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Optimization of Instrumental Spectral 
Configurations for the Split Window Method in the

Context of the TRISHNA Mission
Thomas H. G. Vidal, Frederic Jacob, Senior Member, IEEE, Albert Olioso and Philippe Gamet

Abstract—We propose an original approach to optimize the
TRISHNA instrument spectral configuration for the Split-
Window (SW) method. First, we consider as input of end-to-end
simulations an emissivity dataset that accounts for cavity effect
within vegetation canopy. Second, we propose a bi-dimensional
approach where both locations of TRISHNA SW channels,
namely λTIR3

c and λTIR4
c , can slide within predefined spectral

intervals. We report a large sensitivity to channel positions, with
variations of RMSE on retrieved land surface temperature up to
3 K. Our bi-dimensional approach shows that this sensitivity is
consistent with the underlying assumptions of the SW method.
Indeed, two regions are observed in the (λTIR3

c , λTIR4
c ) space:

(1) an unfavorable region corresponding to λTIR3
c ≤ 10.0 µm,

where large RMSE values are ascribed to large differences
between emissivities in both SW channels, and (2) a favorable
region corresponding to λTIR3

c ≥ 10.3 µm, where differences
between emissivities in both SW channels are small, and where
RMSE values are driven by the differences between atmospheric
transmittance in both SW channels. Overall, it is necessary to
better account for the difference in surface emissivities between
the two SW channels, whereas disregarding the cavity effect
within vegetation canopy is not critical. Eventually, our bi-
dimensional approach permits to define an optimal position
for λTIR3

c at 10.6 µm, which induces a larger robustness to
uncertainties on channel positions. By applying our study on two
structurally different SW formulations and addressing impacts of
uncertainties on land surface emissivity and atmospheric water
vapor content, we show that these results can be generalized to
other SW formulations.

Index Terms—Thermal infrared remote sensing, Satellite mis-
sion design, Spectral channel positioning, Split Window method,
Vegetation canopy - scaled cavity effect, Mercury - Cadmium -
Telluride cooled detectors, Sensitivity analysis

I. INTRODUCTION

S INCE the 1980’s, remote sensing has become a primary
mean for geosciences, notably because of its ability to

retrieve land surface temperature (LST) from satellite ob-
servations on a global scale. Indeed, knowledge of LST is
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useful for the monitoring and modeling of related geophysical
processes, including radiation budgets [1]–[5], soil water de-
pletion through evapotranspiration [6]–[17], or photosynthesis
and soil respiration [18]–[20]. The efficient characterization
of these processes is paramount for agricultural and water
resources management [21], especially in a global warming
context, which makes equally important the efficient retrieval
of LST. Such need for remote sensing of LST has translated in
a recent soar of related satellite missions, including the launch
of the NASA ECOsystem Spaceborne Thermal Radiometer
Experiment on Space Station (ECOSTRESS) in 2018 [22],
[23], the ESA future High Spatio-Temporal Resolution Land
Surface Temperature Mission (HSTR LSTM, [24]), and the
French (CNES) / Indian (ISRO) Thermal infraRed Imag-
ing Satellite for High-resolution Natural resource Assessment
(TRISHNA) mission [25].

An overview of the TRISHNA mission can be found in
[26]. The TRISHNA satellite will embark both a visible /
shortwave infrared sensor and a thermal infrared (TIR) one.
The mission addresses 6 major themes from scientific research
to development of applications: (1) terrestrial ecosystem stress
and water use, (2) coastal and inland hydrological processes,
(3) urban environment (e.g. urban heat island), (4) geological
phenomena (e.g., geothermal exploration), (5) cryospheric
processes (e.g., snow melt runoff), and (6) atmospheric char-
acterization. Among these objectives, the first two are the
design drivers of the mission and are of critical interest in
a climate change context, notably for inter-tropical regions
in India, for sub-humid regions in southern France, or for
semi-arid to arid regions in the Mediterranean basin. In order
to efficiently serve these objectives, including for instance
high resolution monitoring of both water stress at crop field
scale and heat islands in urban areas, the TRISHNA mission
involves several key features. First, the platform is set to an
approximately 760 km sun-synchronous orbit, which allows
a ∼60 m spatial resolution and a three-day revisit rate with
a global coverage, and an average local overpass time of
1 p.m. LTDN (Local Time at Descending Node). Second,
the baseline TIR spectral configuration includes four chan-
nels centered at 8.6, 9.1, 10.4 and 11.6 µm, in accordance
with previous studies on the TRISHNA precursor MISTIGRI
mission [26], [27]. This permits to characterize the spectral
variability depicted by land surfaces, as well as to retrieve
land surface temperature. Third, the four TIR channels rely
on second generation Mercury - Cadmium - Telluride (MCT)
cooled detectors, providing a much better signal-to-noise ratio
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as compared to microbolometer based detectors. And fourth, 
the acquisition principle, based on a rotating scanning mirror, 
allows frequent calibration of the signal on deep space and 
on an onboard black body, as well as wider swath leading to 
shorter revisit.

Among the existing methods for LST retrieval (see [28]–
[30] for reviews on the matter), two were selected for applica-
tion during the TRISHNA mission, namely the Temperature-
Emissivity Separation (TES) method and the Split Window 
(SW) method. The TES method was chosen as a primary 
method since it allows a direct estimation of land surface ra-
diometric temperature from a unique snapshot of multispectral 
imagery without any ancillary information on the observed 
scene, which strengthens the capability of the TRISHNA 
mission to monitor land surface temperature with a three 
day revisit rate. TES was also selected for maturity, since its 
performance has been continually evaluated and optimized by 
numerous studies over the last 20 years, including its use for 
producing NASA LST products from the MODerate resolution 
Imaging Spectroradiometer (MODIS), the Visible Infrared 
Imaging Radiometer Suite (VIIRS), and the ECOSTRESS sen-
sors [31]–[43]. Consequently to the location of two channels 
within the [9.5-12.5] µm spectral range, the SW method was 
selected as a secondary method for several reasons. First, the 
SW method can be used on areas where the TES method 
underperforms, namely grey-body like targets such as water, 
ice, snow or dense vegetation, for which emissivity is known 
and SW method performs correctly [30]. Second, using the 
SW method as a backup solution strengthens the TRISHNA 
mission capability in case of channel failure over the [8-
9.5] µm spectral range, since it makes use of two channels 
only over the [9.5-12.5] µm spectral range. Third, the SW 
method is applied directly on measured brightness temperature 
without any prior atmospheric corrections. Fourth, the visible /
shortwave infrared instrument onboard the TRISHNA platform 
allows the simultaneous collection of ancillary information for 
the SW method, including observations for potentially retriev-
ing waveband emissivity on the basis of fractional vegetation 
cover and / or NDVI [44]–[50], as well as characterization of 
atmospheric transmittance for the derivation of atmospheric 
water vapor content (AWVC) [51]–[53].

Many SW formulations have been proposed over the last 
three decades (see [30] for a review), all of them assuming a 
priori knowledge about target emissivity. They are either linear 
[48], [54], [55], non-linear [56], [57], dependent upon AWVC 
[51], [58], or dependent upon view zenith angle [49], [59]. 
Each SW formulation has to be calibrated over a dataset of 
both measured brightness temperatures and target radiometric 
temperature, with possibly additional inclusion of AWVC 
and land surface emissivity (LSE). Previous studies usually 
relied on measured and/or simulated datasets, where measured 
datasets include laboratory and field-based data. Overall, pre-
vious works are questionable on two issues, amongst others. 
The first issue is related to the calibration datasets that involve 
emissivity spectra from single or linearly mixed laboratory 
samples. Consequently, they are not representative of actual 
land surface conditions, especially for vegetation covers with 
cavity effect (i.e., emissivity increase) due to in-canopy radia-

tion trapping [50], [60]–[68]. The second issue is related to the
method used for designing the optimal spectral configuration.
Indeed, most studies compared SW performance for several
predefined spectral configurations, whereas a more appropriate
way consists of identifying an optimal pair (i.e., minimum
errors on LST retrieval) within the spectral space defined by
the sliding of the two SW channels [42], [69].

The current study aims to find the optimal positions of
the TRISHNA SW channels, by analyzing the retrieval per-
formance of a selected SW method over a simulated dataset.
First, a bi-dimensional approach is used, where the positions of
both SW channels can slide within the [9.5-12.5] µm interval,
with possible overlays. This bi-dimensional approach permits
to easily identify extreme values for the performance indicators
of the SW method, within the space defined by the positions
of the two channels. Besides, it also permits to find the
spectral configuration that is the most robust to uncertainties
on channel positions due to instrumental design. Second,
the simulated dataset to be used for analyzing the retrieval
performance of the SW method includes the emissivity spectra
dataset proposed by [38]. This dataset provides more realistic
and representative emissivity spectra to be used in TIR studies,
since it accounts for cavity effect due to in-canopy radiance
trapping. In order to make our results more generic, we
compare the sensitivity results obtained with the selected SW
formulation to those obtained with a structurally very different
one.

We first present the SW method chosen for this study in
Section II. Afterwards, Section III presents an overview of the
end-to-end simulator used to generate the calibration / valida-
tion dataset for the SW method, along with its implementation
for the TRISHNA study. The setup of the sensitivity analysis is
presented in Section IV, and subsequent results in Section V.
We discuss these results and conclude in Sections VI and VII,
respectively.

II. THE SPLIT-WINDOW METHOD

The SW approach was originally developed by [54] on the
basis of a differential analysis of the radiative transfer equation
over several channels. It has been implemented for most
existing TIR sensors and permits to derive surface radiometric
temperature from measurements in two TIR channels within
the [9.5 - 12.5] µm spectral interval [42], [70]. The SW
method is based on the hypothesis that most natural surfaces
depict flat emissivity spectra within this TIR interval, which
implies that the difference in brightness temperatures measured
in the two adjacent channels is only due to the difference
in atmospheric perturbations between the two channels (i.e.,
absorption and emission). Therefore, the atmospheric effects
can be directly corrected by formulating the target radiometric
temperature TSW

sur as a function of the two measured brightness
temperatures. Besides, considering a spectral interval where
land surface emissivity in both SW channels is nearly equal,
the method should performs well if using a spectral channel
with significant atmospheric perturbations and another one
with low atmospheric perturbations.

Several SW formulations using more than two channels
have been proposed, notably a three-channels version for
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sea surface temperature measurements that makes use of a 
third mid-infrared channel corresponding to low atmospheric 
absorption [70], [71], and a four-channels version for land 
surface temperature measurements that makes use of two more 
TIR channels within the [7.5 - 9.5] µm spectral interval [72]. 
We disregard the three-channels SW formulation, since the 
TRISHNA instrument does not include a mid-infrared channel. 
Although applicable with the TRISHNA configuration, we 
also disregard the four-channels SW formulation. Indeed, the 
SW method is a backup method for the TRISHNA mission, 
and the position of the two TRISHNA channels within the 
[7.5 - 9.5] µm spectral interval are primarily constrained 
by the TES method. Overall, we favor the use of a two-
channels SW method because it is a mature method that has 
been extensively studied and applied for previous TIR satellite 
missions. Further, we consider two-channels within the [9.5-
12.5] µm spectral range, since using one or two channels in the 
[8-9.5] µm spectral range induces large errors on temperature 
retrievals [42].

For the TRISHNA instrument, we select the non-linear SW 
formulation proposed by [51]. Motivations for this choice are 
the following. First, it is a quadratic SW formulation, which 
has been proved to be more efficient for LST retrieval than 
linear methods [30], [69], since the latter introduce larger 
errors through the linearization of the radiative transfer equa-
tion. Second, it is a physically-based and AWVC-dependent 
formulation that has been extensively investigated (e.g., [42],
[51], [73], [74]). Indeed, SW formulations that do not account 
for AWVC perform well for dry atmospheres only (i.e., 
AWVC < 2.5 g.cm−2, [30]). Therefore, an AWVC-dependent 
SW formulation is necessary for the TRISHNA mission that 
addresses tropical and equatorial regions with large AWVC
(> 2.5 g.cm−2). Moreover, measurements of the AWVC are
likely to be available on the TRISHNA platform thanks to a
water vapor channel at 0.910 µm [75], [76].

The SW formulation proposed by [51] was shown to retrieve
surface temperatures within a 1.3 K error margin, even in wet
atmospheric conditions. It is formulated as followed:

TSW
sur = Tbx + a0 + a1(Tbx − Tby) + a2(Tbx − Tby)2

+(b0 + c0.AWVC)(1− 〈ε〉x,y)

+(b1 + c1.AWVC)∆x,yε (1)

where Tbx and Tby are the brightness temperatures measured
in the two channels selected for the SW application such
as λx < λy . 〈ε〉x,y and ∆x,yε are respectively emissivity
mean value and difference between both channels. The SW
coefficients a0, a1, a2, b0, b1, c0 and c1 have to be cali-
brated over a representative database of measured brightness
temperatures covering wide ranges of surface emissivities
and atmospheric conditions. This SW formulation requires
knowledge of land surface emissivities in both SW channels,
notably in order to account for the difference in emissivity
between both channels. Future TRISHNA studies should focus
on the development of an optimal method to derive emissivity
from visible data, by using relationships between emissivity
and fractional vegetation cover or NDVI [47], [50]. Therefore,

these emissivities may be obtained via onboard measurements
from the TRISHNA visible sensor.

III. SIMULATING THE CALIBRATION / VALIDATION
DATASET

Our method to find the optimal positions for the TRISHNA
SW channels relies on analyzing the retrieval accuracy on sur-
face radiometric temperature, for several pairs of SW channels
within the [9.5-12.5] µm spectral interval. For this purpose, we
use a simulated dataset of TRISHNA measurements, along
with corresponding reference values for land surface emis-
sivity (waveband values) and radiometric temperature. The
calibration / validation dataset to be used is generated using
the Python End-to-end Remote SEnsing intrUment Simulator
(PERSEUS), developed specifically for the TRISHNA mis-
sion. In this section, we offer a brief description of PERSEUS,
as well as its implementation in the context of the TRISHNA
mission. A more detailed presentation of PERSEUS can be
found in [77].

A. PERSEUS overview

PERSEUS was developed specifically for TRISHNA studies
in order to respond to the need for a modular, versatile and
fast computing simulator, notably because of the large number
of simulations to be conducted for our sensitivity analysis.
It permits to compute end-to-end simulations for a given
operating TIR sensor by including the following modules.

1) The computation of Top Of Atmosphere (TOA) radiance
spectrum over the TIR domain via the radiative transfer
module, which entry parameters are the scene surface
properties such as land surface emissivity spectrum
and radiometric temperature, as well as the associated
atmospheric profile. For this computation, the module
relies on the COMANCHE radiative transfer tool [78]
which is based on MODTRAN 5.2 [79].

2) An instrument module that simulates the signal modifi-
cations between the TOA radiances and the Out of Sen-
sor (OS) radiances. These modifications include (1) the
convolution of the input signal with the Instrumental
Spectral Response Function (ISRF) and (2) the applica-
tion of instrumental noise. Note that ISRF application
can be conducted on any spectrum beyond the TOA
radiances, including for instance surface emissivity or
radiance spectra.

3) An inversion module that permits to retrieve, via the
application of a SW method, land surface radiometric
temperature from the measured OS radiance.

Figure 1 presents a schematic overview of PERSEUS and its
three aforementioned modules. An extensive description of
these modules can be found in [77].

B. PERSEUS implementation in the context of the TRISHNA
mission

In order to compute a dataset of TOA radiances, we
first make use of the emissivity dataset obtained by [38].
This dataset includes 271 emissivity spectra of vegetation
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Fig. 1. Schematic overview of the PERSEUS tool that we use to generate a calibration/validation dataset for any SW method to be analysed. The three
PERSEUS modules are: the radiative transfer module, the instrument module and the inversion module. The variables calculated by the simulator are highlighted
in dotted lines.

TABLE I
SUMMARY OF THE SOIL AND VEGETATION PARAMETERS USED AS INPUT

FOR THE OBTAINING OF THE ’SAIL271’ DATASET (FROM [38]).

Parameters Values
Number of soil reflectance spectra 313
Number of leave reflectance / 64
transmittance spectra
LAI 0, 0.25, 0.5, 1, 2, 4, 7
ALA 15◦, 35◦, 55◦, 75◦
View zenith angle Nadir

canopy over soils, simulated with the SAIL-Thermique model
over a large range of Leaf Area Index (LAI), Average Leaf
Angle (ALA), soils reflectance spectra, and leave transmit-
tance/reflectance spectra (Table I), and statistically selected via
the Spectral Angle Mapper algorithm (SAM, [80]) to avoid re-
dundant spectra. The SAIL-Thermique model [50], [81] takes
into account important three-dimensional physical phenomena,
notably radiance trapping and resulting cavity effect with an
increase of emissivity. All emissivity spectra were simulated
by considering a nadir observation direction, because angular
variation of canopy emissivity are low between nadir and 40◦

[50], [82], [83], and because the maximum view zenith angle
for the TRISHNA sensor is 34◦. The resulting dataset of emis-
sivity spectra is hereafter called ’SAIL271’, and represented
in Figure 2.

We then associate each of the ’SAIL271’ spectra with 24

atmospheric profiles selected from the TIGR database [84].
The selection of these 24 atmospheric profiles aims to reduce
computation load while preserving the envelope of the original
TIGR dataset in the (T atm

eq , AWVC) space (Figure 3), where
the equivalent atmospheric temperature T atm

eq is the averaged
temperature obtained by weighting atmospheric temperatures
with atmospheric humidity [85]. Comparison between Fig-
ure 3(a) and (b) indicates that the density of the selected subset
differs from the original dataset, the latter including more dry
atmospheres (AWVC < 2.5 g.cm−2) than wet atmospheres
(AWVC ≥ 2.5 g.cm−2). Nonetheless, this new distribution
permits to give weight to atmospheric conditions of humid
climates, which are of uppermost interest for the TRISHNA
mission. The selected subset of atmospheric profiles is here-
after labelled ’TIGR24’. It contains 13 wet atmospheres and
11 dry ones. The selection of the ’TIGR24’ subset and the
subsequent weight given to wet atmosphere conditions will be
discussed in section VI.

Eventually, each possible combination of ’SAIL271’ spectra
and ’TIGR24’ profiles is associated to five surface radiometric
temperatures Tsur following the criteria Tsur = [Tskin −
5K;Tskin;Tskin+5K;Tskin+10K;Tskin+15K], where Tskin
is the temperature at the lower level of the corresponding
atmospheric profile. For a given spectral configuration with
two SW channels, the 271 × 24 × 5 = 32 520 PERSEUS
simulations are then carried out in order to calculate the
TOA radiances at nadir for each possible combination of
surface emissivity spectra, atmospheric profile and surface
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Fig. 2. The 271 emissivity spectra of the ’SAIL271’ dataset, generated with the SAIL-Thermique model for a large panel of vegetation canopies over soils.

Fig. 3. Representation of the atmospheric profiles in the Tatm
eq /AWVC space for (a) the complete TIGR dataset, and (b) the ’TIGR24’ subset.

radiometric temperature. This results in a dataset of TOA
radiances which is likely to represent various surface and
atmospheric conditions. A more extensive description of the
obtaining of the TOA dataset can be found in [77].

IV. SETUP FOR THE OPTIMIZATION OF THE CHANNELS
WAVELENGTHS

A. ISRF variations

In order to constrain the spectral configuration of the
TRISHNA TIR sensor, we analyze the sensitivity of the SW
method defined in equation (1) to channel positions, i.e., to

their central wavelengths (λic)i∈{TIR3,T IR4}. The ISRF of the
reference TRISHNA TIR spectral configuration is composed
of 4 TIR spectral channels labelled TIR1, TIR2, TIR3 and
TIR4 with respective central wavelength at 8.6, 9.1, 10.4 and
11.6 µm.

We first define the spectral intervals of variation for λTIR3
c

and λTIR4
c , namely [9.5 - 11] µm and [10.5 - 12] µm,

respectively. These spectral intervals are chosen to account
for constraints on instrumental design, as well as to assess
the impact on the SW performance of both ozone absorption
feature at 9.7 µm and SW channel proximity. Afterwards,
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we consider simultaneous sliding of both channels in their 
respective spectral interval by steps of 0.1 µm, with a cri-
terion on channels order that includes superimposition, i.e.,
λTIR3
c ≤ λTIR4

c . This two-dimensional approach permits to
visualize local minima of error in the (λTIR3

c , λTIR4
c ) space,

and therefore to find an optimal spectral configuration for TIR3
and TIR4. The sliding process results in 241 ISRFs which
permit to compute 241 × 32 520 = 7 837 320 OS radiances
LOS . The aforementioned setup is summarized in Table II.

B. Instrumental noise application

For the computation of each OS radiances LOS thus ob-
tained, we account for the corresponding TRISHNA instru-
mental noises, by using the following noise model for each
channel i:

Ne∆Li =
√
ai + bi Li (2)

where the term ai accounts for both the dark current noise
and the quantification noise, while the term bi Li represents the
shot noise, modelled by a Poisson process. Nominal values for
both ai and bi parameters are given in Table II for both chan-
nels. Practically, the instrumental noise is applied on the TOA
radiances after convolution with the ISRF, and implemented
for each channel i as a white Gaussian noise with standard
deviation equal to Ne∆Li. The values in Table II are based
on the preliminary data of Ne∆Li provided by the detector
manufacturer, which satisfy the TRISHNA specification of a
Ne∆T < 0.25 at 300K for TIR3 and TIR4 channels.

C. Criterion for the optimization of the channel wavelengths

Our criterion for the optimization of the channel wave-
lengths is the calibration RMSE of the SW formulation de-
scribed in equation (1). This calibration is conducted for each
aforementioned spectral configuration using its respective set
of 32 520 OS radiances LOS , as defined in section IV-A. The
calibration RMSE is calculated via:

RMSE(TSW
sur ) =

√∑
Ns

(Tsur − TSW
sur )2

Ns
(3)

with Tsur the reference surface radiometric temperature (see
section III-B and Figure 1), TSW

sur the SW surface temperature
retrieved with the calibrated SW coefficients, and Ns the num-
ber of OS radiances considered for each spectral configuration
(Ns = 32 520). This calculation of the calibration RMSE
using our set of OS radiances permits to account for a large
variability of input parameters, and therefore increases the
robustness of our results.

It is not possible to use the common Leave One Out Cross
Validation (LOOCV) procedure [86], because of constraints on
computation load. In order to validate the calibration RMSE as
a criterion for the optimization of the channel wavelengths, we
conduct a calibration / validation protocol for each calculation
of SW coefficients that correspond to a spectral configuration
(i.e., a pair of (λTIR3

c , λTIR4
c )). To that purpose, we first

randomly split the set of 32 520 OS radiances LOS obtained
in two subsets of equal capacity, i.e., 16 260 OS radiances

Fig. 4. RMSE values of the SW calibration for the 241 spectral configurations.
The red and purple circles highlight the reference spectral configuration with
RMSEcal(TSW

sur ) = 1.39 K, and the optimized one with RMSEcal(TSW
sur ) =

1.28 K, respectively. The red and purple rectangles highlight the robustness
of the configurations to a 0.2 µm uncertainty on channel positions.

each. Afterwards, we (1) calibrate the SW coefficients over the
first subset along with the corresponding calibration RMSE
(equation 3), and (2) apply the calibrated SW method over
the second subset and calculate the corresponding validation
RMSE with equation 3.

This calibration / validation protocol introduces a sup-
plementary variability in the RMSE variation across the
(λTIR3

c , λTIR4
c ) space, and therefore enhances the robustness

of the results. As such, the obtained RMSE values for cal-
ibration and validation depict identical variations across the
(λTIR3

c , λTIR4
c ) space as the one obtained with the whole

OS radiance set, i.e., our procedure for the optimization of
the channel positions. Moreover, when comparing the RMSE
values between calibration and validation cases, we observe
small differences between RMSE maximum values (respec-
tively minimum values), up to 0.09 K (respectively 0.01 K).
These results, given the robustness of our validation method,
justify the use of the calibration RMSE over the whole set
of OS radiances as a procedure for optimizing the TRISHNA
spectral configuration, notably in order to account for a large
variability of input parameters.

V. RESULTS AND RECOMMENDED TRISHNA
CONFIGURATION

A. Results of the optimization of channel positions

Figure 4 displays the RMSE values of SW calibration
obtained for each spectral configuration corresponding to a
pair of (λTIR3

c , λTIR4
c ). The SW technique appears to be

highly sensitive to the TIR3 and TIR4 positions with more
than 3 K of difference between the maximum and minimum
RMSEs values.

On the one hand, Figure 4 shows that for λTIR3
c ≤ 10.0 µm,

the calibration RMSE is larger than 3 K, and increases by more
than 1.3 K alongside λTIR4

c , until the latter reaches 12.0 µm
where the largest RMSEs are observed. The large RMSE
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TABLE II
INSTRUMENTAL FEATURES FOR TRISHNA REFERENCE TIR3 AND TIR4 CHANNELS, INCLUDING CENTRAL WAVELENGTH λc , FULL WIDTH AT HALF

MAXIMUM (FWHM), PARAMETERS ai AND bi FOR Ne∆Li . ARE ALSO INDICATED THE RANGES OF VARIATION FOR TIR3 AND TIR4 CHANNEL
POSITIONS, AS WELL AS THE RESULTING NUMBERS OF SPECTRAL CONFIGURATIONS AND OF SIMULATED RADIANCE MEASUREMENTS.

TIR3 TIR4
λic (µm) 10.4 11.6
FWHM (µm) 0.7 1.0
a (W 2.m−4.sr−2.µm−2,×10−5) 4.47 4.32
b (W.m−2.sr−1.µm−1,×10−8) 8.13 175
λic variation (µm) [9.5 µm ; 11 µm] [10.5 µm ; 12 µm]
Number of ISRFs 241
Number of LOS 7,837,320

values in this λTIR3
c interval are ascribed to the large spacing

between TIR3 and TIR4 channels, the latter making invalid
the main hypothesis of the SW method about near-equality of
emissivities within SW channels. Similarly, increasing λTIR4

c

when λTIR3
c ≤ 10.0 µm also expands the space between

TIR3 and TIR4, which induces larger differences between
emissivities in the SW channels, and therefore larger values
for RMSE on SW retrievals of land surface temperature. This
result will be discussed in section VI.

On the other hand, for λTIR3
c ≥ 10.3 µm, the RMSE

tends to increase with the proximity of the two channels,
i.e., with decreasing λTIR4

c , and a local maximum occurs
when both channels superimpose (λTIR3

c = λTIR4
c axis, see

bottom-right of Figure 4), with RMSE values around 3.5 K.
This increase in RMSE values is ascribed to the decreasing
difference in atmospheric transmittance between both SW
channels. First, in the λTIR3

c ≥ 10.3 µm region without
ozone perturbation, TIR3 is systematically less affected by
atmospheric perturbations than TIR4, since atmospheric dis-
turbances related to water vapor increase with wavelength
within the [9.5-12.5] µm spectral range (see Figure 6 in [87]).
Second, the SW method performs better for large differences
between atmospheric transmittance within both SW channels,
provided that condition of near-equality of emissivities within
SW channels is fulfilled. Overall, the optimal configuration is
obtained for λTIR3

c = 10.6 µm and λTIR4
c = 11.9 µm with

RMSEcal(TSW
sur ) = 1.25 K, which is similar to the optimal

configuration proposed in [42] for the same SW formulation.
These results and their validity for other SW methods will be
further discussed in section VI.

Figure 4 indicates an optimal region appears for λTIR3
c ≥

10.4 µm and λTIR4
c ≥ 11.3 µm, with calibration RMSEs

lower than 1.4 K, in accordance with the expected performance
of the chosen SW formulation [51]. The reference spectral
configuration (Table II) is located in this region, with a RMSE
value of 1.39 K (red circle in Figure 4), which is satisfactory in
terms of mission requirements (<1.5 K). However, considering
a worst case scenario where the error margins on channel
positions due to the instrument design could reach 0.2 µm
(as given by the manufacturer, red rectangle in Figure 4), the
RMSE could jump from 1.39 K to more than 2 K (see the cases
where λTIR3

c = 10.2 µm). Hence, a more robust positioning of
TIR3 and TIR4 should be found. Because of the complexity of
the implementation of a detector with high cutoff frequency for

TABLE III
TRISHNA RECOMMENDED TIR3 AND TIR4 CHANNELS CENTRAL

WAVELENGTHS λc AND FWHMS WITH THEIR RESPECTIVE UNCERTAINTY.
THE FWHM AND UNCERTAINTY VALUES ARE GIVEN BY THE

INSTRUMENT MANUFACTURER.

TIR3 TIR4
λc (µm) 10.6±0.15 11.6±0.15
FWHM (µm) 0.7±0.15 1.0±0.15

TIR4, a conceptual issue exists against a shift of this channel
toward higher wavelengths, which would lower the calibration
RMSE. Thus, when considering TIR4 at its reference position
of 11.6 µm, our results indicate an optimal position of TIR3 at
10.6 µm (purple circle in Figure 4). This new TIR3 position
not only minimizes the SW RMSE value at 1.28 K, it also
makes the spectral configuration more robust to uncertainties
in both TIR3 and TIR4 positioning. Indeed, for a maximum
channel misplacement of 0.2 µm, the largest RMSE value is
lower than 1.44 K (purple rectangle in Figure 4), which is still
within the expected performance of the chosen SW method.

B. The recommended TRISHNA spectral configuration

As the aim of our study is to constrain the position of the
TIR3 and TIR4 channels of the TRISHNA TIR instrument
using sensitivity analyses of the SW method of [51] and
a minimization process, we define a new set of positions
for both spectral channels which is described in Table III
and Figure 4 (purple circle). This new configuration is in
agreement with the results of a similar study conducted with
the TES algorithm in the context of the TRISHNA mission
[77]. In this new configuration, the TIR3 channel is relocated
at the optimal position of λTIR3

c = 10.6 µm. With this new
configuration, a very light gain of 0.15 K is obtained on surface
temperature RMSE as compared to the reference configuration.
However, this configuration allows to relax the constraints to
the manufacturer on the positioning of TIR3. Indeed, in case
of large errors on channel positioning of 0.2 µm, the variation
of RMSE is of at most 0.11 K with the new configuration,
versus 0.75 K with the initial one.
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Fig. 5. Absolute average emissivity difference as observed between channels
TIR3 and TIR4 for the 241 spectral configurations. The average emissivity
spectrum is computed over the 271 spectra of the ’SAIL271’ dataset. The
red and purple circle respectively highlights the reference and recommended
spectral configurations.

VI. DISCUSSION

A. On the sensitivity to the difference in emissivity between
TIR3 and TIR4

Figure 4 indicates an increase in RMSE values with de-
creasing λTIR3

c and increasing λTIR4
c in the λTIR3

c ≤ 10.0 µm
region. This trend is ascribed to increasing differences between
the land surface emissivities captured by both SW channels.
Figure 5 displays the absolute average emissivity difference
between channels TIR3 and TIR4 for the 241 spectral con-
figurations within the (λTIR3

c , λTIR4
c ) space. These values are

obtained by (1) computing the average emissivity spectrum
over the 271 emissivity spectra of the ’SAIL271’ dataset (see
section III-B), (2) convolving this average emissivity spectrum
with the 241 ISRFs to derive waveband emissivity within the
TIR3 and TIR4 channels, and (3) calculating the absolute
difference between average emissivity within the TIR3 and
TIR4 channels.

Figure 5 shows a similar pattern as Figure 4 for the
λTIR3
c ≤ 10.0 µm region, with increasing differences in

average emissivity as λTIR3
c decreases and λTIR4

c increases.
This similitude supports the premise that the increasing RMSE
along the bottom right to to top left axis in Figure 4 is mainly
due to the increasing difference between surface emissivity
within TIR3 and TIR4 channels. In order to further support
this result, we compute the Spearman correlation coefficient
between RMSE values displayed in Figure 4 and absolute
average emissivity differences displayed in Figure 5. The
obtained correlation coefficient is 0.737 with a very low p-
value of 1.3 × 10−42, which shows a significant correlation
between both variables.

The sensitivity of the SW method performance to the dif-
ference in emissivity between SW channels raises the issue of
correctly including this difference within the SW formulation.
On the one hand, several SW formulations account for this
difference, labeled ∆x,yε in Equation 1 for the formulation we
consider in the current study. On the other hand, the sensitivity

Fig. 6. Absolute average transmittance difference as observed between
channels TIR3 and TIR4 for the 241 spectral configurations. The average
transmittance spectrum is computed over the 24 profiles of the ’TIGR24’
dataset. The red and purple circle respectively highlights the reference and
recommended spectral configurations.

we report here for this SW formulation performance to ∆x,yε
suggests that the corresponding term in Equation 1 is not
appropriate. Therefore, further efforts have to be conducted on
this issue, in order to develop a SW formulation that correctly
accounts for ∆x,yε.

B. On the sensitivity to the difference in transmission between
TIR3 and TIR4

Figure 4 also indicates a region of interest for TIR3 and
TIR4 channels when λTIR3

c ≥ 10.3 µm. For this region, av-
erage emissivity difference between TIR3 and TIR4 channels
is lower than 0.01 (see Figure 5), which is in agreement with
one of the underlying assumption of the SW method (i.e.,
low changes in surface emissivity between both channels). In
this region, the SW method should perform very well when
combining a channel with large atmospheric perturbations and
another one with low atmospheric perturbations, so that dif-
ference between channel atmospheric transmittances is large.
In order to verify the validity of this assumption, Figure 6
displays the absolute average transmittance difference between
channels TIR3 and TIR4 for the 241 spectral configurations.
These values are obtained with a method similar to that
described in the previous section for the absolute average
emissivity difference.

Comparison between Figure 6 and Figure 4 allows the
following observations. First, there is no correlation between
RMSE values displayed in Figure 4 and absolute average
transmittance differences displayed in Figure 6, when dealing
with the λTIR3

c ≤ 10.0 µm region, while this region presents
very high transmission differences between the two channels.
This is ascribed to the fact that within this region, the SW
assumption on low difference in surface emissivities between
both channels is not verified. Second, an anti-correlation
between RMSE values displayed in Figure 4 and absolute
average transmittance differences displayed in Figure 6 is
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Fig. 7. RMSE values of the SW calibration as a function of the absolute
average transmittance difference for the λTIR3

c ≥ 10.3 µm region, without
(red, ’No Inoise’) and with (blue, ’Inoise’) instrumental noise.

observed in the λTIR3
c ≥ 10.3 µm region, with RMSE val-

ues on temperature decreasing with increasing transmittance
differences, which is conform to the SW assumption on large
difference between channel transmittances.

In order to further confirm this anti-correlation between the
two set of variables, we display in Figure 7 the correlation,
within the λTIR3

c ≥ 10.3 µm region, between the RMSEs
on SW surface temperature retrieval and the absolute average
transmittance differences (blue points). The figure clearly
shows the anti-correlation between both sets of variables,
which is confirmed by a corresponding Spearman correlation
coefficient of -0.846 and a very low p-value of 4.9×10−32.
This result highlights that when the observed emissivities in
both SW channels are nearly equal, a channel configuration
that maximize the transmittance difference has to be found for
optimizing the channel positions.

C. On the sensitivity to the instrumental noise

As mentioned in the previous section, in the region of
interest (λTIR3

c ≥ 10.3 µm), the RMSE values on surface
radiometric temperature increase with the relative proximity of
the two SW channels (see Figure 4). Interestingly, we observe
a different result when disregarding instrumental noise, as
displayed in Figure 8. In that case, despite an overall vari-
ation of surface temperature RMSEs similar to the case with
instrumental noise (see Figure 4 and red dots in Figure 7),
the best configurations are found for (λTIR3

c = 10.5 µm,
λTIR4
c = 10.6 µm) or (λTIR3

c = 10.6 µm, λTIR4
c = 10.7 µm),

with respective RMSE values of 1.11 K and 1.06 K (see green
circles in Figure 8).

This result is ascribed to small changes in emissivity
and moderate changes in atmospheric transmittance around
10.6 µm. In the absence of instrumental noise, this induces that
brightness temperatures measured in SW channels are different
enough to correctly calibrate the SW coefficients. Thus, small
variations of emissivity between channels allow the correct
calibration of the SW coefficients, even for moderate change
of transmittance. This suggests that difference in channel

Fig. 8. RMSE values of the SW calibration for the 241 spectral configurations,
without instrumental noise. The red and purple circle respectively highlights
the reference and recommended spectral configurations. Both green circle
highlights the minimum values of the calibration RMSE obtained, namely for
λTIR3
c = 10.5 µm and λTIR4

c = 10.6 µ with a RMSE of 1.11 K, and for
λTIR3
c = 10.6 µm and λTIR4

c = 10.7 µm with a RMSE of 1.06 K.

emissivity is the main driver for SW performance in our
study case, as shown by the high Spearman correlation coeffi-
cient calculated in section VI-A. However, instrumental noise
distorts variations of OS radiances between SW channels,
where these radiances are originally driven by changes in
surface emissivity and atmospheric transmittance. This makes
the SW calibration less efficient, which explains the difference
observed between Figure 4 and 8. Eventually, disregarding
instrumental noise also degrades the Spearman correlation co-
efficient between RMSE values on SW retrievals and absolute
average transmittance differences in the λTIR3

c ≥ 10.3 µm re-
gion, with a coefficient of -0.403, although the global behavior
is similar to that observed when considering instrumental noise
(see Figure 7, red points versus blue points).

It should be noted that from a TRISHNA operational point
of view, the TRISHNA TIR instrumental noise is mainly
dependent on channel FWHM, which are considered fixed
by mission requirements. However, Figure 8 only considers
the variation of the SW performance according to physical
underlying assumption, namely the difference in observed
emissivity and atmospheric transmittance between TIR3 and
TIR4 channels. Thus, this figure permits to verify the under-
lying physic principles of the SW method described in the
previous sections.

D. On the applicability of our results to other SW formulations

The results reported in the current study theoretically de-
pends on the formulation of the SW method to be chosen.
However, since the overall variation of RMSEs observed
in Figure 4 can be explained by SW hypothesis that are
common to all existing formulations (see previous sections),
it is valuable to explore if our results can be extended to other
SW formulations. In that sense, we choose the Generalized
Split Window (GSW) equation [49] which is routinely used for
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Fig. 9. RMSE values of the SW calibration for the 241 spectral configurations
when using the formulation from [89] in place of that from [51] . The red and
purple circle respectively highlights the reference and recommended spectral
configurations.

MODIS (see for example [88]) or SEVIRI (see for example
[89]). This formulation is different from the formulation of
[51], since it does not explicitly account for AWVC and it
is linear, but it still accounts for the difference in emissivity
between the two channels. This SW formulation is calibrated
using our set of OS radiances, and the obtained RMSEs are
depicted in Figure 9.

It appears from Figure 9 that, despite some local differences,
the overall trends obtained with this linear AWVC-independent
SW formulation are very similar to those previously reported
in Figure 4 with the non-linear AWVC-dependent SW formu-
lation. First, the λTIR3

c ≥ 10.3 µm region still corresponds
to lower RMSE values, with a similar optimal position of
TIR3 at λTIR3

c = 10.6 µm. Second, within this region of
interest, the Spearman correlation coefficient also indicates an
anti-correlation between RMSE values displayed in Figure 9
and absolute average transmittance differences displayed in
Figure 6, with a value of -0.773 and a very low p-value of
1.22×10−23. Third, a similar degradation of the SW method
performance is observed in the λTIR3

c ≤ 10.0 µm region, due
to large differences between emissivities in TIR3 and TIR4
channels. Finally, when disregarding instrumental noise with
the formulation of [89], we obtain similar results than those
reported in the previous section, with a similar performance
pattern in the (λTIR3

c , λTIR4
c ) space and a minimum RMSE

value obtained for the channel pair (λTIR3
c = 10.6 µm,

λTIR4
c = 10.7). As mentioned in section VI-A for the SW

formulation of [51], the observed sensitivity to the difference
in emissivity between both SW channels highlights that this
difference is not well considered into the SW formulation of
[89], although is it explicitly included.

E. On the selection of atmospheric profiles

In section III-B, we highlighted the difference between
the selected ’TIGR24’ subset and the original TIGR dataset.
Figure 3 shows that our selection of atmospheric profiles

drastically reduces the density of dry atmosphere (AWVC
< 2.5 g.cm−2) as compared to the original dataset, with a
’TIGR24’ subset that includes fewer dry atmospheres (11) than
wet atmospheres (13). On the one hand, the current study is
conducted in the context of the TRISHNA mission for which
tropical regions such as India are of essential interest. On
the other hand, AWVC is the main driver for atmospheric
transmittance in the TIR domain. Therefore, it makes sense
to optimize the TRISHNA SW channel positions by giving a
large weight to the occurrence of wet atmospheres, and thus
to account for a wide range of atmospheric transmittances.
Subsequently, the ’TIGR24’ subset is likely to enhance the
dependency of the SW method to the difference between
atmospheric transmittance within SW channels, and thus to
increase the effect of atmospheric transmittance on the SW
performance. Overall, studying the global SW performance
requires to appropriately quantify the occurrence of dry and
wet atmospheric profiles at the global extent. Such a quantifi-
cation should be conducted in the context of the TRISHNA
mission.

F. On the impacts of uncertainties on AWVC and land surface
emissivity

Using SW formulation in Equation 1 induces that any SW
retrieval of surface temperature is sensitive to uncertainty on
AWVC, and to uncertainty on land surface emissivity within
both SW channels. In order to evaluate the robustness of our
bi-dimensional approach for SW channel location, we conduct
a sensitivity study on land surface emissivity within the two
SW channels, and on AWVC. We rely on [90] for uncertainty
on AWVC retrievals from remotely sensed observations over
the solar spectral domain. Thus, we set up RMSE and bias
values to 0.2 g.cm−2 and 0.1 g.cm−2, respectively. We rely on
[46] for uncertainty on land surface emissivity retrievals from
remotely sensed observations over the solar spectral domain.
Thus, we set up the RMSE values to 0.02 for both TIR3 and
TIR4 channels, and bias values to 0.01 and 0.015 for TIR3 and
TIR4 channel, respectively. We consider two combinations for
bias values on TIR3 and TIR4 channels: bias values equal to
-0.01 and to +0.015, and bias values equal to +0.01 and to
-0.015. In both AWVC and land surface emissivity cases, the
RMSE values are included as an additional white noise within
Equation 1.

Figure 10 displays the results related to uncertainty on
SW channel emissivity, with bias values equal to -0.01 and
to +0.015 on TIR3 and TIR4 channels, respectively. Beyond
small differences in RMSE magnitude (< 0.3 K), we obtain
very similar patterns within the (λTIR3

c , λTIR4
c ) space, for

all cases related to uncertainty on AWVC or on land surface
emissivity (figures not shown). Most importantly, we obtain
the same optimal location for TIR3 (given a fixed location of
TIR4 at 11.6 µm) with or without uncertainty on SW channel
emissivity and AWVC, i.e. λTIR3

c = 10.6. This result supports
the conclusion that the SW channels location we obtained with
our bi-dimensional approach is robust to these uncertainties.
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Fig. 10. RMSE values of the SW calibration with the 241 spectral configura-
tions, when including uncertainty on SW channel emissivity (bias values equal
to -0.01 and to +0.015 on TIR 3 and TIR 4 channels, respectively, and RMSE
value equal to 0.02 for both channels). The red and purple circle respectively
highlights the reference and recommended spectral configurations.

G. On the inclusion of cavity effect within emissivity spectra

Evaluating the benefit of accounting for cavity effect re-
quires to implement our bi-dimensional approach by using
emissivity spectra without cavity effect. However, it is not
possible to perform this implementation with all other vari-
ables being equal. Indeed, the SAIL-Thermique model is built
to intrinsically account for cavity effects on the basis of
soil reflectance and leave transmittance / reflectance, which
prevents to reproduce the counterparts of the SAIL271 dataset
without cavity effect. Therefore, we elaborate an alternative
solution that consists in implementing our bi-dimensional
sensitivity analysis while considering three cases where the
cavity effect is not included into the land surface emissivity
spectra of the SAIL271 database.

• Case 1: we consider the spectra of the SAIL271 dataset
that correspond to LAI = 0, and thus to bare soils.

• Case 2: we consider the spectra of the SAIL271 dataset
that correspond to LAI = 7, and thus to dense vegetation
canopies with low cavity effect.

• Case 3: we consider the linear mixing of the individual
emissivity spectra considered in Case 1 (bare soils) and
in Case 2 (dense vegetation canopies). Within the linear
mixing, emissivity spectra for bare soil and dense vegeta-
tion canopies have equal weights (50%-50%), in order to
simulate an intermediate situation between bare soil and
dense vegetation canopies.

Figure 11 displays the results obtained for Case 3 (i.e., linear
mixing of individual spectra). We obtain very similar results
for both bare soil and dense vegetation canopies (figures not
shown), since the patterns of RMSE on SW retrievals within
the (λTIR3

c , λTIR4
c ) space are very similar across the three

cases. Beyond small differences in RMSE magnitude, the most
important result is that we obtain the same optimal locations
for TIR3 (given a fixed location of TIR4 at 11.6 µm) when
including (Figure 4) or not (Figure 11) the cavity effect, i.e.

Fig. 11. RMSE values of the SW calibration with the 241 spectral con-
figurations, by considering the linear mixing of the individual emissivity
spectra considered in Case 1 (LAI = 0, bare soils) and in Case 2 (LAI≥4,
dense vegetation cover). Within the linear mixing, emissivity spectra for bare
soil and dense vegetation cover have equal weights (50%-50%). The purple
circle highlights the optimal spectral configuration corresponding to minimum
RMSE values on SW retrievals.

λTIR3
c = 10.6 µm. Furthermore, we do not report significant

difference in our proposition for SW channels location as
compared to former studies that do not account for cavity
effect (e.g., [42]). Both results discussed in this section support
the conclusion that accounting for cavity effects when using
the SW method is not a critical issue, as opposed to the use
of TES method [38].

VII. CONCLUSION

In the context of the TRISHNA mission, we propose an
original approach for optimizing the sensor spectral con-
figuration in accordance to the related performance of the
SW method. We conduct a sensitivity analysis of the SW
method to the channel positions along with a minimization
process. The approach is original for two reasons. First, it
relies on a simulated dataset of land surface emissivity spectra
that accounts for radiance trapping within vegetation canopy,
namely the cavity effect (i.e., emissivity increase). Second, it
relies on a bi-dimensional approach where both SW channels
can slide within respective intervals. This permits to identify
extreme values for the SW method performance within the
spectral space defined by the sliding channels, but especially
permits to define a spectral configuration that is robust to
uncertainties on channel positions.

From the operational viewpoint of the TRISHNA mission,
the current study provides a new TIR spectral configuration
as compared to the manufacturer baseline, notably with TIR3
channel located at λTIR3

c = 10.6 µm, to be combined
with TIR4 channel located at λTIR4

c = 11.6 µm. This new
configuration permits to slightly reduce the error on surface
temperature retrievals as compared to the reference config-
uration (0.15 K), but significantly reduces this error when
accounting for uncertainties on channel location (0.6 K).

From a scientific viewpoint, our study reveals a high sensi-
tivity of the SW method to the TIR3 and TIR4 SW channel
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positions, where the error on surface radiometric temperature 
can go up to 3 K within the spectral space defined by the 
sliding channels. Furthermore, the bi-dimensional approach 
permits to highlight that the observed sensitivity is due to the 
underlying physical principles of the SW method, notably by 
revealing two distinct regions for the SW method performance
in the (λTIR3

c , λTIR4
c ) space:

1) the λTIR3
c ≤ 10.0 µm region, where the underlying

hypothesis about near-equality of channel emissivities is
not valid, and where the performance therefore decreases
with increasing distance between TIR3 and TIR4;

2) the λTIR3
c ≥ 10.3 µm region, where the differences

in channel emissivities are small enough to make valid
the underlying hypothesis about near-equality, and where
the SW method performance is mainly driven by the
differences in channel transmittance.

The clear observation of these two regions shows that the two
underlying hypothesis of the SW method (i.e., near-equality
for land surface emissivities and large difference between
atmospheric transmittances within the SW channels) are not
verified in a same region of the (λTIR3

c , λTIR4
c ) space. This

explains that performances of the SW method reported in the
literature is more or less satisfactory [30], [51], [55].

When disregarding instrumental noise, optimal configu-
rations correspond to high proximity of TIR3 and TIR4
channels, namely (λTIR3

c = 10.5 µm, λTIR4
c = 10.6), and

(λTIR3
c = 10.6 µm, λTIR4

c = 10.7). In that case, the SW
method can be successfully calibrated with small differences
in atmospheric transmittance between both channels, provided
that the differences between surface emissivity in both chan-
nels are very low. This result, combined with the high Spear-
man correlation coefficient of 0.737 obtained between the
surface temperature RMSEs and average emissivity differences
dataset, supports the idea that the difference between surface
emissivities in the two SW channels is the main driver for
the SW method performance. This high sensitivity to the
difference between land surface emissivity within both SW
channels also shows that current SW formulations do not
adequately consider this difference, since they donot efficiently
correct the related effects on surface temperature retrievals.
This highlights the need for further efforts on new SW
formulations.

By applying our study on two structurally different SW
formulations, we revealed similar behaviors of the SW perfor-
mance. This strengthens the hypothesis that the sensitivity of
the SW formulation proposed by [51] to differences in surface
emissivity and transmittance between SW channels, which are
the underlying physical assumptions of the SW method, can
be generalized to several SW formulations. Besides, we do
not report significant differences in SW channel locations as
compared to former studies that do not account for cavity
effect, or as compared to the use in the current study of
emissivity spectra without cavity effect. This underlines that
calibrating any SW formulation over a dataset of emissivity
spectra with cavity effect is likely not to be a critical issue,
conversely to the results reported by [38] for the TES method.

For future studies, our results notably highlight the impor-
tance of considering the validity space of the SW method

when optimizing the spectral channel positions. Furthermore,
the SW method performance is sensitive to the difference
in atmospheric transmittance between SW channels, which
hints that locating the upper channel above 12 µm may
improve the performance. Further investigations on the matter
should be conducted for the design of future TIR missions.
Additionally, it is necessary to conduct further sensitivity
analysis of existing SW formulations to the difference between
land surface emissivity in both SW channels, in order to better
account for this parameter. Finally, the SW performance is sen-
sitive to instrumental noise, which highlights the importance
of investigating sensor technologies that reduce instrumental
noise for future TIR missions, the goal being to obtain spectral
configurations with very close SW channels.
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G. Boulet, X. Briottet, K. M. Buddhiraju, S. Cherchali, I. Dadou et al.,
“The indian-french trishna mission: Earth observation in the thermal
infrared with high spatio-temporal resolution,” in IGARSS 2018-2018
IEEE International Geoscience and Remote Sensing Symposium. IEEE,
2018, pp. 4078–4081.

[26] J.-P. Lagouarde, B. Bhattacharya, P. Crébassol, P. Gamet, D. Adlakha,
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