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Abstract. The aim of this paper is to study the asymptotic behavior
of a particular multivariate risk measure, the Covariate-Conditional-Tail-
Expectation (CCTE), based on a multivariate statistical depth function.
Depth functions have become increasingly powerful tools in nonparametric
inference for multivariate data, as they measure a degree of centrality of a
point with respect to a distribution. A multivariate risks scenario is then rep-
resented by a depth-based lower level set of the risk factors, meaning that we
consider a non-compact setting. More precisely, given a probability measure
P on Rd and a depth function D(·, P ), we are interested in the α-lower level
set LD(α) :=

{
z ∈ Rd : D(z, P ) ≤ α

}
. First, we present a plug-in approach

in order to estimate LD(α). In a second part, we provide a consistent esti-
mator of our CCTE for a general depth function with a rate of convergence,
and we consider the particular case of the Mahalanobis depth. A simulation
study complements the performances of our estimator.
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1 Introduction
Risk theory is a branch of statistics which mainly focuses on unlikely events
in the aim of managing the degree of uncertainty of such events and/or the
associated costs. For instance, in the context of risk management in financial
institutions such as banks or insurance companies, adverse consequences may
occur and usually mean potential large losses on a portfolio of assets (Eberlein
et al. [11]). In hydrology, risk could represent dam floods (and/or failures)
and the associated risk factors could be the amount of rainfall, water flow...
Broadly speaking, a risk measure can be viewed as a mapping from a set
of real-valued random variables to Rd, d ≥ 1, and is used to determine
the amount of an asset (or assets/goods) to be kept in reserve in order to
cover for unexpected losses. One of the most studied risk measure in the
univariate risk theory is the Conditional-Tail-Expectation (CTE) (Denuit
et al. [7]). It characterizes the conditional expected loss given that the loss
exceeds a critical loss threshold. Formally, given a real random variable X
with distribution function FX , the CTE at level α ∈ (0, 1) is defined as :

CTEα(X) := E[X|X > VaR(α)], (1.1)

where
VaR(α) := inf {t ∈ R : FX(t) ≥ α}

is the well-known Value at Risk which corresponds to the univariate quantile
of order α of X. Thus, the CTE is nothing but the mathematical description
of an average loss in the worst 100(1− α)% risk scenario.

However, considering a single risk factor is restrictive, as we can easily
imagine correlated risk factors that could be studied together. One possi-
bility is to consider quantile regions of the risk factors distribution. In the
univariate case, a wide panel of univariate quantiles has been reviewed in
the literature. When it comes to multivariate risks, the study of multivariate
quantile regions has increasingly been pursued in the last decades as a tool
to model multivariate risk regions, especially those based on a multivariate
distribution function (Belzunce et al. [2], Dehaan and Huang [6], Cousin and
Di Bernardino [4]), or on a depth function (Zuo and Serfling [16]). In this
way, several generalizations in higher dimension of the CTE emerged in the
literature. In particular, one can mention the one proposed by Di Bernardino
et al. [8] : given a random vector X ∈ Rd, X = (X1, · · · , Xd) ∈ Rd, d ≥ 1,
with mutivariate distribution function FX : Rd → [0, 1], a generalization of
the CTE in higher dimension is defined by

CTEα(X) = E[X|X ∈ LFX
(α)] ∈ Rd, (1.2)
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where
LFX

(α) :=
{
x ∈ Rd : FX(x) ≥ α

}
, α ∈ (0, 1),

is the α-upper level set of FX , which is one generalization of the univariate
quantile region [VaRα(X),+∞) in dimension d ≥ 1.

Another interesting problem is to study the behavior of an expected cost
Y ∈ R associated to d ≥ 1 risk factors which are heterogeneous in nature.
In econometrics, for instance, one can be interested in an average return
(which measures the performance of a portfolio for a certain period of time)
with respect to d ≥ 1 risk factors X ∈ Rd. On another note, one can
also be interested in the impact of climate change (via d risk factors) on high
temperatures. To address this, Di Bernardino et al. [9] proposed studying the
behavior of a covariate variable Y on the level sets of the distribution of a d-
dimensional vector of risk factorsX. More precisely, they define and estimate
the multivariate Covariate-conditional-Tail-Expectation (CCTE) defined by
:

CCTEα(Y,X) := E[Y |X ∈ LFX
(α)], α ∈ (0, 1). (1.3)

However, this CCTE based on the distribution function only considers
canonical directions. For instance, it could consider an average cost associ-
ated to high or low temperatures, but not to high and low temperatures at
the same time. Therefore, instead of studying the level sets LFX

(α), Torres
et al. [14] studied the level sets LFRX

(α) of a rotation R of the distribution.
In other words, oriented orthant are considered in order to investigate other
risk regions. We propose here a more general approach, consisting in replac-
ing the distribution function by a depth function (see Zuo and Serfling [16]).

Roughly speaking, a depth function is a mapping

D : Rd ×P(Rd)→ R+

which provides a PX-based center -outward ordering of points in Rd, where
P(Rd) denotes the set of all probability measures on Rd. Thus, in order
to deal with risk regions, we will consider the lower-level sets of a depth
function and propose a depth-based CCTE defined by :

CCTED,α(Y,X) := E[Y |X ∈ LD(α)], α > 0, (1.4)

where LD(α) =
{
x ∈ Rd : D(x, PX) ≤ α

}
is the α-depth based lower level

set.
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The paper is organized as follows. In Section 2, we introduce some nota-
tions, and tools and the mathematical definition of a depth function. Section
3 is devoted to our main results : in Section 3.1, a construction and consis-
tency and convergence rates of an estimator of our CCTED are given in a
general setting, in Section 3.2 we study the general asymptotic behavior of
our estimator of the level set LD(α), and in Section 3.3 we provide consis-
tency results and convergence rates of the CCTED in the particular case of
Mahalanobis depth. Illustrations and simulations are presented in Section
4. Finally, proofs are postponed to section 5.

2 Notations and definitions
This section is dedicated to introducing some useful notations and tools.

2.1 General Notations

Let ∅ be the empty set, N∗ = N\ {0} be the set of positive integers, and
P := P(Rd) be the set of all probability measures on Rd, d ≥ 1. When
dealing with random variables, we assume that they are defined on a com-
mon underlying probability space (Ω,A ,P).Given a r.v X with distribution
PX := P ∈ P and an i.i.d sample Sn := (Xi)1≤i≤n of size n ∈ N∗ with
distribution P and independent of X, we denote by Pn :=

∑n
i=1 δXi

the em-
pirical measure based on this finite sample. For notational convenience, we
denote by EP the mathematical expectation under P , and by ESn [Z] :=
E[Z|X1, · · · ,Xn] the conditional expectation of Z knowing X1, · · · ,Xn.
Moreover, denoting Φ(A) := PX [A] = P [A] for any Borel-set A ⊂ Rd, we
denote by PSn [A] := Φ[A(X1, · · · , Xn)], where A := A(X1, · · · , Xn) is a sub-
set of Rd which depends on the data X1, · · · , Xn. Thus, A(X1, · · · , Xn) is
a random subset, so that PSn [A] is a r.v. Furthermore, for any real number
q > 0, let Lq(Ω) := Lq(Ω,A ,P) denote the vector space of real-valued ran-
dom variables U for which E[|U |q] < +∞.

Unambiguously, we denote by ‖ · ‖ the Euclidean norm in Rd and by |||·|||
the matrix norm induced by the Euclidean norm in Rd, i.e for any d× d real
matrix M ,

|||M ||| := sup
x 6=0

‖Mx‖
‖x‖

= sup
‖x‖=1

‖Mx‖.

5



For p ∈ [1,+∞], we also denote by

‖f‖p,λ :=

(∫
Rd

|f(x)|pdx
) 1

p

for p < +∞, and

‖f‖∞,Rd := ess supx∈Rd |f(x)| for p = +∞,

the Lp(Rd, λd) norm of f w.r.t the Lebesgue measure on Rd.

We recall that for A and B non-empty compact sets in (Rd, ‖ · ‖) the
Hausdorff distance between A and B is defined by

dH(A,B) = sup

(
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

)
,

where,
dist(x,A) := inf

a∈A
:= ‖a− x‖.

Now, given two sequences of real numbers (un)n≥1 and (vn)n≥1, we recall
that un = On(vn) means that there exist a constant C > 0 and N ∈ N∗ s.t.
for all n ≥ N, |un| ≤ C|vn|.

Finally, let (Xn)n∈(N∗)r , r ≥ 1, be a set of random variables and (un)n∈(N∗)r

be a deterministic set of positive real numbers, we recall the following clas-
sical stochastic dominance

Xn = OP,n(un)
def⇐⇒

∀ ε > 0, ∃ Mε > 0, ∃ Nε ≥ 1, ∀ n := (n1, · · · , nr) ∈ (N∗)r,
min

1≤i≤r
ni ≥ Nε ⇒ P[Xn ≥Mε · un] ≤ ε.

2.2 Depth functions

In this section, we formally introduce the definition of a statistical multi-
variate depth function as in Zuo and Serfling [16] (Definition 2.1 in [16]).
Let us begin with some common multivariate symmetry notions which have
been widely used in the literature (the interested reader can refer to Zuo and
Serfling [16], Liu [12], and Beran and Millar [3]). In what follows, we review
some standard symmetry notions.

• C-symmetry : a random vector X ∈ Rd is centrally-symmetric (or C-
symmetric) about θ ∈ Rd if X − θ d

= θ −X.
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• A-symmetry (Liu, 1990) : X is said to be angularly-symmetric (or A-
symmetric) about θ, if (X − θ)/‖X − θ‖ is centrally symmetric about the
origin.

• H-symmetry (Zuo and Serfling, 2000) : X is said to be halfspace-
symmetric (or H-symmetric) about θ if PX [H] ≥ 1/2 for every closed halfs-
pace H containing θ.

Note that, it is easily established that C-symmetry⇒ A-symmetry⇒ H-
symmetry. In a natural terminology, θ is called the center of the distribution
PX .

Definition 2.1 (Zuo and Serfling [16]). A statistical depth function is a map-
ping D : Rd×P → R which is bounded, non negative, measurable in its first
argument and satisfying :
(D1) Affine invariance : for any PX ∈ P, b ∈ Rd, and any invertible
size d matrix A, D(Ax+ b, PAX+b) = D(x, PX)
(D2) Maximality at center : for any PX ∈ P having a unique center
θ ∈ Rd (for one of the symmetry notions previously presented), D(θ, PX) =
supx∈Rd D(x, PX)
(D3) Monotonicity relative to deepest point : for any PX having deep-
est point θ i.e. D(θ, PX) = supx∈Rd D(x, PX), D(x, PX) ≤ D(αx + (1 −
α)θ, PX) holds for α ∈ [0, 1]
(D4) Vanishing at infinity : D(x, PX) → 0 as ‖x‖ → ∞, for each
PX ∈P.

Informally, the first property of a depth (D1) suggests that the depth of a
point x ∈ Rd does not depend on the underlying coordinate system. As far as
property (D2) is concerned, for a distribution having a unique "center" i.e.,
the point of symmetry with respect to some notion of multivariate symmetry,
the depth function should attain its maximum value at this center. Property
(D3) illustrates the fact that as a point x ∈ Rd moves away from the point
of maximal depth (for instance the "center" of a distribution) along any fixed
ray through the center, the depth at x should decrease monotonically. Last
but not least, property (D4) implies that the depth of a point x approaches
zero as ‖x‖ approaches infinity. Note that (D3) and (D4) mean that the
upper level sets {

x ∈ Rd : D(x, PX) ≥ α
}
, α > 0,

are bounded and starshaped about the point of maximum depth.
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3 Main results
In this section, we define a risk measure based on a general depth function,
the Covariate-Conditional-Tail-Expectation (CCTED) and we propose an es-
timator of the CCTED using a plug-in estimator of the level set. We study
the asymptotic behavior of the CCTED when consistency of the level sets
in terms of the probability under P ∈ P of the volume of the symmetric
difference is provided.

3.1 General Covariate-Conditional-Tail-Expectation con-
sistency

Fix a depth function D : Rd×P → R and a distribution P ∈P. We denote

αmax(P ) := sup
z∈Rd

D(z, P ) = sup
z∈Rd

D(z).

Consider a couple (Y,X) s.t. Y is a real random variable which is dependent
on a random vectorX ∈ Rd with ditribution P . In Definition 3.1, we formally
define our CCTED and propose an estimator of the latter. For n1, n2 ≥ 1,
let

S̃n1 := (X̃i)i=1,..,n1 be an i.i.d n1-sample from P, and
Sn2 := ((Yi,Xi))i=1,..,n2 be an i.i.d n2-sample from P(Y,X),

s.t. S̃n1 and Sn2 are independent. Now, we define the α-lower level set of D
and its plug-in estimator based on S̃n1 by

LD(α) = LD(α,P ) :=
{
x ∈ Rd :D(x,P ) ≤ α

}
, and

Ln1(α) := LD(α, P̃n1) =
{
x ∈ Rd :Dn1(x) :=D(x, P̃n1) ≤ α

}
,

where P̃n1 is the empirical measure based on the sample S̃n1 := (X̃i)1≤i≤n1 .
Finally, we provide the definition of our CCTED and its associated estimator.

Definition 3.1 (Depth-based Covariate-Conditional-Tail-Expectation). Let
X ∈ Rd be a random vector with distribution P ∈P and Y be an integrable
real random variable (which is dependent on X). Let α > 0 and assume
P [LD(α)] > 0.

(i) The depth-based Covariate-Conditionale-Tail-Expectation at level α is de-
fined by :

CCTED,α(Y,X) := E[Y |X ∈ LD(α)].
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(ii) Its estimator based on the sample Sn2 is given by :

ĈCTE
n1,n2

D,α (Y,X) :=

n2∑
i=1

Yi1Xi∈Ln1 (α)

n2∑
i=1

1Xi∈Ln1 (α)

, (3.1)

with the convention 0/0 = 0.

Our first result, namely Theorem 3.2, links the rate of convergence of
the CCTED to the one of the symmetric difference between the true and
estimated α-level set. We first state the following assumption describing a
convergence rate for the level sets:

(H0): there exists an increasing sequence of positive real numbers (vn1)n1≥1

s.t.
PS̃n1

[Ln1(α)∆LD(α)] = OP,n1

(
v−1
n1

)
,

where A∆B = (A\B) ∪ (B\A) is the symmetric difference between A and
B.
In the spirit of Di Bernardino et al. [9], Theorem 3.2 states that, under some
conditions, the CCTED estimator is consistent with at most a convergence
rate O(

√
n2). Remark that in Theorem 3.2, the r-th moment of Y is only

involved in the rate (vn1). Note that in our setting, the boundaries of the
depth-based level sets at hand are compact, contrary to the non-compact
setting studied in Di Bernardino et al. [9].

Theorem 3.2. Let α > 0 and P ∈P. Assume P [LD(α)] > 0, and (H0) is
satisfied and there exists r ∈ [2,∞] s.t. Y ∈ Lr(Ω). Then, it holds that∣∣ĈCTE

n1,n2

D,α (Y,X)− CCTED,α(Y,X)
∣∣ = OP,n1,n2

(
n
− 1

2
2 ∨ v−(1− 1

r
)

n1

)
.

Furthermore, following the approach of Di Bernardino et al. [9], Assump-
tion (H0) can be replaced by Assumption (H1) and one can derive a similar
result to Theorem 3.2 (c.f. Corollary 3.3) :
(H1): (i) there exists an increasing sequence of positive real numbers (vn1)n1≥1

s.t.
λd(Ln1(α)∆LD(α)) = OP,n1

(
v−1
n1

)
, and

(ii) P is absolutely continuous with density function f ∈ Lp(Rd, λd) for
some p ∈ (1,+∞].
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Corollary 3.3. Let α > 0 and P ∈ P. Assume that P [LD(α)] > 0, and
that there exists r ∈ [2,+∞] s.t. Y ∈ Lr(Ω). Let (vn1)n1 satisfy (H1), then

∣∣ĈCTE
n1,n2

D,α (Y,X)− CCTED,α(Y,X)
∣∣ = OP,n1,n2

(
n
− 1

2
2 ∨ v

−(1− 1
r )(1− 1

p)
n1

)
.

Proof. It is sufficient to show that under the assumptions of Corollary 3.3,
assumption (H0) of Theorem 3.2 is satisfied by the sequence (v

1−1/p
n1 )n1 .

When p ∈ (1,+∞), it holds almost-surely

v
1− 1

p
n1 PS̃n1

[Ln1(α)∆LD(α)] = v
1− 1

p
n1

∫
1x∈Ln1 (α)∆LD(α)f(x)dx

≤ v
1− 1

p
n1 λd(LD(α)∆Ln1(α))1− 1

p‖f‖p,λ (Hölder)

≤ (vn1λd(LD(α)∆Ln1(α))1− 1
p︸ ︷︷ ︸

OP,n1
(1) (H1)(i)

‖f‖p,λ︸ ︷︷ ︸
<∞ (H1)(ii)

.

When p = +∞, the result is trivially valid by bounding f by its essential
supremum.

3.2 Consistency of general depth-based level sets in terms
of the Hausdorff distance

In this section, the problem of interest is to study the conditions under which
assumption (H1)(i) is satisfied : that would provide a rate of convergence
for the general CCTED. This means studying the rate of convergence of
the volume of the symmetric difference between Ln and LD. It happens
that, by controlling the Hausdorff distance between the respective boundaries
∂LD(α) and ∂Ln(α) of those two sets, one can control the volume of the
symmetric difference. Remark first that the Hausdorff distance between those
sets is asymptotically well defined since the boundaries of the level sets are
compact and non empty (c.f. Remark 3.4 together with Remark 3.7).

Remark 3.4. On one hand, if α ∈ (0, αmax(P )), the sets {x : D(x, P ) ≥ α}
and {x : D(x, P ) < α} are both non-empty, and since D is vanishing at in-
finity, the empirical level set {x : D(x, Pn) < α}, n ≥ 1, is non empty. Thus,
LD(α) and its boundary ∂LD(α) are non-empty. On the other hand, if the
empirical depth a.s. (almost-surely) converges pointwise to its true version
on Rd then (cf. Theorem 4.1 in Dyckerhoff [10]), for any α ∈ (0, αmax(P ))
and a.s. for any n large enough, the upper-level set {x : D(x, Pn) ≥ α} is
non-empty as well. Thus, a.s, for n large enough, ∂Ln(α) is non-empty.
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Proposition 3.5 is a slight modification of the Proposition 3.1 in the Ph.D.
thesis of Rodríguez-Casal [13] adapted to depth functions. We introduce the
following assumption (L) which characterizes the locally Lipschitz behavior
of the mapping α̃ 7→ {D = α̃} w.r.t the Hausdorff distance in a neighborhood
of the fixed level α > 0 .
(L) : ∃ A > 0, ∃ γ > 0, ∀ β > 0, |α − β| ≤ γ ⇒ dH({D = α} , {D = β}) ≤
A|α− β|.

Proposition 3.5. Let D : Rd ×P → R+ be a multivariate depth function.
Let α > 0, 0 < ε < α and P ∈ P be fixed. Denoting D(x) := D(x, P ),
assume that
(i) the function x 7→ D(x) is of class C 2 on the set Kε(α) := D−1([α− ε, α+
ε]), and
(ii) m∇ := m∇(α, ε, P ) := inf

x∈Kε(α)
‖(∇D)x‖ > 0, where (∇D)x is the gradient

of D(·) at x.
Then D satisfies Assumption (L), with A = 2

m∇
.

The following result is an adapted version of Theorem 2 in Cuevas et al.
[5] to depth functions, where we weaken the assumption of continuity of the
empirical depth function by an assumption of upper-semicontinuity.

Theorem 3.6. Let D : Rd ×P → R+ be a depth function, P ∈ P and
α ∈ (0, αmax(P )). Denote by Pn an estimator of P , n ≥ 1. Suppose that x ∈
Rd 7→ D(x, P ) := D(x) is a continuous function, and x ∈ Rd 7→ Dn(x) :=
D(x, Pn) is upper semi-continuous P-almost surely for any n ≥ 1, and that

‖Dn −D‖∞,Rd
a.s−−−→

n→∞
0.

Under the same assumptions as in Proposition 3.5, it holds that

dH(∂L(α), ∂Ln(α)) = O
n→∞

(‖Dn −D‖∞,Rd), P-a.s.

Remark 3.7. Recall that, for n large enough, ∂Ln(α) 6= ∅ P-a.s, so that
the Hausdorff distance is well-defined for large n (see Remark 3.4 as well).
Indeed, in Theorem 3.6, one can underline two main properties of a depth
function, namely : upper semi-continuity which is equivalent to having closed
depth-based upper level sets, and Property (D4) (vanishing at infinity) which
guarantees that the upper level sets are bounded. As a consequence, the
Hausdorff distance is well defined since ∂Ln(α) is closed by definition and
is bounded as it is included in the compact α-upper level set (α > 0). The
same applies for ∂L(α) (or immediately by continuity of D). What is more,
α ∈ (0, αmax(P )) implies ∂L(α) 6= ∅ (cf. Remark 3.4).
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3.3 MHD-depth based Covariate-Conditional-Tail-Expectation
consistency

The Mahalanobis depth function (Example 2.5 in Zuo and Serfling [16]) is
a depth function in the sense of Definition 2.1 (see Definition 3.8), and is
smooth as a function of x (which implies the upper-semicontinuity property
in the empirical case as well).

In order to study the rate of convergence of the CCTED based on MHD,
we check here Assumption (H1)(i). According to Section 3.2, the problem
reduces to studying the rate of convergence of ‖Dn − D‖∞, in probability,
when D = MHD (c.f. Section 3.2, Theorem 3.6).

Definition 3.8 (Mahalanobis depth, Zuo and Serfling [16]). Let X ∈ Rd be
a random vector with distribution P ∈P. The Mahalanobis depth is defined
by

MHD(x, P ) =

{ (
1 + d2

ΣX
(x, µX)

)−1 if EP [‖X‖2] < +∞
0 if EP [‖X‖2] = +∞

where µX = EP [X] is the mean vector of X and ΣX is its covariance matrix
(which is assumed to be invertible) and

d2
ΣX

(x, µX) := ‖x− µX‖2
ΣX

:= t(x− µX)Σ−1
X (x− µX)

is the Mahalanobis distance.

Remark 3.9. Note that, the above definition of MHD depth is introduced
as such in order to highlight the fact that, it is restricted to ditributions
with second moment while still remaining a depth function in the sense of
Definition 2.1. Furthermore, for a fixed distribution P , the function x ∈
Rd 7→ MHD(x, P ) is infinitely differentiable, concave, and has x = µX

as unique critical point, thus µX = arg max
x∈Rd

MHD(x, P ). And αmax(P ) :=

max
x∈Rd

MHD(x, P ) = 1.

In Zuo and Serfling [16], one can also find the following result which
underlines the properties of MHD as a depth function (Theorem 2.10, Zuo
and Serfling [16]).

Proposition 3.10 (Zuo and Serfling [16]). Let X ∈ Rd be a random vector
with distribution P ∈ P. Assume X is symmetric (for some notion of
symmetry) about θ ∈ Rd. If µX = θ, then MHD is a statistical depth
function in the sense of Definition 2.1.
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Figure 1: Theoretical lower-level sets based on MHD(·, P ), with P the law
of a Gaussian vector in R2.

A natural estimator of MHD is given by

MHDn(x) := MHD(x, Pn) =
(

1 + t(x− µ̂n)Σ̂−1
n (x− µ̂n))

)−1

, (3.2)

where µ̂n is the empirical mean vector and Σ̂n is the empirical covariance
matrix.

In Proposition 3.11, we provide the particular version of Proposition 3.5
associated to MHD and MHDn depths.

Proposition 3.11. Let X ∈ Rd be a random vector from P ∈ P s.t.
EP [‖X‖2] < ∞. Consider D(x) := MHD(x) := MHD(x, P ) and fix α ∈
(0, 1) and 0 < ε < α ∧ (1− α). Denoting Kε(α) := D−1([α± ε]), it holds
(i) m∇ := inf

x∈Kε(α)
‖(∇D)x‖ > 0, and

(ii) dH(∂LMHD(α), ∂Ln(α)) = O
n→∞

(‖MHDn −MHD‖∞,Rd), P-a.s.

Now, Theorem 3.12 is a useful result in which we provide the rate of
convergence (in probability) of MHDn to its population version MHD uni-
formly on Rd.

Theorem 3.12. Let X = (X(1), · · · , X(d)) be a random vector with distri-
bution P ∈ P satisfying EP [|X(i)|4] < ∞ for all 1 ≤ i ≤ d. Then, it holds
that

‖MHDn −MHD‖∞,Rd = OP,n
(
n−

1
2

)
.

Finally, in Theorem 3.13, we derive the specific rate of convergence for
the CCTE based on MHD-depth.
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Theorem 3.13. Let P ∈P, D(·, P ) = MHD(·, P ) and α ∈ (0, 1). Assume
P [LD(α)] > 0. Under the assumptions of Theorem 3.12, and Assumption
(H1)(ii) and assuming moreover that there exists r ∈ [2,+∞] s.t. Y ∈
Lr(Ω), it holds that∣∣∣ĈCTE

n1,n2

D,α (Y,X)− CCTEα(Y,X)
∣∣∣ = OP,n1,n2

(
n
− 1

2
2 ∨ n

− 1
2(1− 1

r )(1− 1
p)

1

)
.

4 Simulations and illustrations
In this section, we provide an illustration of Theorem 3.13. We study the
estimated CCTED for cost variables Y which are dependent on the law of
X := (X1, X2) ∈ R2 and having the form :

Y = ‖X‖2 + ε,

where ε ∼ N (0, σ2), σ2 > 0, is a gaussian noise. In our simulations we
will take σ2 = 0.005. Here, we choose the squared euclidian norm which
has fourth moment under P , defined by : ‖x‖2 = |x1|2 + |x2|2 (see Figure
3). Moreover, we consider dependent risk factors X1 and X2 via a bivariate
Frank Copula with Gumbel marginals with parameter (µ, β) = (0, 0.25) and
(−0.5, 0.25) respectively (Figure 2).

Figure 2: Sample of dependent Gumbel marginals via a Frank Copula.

Note that the above example satisfies the assumptions of Theorem 3.13.
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Figure 3: Monotonic function : R(x1, x2) = |x1|2 + |x2|2.

Here we compare ĈCTE
n1,n2

MHD,α with the theoretical CCTEMHD,α for Ma-
halanobis depth. For the sake of simplicity, we take n1 = n2 = n. As-
suming that p, r ≈ +∞ with our sample, we obtain that |ĈCTE

n

MHD,α −
CCTEMHD,α | decays to zero at most with a convergence rate o(

√
n).

We provide a deterministic approximation of the true mean vector and
covariance matrix, m and Σ respectively. However, due to the complexity of
the level-sets as domains of integration in the computation of the CCTED,
we perform a Monte Carlo procedure to fix the "true" value of the CCTED

based on a sample of size 108 (without noise), that is:

108∑
i=1

R(Xi)1Xi∈LMHD(α)

108∑
i=1

1Xi∈LMHD(α)

.

Recall that Theorem 3.13 illustrates convergence rates in probability, how-
ever, for the sake of computational simplicity, we provide L1-estimation for
the CCTED (which implies convergence results in probability). More pre-

cisely, we denote ĈCTE
n

α := ĈCTE
n

α,MHD the mean of the ĈCTE
n

MHD,α

based on 400 simulations. The empirical standard deviation is

σ̂ =

√√√√ 1

399

400∑
j=1

(
ĈCTE

n

α,j − ĈCTE
n

α

)2

,

while the relative mean absolute error associated to ĈCTEn
α, denoted by

15



RMAE, is defined as follows :

RMAE := RMAEn,α =
1

400

400∑
j=1

∣∣ĈCTE
n

α,j − CCTEMHD,α(Y,X))
∣∣

|CCTEMHD,α(Y,X)|
.

Note that, most of the times, one uses the Relative Mean Squared Error
(RMSE) rather than the RMAE. However, since our results are presented
with absolute value (particularly Theorem 3.13), we work here with the
RMAE for which we provide L1-estimation as well.

In Table 1, we provide the above estimations for different values of α and
sample size n.

n α = 0.1 α = 0.2 α = 0.5 α = 0.8 α = 0.9

CCTE = 1.4237 CCTE = 0.8831 CCTE = 0.4804 CCTE = 0.3831 CCTE = 0.3661

100
Mean 1.2744 0.8568 0.4706 0.3806 0.3636
σ̂ 0.6596 0.2678 0.0716 0.045 0.042
RMAE 0.3733 0.2360 0.1217 0.0954 0.0933

1000
Mean 1.4125 0.8758 0.4801 0.3835 0.3664
σ̂ 0.1923 0.0782 0.0233 0.0153 0.0143
RMAE 0.1056 0.0696 0.0381 0.0318 0.0310

5000
Mean 1.4213 0.8808 0.4804 0.3832 0.3661
σ̂ 0.0855 0.0377 0.0106 0.0065 0.0061
RMAE 0.0476 0.0338 0.018 0.0138 0.0134

10000
Mean 1.4178 0.8807 0.4799 0.3828 0.3659
σ̂ 0.0625 0.0271 0.0071 0.0046 0.0043
RMAE 0.0361 0.0241 0.0117 0.0095 0.0094

50000
Mean 1.4231 0.8829 0.4807 0.3833 0.3663
σ̂ 0.0283 0.0118 0.0033 0.002 0.0019
RMAE 0.0158 0.0106 0.0055 0.0042 0.0041

Table 1: L1-estimation of CCTEα,MHD(X, Y ) and associated RMAE for bi-
variate Frank Copulas with Gumbel marginals.

According to the results in Table 1, we observe that the error RMAEn

decreases as the sample size n increases, as one may expect. Besides, remark
that for low levels α (α = 0.1) and sample sizes n (n = 100, 1000), the value
of RMAE is relatively high. This may be explained by the fact that, for small
values of α, there is fewer data to observe so that it becomes more difficult
to estimate the mean ĈCTE as well as the α-level set. Indeed, for low levels
α, the constant A = 2/m∇ is large since m∇ approaches zero (see the proof
of Proposition 3.5 and Theorem 3.6 in Section 5), meaning that the constant
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bounding the error (RMAE) becomes large.

In Table 2, we also provide L1-convergence rates : Vn,α,δ = vn(δ)·RMAEn,α,

with vn(δ) = n
1
2
−δ for different values of δ (see Figure 4).

α
δ

n 100 1000 5000 10000 50000

0.1

0.05 2.9656 2.3641 2.1971 2.2773 2.0529
0.01 3.5654 3.1164 3.0889 3.2916 3.1646
0 3.7335 3.3393 3.3635 3.6092 3.5262

-0.01 3.9094 3.5782 3.6625 3.9574 3.9292

0.2

0.05 1.8749 1.5589 1.5602 1.5217 1.3821
0.01 2.2542 2.0551 2.1935 2.1996 2.1305
0 2.3604 2.2021 2.3885 2.4118 2.374

-0.01 2.4716 2.3595 2.6009 2.6445 2.6452

0.5

0.05 0.9666 0.8522 0.8298 0.7407 0.7124
0.01 1.1411 1.1234 1.1666 1.0707 1.0982
0 1.2169 1.2038 1.2703 1.1740 1.2236

-0.01 1.2742 1.2899 1.3832 1.2872 1.3635

0.8

0.05 0.7577 0.7119 0.6362 0.5989 0.5481
0.01 0.9111 0.9385 0.8945 0.8656 0.845
0 0.9539 1.0056 0.9740 0.9491 0.9415

-0.01 0.9988 1.0775 1.0606 1.0407 1.0491

0.9

0.05 0.7415 0.6949 0.6200 0.5952 0.5281
0.01 0.8914 0.9160 0.8717 0.8603 0.8141
0 0.9334 0.9815 0.9492 0.9433 0.9072

-0.01 0.9774 1.0517 1.0335 1.0344 1.0108

Table 2: Estimated n
1
2
−δ · RMAEn,α based on MHD for bivariate Frank

Copulas with Gumbel marginals.
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Figure 4: Estimation of the convergence rates Vn,α,δ associated to RMAE,
based on MHD for bivariate Frank Copulas with Gumbel marginals.

In Table 2 and Figure 4, the parameter δ allows us to check that the criti-
cal regime is δ = 0 which corresponds to the n1/2-convergence rate associated
to the RMAE.

5 Proofs of Section 3
Proofs of Section 3.1.

Proof of Theorem 3.2. We can write∣∣ĈCTE
n1,n2

D,α (Y,X)− CCTED,α(Y,X)
∣∣ · 1PS̃n1

[Ln1 (α)]>0

=

∣∣∣∣∣
1
n2

∑n2

i=1 Yi1Xi∈Ln1 (α)

1
n2

∑n2

i=1 1Xi∈Ln1 (α)

− E[Y |X ∈ LD(α)]

∣∣∣∣∣ · 1PS̃n1
[Ln1 (α)]>0

≤

∣∣∣∣∣
1
n2

∑n2

i=1 Yi1Xi∈Ln1 (α)

1
n2

∑n2

i=1 1Xi∈Ln1 (α)

− ES̃n1
[Y |X ∈ Ln1(α)]

∣∣∣∣∣ · 1PS̃n1
[Ln1 (α)]>0

+
∣∣∣ES̃n1

[Y |X ∈ Ln1(α)]− E[Y |X ∈ LD(α)]
∣∣∣ · 1PS̃n1

[Ln1 (α)]>0.

The proof of Theorem 3.2 is a modified version of the proof of Theorem
5.1 in Di Bernardino et al. [9]. The latter focuses on distribution functions
instead of depth functions. Besides, in the proof of Theorem 3.2, we show
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that 1PS̃n1
[Ln1 (α)]>0 converges to one in probability.

First recall that, in the following, probability measures involving events
which depend on Ln1(α) are conditional expectations to the sample S̃n1 . For
notational convenience, we recall that

PS̃n1
[Ln1(α)] := P[X ∈ Ln1(α)]

which is a random variable. Moreover, note that the convergence to zero in
probability implies directly the OP (1) result.

The proof of Theorem 3.2 is based on the two following preliminary re-
sults, Lemma 5.1 and Lemma 5.2.

Lemma 5.1. Under assumptions of Theorem 3.2, it holds that∣∣∣ES̃n1
[Y |X ∈ Ln1(α)]− E[Y |X ∈ LD(α)]

∣∣∣ = OP,n1

(
v
−(1− 1

r )
n1

)
.

Proof of Lemma 5.1. On the event
{
PS̃n1

[Ln1(α)] > 0
}
, it holds

v
1− 1

r
n1

∣∣∣ES̃n1
[Y |X ∈ Ln1(α)]− E[Y |X ∈ LD(α)]

∣∣∣
= v

1− 1
r

n1

∣∣∣∣∣ES̃n1
[Y 1X∈Ln1 (α)]

PS̃n1
[Ln1(α)]

−
E[Y 1X∈LD(α)]

P [LD(α)]

∣∣∣∣∣
≤ v

1− 1
r

n1

PS̃n1
[Ln1(α)]P [LD(α)]

×
(

P [LD(α)]
∣∣∣ES̃n1

[Y 1X∈Ln1 (α)]− E[Y 1X∈LD(α)]
∣∣∣

+
∣∣∣P [LD(α)]− PS̃n1

[Ln1(α)]
∣∣∣ ∣∣E[Y 1X∈LD(α)]

∣∣ )
≤ v

1− 1
r

n1

PS̃n1
[Ln1(α)]P [LD(α)]

×
(∣∣∣ES̃n1

[Y 1X∈Ln1 (α)]− E[Y 1X∈LD(α)]
∣∣∣

+ E[|Y |]
∣∣∣P [LD(α)]− PS̃n1

[Ln1(α)]
∣∣∣).

Under Assumption (H0) and since v−1
n1
→ 0 as n1 →∞, it holds that

PS̃n1
[Ln1(α)∆LD(α)]

P−−−−→
n1→∞

0,
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so that
PS̃n1

[Ln1(α)]
P−−−−→

n1→∞
P [LD(α)] > 0,

and
P
[{
PS̃n1

[Ln1(α)] > 0
}]
−−−−→
n1→∞

1. (5.1)

On the one hand,

v
1− 1

r
n1

∣∣∣PS̃n1
[Ln1(α)]− P [LD(α)]

∣∣∣ ≤ v
1− 1

r
n1 PS̃n1

[LD(α)∆Ln1(α)],

so we obtain
v

1− 1
r

n1

∣∣∣PS̃n1
[Ln1(α)]− P [LD(α)]

∣∣∣ P−−−−→
n1→∞

0. (5.2)

On the other hand, using Hölder inequality

v
1− 1

r
n1

∣∣ES̃n1
[Y 1X∈Ln(α)]− E[Y 1X∈LD(α)]

∣∣
≤v1− 1

r
n1 ES̃n1

[
|Y |1X∈Ln1 (α)∆LD(α)

]
≤v1− 1

r
n1 E

[
|Y |r

] 1
rES̃n1

[
1X∈Ln1 (α)∆LD(α)

]1− 1
r

=v
1− 1

r
n1 PS̃n1

[Ln1(α)∆LD(α)]1−
1
r ‖Y ‖Lr(Ω).

Since vn1PS̃n1
[Ln1(α)∆LD(α)] = OP,n1(1), it holds

v
1− 1

r
n1

∣∣ES̃n1
[Y 1Ln1 (α)]− E[Y 1LD(α)]

∣∣ = OP,n1(1). (5.3)

Since the convergence to zero in probability implies the OP (1) result, the
lemma follows directly from (5.1, (5.2), and (5.3). The case r = +∞ is
analogous.

Lemma 5.2. Under assumptions of Theorem 3.2, we obtain∣∣∣∣∣
1
n2

∑n2

i=1 Yi1Xi∈Ln1 (α)

1
n2

∑n2

i=1 1Xi∈Ln1 (α)

− E[Y |X ∈ Ln1(α)]

∣∣∣∣∣ = OP,n1,n2(n
− 1

2
2 ).

Proof of Lemma 5.2. First, we distinguish the event in which
1
n2

∑n2

i=1 1Xi∈Ln1 (α) = 0, then the one in which 1
n2

∑n2

i=1 1Xi∈Ln1 (α) 6= 0.
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Let 0 < ε < P [LD(α)]. Since the (Yi,Xi)1≤i≤n2 are iid so that the (Xi)1≤i≤n2

are iid, it holds that

P

[
1

n2

n2∑
i=1

1Xi∈Ln1 (α) = 0

]

= E

[
PS̃n1

[
1

n2

n2∑
i=1

1Xi∈Ln1 (α) = 0

]]

= E

[
n2∏
i=1

PS̃n1
[Xi /∈ Ln1(α)]

]
= E

[
PS̃n1

[X /∈ Ln1(α)]n2

]
= E

[
(1− PS̃n1

[Ln1(α)])n21PS̃n1
[Ln1 (α)]≥ε

]
+ E

[
(1− PS̃n1

[Ln1(α)])n21PS̃n1
[Ln1 (α)]<ε

]
≤ (1− ε)n2 + P

[
PS̃n1

[Ln1(α)] < ε
]
.

Since ε ∈ (0, P [LD(α)]) and PS̃n1
[Ln1(α)]

P−−−−→
n1→∞

P [LD(α)] (see Lemma 5.1),

we obtain P
[

1
n2

∑n2

i=1 1Xi∈Ln1 (α) = 0
]
−−−−−→
n1,n2→∞

0. Now on the event{
1
n2

∑n2

i=1 1Xi∈Ln1 (α) 6= 0
}
∩
{
PS̃n1

[Ln1(α)] > 0
}
, we can write∣∣∣∣∣

1
n2

∑n2

i=1 Yi1Xi∈Ln1 (α)

1
n2

∑n2

i=1 1Xi∈Ln1 (α)

− ES̃n1
[Y |X ∈ Ln1(α)]

∣∣∣∣∣
=

∣∣∣∣∣
∑n2

i=1 Yi1Xi∈Ln1 (α)∑n2

i=1 1Xi∈Ln1 (α)

−
ES̃n1

[Y 1X∈Ln1 (α)]

PS̃n1
[Ln1(α)]

∣∣∣∣∣
≤ 1

1
n2

∑n2

i=1 1Xi∈Ln1 (α)

∣∣∣∣ 1

n2

n2∑
i=1

Yi1Xi∈Ln1 (α) − ES̃n1
[Y 1X∈Ln1 (α)]

∣∣∣∣
+
∣∣ES̃n1

[Y 1X∈Ln1 (α)]
∣∣∣∣∣∣ 1

1
n2

∑n2

i=1 1Xi∈Ln1 (α)

− 1

PS̃n1
[Ln1(α)]

∣∣∣∣
≤ 1

1
n2

∑n2

i=1 1Xi∈Ln1 (α)

∣∣∣∣ 1

n2

n2∑
i=1

Yi1Xi∈Ln1 (α) − ES̃n1
[Y 1X∈Ln1 (α)]

∣∣∣∣
+

E[|Y |]
PS̃n1

[Ln1(α)] 1
n2

∑n2

i=1 1Xi∈Ln1 (α)

∣∣∣∣ 1

n2

n2∑
i=1

1Xi∈Ln1 (α) − PS̃n1
[Ln1(α)]

∣∣∣∣.
(R)
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Let us first clarify the convergence of the denominator terms. Recall that
under Assumption (H0) of Theorem 3.2,

PS̃n1
[Ln1(α)]

P−−−−→
n1→∞

P [LD(α)] > 0,

and P
[{
PS̃n1

[Ln1(α)] > 0
}]
−−−−→
n1→∞

1 (see the proof of Lemma 5.1). Next,
we prove

n
1
2
2

(
1

n2

n2∑
i=1

1Xi∈Ln1 (α) − PS̃n1
[Ln1(α)]

)
= OP,n1,n2(1), (5.4)

so that we obtain

1

n2

n2∑
i=1

1Xi∈Ln1 (α) − PS̃n1
[Ln1(α)]

P−−−−−→
n1,n2→∞

0, (5.5)

and
1

n2

n2∑
i=1

1Xi∈Ln1 (α)
P−−−−−→

n1,n2→∞
P [LD(α)] > 0.

Let us prove (5.4). Let n1 ≥ 1 and ε > 0. Using Tchebychev inequality, we
can write P-a.s (here the event ω ∈ Ω is one realisation of the sample S̃n1

and is independent of ε)

PS̃n1

[∣∣∣ 1

n2

n2∑
i=1

1Xi∈Ln1 (α) − PS̃n1
[Ln1(α)]

∣∣∣ ≥ ε

]
≤

VS̃n1

(
1
n2

∑n2

i=1 1Xi∈Ln1 (α)

)
ε2

=
VS̃n1

(
1X1∈Ln1 (α)

)
n2ε2

≤ 1

n2ε2
.

Thus, taking Mε := 1/ε
1
2 it holds that

sup
n1,n2≥1

P
[
n

1
2
2

∣∣∣ 1

n2

n2∑
i=1

1Xi∈Ln1 (α) − PS̃n1
[Ln1(α)]

∣∣∣ ≥Mε

]
≤ 1

n2

(
Mε

n
1
2
2

)2

= ε,

which means that (5.4) is satisfied. Similarly, we obtain

1

n2

n2∑
i=1

Yi1Xi∈Ln1 (α) − ES̃n1
[Y 1X∈Ln1 (α)] = OP,n1,n2

(
n

1
2
2

)
Hence the result.
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Proofs of Section 3.2.

Remark 5.3. Among the four properties of a depth function, the only neces-
sary property in Proposition 3.5 is (D4) (vanishing at infinity). The latter
guarantees that the set Kε(α) is compact in Rd. Indeed, as D satisfies (D4),
the assumption 0 < ε < α implies Kε(α) is bounded, moreover under (i), D
is continuous on Kε(α) so that Kε(α) is a closed set. By denoting (HD)x the
Hessian matrix of D at x, one can note that MH := supx∈Kε(α) |||(HD)x||| <
∞, as a supremum of a continuous mapping on a compact set.

Proof of Proposition 3.5. For the sake of simplicity, denote by [α ± ε] the
interval [α − ε, α + ε]. Under the assumptions of Proposition 3.5, Kε(α) :=
D−1([α± ε]) is compact and

MH := sup
x∈Kε(α)

|||HDx||| <∞

(cf. Remark 5.3). We state the following useful lemma.

Lemma 5.4. Under the assumptions of Proposition 3.5, there exist N :=
Nε ≥ 1, some points xi := xi,ε ∈ K ε

2
(α), and some positive real numbers

ri := rxi ∈ R∗+, 1 ≤ i ≤ N , s.t.

K ε
2
(α) ⊂

N⋃
i=1

B

(
xi,

ri
2

)
⊂

N⋃
i=1

B(xi, ri) ⊂ Kε(α).

Proof of Lemma 5.4. Since ε > 0, then K ε
2
(α) is a subset of the interior of

Kε(α). Thus, for any x ∈ K ε
2
(α), there exists rx := rx(ε) > 0 s.t.

B(x, rx) ⊂ Kε(α),

that is,

K ε
2
(α) ⊂

⋃
x∈K ε

2
(α)

B

(
x,
rx
2

)
⊂

⋃
x∈K ε

2
(α)

B(x, rx) ⊂ Kε(α).

Since we have an open cover of the compact set K ε
2
(α), then the latter has

a finite cover. In other words, there exist N ≥ 1, some points xi := xi,ε ∈
K ε

2
(α), and ri := rxi ∈ R∗+, 1 ≤ i ≤ N , s.t.

K ε
2
(α) ⊂

N⋃
i=1

B

(
xi,

ri
2

)
⊂

N⋃
i=1

B(xi, ri) ⊂ Kε(α).

Hence the result.
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Let 0 < γ ≤ ε/2 and x ∈ Kγ(α). For λ ∈ R, define

yλ := yλ,x = x+ λ
(∇D)x
‖(∇D)x‖

,

with ‖(∇D)x‖ ≥ m∇ > 0, since Kγ(α) ⊂ Kε(α). In what follows, we take

‖yλ − x‖ = |λ| < min
1≤i≤N

ri
2
.

It holds [yλ, x] ⊂ Kε(α). Indeed, x ∈ Kγ(α) so that Lemma 5.4 applies,
namely, there exists 1 ≤ i0 ≤ N s.t. x ∈ B(xi0 , ri0/2), and for all z ∈ [yλ, x],

‖z − xi0‖ ≤ ‖z − x‖+ ‖x− xi0‖
≤ ‖yλ − x‖+ ‖x− xi0‖
= |λ|+ ‖x− xi0‖

< min
1≤i≤N

ri
2

+
ri0
2

≤ ri0 .

Thus, z ∈ B(xi0 , ri0) ⊂ Kε(α) (cf. Lemma 5.4). Since |λ| < min
1≤i≤N

ri/2, using

a Taylor expansion on the line [x, yλ] ⊂ Kε(α), it holds

D(yλ) = D(x) + 〈(∇D)x, yλ − x〉+
1

2
〈yλ − x, (HD)x(yλ − x)〉 , x ∈ [x, yλ],

then,

D(yλ) =D(x) + λ‖(∇D)x‖+
λ2

2‖(∇D)x‖2
〈(∇D)x, (HD)x(∇D)x〉 .

Using Cauchy-Schwarz inequality, it holds

|D(yλ)−D(x)− λ‖(∇D)x‖| ≤
λ2

2‖(∇D)x‖2
‖(∇D)x‖|||(HD)x||| · ‖(∇D)x‖

=
λ2

2
|||(HD)x|||.

Since x ∈ Kε(α), then |||(HD)x||| ≤ supx∈Kε(α) |||(HD)x||| = MH < ∞. For
any |λ| < min

1≤i≤N
ri/2, we obtain

D(x) + λ‖(∇D)x‖ −
λ2

2
MH ≤ D(yλ) ≤ D(x) + λ‖(∇D)x‖+

λ2

2
MH . (5.6)
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If 0 < λ < min
1≤i≤N

ri/2, then with the above inequality, we have

D(yλ) ≥ D(x)+λ inf
x∈Kε(α)

‖(∇D)x‖−
λ2

2
MH = D(x)+λ

(
m∇ − λ

MH

2

)
(5.7)

Suppose now MH > 0 (the case MH = 0 is trivial). That way, if 0 < λ <
m∇
MH
∧min1≤i≤N ri/2, using (5.7),

D(yλ) ≥ D(x) + λm∇
2
.

Similarly, using the right hand side of inequality (5.6), for any 0 < λ <
m∇
MH

∧ min
1≤i≤N

ri
2
,

D(y−λ) ≤ D(x)− λm∇
2
.

To sum up, for any 0 < γ ≤ ε/2, x ∈ Kγ(α) and 0 < λ <
m∇
MH

∧ min
1≤i≤N

ri
2
, it

holds

D(yλ) ≥ D(x) + λ
m∇
2
, (5.8)

D(y−λ) ≤ D(x)− λm∇
2
. (5.9)

Choose γ :=

[
m∇
4

(
m∇
MH

∧ min
1≤i≤N

ri
2

)]
∧ ε

2
> 0. Now we show :

if |α− β| ≤ γ, then dH({D = α} , {D = β}) ≤ 2
m∇
|α− β|.

Assume |α− β| ≤ γ.
Let β be s.t. 0 < β − α ≤ γ. In this case, β = α + η with 0 < η ≤ γ.
First, we have to find an upper bound for supx∈{D=β} dist(x, {D = α}). Let
x ∈ {D = β}, i.e. D(x) = β = α + η. Since 0 < η ≤ γ, 0 < D(x) − α ≤ γ,

i.e. x ∈ Kγ(α). Choose λ := 2η
m∇
∈
(

0,
m∇
MH

∧ min
1≤i≤N

ri
2

)
so that with (5.9),

D(y−λ) ≤ D(x)− λm∇
2

= D(x)− η = α < D(x).

From the above inequality and the continuity property of z 7→ D(z) on
Kε(α) ⊃ [y−λ, x], there exists a point y ∈ [y−λ, x] s.t. D(y) = α. Moreover,

‖x− y‖ ≤ ‖x− y−λ‖ = |λ| = 2η

m∇
=

2

m∇
(β − α).

As a consequence, for all x ∈ {D = β},

dist(x, {D = α} ≤ ‖x− y‖ ≤ 2

m∇
|β − α|.
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So
sup

x∈{D=β}
dist(x, {D = α}) ≤ 2

m∇
|β − α|.

In order to get an upper bound for supx∈{D=α} dist(x, {D = β}), we use the
inequality (5.8) by proceeding in a similar way.

The proof in the case 0 > β − α > −γ is completely analogous.

Proof of Theorem 3.6. Let α ∈ (0, αmax(P )).

Step 1 : we need to find an upper bound for supx∈∂L(α) d(x, ∂Ln(α)).

Let x ∈ ∂L(α). Denote εn = 2‖Dn − D‖∞. Under the assumptions of
Theorem 3.6 εn → 0 P-a.s, so that P-a.s, there exists an integer n0 := n0(ω) ≥
1 (independent from x), s.t. for all n ≥ n0, εn ≤ γ. Taking β = α + εn, it
holds

P-a.s, for all n ≥ n0, dH(∂L(α + εn), ∂L(α)) ≤ Aεn.

Thus, from the above inequality and using the continuity property of D, P-
a.s, for all n ≥ n0, there exists un := ux,εn ∈ ∂L(α+ εn) i.e. D(un) = α+ εn,
and ln := lx,εn ∈ ∂L(α− εn) i.e. D(ln) = α− εn, s.t.

‖un − x‖ ≤ Aεn and ‖ln − x‖ ≤ Aεn.

Let us assume ‖Dn −D‖∞ > 0 (the case ‖Dn −D‖∞ = 0 is trivial). In this
case,

Dn(un) = Dn(un)+α+εn−D(un) ≥ α+εn−‖Dn−D‖∞ = α+‖Dn−D‖∞ > α.

Similarly, we have Dn(ln) < α. So P-a.s, for all n ≥ n0,

Dn(ln) < α < Dn(un).

For the sake of simplicity, we denote here Ln := {x : Dn(x) ≤ α}. Then,
almost surely, for all n ≥ n0, Ln is non-empty (since it contains ln). And by
definition, ln ∈ Ln ⊂ Ln. Denoting by Lcn the complementary of Ln in Rd, it
holds un ∈ Lcn ⊂ Lcn = (L̊n)c, that is, un /∈ L̊n. Then,

P-a.s, for all n ≥ n0, there exists zn ∈ [ln, un] ∩ ∂Ln.
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Thus, P-a.s, for all n ≥ n0,

dist(x, ∂Ln(α)) ≤ ‖x− zn‖
≤ ‖x− un‖+ ‖un − zn‖
≤ ‖un − x‖+ ‖un − ln‖
≤ ‖un − x‖+ ‖un − x‖+ ‖x− ln‖
≤ 3Aεn

= 6A‖Dn −D‖∞.

Since the previous inequality holds for all x ∈ ∂L(α), we have, P-a.s, for all
n ≥ n0,

sup
x∈∂L(α)

d(x, ∂Ln(α)) ≤ 6A‖Dn −D‖∞.

Step 2 : Let us find an upper bound for supx∈∂Ln(α) d(x, ∂L(α)).

Let xn ∈ ∂Ln(α) := ∂Ln = {Dn ≤ α}∩{Dn > α} ⊂ {Dn ≥ α} = {Dn ≥ α},
since Dn is a.s upper-semicontinuous, so that the upper level set based on
Dn is closed. Then, Dn(xn) ≥ α. Furthermore, since xn ∈ {Dn ≤ α}, there
exists `n "close" enough to xn s.t. Dn(`n) ≤ α, and s.t. by continuity of D,
|D(xn)−D(`n)| ≤ εn/2. On the one hand,

D(xn) = Dn(xn)−Dn(xn) +D(xn) ≥ α− εn/2 ≥ α− εn,

on the other hand,

D(xn) = Dn(`n)−Dn(`n) +D(`n)−D(`n) +D(xn)

≤ α + εn/2 + εn/2,

so,
|D(xn)− α| ≤ εn.

Recall that, a.s for all n ≥ n0, εn ≤ γ. Then, using property (L) with
β = D(xn), we can write

dist(xn, ∂L(α)) ≤ dH(∂L(D(xn)), ∂L(α)) ≤ A|D(xn)− α|
≤ 2A‖Dn −D‖∞.

Now we deduce that, a.s. for n large enough,

sup
x∈∂Ln(α)

d(x, ∂L(α)) ≤ 2A‖Dn −D‖∞.

Hence the result.
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Proofs of Section 3.3.

Proof of Proposition 3.11. (i) The function MHD(·) is infinitely differen-
tiable on Rd, and denoting µ = µX , we can write for any 1 ≤ k ≤ d,

∂MHD(x)

∂xk
= −MHD(x)2 ∂

∂xk

[
d∑

i,j=1

(xi − µi)(Σ−1
X )ij(xj − µj)

]

= −MHD(x)2 · 2

[
d∑
i=1

(Σ−1
X )ki(xi − µi)

]
, (Σ−1

X is symmetric)

= −2MHD(x)2

[
Σ−1

X (x− µ)

]
k

.

So
(∇MHD)x = −2MHD(x)2Σ−1

X (x− µ).

Since MHD(x) > 0,

(∇MHD)x = 0⇐⇒ x = µ = µX .

Thus,
‖(∇MHD)x‖ > 0, for all x 6= µX .

Now since x ∈ Rd 7→ ‖(∇MHD)x‖ is continuous and Kε(α) is compact, then
there exists x0 ∈ Kε(α) in which the infimum m∇ is attained,

m∇ = ‖(∇MHD)x0‖ > 0.

The latter inequality is strict since x0 ∈ Kε(α), and µX /∈ Kε(α) (from the
assumption ε < 1− α). Indeed,

µX ∈ Kε(α)⇔ |MHD(µX)− α| ≤ ε⇔ |1− α| = 1− α ≤ ε.

(ii) It suffices to prove

‖MHDn −MHD‖∞,Rd
a.s−−−→

n→∞
0, (5.10)

by recalling that αmax(P ) = 1 forMHD depth. The result is hence a straight
forward application of Proposition 3.5 and Theorem 3.6. In order to prove
(5.10), one can refer to the computations in the proof of Theorem 3.12 and
obtain the desired result knowing that Σ̂n

a.s−−−→
n→∞

Σ, and µ̂n
a.s−−−→

n→∞
µ.
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Proof of Theorem 3.12. Let x ∈ Rd. Denote µ := µX and Σ := ΣX , we can
write

|MHDn(x)−MHD(x)|

=

∣∣∣∣∣ 1

1 + t(x− µ̂n)Σ̂−1
n (x− µ̂n)

− 1

1 + t(x− µ)Σ−1(x− µ)

∣∣∣∣∣
≤

∣∣∣ t(x− µ̂n)Σ̂−1
n (x− µ̂n)− t(x− µ)Σ−1(x− µ)

∣∣∣
1 + t(x− µ)Σ−1(x− µ)

.

Since Σ is a positive definite symmetric and invertible matrix, we can make
the change of variable y = Σ−

1
2 (x− µ). So that,

‖MHDn −MHD‖∞,Rd ≤ sup
y∈Rd

∣∣∣‖Σ̂− 1
2

n (Σ
1
2y + µ− µ̂n)‖2 − ‖y‖2

∣∣∣
1 + ‖y‖2

.

Now, denoting by Id the identity matrix of size d, and using a triangle in-
equality then Cauchy-Schwarz inequality, it holds∣∣∣‖Σ̂− 1

2
n (Σ

1
2y + µ− µ̂n)‖2 − ‖y‖2

∣∣∣
1 + ‖y‖2

≤

∣∣∣‖Σ̂− 1
2

n Σ
1
2y‖2 − ‖y‖2

∣∣∣+ ‖Σ̂−
1
2

n (µ− µ̂n)‖2 + 2
∣∣∣〈Σ̂

− 1
2

n Σ
1
2y, Σ̂

− 1
2

n (µ− µ̂n)
〉∣∣∣

1 + ‖y‖2

≤

∣∣∣∣∣∣∣∣∣Σ 1
2 Σ̂−1

n Σ
1
2 − Id

∣∣∣∣∣∣∣∣∣‖y‖2 + ‖Σ̂−
1
2

n (µ− µ̂n)‖2 + 2
∣∣∣∣∣∣∣∣∣Σ̂−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣Σ 1
2

∣∣∣∣∣∣∣∣∣‖y‖‖µ− µ̂n‖
1 + ‖y‖2

,

This, together with the fact that 2‖y‖/(1 + ‖y‖2) ≤ 1, for all y ∈ Rd,∣∣∣‖Σ̂− 1
2

n (Σ
1
2y + µ− µ̂n)‖2 − ‖y‖2

∣∣∣
1 + ‖y‖2

≤
∣∣∣∣∣∣∣∣∣Σ 1

2 Σ̂−1
n Σ

1
2 − Id

∣∣∣∣∣∣∣∣∣+ ‖Σ̂−
1
2

n (µ− µ̂n)‖2 +
∣∣∣∣∣∣∣∣∣Σ̂−1

n

∣∣∣∣∣∣∣∣∣ · ∣∣∣∣∣∣∣∣∣Σ 1
2

∣∣∣∣∣∣∣∣∣‖µ− µ̂n‖.
Now since the right hand side of the above inequality is independent of y, we
obtain

‖MHDn −MHD‖∞,Rd

≤
∣∣∣∣∣∣∣∣∣Σ 1

2 Σ̂−1
n Σ

1
2 − Id

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣Σ̂− 1

2
n

∣∣∣∣∣∣∣∣∣2‖µ− µ̂n‖(‖µ− µ̂n‖+
∣∣∣∣∣∣∣∣∣Σ 1

2

∣∣∣∣∣∣∣∣∣)
:= An(d), (5.11)
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The problem reduces to studying the asymptotic behavior of An(d). On one
hand, since Σ̂n

a.s−−−→
n→∞

Σ and µ̂n
a.s−−−→

n→∞
µ, then by the continuity theorem we

obtain ∣∣∣∣∣∣∣∣∣Σ̂− 1
2

n

∣∣∣∣∣∣∣∣∣2 (‖µ− µ̂n‖+
∣∣∣∣∣∣∣∣∣Σ 1

2

∣∣∣∣∣∣∣∣∣) P−−−→
n→∞

∣∣∣∣∣∣∣∣∣Σ− 1
2

∣∣∣∣∣∣∣∣∣2∣∣∣∣∣∣∣∣∣Σ 1
2

∣∣∣∣∣∣∣∣∣ > 0.

Furthermore, by the multivariate Central Limit theorem, it holds that n
1
2 (µ̂n−

µ)
L−−−→

n→∞
N (0,Σ). Thus (by the continuity theorem and Slutsky’s lemma),∣∣∣∣∣∣∣∣∣Σ̂− 1

2
n

∣∣∣∣∣∣∣∣∣2‖µ− µ̂n‖(‖µ− µ̂n‖+
∣∣∣∣∣∣∣∣∣Σ 1

2

∣∣∣∣∣∣∣∣∣) is OP
(
n−

1
2

)
. On the other hand, to

study the first term in An(d), we define

F : H ∈ Sd(R) 7→ Σ
1
2H−1Σ

1
2 ,

where Sd(R) is the vector space of all symmetric real-valued matrices of size
d. We denote S+

d (R) the set of all positive definite symmetric matrices which
is an open set in Sd(R). Using classical computations of Fréchet differentiable
functions, it holds that for all A ∈ S+

d (R), the differential of F at A is given
by:

DFA : H ∈ Sd(R) 7→ DFA(H) = −Σ
1
2A−1HA−1Σ

1
2 . (5.12)

By isomorphism, one can see Σ̂n as an element of R
d(d+1)

2 . Since X has all
of its components in L4, then a multivariate CLT applies, i.e. there exists
M∗ ∈ S+

d(d+1)
2

(R) s.t.

√
n(Σ̂n − Σ)

L−−−→
n→∞

N (0,M∗), (5.13)

and for notational convenience, the gaussian vector N (0,M∗) could be rear-
ranged in a size d symmetric random matrix which will be denoted by E∗.
For the sake of completeness, we resume a proof of the delta method in the
words of Agresti [1] (p. 577). Using a first order Taylor expansion, for all
A ∈ S+

d (R) and X ∈ B(A, r) ⊂ S+
d (R), r > 0, we can write :

F (X)− F (A) = DFA(X − A) +R(X), with
R(X)

|||X − A|||
−−−→
X→A

0.

Then, P-almost surely, using (5.12)

F (Σ̂n)− F (Σ) = DFΣ(Σ̂n − Σ) +R(Σ̂n),

= −Σ
1
2 Σ−1(Σ̂n − Σ)Σ−1Σ

1
2 +R(Σ̂n)

= −Σ−
1
2 (Σ̂n − Σ)Σ−

1
2 +R(Σ̂n).
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This, together with (5.13), using the continuity theorem and Slutsky’s Lemma,
we obtain

√
nR(Σ̂n) =

√
n
∣∣∣∣∣∣∣∣∣Σ̂n − Σ

∣∣∣∣∣∣∣∣∣ R(Σ̂n)∣∣∣∣∣∣∣∣∣Σ̂n − Σ
∣∣∣∣∣∣∣∣∣ L−−−→

n→∞
0,

so
√
nR(Σ̂n)

P−−−→
n→∞

0. In addition, from the continuity of U 7→ −Σ−
1
2UΣ−

1
2

and using (5.13), we obtain −
√
nΣ−

1
2 (Σ̂n − Σ)Σ−

1
2

L−−−→
n→∞

−Σ−
1
2E∗Σ−

1
2 .

Therefore, by continuity of the matrix norm, we deduce that∣∣∣∣∣∣∣∣∣Σ 1
2 Σ̂−1

n Σ
1
2 − Id

∣∣∣∣∣∣∣∣∣ = OP
(
n−

1
2

)
.

To conclude, it holds that An(d) = OP
(
n−

1
2

)
which implies the desired

result:
‖MHDn −MHD‖∞,Rd = OP

(
n−

1
2

)
.

Proof of Corollary 3.13. Denote D := MHD. Remark that the upper level
sets based on MHD are ellipsoïdes in Rd. It is sufficient to prove that under
the assumptions of Corollary 3.13, Assumption (H1)(i) of Corollary 3.3 is
satisfied i.e. λd(Ln1(α)∆Ln1(α)) = OP

(
v−1
n1

)
with vn1 = n

1
2
1 . The result is

then a straight forward consequence of Corollary 3.3. We introduce :

`n1 = `n1(α) := dH(∂Ln1(α), ∂LD(α)),

and the tube around the boundary ∂LD(α) of radius `n1 defined by

Tube(∂LD(α), `n1) :=
{
z ∈ Rd : dist(z, ∂LD(α)) ≤ `n1

}
.

Since ∂LD(α) is closed and `n1 is small enough (P-a.s. for n1 large enough,
according to Proposition 3.11 for MHD), then P-a.s, (cf. Weyl [15], p. 461)

λd(Ln1(α)∆LD(α)) ≤ λd [Tube(∂LD(α), `n1)]

≈ Ad−1(α)`n1 for large n1, (Weyl)
≤ Ad−1(α) · C‖MHDn1 −MHD‖∞,Rd for large n1,

and the above inequality is obtained by Proposition 3.11, where Ad−1(α) is
the (d− 1)-dimensional volume of LD(α).
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y

x

`n1

`n1

2`n1

`n1

∂LD(α)

∂Ln1(α)

Figure 5: Illustration of λd(Ln1(α)∆LD(α)) (yellow), and the tube around
LD(α) of radius `n1 (blue).

Finally, according to Theorem 3.12, ‖MHDn1−MHD‖∞,Rd = OP
(
n−

1
2

)
.

Hence,
λd(Ln1(α)∆LD(α)) = OP

(
n−

1
2

)
.
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