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Abstract: At the heart of cyber-physical and ambient systems, the user should permanently
benefit from applications adapted to the situation and her/his needs. To do this, she/he must
be able to configure her/his software environment and be supported as much as possible in
that task. To this end, an intelligent “engine” assembles software components that are present
in the ambient environment at the time and makes unanticipated applications emerge. The
problem is to put the user “in the loop”: provide adapted and intelligible descriptions of the
emerging applications, and present them so that the user can accept, modify or reject them.
Besides, user feedback must be collected to feed the engine’s learning process. Our approach
relies on Model-Driven Engineering (MDE). However, differently from the regular use of MDE
tools and techniques by engineers to develop software and generate code, our focus is on
end-users. Models of component assemblies are represented and made editable for them.
Based on a metamodel that supports modeling and description of component-based appli-
cations, a user interface provides multi-faceted representations of the emerging applications
and captures user feedback. Our solution relies on several domain-specific languages and a
transformation process, based on the established MDE tools (Gemoc studio, Eclipse Model-
ing Framework, EcoreTools, Sirius, Acceleo). It works in conjunction with the intelligent en-
gine that builds the emerging applications and to which it provides learning data.

1 Introduction

Applications of the Internet of Things, ambient and cyber-physical systems consist

of fixed or mobile, connected devices. These devices host independently developed

and managed software components that may be assembled to build distributed ap-

plications. Due to mobility and separate management, devices and software com-

ponents may appear and disappear without foreseeing these dynamics. Hence, the

environment is open, and its changes are out of control.

Humans are at the core of these dynamic systems where they may use applica-

tions at their disposal. Ambient intelligence aims to offer them a personalized envi-

ronment adapted to the current situation and their needs, i.e., to provide them the

right applications at the right time, with the least effort possible.

To this end, our team is exploring and designing an approach called opportunis-

tic software composition, which aims to intelligently and automatically assemble

software components at runtime to make emerge composite applications and so

customize the user ambient environment: for example, an interaction component

present in a smartphone (e.g., a Slider or a Speech Recognition component), a soft-

ware Converter and a connected Lamp can opportunely be assembled and provide

the user with an ambient lighting control service when entering a room.
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This article details the way we reinforce the place of the user in the engineering

loop. First, the emerging applications must be described in a useful and understand-

able way to inform the user efficiently. Then, she/he must be able to configure the

ambient environment and be as much as possible assisted in that task. Last, user

feedback must be collected to feed the intelligent assembly process. For that, our ap-

proach relies on Model-Driven Engineering (MDE). The initial idea was to be able

to quickly transform data about the emergent assemblies into graphical representa-

tions of the applications. The additional benefit is that, once you get this model rep-

resentation, you can: (i) provide multiple syntactic representations of the composite

application (e.g., component-based, graphical, textual); (ii) generate complemen-

tary representations (e.g., dynamic view of the application or rule-based descrip-

tion); and (iii) formally capture the user manipulations of the model. Our solution

consists of a set of languages and transformation processes. We propose an editor

that allows the user to be aware of the emerging applications, to understand their

function and use, and to modify them if desired. From her/his actions, without over-

loading her/him, feedback data are extracted. The originality of our approach is that

the models are dedicated to end-users, not to designers and developers. It brings

both new advantages and new challenges that we detail in this paper.

The remaining of this article is organized as follows. Sec. 2 briefly introduces

model-driven engineering (MDE), component-based software engineering (CBSE),

and opportunistic component-based software composition. Sec. 3 analyzes the prob-

lem and the requirements. In Sec. 4, the motivations for using MDE are examined,

then our contribution is detailed and illustrated using an application example. Our

prototype implementation and validation are described in Sec. 5 where other appli-

cation examples are presented. Sec. 6 analyzes the related work. At last, in Sec. 7, the

contribution is summarized, and some future works are discussed.

2 Background

2.1 Model-Driven Engineering (MDE)

MDE is a software development methodology that focuses on creating and exploiting

domain models related to a specific problem. Software developers (SDs) use them to

create abstract descriptions of the software, facilitating the generation of implemen-

tation code [1]. MDE is based on modeling languages, typically defined as metamod-

els, used to formalize application requirements, structures, and behaviors within a

particular domain. Formal rules can be defined to verify that the instances comply

with the metamodel. These rules are added to the metamodel to perform model-

checking and detect and prevent many errors before code generation. Most of the

time, the abstract syntax is defined using metamodeling by specifying the structure

of the modeled system (e.g., building a class diagram that characterizes logical object
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structures as illustrated in Fig. 4). Metamodeling is also used to define the concrete

syntax and customize the generated code.

Substancial benefits of MDE set in: (i) model transformation engines that are

used to produce various types of artifacts, such as source code, deployment descrip-

tors, or other models; and (ii) the possibility to define Domain-Specific Languages

(DSLs). A DSL is a dedicated language devoted to expressing and solving problems

in a specific domain [2]. By defining the actions that can be done by SDs, it allows

them to manipulate and edit particular models. Finally, to manage models, SDs use

model editors, that may be graphical or textual depending on the DSL.

2.2 Component-Based Software Engineering (CBSE)

Software components are loosely coupled runtime entities that may provide services

specified by interfaces and, in turn, may require other services [3]. Unlike objects,

they bring the required services at the same level as the provided ones. Fig. 1 shows

a Converter component represented in UML: provided services (here, the Convert

service) are pictured by a bullet and required services (here, the Order service) by a

socket. Components, whose implementation is hidden, are reusable building blocks.

To build applications, they are assembled by binding required to provided services if

they match. CBSE involves both developing components individually and building

assemblies by using or reusing components. Usually, a middleware supports com-

ponent deployment and integration.

Figure 1: UML representation of a Converter component

2.3 Opportunistic Software Composition

Opportunistic software composition is a disruptive approach for dynamic and au-

tomatic construction of component-based applications: unlike the traditional goal-

directed top-down mode, applications are built on the fly in a bottom-up way from

the components that are present and available at the time, without the user needs

have to be made explicit [4]. That way, applications that may be unanticipated emerge

from the environment, taking advantage of opportunities as they arise. Let us imag-

ine Paul who lives in a smart home with software components to control elements

such as switches, lamps or kitchen appliances. Paul is often impressed by the ability
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of his environment to intelligently assist him in his activities. Yesterday, for example,

his professional laptop he had only brought for teleworking served as his intercom

when the postman rang.

Opportunistic software composition is supported by an intelligent middleware,

called Opportunistic Composition Engine (OCE), in line with the autonomic com-

puting principles: OCE senses the existing components, plans component assem-

blies (i.e., builds models), and pushes them to the user; then, assembly plans may be

realized under user control. In the absence of prior explicit guidelines, OCE automat-

ically learns the user’s preferences according to the situation to later make relevant

decisions and maximize user satisfaction. Learning is achieved online by reinforce-

ment [5] from feedback of the user who is put in the loop. This way, the engine as-

sures proactivity and runtime adaptation in a context of openness, dynamics, and

unpredictability. How OCE works is detailed in [6]; it is out of scope of this article.

3 Problem statement and requirements

In the absence of prior specification, emerging applications are unknown a priori

and possibly surprising. While their functionalities may be implicit, they can also be

difficult to understand. For example, Paul uses a slider on his smartphone to turn on

the lamp in his living room. The first time he was offered this application, he did not

immediately grasp its purpose and use.

Yet, the user must be aware of the emerging applications, arbitrate on them de-

pending on she/he could benefit from, and provide feedback to the intelligent mid-

dleware. For that, the user must be put “in the loop”.

The fundamental question is, therefore, how to realize the user in the loop and

meet the corresponding requirements? The rest of this section analyzes and sets out

these requirements. The next section describes our solution based on MDE.

3.1 Presentation

OCE assembles software components that are present in the ambient environment

at the time and makes applications emerge. As applications may be unknown by the

user, she/he must be informed of both the function of an emerging application and

how to use it.

• [R1.1] Functional description. The function of the application must be presented

to the user. For example, “The application allows someone to light up the lamp”.

• [R1.2] Usage. The instructions on how to use the application must be presented to

the user. For example, “Press the switch to turn ON/OFF the light”.

3.2 Understandability

Depending on the user skills, presentation and assistance to her/him may be more

or less efficient. However, a sound understanding by the user of the presented appli-
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cations is critical, both for their acceptance and use and for the quality of the user

feedback. Here, we target average users that are not necessarily familiar with pro-

gramming and CBSE. For instance, the user may be the inhabitant of a smart house

(such as Paul) or a public transport traveler in a smart city. Consider a simple as-

sembly consisting of a switch and a lamp. In that case, we would ideally like to tell

Paul something like “If you click on the switch, the lamp will turn ON/OFF". Another

question is related to the complexity of the assembly in the number of components

and services.

• [R2.1] Intelligibility. The application description must be understandable by an

average user without programming skills.

• [R2.2] Presentation scalability. The description should remain intelligible and use-

ful even when the application has about ten or more components.

3.3 Automated description

The problem lies in the construction of the description of an application, i.e., its

computation from the components of the assembly that implements the applica-

tion, their services and bindings, without human support.

• [R3] Automation and composability. Descriptions must be automatically built by

combining unit descriptions of components.

3.4 User input and guidance

User control on their environment is of the highest importance [7]. Thus, whatever

OCE decisions and the pushed applications are, application deployment must re-

main under user control. Besides, users should be able to customize the ambient en-

vironment by themselves, depending on their needs and preferences, and be guided

in this task.

• [R4.1] Input. The user must be able to accept the emerging application [R4.1.1],

then it is deployed, or reject it [R4.1.2], then it is canceled. According to her/his skills,

the user should be able to edit and modify an application model [R4.1.3], i.e., create,

remove, or change bindings between services.

• [R4.2] Guidance. When editing, the user must be guided, and the correctness of

her/his actions must be guaranteed.

3.5 User feedback

Relevance of the applications pushed by OCE depends on the knowledge about the

user. This knowledge is built by OCE at runtime and evolves dynamically. To learn

from and for the user, OCE needs her/his feedback about the applications. But the

user must not be overburdened or disturbed. User acceptance, rejection, and mod-

ification are the sources of feedback that are expected by OCE about its decisions.
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Note that a sound understanding by the user about the proposed application ([R2.1])

is mandatory to provide relevant feedback.

• [R5.1] Feedback generation. OCE must get feedback generated from the user’s re-

actions to the emerging applications.

• [R5.2] Discretion. The provision of feedback should not overburden the user.

4 Putting the user in the loop with MDE

4.1 Overview

To put the user in the loop and meet the corresponding requirements, we have de-

signed the Interactive Control Environment (ICE) based on MDE, which works to-

gether with the Opportunistic Composition Engine (OCE).

Figure 2: The Interactive Control Environment (ICE)

Fig. 2 shows a screenshot of the ICE user interface. It is a graphical editor that

mainly consists of three panels. Panel 1 displays applications as UML component di-

agrams. Available components that do not participate in applications are displayed

too. Through this panel, the user can accept or reject the assembly. This is an answer

to [R4.1.1] and [R4.1.2] requirements. Besides, users that are unfamiliar with com-

ponent diagrams can request other views of the application: here, a UML sequence

diagram and a textual description make more explicit the function of the applica-

tion and how to use it. This answers to [R1.1] and [R1.2]. However, depending on the
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user’s skills, other outputs are possible in specific languages adapted to the user as

shown in the icon-based diagram. This answers to [R2.1]. As the different outputs are

computed automatically without user involvement, [R3] is met too.

Moreover, ICE supports application edition by the user. Panel 2 displays the prop-

erties of a component or a service. Panel 3 provides a bind tool for creating bindings

between services and so components. The user can also change or delete bindings.

This answers to [R4.1.3] and [R4.2] since the editor authorizes only correct user’s ac-

tions. Last, to meet [R5.1], the user’s activities on the assembly are captured by ICE,

then transformed into feedback and sent to OCE for learning. Note that in such a

way, the user is not asked for explicit feedback, so [R5.2] is satisfied.

ICE is part of the overall architecture (see Fig. 3) we have designed to put the

user in the loop: ICE automatically presents emerging application descriptions and

captures feedback; besides, the user can edit the assemblies and finally accept them.

Figure 3: Overall architecture with the user in the loop

4.2 Motivations for using MDE

At this point, several observations can be made:

1. Basically, OCE designs and produces models. These are models of emerging ap-

plications in the form of assemblies of components, all conforming to the same

metamodel. Such a model consists of a set of components and a set of bindings

between their services. It is prescriptive as it specifies the application to be cre-

ated but also descriptive of the application to be accepted and deployed [8].

2. The models provided by OCE can be transformed and presented in multiple

ways: in different user-friendly descriptions depending on her/his understand-

ing skills, and as component diagrams to support component (re)composition

by end-users who have programming skills.
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3. As a programmer, the end-user must be supported with editing features and con-

trol rules that prevent unauthorized bindings. Since the models are subject to

user’s modifications, they can also be qualified as explorative [8].

Therefore, we have chosen MDE and the advantages it brings (see Sec. 2.1) to

support ICE, i.e., to transform the models designed by OCE into user-oriented mod-

els, and conversely transform user-oriented models into both data for OCE learning

and deployment scripts. Using MDE for this purpose is unusual: differently from the

common use of MDE tools and techniques by engineers to develop software and

generate code, we focus on end-users for whom prefabricated assembly models are

transformed and represented.

To develop our solution, we have used the GEMOC facilities [9], for which our

team is an active contributor. ICE consists of an Eclipse Modeling Framework (EMF)

[10] project, where EcoreTools [11] is used to define our metamodel and attach OCL

rules to it. We have used Sirius [12] to define the DSLs and create the graphical editor,

and Acceleo [13] to support model transformations.

In the following, we expose the different elements of our solution.

4.3 The assembly metamodel

Several metamodels of components and services exist in the literature [14, 15], but

they both are too complicated for our needs and do not meet our description require-

ments. Therefore, we have defined our own (see Fig. 4), in line with what has been

introduced in Sec. 2.2. It consists of an Environment which contains Components. To

be composable, a component has at least one service (a RequiredService or a Provid-

edService). A service has one property, boundTo, that defines the bindings to other

services once the assembly has been built. Also, OCL invariants describe restrictions

on the models, e.g., two required services (or two provided services) cannot be bound

together. OCL rules assure that applications are well-formed when emerging or after

user input, before their description and deployment.

The Profile attribute defined in the Service class is used to add controls on the

edition process. It ensures that: (i) only compatible services are bound together; and

(ii) that the maximum number of bindings of a service is respected.

The assembly model is part of a more complex metamodel (see Sec. 4.7.2) we

have designed to support applications in whole and their transformations into user-

oriented descriptions.

4.4 Transformation of OCE outputs to ICE models

To be presented, an OCE output must first be transformed into an internal manip-

ulable and editable form (transformation is a consequent requirement of [R1.1] and
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Figure 4: Assembly metamodel

[R1.2]). By model-to-model transformation, the model provided by OCE is trans-

formed into an ICE XML-based model, both being compliant to the assembly meta-

model. Then, the ICE model can be injected into the editor, to be then displayed and

possibly modified. This ICE model is also the basis for the processes listed below.

4.5 Assembly representation via domain-specific visual languages

ICE models represent component assemblies that software engineers commonly draw

as UML component diagrams. To do that and provide users with UML-like represen-

tations of the emerging assembly, we have defined a Domain-Specific Visual Lan-

guage (DSVL) that complies with the UML components notation.

At the top of Panel 1 in Fig. 2, there is the editable representation of the entire

assembly that achieves the ambient lighting application. For that, a visual represen-

tation of each element of the metamodel has been defined. Also, pre- and post- con-

ditions have been incorporated in the DSVL to add control on the edition process,

allowing the user to be guided and supervised when editing applications (e.g., the

user cannot connect two required services). They have been implemented thanks to

the support of the GEMOC infrastructure and hence automatically enforced by the

generated modeler. These conditions are verified on the fly at edition time, so before

the OCL rules, to prevent validation errors. This is part of the answer to [R4.2].

Nevertheless, the average user is unfamiliar with component diagrams. In [16],

S. Abrahão et. al. claim that a box in which “Cat” is written –maybe “Lamp1” in our

example– may be understood as a “cat” for a software engineer –as a lamp for us–,

but it is still a “box” for most people! To address this problem, the above solution can

easily be adapted to customize the presentation to the user by replacing the UML

representation of a component by an icon that is more explicit for the general pub-

lic. An icon-based representation of the ambient lighting application is displayed in

Fig. 2 at the bottom of Panel 1. Such a more intelligible description allows the aver-

age user to understand the application better. It contributes to meet the intelligibility

requirement [R2.1]. In this way, other DSLs can be proposed that fit users’ skills. The

following sections propose complementary answers to meet [R2.1].
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4.6 Transformation of ICE model into a sequence diagram

To better inform the user, we explicit how the control passes from a component to

another. For that, the ICE model with its bindings between services is transformed

into a control model. This model represents how control passes through the compo-

nents. It is then presented as a UML sequence diagram that shows which service the

user directly controls, and how the services interact.

To display the sequence diagram, we coupled ICE with PlantUML editor [17],

which provides graphical representations of UML sequence diagrams from a text

describing the sequence. First, a model-to-text transformation builds a PlantUML-

compliant textual model of the application control. Then PlantUML editor is called

by ICE to create an image of the sequence diagram (see Fig. 2, Panel 1).

Other types of diagrams could be produced, e.g., UML communication diagrams,

to provide complementary views of the application. With ICE, depending on her/his

preferences, the user can select the type of diagram to generate and display.

4.7 Generation of rule-based application description

Software components transform inputs into inner effects or outputs. Inputs take

place when a provided service is required with its parameters or when an internal

action or event occurs, e.g., the user moves a slider or pushes a button, or a sensor

takes a measurement. Inner effects are changes of a component inner value or state,

e.g., a lamp lights up. Outputs are demands of external services. These transforma-

tions can be expressed by rules describing how inputs are transformed into effects

and outputs. Expressing them is in charge of the component providers. Then, when a

component becomes part of an assembly, its rules are automatically combined with

the rules of the components it is connected to. For a given assembly, the combina-

tions produces a set of rules that describes how the entire application works.

4.7.1 Description using rules

We have defined the rule-based description language in [18]. In accordance with Ghi-

ani et al. [19], rules conform to the trigger-action style because of “its compact and

intuitive structure”. As illustrated in Fig. 5, rules are attached to the services. For in-

stance, for the Slider component, when the user sets a value by moving the slider, the

Sender service is called with this value. In that assembly, the Convert service of the

Converter component provides the Sender service that is required by Slider. When

needed, depending on the parameter value (more or less than 50), the required Or-

der service may be triggered. The principle is the same for Lamp1, but the effect of

the Lighter service call depends on the value of the STATE internal variable that is

changed accordingly.
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Figure 5: Description rules of the ambient lighting application

The pop-up window (in the “Description” frame of Fig. 5) shows a pretty-print

of the automatically combined result, i.e., the rule-based description of the ambi-

ent lighting application that is the function and how to use it. When two services

are bound together, their respective rules are automatically combined in pairs to re-

duce each pair to a single rule. The latter is then combined with the rules of the next

component, and so on. The combination scheme is inspired by the cut rule in math-

ematical logic: from the rules [Γ =⇒ A,∆] and [Γ
′
, A =⇒ ∆

′
], the rule [Γ,Γ

′ =⇒ ∆,∆
′
]

is inferred. The combination is conditioned by a matching between predefined key-

words, e.g., X@OUTPUT matches Y@INPUT, X and Y being variable names. In our

example, combining the Sender rule with the two Convert rules produces two rules.

One indicates a lack of effect (NOP). The other, which indicates the request for the

Order service, is combined with the rule that describes Order. It is combined with

those of the Lamp1 Lighter service, producing the two rules that describe the practi-

cal effect on Lamp1 if the slider has been set over 50.

Note that the ambient lighting application conforms to a particular architectural

style that is called “Pipe & Filter”. However, our solution deals with other composition

styles with components that require several services, maybe in sequence, in parallel,

or conditionally, and also get and use a result from their requests (see Sec. 5.2 for

some examples).

4.7.2 The full metamodel

To achieve the description, the assembly metamodel has been extended to address

the description issues. The entire metamodel is shown in Fig. 6.

Every component and service has one description. Therefore, the Component

and Service classes of the Assembly package are composed of their respective de-

scription class of the Description package. ComponentDescription consists of three

attributes. Name and Role are strings, the latter being a free text describing the com-

ponent, e.g., Name = “Slider”, Role = “Send the specified value when the slider is

moved”. As components may have an internal state, such as a lamp that is ON or OFF,
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Figure 6: The extended metamodel

States defines the (maybe empty) set of the possible states, e.g., States = {“ON”,“OFF”}.

ServiceDescription consists of four attributes. Name is a string, e.g., “Sender”. Launcher

is a key defining what activates the service. It may refer to an external interaction

coming from another component, e.g., onRequired, or to an internal one coming

from the component itself, e.g., onTriggered. For HCI components, it may also re-

fer to user’s interaction types and take different values, e.g., onSliderDragged for a

Slider. IOAction represents how the service acts on other services, e.g., VAL@OUTPUT

means that VAL is given as parameter of a request. IOAction can be empty for a pro-

vided service handling only an inner effect on the component, e.g., the Lighter ser-

vice that only changes Lamp1 state. Last, Function describes the service as a free text,

e.g., “Turn ON/OFF”.

In addition, to generate application descriptions, a service description contains

a non-empty ruleSet. A Rule conforms to the ECA model [20]: Event represents what

triggers the service; Condition is a logical expression e.g., “VAL@INPUT<=50” or

“STATE==OFF” (STATE is a keyword whose value belongs to States; States value comes

from the owner component description); if Condition is true, the Action which rep-

resents the rendering of the service, e.g., “@OUTPUT” or “STATE=ON”, is carried out.

Note that Event and Action can directly refer to Launcher and IOAction, which are set

in the service description.

4.8 Model comparison for feedback generation

Once the user has accepted, modified or rejected the edited assembly, feedback is

generated to be given back to OCE. This meets [R5.1] and [R5.2].
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The feedback is computed from the initial ICE model (the emerging application

model) and the final ICE model (the application model after user inputs). The two

XML-based versions of these models are compared so that a list of similarities and

differences (in term of bindings between the services and components) is extracted.

More precisely, it lists the bindings that have been modified, deleted, and added, and

the components that have been removed or added to the assembly. This list is then

used to give to OCE a positive (respectively negative) reinforcement signal for the

bindings that have been accepted (respectively rejected) by the user [6]. Thanks to

this signal, OCE will propose more pertinent applications in the future.

4.9 MDE for machine learning

Basically, machine learning [21] aims at building knowledge, i.e., models or patterns

of reality. These models are automatically and iteratively constructed in the training

phase from training data. The goal is to improve later, in the exploitation phase, the

learner’s behavior.

In Sec. 4.8, we have shown how model comparison supports feedback genera-

tion for OCE learning. Here we go beyond the requirements listed in Sec. 3 and take

advantage of MDE facilities to design a complementary learning mode.

The idea is to provide OCE with ready to use assembly “plans”. The problem is to

inject these plans into OCE, which was not designed to manipulate such artifacts. For

that, the principle is to reify assembly plans when accepted by the user, i.e., gener-

ate special components called connectors. There is no business logic in a connector.

It implements the Mediator design pattern [22], and as such, centralizes the interac-

tion logic between the components: it routes service requests from the caller compo-

nent to the callee and the results in the opposite direction. For that, it gathers all the

provided and required services of all the components involved in the assembly. In

the connector-based equivalent assembly, the direct links between the components

are replaced by links between each component and the connector. Fig. 7 shows the

connector-based assembly of the ambient lighting application: it is equivalent to that

of Fig. 2 but interaction between the components is centralized.

Figure 7: Connector-based assembly of the ambient lighting application
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First, using the EMF model factory, a model of the connector is generated from

the provided and required services involved in the whole assembly. Then, a model-

to-text transformation generates the connector implementation code (Java code in

the current version) and a script for its deployment in the environment. After deploy-

ment, it may be sensed by OCE and treated as an ordinary software component.

5 Implementation and validation

A prototype version of ICE has been implemented and runs coupled with OCE. ICE

validation has two objectives: first, to verify that it actually provides descriptions for

different assembly topologies; then, to verify that it is operational in real-life situa-

tions, with software components actually deployed on several devices.

5.1 Implementation

ICE implementation relies on the Gemoc studio, Eclipse Modeling Framework, Ecore-

Tools, Sirius, and Acceleo. A stable and usable version is available on GitHub1. ICE

provides multi-view application representations. It allows to graphically present ap-

plication structures by means of UML-like and icon-based DSVLs. In addition, how

applications work can be described using PlantUML sequence diagrams or in the

rule-based language. Besides being informed, the user can modify, accept or reject

applications. Furthermore, ICE and the intelligent engine (OCE) have been integrated

to achieve fully operational system. Associated with a simulated ambient environ-

ment, it works in a loop as shown in Fig. 3: applications built by OCE are given as

input to ICE, which provides user-friendly editable descriptions, extracts user feed-

back and supplies it back to OCE. ICE is today used in our team to, among other

purposes, experiment and validate the OCE solution for learning.

5.2 Description of applications involving different topologies

We have experimented description of component-based applications arranged ac-

cording to different architectural styles, i.e., different ways to associate components:

“Pipe & Filter” like in the ambient lighting application, “Call & Return”, sequential

requesting, parallel requesting, etc. For these different cases, on the basis of “test”

application models, we have checked: (i) effectiveness and rightness of application

structural description using different DSVLs (ii) user ability to edit and modify the

structural representations (iii) operationality of transformations in UML sequence

diagrams and rules-based descriptions (iv) correctness of user feedback extraction

and delivery to OCE. Intelligibility has been assessed with IT specialists, but so far,

we have not asked average users for their opinion. Besides, scalability of the descrip-

tions [R2.2] has yet to be tested.

1 https://github.com/marounkoussaifi/ICE.git

https://github.com/marounkoussaifi/ICE.git
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Figure 8: The parallel ambient lighting application

Fig. 8 shows an application whose architecture mixes “Pipe & Filter” and parallel

requesting styles: here, the Duplicator component demands the Order1 and Order2

services in parallel. So, this application allows the user to turn on/off the two lamps at

the same time by moving the slider. As depicted in Fig. 8, in addition to the structural

description, ICE provides a PlantUML sequence diagram with the “par” operator,

which expresses the parallelism, and the rule-based description where parallelism is

implicit (the default meaning is that all rules are triggered at the same time). In the

application sketched in Fig. 9, the Sequencer component first requests Order1 and

next Order2. To express the sequence, the NEXT operator is used; it separates sets of

rules that are triggered successively.

Figure 9: The sequential ambient lighting application

Although the forms of the descriptions are perfectible, especially the one based

on rules, experimentation has proven the viability of our approach to realize the

“user in the loop” and meet its requirements. MDE effectively supports user-oriented

presentation and controlled edition of application models, as well as unobtrusive
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extraction of user feedback. Model transformation techniques provide multi-view

representations of applications that emerge or that the user modifies or builds from

scratch. MDE handles DSL definition and easy switching from a DSL to another, so

as outputs can be customized for the user.

5.3 Realistic use case

We also have experimented a more realistic use case [23]: in his electric car, Paul ben-

efits from an emerging application that guides him to the charging station closest to

his current position. For that, actual software components have been developed such

as GPS components, battery level sensors, a power station localizer, and an Android

map. When deployed, components are discovered connected via the “Universal Plug

and Play” (UPnP) protocol, then selected by OCE and arranged in a fully operational

application running on a smartphone2. This experience has shown that ICE correctly

presents the different applications that are built as the environment changes, and

that it actually supplies feedback data to OCE.

6 Related work

6.1 Description of service- and component-based software engineering

The main purpose of software components and services are composition and reuse.

Designers use their descriptions as documentation, which details their intent and

use. When engineers specify business processes through service composition, they

describe (composite) services, too, before they are processed more or less automat-

ically [24]. Thus, in the traditional top-down mode, demanded composite services

are specified at the beginning, so there is no need to produce descriptions afterward,

unlike in the case of opportunistic bottom-up composition.

Service description supports automated service discovery, selection and compo-

sition [25]. In that case, descriptions are processed by a program. Descriptions allow

service location and use, as is the case for WSDL [26] in the field of Web Services.

Descriptions can take more or less sophisticated forms depending on their use. They

may only be purely syntactic, e.g., in object-oriented middleware like Java RMI [27].

Semantic descriptions may be limited to functional signatures with inputs and out-

puts, possibly extended with preconditions and effects [28]. In addition, they may

include the expression of extra-functional properties, i.e., QoS-related properties.

As solutions for service or component descriptions that are not user-oriented,

they do not meet our presentation and understandability requirements. Moreover,

we do not know any solution that satisfies the automation required to build applica-

tion or service descriptions from the unit descriptions of their components.

2 Cf. a demo available here: https://www.irit.fr/~Sylvie.Trouilhet/demo/
outletSeeking.mp4

https://www.irit.fr/~Sylvie.Trouilhet/demo/outletSeeking.mp4
https://www.irit.fr/~Sylvie.Trouilhet/demo/outletSeeking.mp4
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6.2 User in-the-loop and end-user development

Even in self-adaptive systems, humans must be in the loop to cope with conflicts and

improve adaptation strategies, and a trade-off should be made between autonomy

and human involvement [29]. In [30], the user in-the-loop can set her/his prefer-

ences to configure and adapt existing component-based applications. User’s prefer-

ences and profiles can be also be learned by semi-supervised reinforcement [31].

End-user programming proposes a set of techniques that enable end-users to

create applications for personal use [32]. It is part of end-user development (EUD)

that involves users in development at both design and operating time since “regu-

lar development cycles are too slow to meet users’ fast changing requirements” [33].

The AppsGate client-server system [34] empowers end-users with human-machine

interfaces to configure and control their smart home. Home inhabitants use visual

and pseudo-natural languages to program their ambient environment and add or re-

move appliances on the fly. They are both assisted by the proposal of possible options

and prevented from making errors. In conclusion, the authors state that “it should

be possible to augment EUD with machine learning”; then, the behavior of the in-

ferred services must be “understood by the user and adaptable using the EUD”. In

[35], end-users are assisted in service composition by an editor that allows them to

specify goals; here, keyword-based descriptions of available services and ontologies

support generation of ad hoc processes that can be customized by end-users.

Thus, there is little or no intelligence (and no emergence) in existing EUD so-

lutions, which do not offer flexibility and customization of descriptions unlike our

MDE-based solution.

6.3 Contribution of MDE

Models allow humans to abstract from low-level features and get closer to their busi-

ness domain. MDE promotes less code and an increased level of abstraction. Since

its appearance, it has mainly been used by engineers to guide and support quality

software construction.

Combined with CBSE, MDE should help to master the complexity and dynamics

of modern software systems [36]. MDE can also support development, deployment

and runtime adaptation. Based on UML models and transformations, MDE4IoT [37]

assists engineers when designing IoT applications, providing them with abstraction

and separation between functional and operational concerns, and supports runtime

evolution. In [38], system functionality and adaptations are modeled as a state ma-

chine, then model-to-model and later model-to-text transformations support plat-

form-specific code generation. MDE and Models@Runtime also support the design

of feedback loops and their execution at runtime in self-adaptive software [39].

Anyway, the role of MDE in the future of IoT and smart systems is still an open

question [40]. As far as we know, existing MDE-based approaches do not target end-
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users as we do. However, end-users can participate in software modeling in coop-

eration with software professionals, provided they have development skills [41]. In

[30], a UML profile allows capturing variability in a human-readable way that is un-

derstandable by non-experts. Furthermore, MDE contribution to the design of user

interfaces and their adaptation at runtime is analyzed in [42]. In [16], S. Abrahão et.

al. introduce the concept of User eXperience (UX) for MDE: they analyze the chal-

lenges and list future work on MDE to meet UX requirements, including identify who

the users are, customize tools for domain specifics, and adapt them for acceptability.

Besides, some works explore the use of MDE to increase end-user involvement in the

use of an application, for example, in application gamification [43].

7 Conclusion and open issues

Ambient systems, with their dynamics and unpredictability, do not allow software

design to follow traditional development cycles. End-user involvement enables on-

the-fly creation of software adapted to the situation and the user’s preferences and

skills. Nevertheless, this user must be supported and helped in the development task.

Hence, an intelligent system builds and makes emerge relevant applications that the

user has not explicitly asked for nor expected. This article describes an original ap-

proach and its framework for presenting emerging applications to the user in an in-

telligible and manipulable way. It shows how MDE techniques with the definition

of dedicated languages help to provide the user with personalized views of applica-

tions, as well as the tools that allow them to be modified or even built from scratch.

Thus, MDE supports both the controlled construction of applications and the pro-

duction of descriptive material. Besides, by comparing and transforming models,

feedback is captured and provided to the intelligent system to feed its learning pro-

cess. Therefore, our original MDE-based approach puts the end-user “in the loop” by

giving her/him direct access to the handling of internal application models.

Using MDE techniques and tools, we have implemented and experimented with

a fully operational prototype version of ICE3. To strengthen our case, intelligibility

and scalability of descriptions should be assessed, in particular with average users.

Depending on them, other informative views could be provided. A possible lead we

plan to explore is model animation [44].

Our prototype framework has several limitations that we intend to remove. For

example, to simplify rule combinations, we assume that descriptions are provided

using a unique vocabulary. But components may be provided by different suppliers

who do not share this vocabulary. For that, we are exploring the use of ontologies to

align the terms used in the rules [45]. More experiment need now to be conducted

both in terms of scalability and of stressing the framework with more complex com-

binations of components.

3 Cf. a demo available here: https://www.irit.fr/~Sylvie.Trouilhet/demo/
iceDemo2020.mp4

https://www.irit.fr/~Sylvie.Trouilhet/demo/iceDemo2020.mp4
https://www.irit.fr/~Sylvie.Trouilhet/demo/iceDemo2020.mp4
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