2 = p− 1

2
.

So

a1 = 0; d1 = q − p.

It follows that

ε2 − εj /∈ A, p+ 1 ≤ j ≤ 2p− 1;

ε2 ± εp+q /∈ C,

and hence

0 ≤ bj ≤ p− 2, 1 ≤ j ≤ p− 1;

− (p− 2) ≤ eq−p+1 ≤ p− 2.

So we see that

Λ = (1
2 − c; p−

1
2 , q −

3
2 − a2 − d2, . . . , q − p+ 3

2 − ap−1 − dp−1 |
| − 3

2 + b1 + c1, . . . ,−(p− 3
2 ) + bp−2 + cp−2,−(p− 1

2 );

q − 1
2 , q −

3
2 , . . . , p+ 1

2 ,
1
2 − eq−p+1).

(The coordinates q − 1
2 , q −

3
2 , . . . , p+ 1

2 are not there if q = p.)
We now consider the subalgebra g′ ∼= so(2p− 2, 2p− 3) of g built on coordinates

ε1; ε3, . . . , εp; εp+1, . . . , ε2p−2; εp+q,

so the coordinates 2 and 2p− 1, 2p, . . . , p+ q − 1 are deleted. We also consider the
real form of OK′ given by

h′1 = (2, 1, . . . , 1︸ ︷︷ ︸
p−2

| 1, . . . , 1︸ ︷︷ ︸
p−2

, 0),

with centralizer l′ = l ∩ g′. Then

∆+
n (l′) = {εi − εj

∣∣ 3 ≤ i ≤ p, p+ 1 ≤ j ≤ 2p− 2};
∆(p′1) = {ε1 − εj

∣∣ p+ 1 ≤ j ≤ 2p− 2} ∪ {εi ± εp+q
∣∣ 3 ≤ i ≤ p}.

We set

A′ = A ∩∆+
n (l′) = A;

C ′ = C ∩∆(p′1) = C \ {εi − εj
∣∣ 2 ≤ i ≤ p, 2p ≤ j ≤ p+ q − 1}.
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Then

2ρ(A′) = (0; a2, . . . , ap−1 | − b1, . . . ,−bp−2; 0) =

(0; a′1, . . . , a
′
p−2 | − b′1, . . . ,−b′p−2; 0);

2ρ(C ′) = (c; d2 − (q − p), . . . , dp−1 − (q − p) | − c1, . . . ,−cp−2; eq−p+1) =

(c′; d′1, . . . , d
′
p−1 | − c′1, . . . ,−c′p−2; e′q−p+1),

where we define

a′i = ai+1; b′i = bi; c′i = ci; c′ = c;

d′i = di+1 − (q − p); e′q−p+1 = eq−p+1.

The numbers a′i, b
′
i, c
′
i, c
′, d′i satisfy analogues of (7.2) and (7.4). We define λ′0 by

(7.6), but for GR = SOe(2p− 2, 2p− 1), i.e.,

λ′0 = (
1

2
; p− 3

2
, . . . ,

3

2
| − 3

2
,−5

2
, . . . ,−(p− 3

2
);

1

2
).

Then A′, C ′, and

Λ′ = λ′0 − 2ρ(A′)− 2ρ(C ′)

satisfy all conditions of the proposition, but p, q are reduced to p′ = p − 1, q′ =
p− 1. Moreover, PK(Λ) 6= 0 is equivalent to PK′(Λ

′) 6= 0. Therefore the inductive
assumption implies that A′ = C ′ = ∅, and that Λ′ = λ′0. This implies the statement
of the proposition for A, C and Λ. �

In view of (3.5), to compute the constant c = cp,q1 we need to compute PL∩K(λ0)
and PK(Λ), where λ0 is given by (7.6), and Λ is given by Proposition 7.7.

To compute PL∩K(λ0), we note that we described l∩k in (7.5); it has up to three
factors, two of which are u(p−1), and the third is so(2(q−p+ 1)). From the shape
of λ0 it now follows that, in the notation of Lemma 5.10,

PL∩K(λ0) = P 1
q−p+1(λq−p+1),

and we see that Lemma 5.10(i) implies that

PL∩K(λ0) = 2q−p.

To compute PK(Λ), with Λ as in Proposition 7.7, we first write Λ = (ΛL |ΛR) and
note that

PK(Λ) = P 1
p (ΛL)P 1

q (ΛR).

To use Lemma 5.10, we have to rearrange coordinates of ΛL and ΛR, using the
fact that P 1

p is skew for the Weyl group of so(2p), while P 1
q is skew for the Weyl

group of so(2q). Moreover, both polynomials are invariant under sign changes of
the variables; this follows since the sign change of the j-th coordinate switches roots
εi − εj and εi + εj .

To rearrange ΛL to λp, we only need to bring the 1
2 from the first coordinate to

the p-th coordinate, and hence

P 1
p (ΛL) = (−1)p−12p−1.

To bring ΛR to µq = (q, . . . , 1), after removing the signs which does not change the
expression, we need to bring coordinates p − 1

2 , p −
3
2 , . . . ,

3
2 , in that order, to the

right of p+ 1
2 , leaving 1

2 at the end. The sign produced in this way is

(−1)(q−p)+(q−p+1)+···+(q−2) = (−1)(p−1)(q−p−1)+
(p−1)p

2 = (−1)(p−1)(q−p−1)+[ p2 ],
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and it follows from Lemma 5.10 that

P 1
q (ΛR) = (−1)(p−1)(q−p−1)+[ p2 ]2q−1.

Putting this together with the fact that

#A+ #C = #C = (p− 1)(q − p),

that N of (3.3) satisfies

(7.10) N ≡ p− 1 mod 2,

and that

[
p

2
] + p− 1 ≡ [

p− 1

2
] mod 2,

we see that (3.5) implies

Theorem 7.11. For GR = SOe(2p, 2q), q ≥ p ≥ 1, the constant cp,q1 is

cp,q1 = (−1)[ p−1
2 ]22p−2.

�

7.2. The second real form. This real form exists for q ≥ p ≥ 2. It corresponds
to

h2 = (2, 1, . . . , 1︸ ︷︷ ︸
p−2

,−1 | 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, . . . , 0︸ ︷︷ ︸
q−p+1

).

This real form is conjugate to the first real form by the automorphism σ which acts
on h by changing the sign of the p-th coordinate, and leaving all other coordinates
the same. On the level of g, this is an outer automorphism, which become the
standard one if we compose it with the isomorphism so(2p, 2q) ∼= so(2q, 2p). The
automorphism σ satisfies the conditions of Lemma 3.8, and we just have to compute
the sign. The number n from Proposition 3.8 is, as in Subsection 5.1, equal to p−1.
The number N1 is by (7.10) congruent to p− 1 modulo 2. Finally, N2 is easily seen
to be always even. The conclusion is that there is no sign in Proposition 3.8, so

(7.12) cp,q2 = cp,q1 = (−1)[ p−1
2 ]22p−2.

7.3. The third real form. This real form exists for all q ≥ p ≥ 1. It corresponds
to

h3 = (1, . . . , 1︸ ︷︷ ︸
p−1

, 0 | 2, 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, . . . , 0︸ ︷︷ ︸
q−p

).

Since l = l3 is built from roots that vanish on h3, we see that

∆+
n (l) = {εi − εj

∣∣ 1 ≤ i ≤ p− 1, p+ 2 ≤ j ≤ 2p} ∪ {εp ± εj
∣∣ 2p+ 1 ≤ j ≤ p+ q}.

It follows that for any A ⊆ ∆+
n (l),

(7.13) 2ρ(A) = (a1, . . . , ap−1;x | 0;−b1, . . . ,−bp−1; y1, . . . , yq−p),

with

0 ≤ ai, bj ≤ p− 1;
∑
i ai =

∑
j bj ;(7.14)

0 ≤ x ≤ 2(q − p); −1 ≤ yj ≤ 1.
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Furthermore, recall that ∆(p1) consists of noncompact roots that are 1 on h3. So

∆(p1) = {εi ± εj
∣∣ 1 ≤ i ≤ p− 1, 2p+ 1 ≤ j ≤ p+ q}∪
∪ {εj ± εp

∣∣ p+ 2 ≤ j ≤ 2p} ∪ {εp+1 − εi
∣∣ 1 ≤ i ≤ p− 1}.

It follows that for any C ⊆ ∆(p1),

(7.15) 2ρ(C) = (c1, . . . , cp−1;u | v; d1, . . . , dp−1; e1, . . . , eq−p),

with

− 1 ≤ ci ≤ 2(q − p); −(p− 1) ≤ u ≤ p− 1;(7.16)

0 ≤ v ≤ p− 1; 0 ≤ dj ≤ 2; −(p− 1) ≤ ej ≤ p− 1.

If we write (7.13) for A = ∆+
n (l), we get

ρn(l) = (p− 1, . . . , p− 1; 2(q − p) | 0;−p+ 1, . . . ,−p+ 1; 0, . . . , 0).

This is clearly orthogonal to all roots of l ∩ k, which are equal to

∆(l ∩ k) = {εi − εj
∣∣ 1 ≤ i, j ≤ p− 1} ∪ {εi − εj

∣∣ p+ 2 ≤ i, j ≤ 2p}∪(7.17)

∪{εi ± εj
∣∣ 2p+ 1 ≤ i, j ≤ p+ q}.

By Proposition 3.4, this means that we can determine the constant c = cp,q3 from
the equation (3.5). We will use this for λ = λ0, where

λ0 = (q − 3

2
, q − 5

2
. . . , q − p+

1

2
; q − p+

1

2
| p− 3

2
;

1

2
,−1

2
, . . . ,−p+

5

2
;(7.18)

q − p− 1

2
, q − p− 3

2
, . . . ,

1

2
).

(Out of the 5 groups of coordinates separated by semicolons and the bar, the first
and the fourth group are missing if p = 1, and the fifth group is missing if q = p.)

Proposition 7.19. Let Λ = λ0−2ρ(A)−2ρ(C), with λ0 given by (7.18), and with
A ⊆ ∆+

n (l) and C ⊆ ∆(p1). If PK(Λ) 6= 0, then

(1) If q > p ≥ 2, then

A = {εp − εj
∣∣ 2p+ 1 ≤ j ≤ p+ q};

C = {εi − εj
∣∣ 1 ≤ i ≤ p− 1, 2p+ 1 ≤ j ≤ p+ q}∪

∪ {εj ± εp
∣∣ p+ 2 ≤ j ≤ 2p} ∪ {εp+1 − εi

∣∣ 1 ≤ i ≤ p− 1};

Λ = (p− 1

2
, p− 3

2
, . . . ,

3

2
;

1

2
| − 1

2
;−3

2
,−5

2
, . . . ,−(p− 1

2
);

q − 1

2
, q − 3

2
, . . . , p+

1

2
).

(2) If q > p = 1, then A is as in (1), C = ∅, and

Λ = (
1

2
| − 1

2
; q − 1

2
, q − 3

2
, . . . ,

3

2
).

(3) If q = p ≥ 2, then

A = ∅;
C = {εj ± εp

∣∣ p+ 2 ≤ j ≤ 2p} ∪ {εp+1 − εi
∣∣ 1 ≤ i ≤ p− 1};

Λ = (p− 1

2
, p− 3

2
, . . . ,

3

2
;

1

2
| − 1

2
;−3

2
,−5

2
, . . . ,−(p− 1

2
)).
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(4) If q = p = 1, then A = C = ∅ and Λ = λ0 = ( 1
2 | −

1
2 ).

Proof. By (7.18), (7.13) and (7.15), we have

Λ = (q − 3
2 − a1 − c1, . . . , q − p+ 1

2 − ap−1 − cp−1; q − p+ 1
2 − x− u |

| p− 3
2 − v; 1

2 + b1 − d1,− 1
2 + b2 − d2, . . . ,−p+ 5

2 + bp−1 − dp−1;

q − p− 1
2 − y1 − e1, q − p− 3

2 − y2 − e2, . . . ,
1
2 − yq−p − eq−p).

There are five groups of coordinates separated by semicolons and the bar. If p = 1,
then the first and the fourth group of coordinates are missing, and if q = p, then
the fifth group of coordinates is missing.

Using (7.14) and (7.16), we see

Λ = (. . . | p− 3
2 − v︸ ︷︷ ︸

[− 1
2 ,p−

3
2 ]

; 1
2 + b1 − d1︸ ︷︷ ︸

[− 3
2 ,p−

1
2 ]

,− 1
2 + b2 − d2︸ ︷︷ ︸
[− 5

2 ,p−
3
2 ]

, . . . ,−p+ 5
2 + bp−1 − dp−1︸ ︷︷ ︸
[−(p− 1

2 ), 32 ]

;(7.20)

q − p− 1
2 − y1 − e1︸ ︷︷ ︸

[q−2p− 1
2 ,q−

1
2 ]

, q − p− 3
2 − y2 − e2︸ ︷︷ ︸

[q−2p− 3
2 ,q−

3
2 ]

, . . . , 1
2 − yq−p − eq−p︸ ︷︷ ︸

[−(p− 1
2 ),p+ 1

2 ]

).

So Λp+1, . . . ,Λp+q are q half-integers between −(p− 1
2 ) and q− 1

2 . Since PK(Λ) 6= 0,
no two of them are equal or opposite to each other. If q > p, it follows that
q − 1

2 , q −
3
2 , . . . , p+ 1

2 must each be equal to some Λi, and the only possibility for
that is

(7.21) Λ2p+1 = q − 1

2
, Λ2p+2 = q − 3

2
, . . . , Λp+q = p+

1

2
.

It follows that y1, . . . , yq−p are all equal to −1, and that e1, . . . , eq−p are all equal
to −(p− 1).

In case q > p = 1, this implies that A is as stated in the proposition, and it is
also clear that C = ∅. Moreover, it follows that x = q − p, and so Λ is as stated
in the proposition. Since the case q = p = 1 is obvious, this proves the proposition
for p = 1 and any q ≥ p.

We proceed by induction on p. Let p ≥ 2 and let q ≥ p be arbitrary. Assuming
that the proposition is true for p′ = q′ = p− 1, we will prove it for p and q.

If q > p, we get back to (7.21) and see that it implies

εp − εj ∈ A, εp + εj /∈ A, 2p+ 1 ≤ j ≤ p+ q;

εi − εj ∈ C, εi + εj /∈ C, 1 ≤ i ≤ p− 1, 2p+ 1 ≤ j ≤ p+ q.

This implies

x = q − p;(7.22)

q − p− 1 ≤ ci ≤ q − p, 1 ≤ i ≤ p− 1.

Note that ci = q − p− 1 if εp+1 − εi ∈ C, and ci = q − p if εp+1 − εi /∈ C.
If q = p, then the above discussion does not apply; in this case (7.22) is true,

but this information is already contained in (7.14) and (7.16). The following dis-
cussion applies equally to q > p and q = p, but in the latter case the last group of
coordinates should be deleted.
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Using (7.22) together with the inequalities (7.14) for ai and (7.16) for u, we see

Λ = (q − 3
2 − a1 − c1︸ ︷︷ ︸

[− 1
2 ,p−

1
2 ]

, q − 5
2 − a2 − c2︸ ︷︷ ︸

[− 3
2 ,p−

3
2 ]

, . . . , q − p+ 1
2 − ap−1 − cp−1︸ ︷︷ ︸

[−(p− 3
2 ), 32 ]

;

1
2 − u︸ ︷︷ ︸

[−(p− 3
2 ),p− 1

2 ]

| . . .

So Λ1, . . . ,Λp are p half-integers between −(p− 3
2 ) and p− 1

2 , such that no two of
them are equal or opposite to each other. There are two possibilities:

Λ1 = p− 1

2
, or Λp = p− 1

2

Let us first assume that Λp = p− 1
2 . Then

u = −(p− 1)

and it follows that

εj − εp ∈ C, εj + εp /∈ C, p+ 2 ≤ j ≤ 2p.

This implies

dj = 1, p+ 2 ≤ j ≤ 2p,

and we see that (7.20) becomes

Λ = (. . . | p− 3
2 − v︸ ︷︷ ︸

[− 1
2 ,p−

3
2 ]

;− 1
2 + b1︸ ︷︷ ︸

[− 1
2 ,p−

3
2 ]

,− 3
2 + b2︸ ︷︷ ︸

[− 3
2 ,p−

5
2 ]

, . . . ,−p+ 3
2 + bp−1︸ ︷︷ ︸

[−(p− 3
2 ), 12 ]

; q − 1
2 , q −

3
2 , . . . , p+ 1

2 ).

So Λp+1, . . . ,Λ2p are p half-integers between −(p− 3
2 ) and p− 3

2 , such that no two
of them are equal or opposite to each other, and this is impossible.

We conclude that

Λ1 = p− 1

2
,

and consequently

a1 = 0; c1 = q − p− 1.

It follows that

ε1 − εj /∈ A, p+ 2 ≤ j ≤ 2p;

εp+1 − ε1 ∈ C,
and therefore

0 ≤ bj ≤ p− 2, 1 ≤ j ≤ p− 1;

1 ≤ v ≤ p− 1.

This implies

Λ = (. . . | p− 3
2 − v︸ ︷︷ ︸

[− 1
2 ,p−

5
2 ]

; 1
2 + b1 − d1︸ ︷︷ ︸

[− 3
2 ,p−

3
2 ]

,− 1
2 + b2 − d2︸ ︷︷ ︸
[− 5

2 ,p−
5
2 ]

, . . . ,−p+ 5
2 + bp−1 − dp−1︸ ︷︷ ︸
[−(p− 1

2 ), 12 ]

;

q − 1
2 , q −

3
2 , . . . , p+ 1

2 ).

So Λp+1, . . . ,Λ2p are p half-integers between −(p− 1
2 ) and p− 3

2 , such that no two
of them are equal or opposite to each other. It follows that

Λ2p = −(p− 1

2
),
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and consequently

bp−1 = 0; dp−1 = 2.

It follows that

εi − ε2p /∈ A, 1 ≤ i ≤ p− 1;

ε2p ± εp ∈ C,

and therefore

0 ≤ ai ≤ p− 2, 1 ≤ i ≤ p− 1;

− (p− 2) ≤ u ≤ p− 2.

We see that

Λ = (p− 1
2 , q −

5
2 − a2 − c2, . . . , q − p+ 1

2 − ap−1 − cp−1; q − p+ 1
2 − x− u |

| p− 3
2 − v; 1

2 + b1 − d1,− 1
2 + b2 − d2, . . . ,−(p− 7

2 ) + bp−2 − dp−2,−(p− 1
2 );

q − 1
2 , q −

3
2 , . . . , p+ 1

2 ).

(If q = p, the coordinates q − 1
2 , . . . , p + 1

2 are not there; if p = 2 there are no
coordinates involving ai, ci, bi or di.)

We now consider the subalgebra g′ ∼= so(2p− 2, 2p− 1) of g built on coordinates

ε2, ε3, . . . , εp; εp+1, . . . , ε2p−1,

so the coordinates 1 and 2p, 2p+ 1, . . . , p+ q are deleted. We also consider the real
form of OK′ given by

h′3 = (1, . . . , 1︸ ︷︷ ︸
p−2

, 0 | 2, 1, . . . , 1︸ ︷︷ ︸
p−2

),

with centralizer l′ = l ∩ g′. Then

∆+
n (l′) = {εi − εj

∣∣ 2 ≤ i ≤ p− 1, p+ 2 ≤ j ≤ 2p− 1};
∆(p′1) = {εj ± εp

∣∣ p+ 2 ≤ j ≤ 2p− 1} ∪ {εp+1 − εi
∣∣ 2 ≤ i ≤ p− 1}.

We set

A′ = A ∩∆+
n (l′) = A \ {εp − εj

∣∣ 2p+ 1 ≤ j ≤ p+ q};
C ′ = C ∩∆(p′1) =

C \ {ε2p ± εp; εp+1 − ε1; εi − εj
∣∣ 1 ≤ i ≤ p− 1, 2p+ 1 ≤ j ≤ p+ q}.

(If q = p, then A′ = A and C ′ = C \ {ε2p ± εp; εp+1 − ε1}.) Then

2ρ(A′) = (a2, . . . , ap−1; 0 | 0;−b1, . . . ,−bp−2) =

(a′1, . . . , a
′
p−2; 0 | 0;−b′1, . . . ,−b′p−2);

2ρ(C ′) = (c2 − (q − p), . . . , cp−1 − (q − p);u | v − 1; d1, . . . , dp−2) =

(c′1, . . . , c
′
p−2;u′ | v′; d′1, . . . , d′p−2),

where we define

a′i = ai+1; b′i = bi; c′i = ci+1 − (q − p);
u′ = u; v′ = v − 1; d′i = di.

The numbers a′i, b
′
i, c
′
i, u
′, v′, d′i satisfy analogues of (7.14) and (7.16).
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We define λ′0 by (7.18), but for GR = SOe(2p− 2, 2p− 1), i.e.,

λ′0 = (p− 5

2
, p− 7

2
, . . . ,

1

2
;

1

2
; | p− 5

2
;

1

2
,−1

2
, . . . ,−(p− 7

2
)).

Then A′, C ′ and

Λ′ = λ′0 − 2ρ(A′)− 2ρ(C ′)

satisfy all conditions of the proposition, but p, q are reduced to p′ = p−1, q′ = p−1.
Therefore the inductive assumption implies that A′ = ∅, that

C ′ = {εj ± εp
∣∣ p+ 2 ≤ j ≤ 2p− 1} ∪ {εp+1 − εi

∣∣ 2 ≤ i ≤ p− 1},
and that

Λ′ = (p− 3

2
, . . . ,

3

2
;

1

2
| − 1

2
;−3

2
,−5

2
, . . . ,−(p− 3

2
)).

This implies the statement of the proposition for A, C and Λ. �

In view of (3.5), to compute the constant c = cp,q3 we need to compute PL∩K(λ0)
and PK(Λ), where λ0 is given by (7.18), and Λ is given by Proposition 7.19.

To compute PL∩K(λ0), we note that we described l ∩ k in (7.17); it has up to
three factors, two of which are u(p − 1), and the third is so(2(q − p)). From the
shape of λ0 it now follows that, in the notation of Lemma 5.10,

PL∩K(λ0) = P 1
q−p(λq−p),

and in case q > p, we see that Lemma 5.10(i) implies that

PL∩K(λ0) = 2q−p−1.

If q = p, then PL∩K(λ0) = 1, which is not covered by the above formula. (In
Lemma 5.10, we could have defined P 1

0 = 1 and λ0 = 0, but the formula in Lemma
5.10(i) would not work for p = 0.)

To compute PK(Λ) for Λ as in Proposition 7.19, we first write Λ = (ΛL |ΛR)
and note that

(7.23) PK(Λ) = P 1
p (ΛL)P 1

q (ΛR).

By Lemma 5.10(i),

(7.24) P 1
p (ΛL) = P 1

p (λp) = 2p−1.

To apply Lemma 5.10 also for ΛR, we must first rearrange coordinates of ΛR, using
the fact that P 1

q is skew for the Weyl group of so(2q), and invariant under sign
changes of the variables.

To bring ΛR to µq = (q, . . . , 1), after removing the signs which does not change
the expression, we need to bring coordinates

p− 1

2
, p− 3

2
, . . . ,

3

2
,

1

2
,

in that order, to the right of p+ 1
2 . The sign produced in this way is

(−1)(q−p)+(q−p+1)+···+(q−1) = (−1)p(q−p)+[ p2 ],

and it follows from Lemma 5.10 that

P 1
q (ΛR) = (−1)p(q−p)+[ p2 ]2q−1.

Putting this together with (7.23), (7.24), the fact that

#A = q − p; #C = 3(p− 1) + (p− 1)(q − p),



40 SALAH MEHDI, PAVLE PANDŽIĆ, DAVID VOGAN, AND ROGER ZIERAU

and the fact that N of (3.3) satisfies

(7.25) N ≡ p mod 2

we get

Theorem 7.26. For GR = SOe(2p, 2q), the constant cp,q3 corresponding to the third
real form of OC is

cp,q3 =

{
(−1)[ p2 ]+122p−1, q > p;

(−1)[ p2 ]+122p−2, q = p.

�

7.4. The fourth real form. This real form exists if q = p ≥ 2. It corresponds to

h4 = (1, . . . , 1︸ ︷︷ ︸
p−1

, 0 | 2, 1, . . . , 1︸ ︷︷ ︸
p−2

,−1).

This real form is conjugate to the third real form by the automorphism σ which acts
on h by changing the sign of the last coordinate, and leaving all other coordinates
the same. On the level of g, this is the standard outer automorphism. It satisfies the
conditions of Proposition 3.8, and we just have to compute the sign. The number
n from Proposition 3.8 is equal to 0, since σ preserves ∆+. The number N1 is by
(7.25) congruent to p modulo 2. Finally, N2 is the same as N1 because σ preserves
∆+ (or one can do a computation). So there is no sign in Proposition 3.8, and

(7.27) cp,q4 = (−1)[ p2 ]+122p−2

8. The case GR = SO∗(2n), n ≥ 1

8.1. The case of even n. If n is even, the real forms of OC correspond to even
integers p such that 0 ≤ p ≤ n. We denote n− p by q. The h corresponding to p is

hp = (1, . . . , 1︸ ︷︷ ︸
p

| −1, . . . ,−1︸ ︷︷ ︸
q

).

Since l = lp is built from roots that vanish on hp, we see that

∆+
n (l) = {εi + εp+j

∣∣ 1 ≤ i ≤ p, 1 ≤ j ≤ q}.

It follows that for any A ⊆ ∆+
n (l),

(8.1) 2ρ(A) = (a1, . . . , ap | b1, . . . , bq),
with

0 ≤ ai ≤ q, 0 ≤ bj ≤ p,
∑
i ai =

∑
j bj .(8.2)

In particular,

ρn(l) = (q, . . . , q | p, . . . , p),
and this is clearly orthogonal to the roots of l ∩ k, which are given by

(8.3) ∆+(l ∩ k) = {εi − εj
∣∣ 1 ≤ i < j ≤ p} ∪ {εp+i − εp+j

∣∣ 1 ≤ i < j ≤ q}.
So the constants c = cnp can be calculated from (3.5). Since it is clear that in the
present case

∆(p1) = ∅,
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(3.5) becomes

(8.4)
∑

A⊆∆+
n (l)

(−1)#APK(λ− 2ρ(A)) = cPL∩K(λ).

We take λ = λ0, where

(8.5) λ0 = (n, n− 1, . . . , q + 1 |n, n− 1, . . . , p+ 1),

(If p is 0 or n, then there is only one group of coordinates in the above expression,
and λ0 = (n, n− 1, . . . , 1).)

Since λ0 differs from ρl∩k by a weight orthogonal to all roots of l ∩ k,

PL∩K(λ0) = 1.

So to compute cnp we have to compute the left side of (8.4). The following propo-
sition describes the relevant A and the corresponding Λ.

Proposition 8.6. Let Λ = λ0−2ρ(A), with λ0 given by (8.5), and with A ⊆ ∆+
n (l).

Suppose that for some A the corresponding Λ satisfies PK(Λ) 6= 0. Then:

(1) If p = 0 or q = 0, then A = ∅ and Λ = λ0 = (n, n− 1, . . . , 1).
(2) If p, q > 0, let r = p

2 and s = q
2 . Then there is a shuffle

1 ≤ i1 < · · · < ir ≤ r + s; 1 ≤ j1 < · · · < js ≤ r + s

of 1, 2, . . . , r + s such that

A = {αu,v, βu,v
∣∣ 1 ≤ u ≤ r, 1 ≤ v ≤ s},

where

αu,v = εp+1−u + εn+1−v; βu,v =

{
εp+1−u + εp+v, iu < jv;
εu + εn+1−v, iu > jv.

The corresponding Λ is

Λ = (n+ 1− i1, . . . , n+ 1− ir, ir, . . . , i1 |n+ 1− j1, . . . , n+ 1− js, js, . . . , j1).

Proof. The situation is combinatorially exactly the same as for GR = Sp(2n,R),
with n, p and q even. Therefore the proof of Proposition 6.5 applies verbatim; the
only difference is that the present proof is simpler because p and q are even. �

The complete parallel with the case of GR = Sp(2n,R), with n, p and q even
extends also to the computation of PK(Λ) for any Λ from Proposition 8.6, and the
constant cnp . The only difference is that in the present case, N of (3.3) is

N =

(
p

2

)
+ pq ≡ p

2
mod 2,

so the sign is now (−1)
p
2 . We conclude

Theorem 8.7. Let GR = SO∗(2n), with n ≥ 2 even. Let p, 0 ≤ p ≤ n, be an even
integer. Let r = p

2 and let s = n−p
2 . Then the constant cnp for the real form of OC

corresponding to p is

cnp = (−1)
p
2

(
r + s

r

)
.
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8.2. The case of odd n. For odd n the real forms of OC correspond to even
integers p such that 0 ≤ p ≤ n− 1. We denote n− 1− p by q, so q is another even
integer. The h corresponding to p is

hp = (1, . . . , 1︸ ︷︷ ︸
p

| 0;−1, . . . ,−1︸ ︷︷ ︸
q

).

Since l = lp is built from roots that vanish on hp, we see that

∆+
n (l) = {εi + εp+1+j

∣∣ 1 ≤ i ≤ p, 1 ≤ j ≤ q}.

It follows that for any A ⊆ ∆+
n (l),

(8.8) 2ρ(A) = (a1, . . . , ap | 0; b1, . . . , bq),

with

0 ≤ ai ≤ q, 0 ≤ bj ≤ p,
∑
i ai =

∑
j bj .(8.9)

In particular,

ρn(l) = (q, . . . , q | 0; p, . . . , p),

and this is clearly orthogonal to the roots of l ∩ k, which are given by

(8.10) ∆+(l ∩ k) = {εi − εj
∣∣ 1 ≤ i < j ≤ p} ∪ {εp+1+i − εp+1+j

∣∣ 1 ≤ i < j ≤ q}.

So the constants c = cnp can be calculated from (3.5).
The set ∆(p1) consisting of noncompact roots that are 1 on hp is

∆(p1) = {εi + εp+1

∣∣ 1 ≤ i ≤ p} ∪ {−εp+1 − εp+1+j

∣∣ 1 ≤ j ≤ q}.
So for any C ⊆ ∆(p1),

(8.11) 2ρ(C) = (c1, . . . , cp | d;−e1, . . . ,−eq),

with

0 ≤ ci ≤ 1; −q ≤ d ≤ p; 0 ≤ ej ≤ 1; d =
∑
i ci −

∑
j ej .(8.12)

To compute the constant cnp using (3.5), we take λ = λ0, where

λ0 = (n, n− 1, . . . , q + 2 | p+ 1;n− 1, n− 2, . . . , p+ 1), p, q > 0;(8.13)

λ0 = ( | 1;n− 1, n− 2, . . . , 1), p = 0, q > 0;

λ0 = (n, n− 1, . . . , 2 | p+ 1), p > 0, q = 0;

λ0 = ( | 1), p = q = 0.

Using (8.10), we see that λ0 differs from ρl∩k by a weight orthogonal to all roots of
l ∩ k, and hence

(8.14) PL∩K(λ0) = 1.

So to compute cnp we have to compute the left side of (3.5). The following propo-
sition describes the relevant A and C, and the corresponding Λ.

Proposition 8.15. Let Λ = λ0−2ρ(A)−2ρ(C), with λ0 given by (8.13), and with
A ⊆ ∆+

n (l), C ⊆ ∆(p1) as above.
Suppose that for some A and C the corresponding Λ satisfies PK(Λ) 6= 0. Let

r = p
2 and s = q

2 . Then there is an (r, s) shuffle

1 ≤ i1 < · · · < ir ≤ r + s; 1 ≤ j1 < · · · < js ≤ r + s
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of 1, 2, . . . , r + s such that

A = {αu,v, βu,v
∣∣ 1 ≤ u ≤ r, 1 ≤ v ≤ s},

where

αu,v = εp+1−u + εn+1−v; βu,v =

{
εp+1−u + εp+1+v, iu < jv;
εu + εn+1−v, iu > jv,

and

C = {εi + εp+1

∣∣ r + 1 ≤ i ≤ p} ∪ {−εp+1 − εp+1+j

∣∣ 1 ≤ j ≤ s}.
The corresponding Λ is

Λ = (n+1−i1, . . . , n+1−ir, ir, . . . , i1 | r+s+1;n+1−j1, . . . , n+1−js, js, . . . , j1).

If p = 0, then the shuffle is necessarily trivial, i.e., there are no iu and (j1, . . . , js) =
(1, . . . , s). This means that

A = ∅;
C = {−εp+1 − εp+1+j

∣∣ 1 ≤ j ≤ s};
Λ = ( | s+ 1;n, . . . , n+ 1− s, s, . . . , 1) = ( | s+ 1; 2s+ 1, . . . , s+ 2, s, . . . , 1).

Similarly, if q = 0 than (i1, . . . , ir) = (1, . . . , r), there are no jv, and

A = ∅;
C = {εi + εp+1

∣∣ r + 1 ≤ i ≤ p};
Λ = (n, . . . , n+ 1− r, r, . . . , 1 | r + 1) = (2r + 1, . . . , r + 2, r, . . . , 1 | r + 1).

Finally, if p = q = 0, i.e., n = 1, then the shuffle contains no iu or jv, A = C = ∅,
and Λ = λ0 = ( | 1).

Proof. The statement is obviously true if n = 1, i.e., if p = q = 0. We proceed by
induction on n.

So let us assume that n ≥ 3 is odd, and let 0 ≤ p ≤ n − 1 be an even integer.
We assume that the statement is true for n− 2 and for any even integer p′ between
0 and n− 3.

Using the definitions and the inequalities (8.9), we see that

Λ = (n− a1 − c1︸ ︷︷ ︸
[p,n]

, n− 1− a2 − c2︸ ︷︷ ︸
[p−1,n−1]

, . . . , q + 2− ap − cp︸ ︷︷ ︸
[1,q+2]

| p+ 1− d︸ ︷︷ ︸
[1,n]

;

n− 1− b1 + e1︸ ︷︷ ︸
[q,n]

, n− 2− b2 + e2︸ ︷︷ ︸
[q−1,n−1]

, . . . , p+ 1− bq + eq︸ ︷︷ ︸
[1,p+2]

).

So the coordinates of Λ are n integers between 1 and n, and assuming that PK(Λ) 6=
0, they have to be different from each other, i.e., Λ has to be a permutation of
(n, . . . , 1). In particular, some Λi must be equal to n and there are three possibili-
ties:

(8.16) Λ1 = n or Λp+1 = n or Λp+2 = n.

Assume first that Λ1 = n; this is only possible if p > 0, i.e., p ≥ 2. Then

a1 = 0, c1 = 0,
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and it follows that

ε1 + εp+1+j /∈ A, 1 ≤ j ≤ q;
ε1 + εp+1 /∈ C.

This implies that

0 ≤ bj ≤ p− 1, 1 ≤ j ≤ q;
− q ≤ d ≤ p− 1,

and so

Λ = (n, n− 1− a2 − c2︸ ︷︷ ︸
[p−1,n−1]

, . . . , q + 2− ap − cp︸ ︷︷ ︸
[1,q+2]

| p+ 1− d︸ ︷︷ ︸
[2,n]

;n− 1− b1 + e1︸ ︷︷ ︸
[q+1,n]

,

n− 2− b2 + e2︸ ︷︷ ︸
[q,n−1]

, . . . , p+ 1− bq + eq︸ ︷︷ ︸
[2,p+2]

).

We see that there is exactly one place where 1 can be, i.e.,

Λp = 1.

This implies

ap = q, cp = 1,

and therefore

εp + εp+1+j ∈ A, 1 ≤ j ≤ q;
εp + εp+1 ∈ C.

It follows that

1 ≤ bj ≤ p− 1, 1 ≤ j ≤ q,
− q + 1 ≤ d ≤ p− 1

and so

Λ = (n, n− 1− a2 − c2︸ ︷︷ ︸
[p−1,n−1]

, . . . , q + 3− ap−1 − cp−1︸ ︷︷ ︸
[2,q+3]

, 1 | p+ 1− d︸ ︷︷ ︸
[2,n−1]

;

n− 1− b1 + e1︸ ︷︷ ︸
[q+1,n−1]

, n− 2− b2 + e2︸ ︷︷ ︸
[q,n−2]

, . . . , p+ 1− bq + eq︸ ︷︷ ︸
[2,p+1]

).

Let now g′ ∼= so∗(2(n − 2)) be the subalgebra of g built on coordinates 2, . . . , p −
1, p + 1, . . . , n, and let l′ = l ∩ g′. We consider the real form of the corresponding
OC given by h = hp−2.

Then

∆+
n (l′) = ∆+

n (l) \ {ε1 + εp+1+j , εp + εp+1+j

∣∣ 1 ≤ j ≤ q};
∆(p′1) = ∆(p1) \ {ε1 + εp+1, εp + εp+1},

and we set

A′ = A \ {εp + εp+1+j

∣∣ 1 ≤ j ≤ q};
C ′ = C \ {εp + εp+1}.

We define λ0 as in (8.13), but with n replaced by n−2 and p replaced by p−2. Then
Λ′ corresponding to A′ and C ′ can be obtained from Λ by deleting coordinates Λ1
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and Λp, and decreasing all the other coordinates by 1. More precisely, deleting the
first and the p-th coordinate, we have

2ρ(A′) = (a2, . . . , ap−1 | 0; b1 − 1, . . . , bq − 1) = (a′1, . . . , a
′
p−2 | 0; b′1, . . . , b

′
q);

2ρ(C ′) = (c2, . . . , cp−1 | d− 1;−e1 . . . ,−eq) = (c′1, . . . , c
′
p−2 | d′;−e′1 . . . ,−e′q);

Λ′ = (n− 2− a′1 − c′1, . . . , q + 2− a′p−2 − c′p−2 | p− 1− d′;
n− 3− b′1 + e′1, . . . , p− 1− b′q + e′q) =

(Λ2 − 1, . . . ,Λp−1 − 1 |Λp+1 − 1, . . . ,Λn − 1).

We now see that Λ is a permutation of (n, . . . , 1) if and only if Λ′ is a permutation
of (n − 2, . . . , 1). By inductive assumption, this is equivalent to A′ and Λ′ being
defined by a shuffle as in the statement of the proposition, and this clearly implies
the same statement for A and Λ.

The second possibility in (8.16) is Λp+1 = n, which implies d = −q and hence

− εp+1 − εp+1+j ∈ C, 1 ≤ j ≤ q;
εi + εp+1 /∈ C, 1 ≤ i ≤ p.

This implies

ci = 0, 1 ≤ i ≤ p;
ej = 1, 1 ≤ j ≤ q,

and so

Λ = (n− a1︸ ︷︷ ︸
[p+1,n]

, n− 1− a2︸ ︷︷ ︸
[p,n−1]

, . . . , q + 2− ap︸ ︷︷ ︸
[2,q+2]

|n;n− b1︸ ︷︷ ︸
[q+1,n]

, n− 1− b2︸ ︷︷ ︸
[q,n−1]

, . . . , p+ 2− bq︸ ︷︷ ︸
[2,p+2]

).

We see that there is no place where 1 could be, so this case is impossible if PK(Λ) 6=
0.

The third possibility in (8.16) is Λp+2 = n; this is possible only if q > 0, i.e.,
q ≥ 2. It follows that

b1 = 0, e1 = 1,

and so

εi + εp+2 /∈ A, 1 ≤ i ≤ p;
− εp+1 − εp+2 ∈ C.

This implies

0 ≤ ai ≤ q − 1, 1 ≤ i ≤ p;
−q ≤ d ≤ p− 1,

and hence

Λ = (n− a1 − c1︸ ︷︷ ︸
[p+1,n]

, n− 1− a2 − c2︸ ︷︷ ︸
[p,n−1]

, . . . , q + 2− ap − cp︸ ︷︷ ︸
[2,q+2]

| p+ 1− d︸ ︷︷ ︸
[2,n]

;

n, n− 2− b2 + e2︸ ︷︷ ︸
[q−1,n−1]

, . . . , p+ 1− bq + eq︸ ︷︷ ︸
[1,p+2]

).

We see that there is exactly one place where 1 can be, i.e.,

Λn = 1.
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This implies
bq = p, eq = 0

and therefore

εi + εn ∈ A, 1 ≤ i ≤ p;
− εp+1 − εn /∈ C.

It follows that

1 ≤ ai ≤ q − 1, 1 ≤ i ≤ p;
− q + 1 ≤ d ≤ p− 1,

and so

Λ = (n− a1 − c1︸ ︷︷ ︸
[p+1,n−1]

n− 1− a2 − c2︸ ︷︷ ︸
[p,n−2]

, . . . , q + 2− ap − cp︸ ︷︷ ︸
[2,q+1]

| p+ 1− d︸ ︷︷ ︸
[2,n−1]

;n, n− 2− b2 + e2︸ ︷︷ ︸
[q−1,n−1]

,

n− 3− b3 + e3︸ ︷︷ ︸
[q−2,n−2]

, . . . , p+ 2− bq−1 + eq−1︸ ︷︷ ︸
[2,p+3]

, 1).

We now reason in the same way as in the first case, and conclude that the propo-
sition follows from the inductive assumption for n− 2 with p staying the same and
q being replaced by q − 2. �

To finish the computation of the constant cnp , we first note that for every A and
C described in Proposition 8.15

(8.17) #A = 2rs; #C = r + s.

On the other hand, since Λ is a permutation of (n, . . . , 1), PK(Λ) is equal to ±1.
To compute the sign, we need to find the parity of the permutation bringing Λ to
(n, . . . , 1). As in type C, we find this parity by counting the number of inversions
in Λ when compared with (n, . . . , 1). We know from Proposition 8.15 that

Λ = (n+1−i1, . . . , n+1−ir, ir, . . . , i1 | r+s+1;n+1−j1, . . . , n+1−js, js, . . . , j1).

Clearly ir, . . . , i1 are in inversion with n+1−j1, . . . , n+1−js; that is rs inversions.
Arguing as in type C, we get further rs inversions from the groups

n+ 1− i1, . . . , n+ 1− ir and n+ 1− j1, . . . , n+ 1− js,
and

ir, . . . , i1 and js, . . . , j1.

Finally, the coordinate Λp+1 = r + s+ 1 is in inversion with

ir, . . . , i1 and n+ 1− j1, . . . , n+ 1− js.
So the total number of inversions is 2rs + r + s, and combined with (8.17) this
implies that the nonzero contributions to the sum in (6.3), which we know come
from A, C and Λ as in Proposition 8.15, are all equal to

(−1)#A+#CPK(Λ) = 1.

Furthermore, the number N of (3.3) satisfies

N ≡ p

2
mod 2.

Since the number of nonzero summands is by Proposition 8.15 equal to the number
of (r, s)-shuffles of r + s, i.e., to

(
r+s
r

)
, we have proved:
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Theorem 8.18. Let GR = SO∗(2n), for an odd n ≥ 1, and let p, 0 ≤ p ≤ n − 1,
be an even integer. Let r = p

2 and let s = n−1−p
2 . Then the constant cnp for the real

form of OC corresponding to p is

cnp = (−1)
p
2

(
r + s

r

)
.

For the convenience of the reader, below is a table that gives the value of the
constant for each real form in every case.
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GR
KR

OC Real forms Constants

SU(p, q)
S(U(p)× U(q))

q ≥ p ≥ 1 [2p, 1q−p]

(1, · · · , 1︸ ︷︷ ︸
k

,−1, · · · ,−1︸ ︷︷ ︸
p−k

,

1, · · · , 1︸ ︷︷ ︸
p−k

, 0, · · · , 0︸ ︷︷ ︸
q−p

,−1, · · · ,−1︸ ︷︷ ︸
k

)
(−1)k(p+q−k)

(
p
k

)
k = 0, 1, · · · , p

SOe(2p, 2q + 1)
SO(2p)× SO(2q + 1)

q ≥ p ≥ 1 [3, 22p−2, 12(q−p+1)]

(2, 1, · · · , 1︸ ︷︷ ︸
p−1

,

1, · · · , 1︸ ︷︷ ︸
p−1

, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)
(−1)[(p/2)]+122p−2

(2, 1, · · · ,−1︸ ︷︷ ︸
p−1

,

1, · · · , 1︸ ︷︷ ︸
p−1

, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)
(−1)[(p/2)]22p−2

3rd real form
only if q > p − 1

(1, · · · , 1︸ ︷︷ ︸
p−1

, 0,

2, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, · · · , 0︸ ︷︷ ︸
q−p

)
0

Sp(2n,R)
U(n)

n ≥ 1 [2n] (1, · · · , 1︸ ︷︷ ︸
k

,−1, · · · ,−1︸ ︷︷ ︸
n−k

) (−1)[(k+1)/2]
(
r+s
r

)
(n odd) or (n and k even)

k = 0, 1, · · · , n 0
n even and k odd

r = [ k
2
] and s = [n−k

2
]

SOe(2p, 2q)
SO(2p)× SO(2q)

q ≥ p ≥ 1 [3, 22p−2, 12(q−p)+1]

(2, 1, · · · , 1︸ ︷︷ ︸
p−1

,

1, · · · , 1︸ ︷︷ ︸
p−1

, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)
(−1)[(p−1)/2]22p−2

(2, 1, · · · ,−1︸ ︷︷ ︸
p−1

,

1, · · · , 1︸ ︷︷ ︸
p−1

, 0, · · · , 0︸ ︷︷ ︸
q−p+1

)
(−1)[(p−1)/2]22p−2

(1, · · · , 1︸ ︷︷ ︸
p−1

, 0,

2, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, · · · , 0︸ ︷︷ ︸
q−p

)
(−1)[p/2]+122p−1

if q > p

(−1)[p/2]+122p−2

if q = p

fourth real form
only if q = p

(1, · · · , 1︸ ︷︷ ︸
p−1

, 0,

2, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, · · · , 0︸ ︷︷ ︸
q−p

)
(−1)[p/2]+122p−2

SO∗(2n)
U(n)

n ≥ 1 [2n] (1, · · · , 1︸ ︷︷ ︸
p

,−1, · · · ,−1︸ ︷︷ ︸
n−p

) (−1)p/2
(
n/2
p/2

)
n even 0 ≤ p ≤ n with p even

[2n−1, 12] (1, · · · , 1︸ ︷︷ ︸
p

, 0,−1, · · · ,−1︸ ︷︷ ︸
n−1−p

) (−1)p/2
(
(n−1)/2

p/2

)
n odd 0 ≤ p ≤ n− 1 with p even
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