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We look for solutions to the Schrödinger-Poisson-Slater equation

for some prescribed c > 0. Here u ∈ H 1 (R 3 ), γ ∈ R, a ∈ R and p ∈ ( 10 3 , 6]. When γ > 0 and a > 0, both in the Sobolev subcritical case p ∈ ( 10 3 , 6) and in the Sobolev critical case p = 6, we show that there exists a c 1 > 0 such that, for any c ∈ (0, c 1 ), (0.1) admits two solutions u + c and u - c which can be characterized respectively as a local minima and as a mountain pass critical point of the associated Energy functional restricted to the norm constraint. In the case γ > 0 and a < 0, we show that, for any p ∈ ( 10 3 , 6] and any c > 0, (0.1) admits a solution which is a global minimizer. Finally, in the case γ < 0, a > 0 and p = 6 we show that (0.1) does not admit positive solutions.

.

 for the special case p = 8 3 . The case p ∈ (3, 10

 by showing that when p = 6 and for any c > 0 there does not exist positive solutions, see Theorem 1.9.

Even if some open problems remain when γ < 0 and a > 0, we shall mainly concentrate here on the others cases: (γ < 0, a < 0), (γ > 0, a > 0) and (γ > 0, a < 0). We define, for short, the following quantities

For u ∈ S(c), we set u t (x) := t

By Lemma 3.3 and Lemma 3.4, for any c ∈ (0, c 1 ) we have that Λ 0 (c) = ∅ and Λ + (c) ∅, Λ -(c) ∅. Since F is bounded from below on Λ(c) due to Lemma 3.1, we can define

Our first main result is Theorem 1.2. Let p ∈ ( 10 3 , 6]. Assume that γ > 0, a > 0 and let c 1 > 0 be defined by (1.5). For any c ∈ (0, c 1 ), there exist

The functions u + c , u - c are bounded continuous positive Schwarz symmetric functions. In addition there exist λ + c > 0 and λ - c > 0 such that (u + c , λ + c ) and (u - c , λ - c ) are solutions to (1.2).

 we do not benefit from the property that γ -(c) ≥ 0 = sup u∈Λ + (c) F(u). Such property is a help to show the convergence of the Palais-Smale sequences in these works. Also, the fact that we may have γ -(c) < 0 makes somehow more involved to prove that the level γ -(c) is reached by a radially symmetric function, a Schwartz function actually, see Lemma 3.6. It is not clear to us if c 1 > 0 is optimal. Nevertheless, we conjecture that there exists a c 0 ≥ c 1 > 0 such that one solution exists when c = c 0 and that, at least positive solutions, do not exist when c > c 0 .

Remark 1.4. As we shall see γ + (c) < γ -(c) and combined with the property that any critical point lies in Λ(c) it implies that the solution u + c obtained in Theorem 1.2 is a ground state. Following [8] a ground state is defined as a solution v ∈ S(c) to (1.2) which has minimal Energy among all the solutions which belong to S(c). Namely, if

Introduction

We consider the following Schrödinger-Poisson-Slater equation:

i∂ t v + ∆v + γ(|x| -1 * |v| 2 )v + a|v| p-2 v = 0 in R × R 3 , (1.1)
where v : R × R 3 → C, γ ∈ R, a ∈ R and p ∈ ( 10 3 , 6]. We look for standing wave solutions to (1.1), namely to solutions of the form v(t, x) = e iλt u(x), λ ∈ R. Then the function u(x) satisfies the equation

-∆u + λu -γ(|x| -1 * |u| 2 )u -a|u| p-2 u = 0 in R 3 . (1.2)
Motivated by the fact that the L 2norm is a preserved quantity of the evolution we focus on the search of solutions to (1.2) with prescribed L 2 -norm. It is standard that for some prescribed c > 0, a solution of (1.2) with u 2 L 2 (R 3 ) = c can be obtained as a critical point of the Energy functional

F(u) := 1 2 R 3 |∇u| 2 dx - γ 4 R 3 R 3 |u(x)| 2 |u(y)| 2 |x -y| dxdy - a p R 3 |u| p dx restricted to S(c) := {u ∈ H 1 (R 3 ) : u 2 L 2 (R 3 ) = c}.
Then the parameter λ ∈ R in (1.2) appears as a Lagrange multiplier, it is an unknown of the problem.

Let us define

(1.3) m(c) = inf u∈S(c) F(u).
Depending on the range of parameters we shall consider m(c) will be finite or not. If, following the introduction of the Compactness by Concentration Principle of P. L. Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case[END_REF], the search of normalized solutions corresponding to a global minimizer of a functional restricted to an L 2 norm constraint is now a classical topic, the search of critical points when the functional is unbounded from below on the constraint remained for a long time much less studied. In the frame of this paper, namely for a functional corresponding to an autonomous equation lying on all the space R N , [START_REF] Jeanjean | Existence of solutions with prescribed norm for semilinear elliptic equations[END_REF] was for a long time the sole contribution. This direction of research was likely brought to the attention of the community by the papers [START_REF] Bartsch | Normalized solutions of nonlinear Schrödinger equations[END_REF][START_REF] Bellazzini | Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations[END_REF] both published in 2013. Since then numerous contributions flourished within this topic and we just mention, among many possible choices, the works, [4, 6-8, 14, 21, 25, 30]. We also refer to [START_REF] Bartsch | Normalized solutions of mass supercritical Schrödinger equations with potential[END_REF] for non-autonomous problems set on R N and to [START_REF] Noris | Normalized solutions for nonlinear Schrödinger systems on bounded domains[END_REF][START_REF] Pellacci | Normalized concentrating solutions to nonlinear elliptic problems[END_REF][START_REF] Pierotti | Normalized bound states for the nonlinear Schrödinger equation in bounded domains[END_REF] for contributions when the underlying equation is set on a bounded domain of R N .

where

2 < σ := 3(p -2) 2 ≤ 6, (1.4) 
due to p ∈ ( 10 3 , 6]. For u ∈ S(c), we define the fiber map t ∈ (0, ∞) → g u (t) := F(u t ) = 1 2 t 2 A(u) -γ 4 tB(u) -a p t σ C(u).

Hence, we have

g ′ u (t) = tA(u) - γ 4 B(u) - aσ p t σ-1 C(u) = 1 t Q(u t ),
where

Q(u) = A(u) - γ 4 B(u) - aσ p C(u).
Actually the condition Q(u) = 0 corresponds to a Pohozaev identity and the set Λ(c) := {u ∈ S(c) : Q(u) = 0} = {u ∈ S(c) : g ′ u (1) = 0} appears as a natural constraint. Indeed, if u ∈ S(c), then t > 0 is a critical point for g u if and only if u t ∈ Λ(c). In particular, u ∈ Λ(c) if and only if 1 is a critical point of g u .

First we briefly consider the case γ < 0, a < 0. For any u ∈ S(c), we have that g ′ u (t) > 0 for all t > 0, hence the fiber map g u (t) is strictly increasing and so we can state the following non-existence result: Theorem 1.1. Assume that γ < 0, a < 0. Then F(u) has no critical point on S(c).

Next, we consider the case γ > 0, a > 0. In this case, let

c 1 := 4 γK H σ -2 σ -1 3p-10 4(p-3) p aσ(σ -1)K GN 1 2(p-3)
> 0, (1.5) where σ is defined by (1.4) and K H , K GN are defined in Lemma 2.1. We also introduce the decomposition of If the geometrical structure of F restricted to S(c) is identical in the Sobolev subcritical case p ∈ ( 10 3 , 6) and in the Sobolev critical case p = 6, the proof that the levels γ + (c) and γ -(c) are indeed reached requires additional, more involved, arguments in the case p = 6. In particular, showing that γ -(c) is attained requires to check that the following inequality holds

γ -(c) < γ + (c) + 1 3 √ aK GN . (1.7)
It is known since the pioneering work of Brezis-Nirenberg [START_REF] Brézis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF] that the way to derive such a strict upper bound is through the use of testing functions. In [START_REF] Jeanjean | Multiple normalized solutions for a sobolev critical Schrödinger equation[END_REF], considering the equation -∆u -λu -µ|u| q-2 u -|u| 2 * -2 u = 0 in R N , (1.8) with N ≥ 3, µ > 0, 2 < q < 2 + 4 N and 2 * = 2N N -2 we face the need to establish a similar inequality. We constructed test functions which could be viewed as the sum of a truncated extremal function of the Sobolev inequality on R N centered at the origin and of u + c translated far away from the origin. This choice of testing functions was sufficient to prove our strict inequality when N ≥ 4 but we missed it in the case N = 3. Note that the approach developed in [START_REF] Jeanjean | Multiple normalized solutions for a sobolev critical Schrödinger equation[END_REF] proved nevertheless adequate to deal with the equation

√ -∆u = λu + µ|u|u| q-2 u + |u| 2 * -2 u, u ∈ H 1 2 (R N ),
with N ≥ 2, q ∈ (2, 2 + 2 N ), 2 * = 2N N -1 , that was studied in [START_REF] Luo | Multiplicity and asymptotics of standing waves for the energy critical half-wave[END_REF]. Very recently, in [START_REF] Wei | Normalized solutions for Schrödinger equations with critical sobolev exponent and mixed nonlinearities[END_REF] the authors introduced an alternative choice of testing functions which allowed to treat, in a unified way, the case N = 3 and N ≥ 4 for (1.8). The strategy in [START_REF] Wei | Normalized solutions for Schrödinger equations with critical sobolev exponent and mixed nonlinearities[END_REF], recording of the one introduced by G. Tarantello in [START_REF] Tarantello | On nonhomogeneous elliptic equations involving critical Sobolev exponent[END_REF], is on the contrary, to located the extremal functions where the solution u + c takes its greater values (the origin thus). The idea behind the proof is that the interaction decreases the value of the Energy with respect to the case where the supports would be disjoint. In this paper, where (1.2) is set on R 3 , we believe in view of our experience on (1.8), more appropriate to follow the approach of [START_REF] Wei | Normalized solutions for Schrödinger equations with critical sobolev exponent and mixed nonlinearities[END_REF] to check the inequality (1.7) for any c ∈ (0, c 1 ).

The results of Theorem 1.2 are complemented in several directions. First, we show that the solution u + (c) obtained in Theorem 1.2 can be characterized as a local minima for F restricted to S(c). We treat here the full range p ∈ ( 10 3 , 6] with a single proof. More precisely we show, Theorem 1.5. Let p ∈ ( 10 3 , 6]. Assume that γ > 0, a > 0 and let c ∈ (0, c 1 ). Then we have

Λ + (c) ⊂ V (c) and γ + (c) = inf u∈Λ + (c) F(u) = inf u∈V (c) F(u)
where

V (c) := {u ∈ S(c)|A(u) < k 1 }
for some k 1 > 0 independent of c ∈ (0, c 1 ) (see (3.45) for the definition of k 1 > 0). In addition, any minimizing sequence for F on V (c) is, up to translation, strongly convergent in H 1 (R 3 ).

Remark 1.6. The proof of Lemma 3.20 which is a key step to established Theorem 1.5, reveals some additional properties of the set V (c). Indeed, we have that V (c) ⊂ S(c)\Λ -(c) and thus V (c) is separating the sets Λ + (c) and

Λ -(c). Also, for any 0 < c, c < c 1 , we have that A(u) < k 1 < A(v) for all u ∈ Λ + (c), v ∈ Λ -( c), see (3.46
) and (3.49).

Remark 1.7. To prove that the minimizing sequences for F on V (c) are, up to translation, strongly convergent in H 1 (R 3 ) we follow an approach due to [START_REF] Ikoma | Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions[END_REF] that has already been used several times, see, for example, [START_REF] Gou | Existence and orbital stability of standing waves for nonlinear Schrödinger systems[END_REF][START_REF] Jeanjean | Orbital stability of ground states for a Sobolev critical Schrödinger equation[END_REF][START_REF] Luo | Multiplicity and asymptotics of standing waves for the energy critical half-wave[END_REF]. The first step in this approach is to show that the sequences do not vanish. When p = 6, we rely for this, in an essential way, on the fact that c 1 > 0 is sufficiently small, see Lemma 3.22. This fact is also used to end the proof. Finally, note that since we allow the possibility that inf u∈∂V (c) F(u) < 0 where ∂V (c) := {u ∈ S(c)|A(u) = k 1 } we must check that the minimizers do ly in V (c).

Let us now denote

M c := {u ∈ V (c) : F(u) = γ + (c)}.
In view of Remark 1.4, M c is the set of all ground states. The property that any minimizing sequence for F restricted to V (c) is, up to translation, strongly converging is known to be a key ingredient to show that the set M c is orbitally stable. If p ∈ ( 10 3 , 6) the orbital stability of M c indeed follows directly from Theorem 1.5 by the classical arguments of [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF]. In the case p = 6 the situation is more delicate as the existence of a uniform H 1 (R 3 ) bound on the solution of (1.1) during its lifespan is not sufficient to guarantee that blow-up may not occurs. We refer to [START_REF] Thierry | Semilinear Schrödinger equations[END_REF] for more details. We do not prove anything in that direction but strongly believe that the set M c is orbitally stable. Actually, such a result has been obtained on the equation (1.8) in [START_REF] Jeanjean | Orbital stability of ground states for a Sobolev critical Schrödinger equation[END_REF].

We also discuss the behavior of the associated Lagrange multipliers and show that if the behavior of λ + c is essentially the same for the cases p ∈ ( 10 3 , 6) and p = 6, see Lemma 3.24, there is a distinct behavior for λ - c , see Lemmas 3.25 and 3.26. In particular, Lemma 3.26 suggests that there may exist two distinct positive solutions to (1.2) for any fixed λ > 0 sufficiently small. Finally, in Lemma 3.27, we establish the property that the map c → γ -(c) is strictly decreasing.

Next, we consider the case γ > 0, a < 0. Recalling the definition of m(c) given in (1.3) we show in Lemma 4.1, that -∞ < m(c) < 0 and then we prove the following result.

Theorem 1.8. Let p ∈ ( 10 3 , 6], γ > 0 and a < 0. For any c > 0, the infimum m(c) is achieved and any minimizing sequence for (1.3) is, up to translation, strongly convergent in H 1 (R 3 ) to a solution of (1.2). In addition, the associated Lagrange multiplier is positive.

Even if the proof of Theorem 1.8 follows the lines of the proof of Theorem 1.5, the change of sign in front of the power term requires some adaptations, see Lemma 4.2 and Lemma 4.4. Here again the orbital stability of the set of minimizers should follow directly from the classical arguments of [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] if p ∈ ( 10 3 , 6) and it should also be the case when p = 6 by adapting the arguments of [START_REF] Jeanjean | Orbital stability of ground states for a Sobolev critical Schrödinger equation[END_REF]. Note that we also study the behavior of the associated Lagrange multipliers in Lemma 4.5.

In the last part of the paper we consider the case γ < 0, a > 0 and p = 6. Theorem 1.9. Let p = 6, γ < 0 and a > 0. For any c > 0, we have that

(i) If u ∈ H 1 (R 3
) is a non-trivial solution to (1.2) then the associated Lagrange multiplier λ is negative and

F(u) > 1 3 √ aK GN .
(ii) Equation (1.2) has no positive solution in H 1 (R 3 ).

Remark 1.10. Under the assumptions of Theorem 1.9, it is possible to prove that

inf u∈Λ(c) F(u) = 1 3 √ aK GN .
Remark 1.11. In [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Theorem 1.2], considering the equation

-∆u -λu -µ|u| q-2 u -|u| 2 * -2 u = 0 in R N , (1.9)
with N ≥ 3, 2 < q < 2 * and µ < 0, it was proved that (1.9) has no positive solution u ∈ H 1 (R N ) if N = 3, 4 or if N ≥ 5 under the additional assumption u ∈ L p (R N ) for some p ∈ 0, N N -2 . In Remark 5.2, partly using arguments used in the proof of Theorem 1.9, we improve [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Theorem 1.2] showing that (1.9) has no positive solution in H 1 (R N ) for all N ≥ 3 and no non-trivial radial solution for N ≥ 3 and q > 2 + 2 N -1 . Remark 1.12. We propose as an open problem to investigate if there are radial solutions under the assumptions of Theorem 1.9. See Remark 5.3 in that direction.

The paper is organized as follows. In Section 2 we recall some classical inequalities and present some preliminary results. Section 3 is devoted to the treatment of the case γ > 0, a > 0 and p ∈ ( 10 3 , 6]. In Subsection 3.1 we make explicit the geometrical structure of F on S(c) and show the existence of a bounded Palais-Smale sequence (u + n ) ⊂ Λ + (c) at the level γ + (c) and of a bounded Palais-Smale sequence (u - n ) ⊂ Λ -(c) at the level γ -(c). In Subsection 3.2 we give the proof of Theorem 1.2 in the Sobolev subcritical case. Subsection 3.3 is devoted to the proof of Theorem 1.2 in the critical case. In Subsection 3.4 we prove the convergence of all minimizing sequences associated to γ + (c), namely Theorem 1.5. The behavior of the Lagrange multipliers and the property of the map c → γ -(c) are studied in Subsection 3.5 and Subsection 3.6, respectively. In Section 4 we treat the case γ > 0, a < 0 and p ∈ ( 10 3 , 6] and we prove Theorem 1.8. Finally, in Section 5, we consider the case γ < 0, a > 0 and p = 6, and prove Theorem 1.9.

Notation: For p ≥ 1, the L p -norm of u ∈ H 1 (R 3 ) is denoted by u L p (R 3 )
. We denote by H 1 r (R 3 ) the subspace of functions in H 1 (R 3 ) which are radially symmetric with respect to 0. The notation a ∼ b means that Cb ≤ a ≤ C ′ b for some C, C ′ > 0. The open ball in R 3 with center at 0 and radius R > 0 is denoted by B R .

Addendum : After the completion of this paper, we were informed of the work [START_REF] Yao | Normalized solutions for the Schrödinger equation with combined hartree type and power nonlinearities[END_REF] in which the authors consider a general class of problems which, when p ∈ ( 10 3 , 6), covers (1.2) as a special case. There are thus some partial overlap, in the Sobolev subcritical case, between [53, Theorem 1.3 (a) (ii)] and Theorem 1.2 and between [53, Theorem 1.6 (a) (iv)] and Theorem 1.8. However the scope of the two works is widely distinct.

Preliminary results

In this section we present various preliminary results. When it is not specified they are assumed to hold for γ ∈ R, a ∈ R, p ∈ 10 3 , 6 and any c > 0. Firstly, we present the definitions of Λ(c), Λ -(c), Λ 0 (c), Λ -(c) via A(u), B(u) and C(u):

Λ(c) =        u ∈ S(c) : A(u) = γ 4 B(u) + aσ p C(u)        , Λ + (c) =        u ∈ S(c) : A(u) = γ 4 B(u) + aσ p C(u), A(u) > aσ(σ -1) p C(u)        , Λ 0 (c) =        u ∈ S(c) : A(u) = γ 4 B(u) + aσ p C(u), A(u) = aσ(σ -1) p C(u)        , Λ -(c) =        u ∈ S(c) : A(u) = γ 4 B(u) + aσ p C(u), A(u) < aσ(σ -1) p C(u)        . Lemma 2.1. Let u ∈ S(c), there exists (i) a constant K H > 0 such that B(u) ≤ K H A(u)c 3 2 . (ii) a constant K GN > 0 such that C(u) ≤ K GN [A(u)] σ 2 c 6-p 4 .
Proof. We first recall the Hardy-Littlewood-Sobolev inequality (see [START_REF] Lieb | Analysis[END_REF]Chapter 4]):

R N R N f (x)g(y) |x -y| λ dxdy ≤ C(N , λ, p, q) f L p (R N ) g L q (R N ) , (2.1)
where f ∈ L p (R N ), g ∈ L q (R N ), p, q > 1, 0 < λ < N and

1 p + 1 q + λ N = 2.
Let us also recall the Gagliardo-Nirenberg inequality (see [START_REF] Nirenberg | On elliptic partial differential equations[END_REF]) and the Sobolev inequality (see [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]Theorem 9.9]) in the unified form: if

N ≥ 3 and p ∈ [2, 2N N -2 ] then f L p (R N ) ≤ C(N , p) ∇f β L 2 (R N ) f (1-β) L 2 (R N ) , with β = N 1 2 - 1 p .
Applying the Hardy-Littlewood-Sobolev inequality we obtain

B(u) = R 3 R 3 |u(x)| 2 |u(y)| 2 |x -y| dxdy ≤ K 1 u 4 L 12 5 (R 3 ) (2.2)
and thus using the Gagliardo-Nirenberg inequality, we get

B(u) ≤ K 1 u 4 L 12 5 (R 3 ) ≤ K 1 K 2 ∇u L 2 (R 3 ) u 3 L 2 (R 3 ) = K H A(u)c 3 2 .
Finally, applying the Sobolev, Gagliardo-Nirenberg inequality, we have

C(u) = u p L p (R 3 ) ≤ K GN ∇u σ L 2 (R 3 ) u 6-p 2 L 2 (R 3 ) = K GN [A(u)] σ 2 c 6-p 4 . Lemma 2.2. Let p ∈ ( 10 3 , 6]. Assume that γ ∈ R and a ∈ R. If u ∈ H 1 (R 3
) is a weak solution to -∆u + λuγ(|x| -1 * |u| 2 )u -a|u| p-2 u = 0, (2.3) then Q(u) = 0. Moreover, if u 0 then we have (i) λ > 0 if γ > 0 and p ∈ ( 10 3 , 6], (ii) λ < 0 if γ < 0 and p = 6.

Proof. Our proof is inspired by [START_REF] Bellazzini | Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations[END_REF]Lemma 4.2]. The following Pohozaev type identity holds for u ∈ H 1 (R 3 ) weak solution of (2.3) ( [START_REF] Mugnai | Non-existence results for the coupled Klein-Gordon-Maxwell equations[END_REF], also see [START_REF] Ruiz | The Schrödinger-Poisson equation under the effect of a nonlinear local term[END_REF]Theorem 2.2]),

1 2 A(u) + 3λ 2 D(u) - 5γ 4 B(u) - 3a p C(u) = 0, where D(u) = u 2 L 2 (R 3 ) . (2.4)
By multiplying (2.3) by u and integrating, we derive a second identity

A(u) + λ c D(u) -γB(u) -aC(u) = 0. (2.5)
Combining (2.4) and (2.5), we get

A(u) - γ 4 B(u) - aσ p C(u) = 0.
This means that Q(u) = 0. Using (2.4) and (2.5) again, we obtain 3 ). Moreover, in case γ > 0, a > 0 we have that if u 0 and u ≥ 0 then u > 0.

-∆u + λu -γ(|x| -1 * |u| 2 )u -a|u| p-2 u = 0, (2.7) then u ∈ L ∞ (R 3 ) ∩ C(R
Proof. Applying [34, Theorem 2.1], we get that u ∈ W 2,r loc (R 3 ) for every r > 1 and hence u ∈ C(R 3 ). Since u ∈ H 1 (R 3 ), the Sobolev embedding (see [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]Corollary 9.10]) implies that |u| 2 ∈ L q (R 3 ) for every q ∈ [1, 3]. Now, setting K := |x| -1 , we write K := K 1 + K 2 where K 1 := K on B(0, 1), K 1 := 0 on R 3 \ B(0, 1) and 

K 2 := K -K 1 . Clearly K 1 ∈ L 2 (R 3 ) and K 2 ∈ L 4 (R 3 ). Applying [35, Lemma 2.20] with K 1 ∈ L 2 (R 3 ), |u| 2 ∈ L 2 (R 3 ) and with K 2 ∈ L 4 (R 3 ), |u| 2 ∈ L 4 3 (R 3
] that u ∈ L ∞ (R 3 ).
Now, if we assume that γ > 0, a > 0, u 0, u ≥ 0, setting v := -u ≤ 0 we get

-∆v + λv = γ(|x| -1 * |v| 2 )v + a|v| p-2 v ≤ 0.
By Lemma 2.2, we have that λ > 0. We assume that there exists [START_REF] Maria | Elliptic differential equations and obstacle problems[END_REF]Theorem 3.27], in the particular case where Γ = ∅, we obtain that v ≡ 0 in B R , and hence u ≡ 0 in B R . The value R > 0 being arbitrarily large, this contradicts our assumption that u 0 and we conclude that u > 0.

x 0 ∈ R 3 such that v(x 0 ) = 0. For all R > |x 0 |, we have that v ∈ W 2,r (B R ) for every r > 1, Lv := -∆v + λv ≤ 0 in B R with λ > 0 and M := max x∈B R v = 0. At this point, applying
Following [START_REF] Berestycki | Nonlinear scalar field equations. II. Existence of infinitely many solutions[END_REF], we recall that, for any c > 0, S(c) is a submanifold codimension 1 of H 1 (R 3 ) and the tangent space at a point u ∈ S(c) is defined as

T u S(c) = {ϕ ∈ H 1 (R 3 ) : u, ϕ L 2 (R 3 ) = 0}.
The restriction F |S(c) : S(c) → R is a C 1 functional on S(c) and for any u ∈ S(c) and any v ∈ T u S(c), we have

F ′ |S(c) , ϕ = F ′ , ϕ .
We use the notation dF |S(c) * to indicate the norm in the cotangent space T u S(c) ′ , i.e the dual norm induced by the norm of T u S(c), i.e

dF |S(c) (u) * := sup ϕ ≤1,ϕ∈T u S(c) |dF(u)[ϕ]|. (2.9)
We recall the following result, see [29, Lemma 3.1], Lemma 2.4. For u ∈ S(c) and t > 0, the map

T u S(c) → T u t S(c), ψ → ψ t is a linear isomorphism with inverse T u t S(c) → T u S(c), φ → φ 1 t .
Next, we recall a result concerning the convergence of the term B, see [44, Lemma 2.1], Lemma 2.5. Let (u n ) be a sequence satisfying u n ⇀ u weakly in H 1 r (R 3 ). Then we have B(u n ) → B(u).

3. The case γ > 0, a > 0 and p ∈ ( 10 3 , 6]. 3.1. The geometrical structure and the existence of bounded Palais-Smale sequences for p ∈ ( 10 3 , 6]. In this subsection, we follow the approach first introduced in [START_REF] Cingolani | Stationary waves with prescribed L 2 -norm for the planar Schrödinger-Poisson system[END_REF]. We shall always assume that γ > 0, a > 0 and p ∈ ( 10 3 , 6].

Lemma 3.1. For any c ∈ (0, ∞), F restricted to Λ(c) is coercive on H 1 (R 3 ), namely when (u n ) ⊂ H 1 (R 3 ) satisfies ||u n || → +∞ then F(u n ) → +∞. In particular F restricted to Λ(c) is bounded from below. Proof. Let u ∈ Λ(c). Taking into account that a p C(u) = 1 σ A(u) - γ 4σ B(u),
and using Lemma 2.1(i), we obtain

F(u) = 1 2 A(u) - γ 4 B(u) - a p C(u) = 1 2 A(u) - γ 4 B(u) - 1 σ A(u) + γ 4σ B(u) = σ -2 2σ A(u) - γ(σ -1) 4 B(u) ≥ σ -2 2σ A(u) - γ(σ -1) 4 K H A(u)c 3 2 . (3.1)
This concludes the proof.

For any u ∈ S(c), we recall that

g u (t) = F(u t ) = 1 2 t 2 A(u) - γ 4 tB(u) - a p t σ C(u), g ′ u (t) = tA(u) - γ 4 B(u) - aσ p t σ-1 C(u) = 1 t Q(u t ), g ′′ u (t) = A(u) - aσ(σ -1) p t σ-2 C(u).
For any u ∈ S(c), we set

t ⋆ u := pA(u) aσ(σ -1)C(u) 1 σ-2 .
This implies that t ⋆ u is the unique solution of equation g ′′ u (t) = 0. So, we have

g ′′ u (t ⋆ u ) = 0, g ′′ u (t) > 0 if 0 < t < t ⋆ u , g ′′ u (t) < 0 if t > t ⋆ u . (3.2) Lemma 3.2. For any c ∈ (0, c 1 ) and any u ∈ S(c), we have g ′ u (t ⋆ u ) > 0.
Proof. Let u ∈ S(c) be arbitrary. By the definition of t ⋆ u and by g ′′ u (t ⋆ u ) = 0, we have

g ′ u (t ⋆ u ) = t ⋆ u A(u) - γ 4 B(u) - aσ p (t ⋆ u ) σ-1 C(u) = t ⋆ u A(u) - γ 4 B(u) - 1 σ -1 t ⋆ u A(u) = σ -2 σ -1 t ⋆ u A(u) - γ 4 B(u) = σ -2 σ -1 pA(u) aσ(σ -1)C(u) 1 σ-2 A(u) - γ 4 B(u) = A(u)        σ -2 σ -1 pA(u) aσ(σ -1)C(u) 1 σ-2 A(u) - γ 4 B(u) A(u)        = A(u)         σ -2 σ -1 p[A(u)] σ 2 aσ(σ -1)C(u) 1 σ-2 - γ 4 B(u) A(u)         . Applying Lemma 2.1, we obtain g ′ u (t ⋆ u ) ≥ A(u)          σ -2 σ -1        p[A(u)] σ 2 aσ(σ -1)K GN [A(u)] σ 2 c 6-p 4        1 σ-2 - γ 4 K H A(u)c 3 2 A(u)          = A(u)          σ -2 σ -1        p aσ(σ -1)K GN c 6-p 4        1 σ-2 - γ 4 K H c 3 2         
.

By direct computations, we now have

σ -2 σ -1        p aσ(σ -1)K GN c 6-p 4        Proof. Let u ∈ Λ + (c), taking into account that A(u) = γ 4 B(u) + aσ p C(u), A(u) > aσ(σ -1) p C(u),
we obtain

F(u) = 1 2 A(u) - γ 4 B(u) - a p C(u) = 1 2 A(u) - γ 4 B(u) - aσ p C(u) + a(σ -1) p C(u) < 1 2 A(u) -A(u) + 1 σ A(u) = 2 -σ 2σ A(u). Since σ > 2, we have F(u) < 0. The point (i) is proved. Let u ∈ Λ -(c), taking into account that A(u) < aσ(σ -1) p C(u),
and using Lemma 2.1, we obtain that

A(u) < aσ(σ -1) p K GN c 6-p 4 [A(u)] σ 2 .
Since σ > 2, the point (ii) follows.

We define

S r (c) := S(c) ∩ H 1 r (R 3 ), Λ r (c) := Λ(c) ∩ H 1 r (R 3 ), Λ ± r (c) := Λ ± (c) ∩ H 1 r (R 3 ).
Here Λ ± (c) denotes either Λ + (c) or Λ -(c).

Lemma 3.6. For any c ∈ (0, c 1 ) it holds that

inf u∈Λ ± r (c) F(u) = inf u∈Λ ± (c) F(u). Also, if inf u∈Λ ± (c) F(u) is reached, it is reached by a Schwarz symmetric function. Proof. Since Λ ± r (c) ⊂ Λ ± (c), we directly have inf u∈Λ ± r (c) F(u) ≥ inf u∈Λ ± (c) F(u). (3.3) Therefore, it suffices to prove that inf u∈Λ ± r (c) F(u) ≤ inf u∈Λ ± (c) F(u). (3.4)
In this aim we start to note that inf

u∈Λ + (c) F(u) = inf u∈S(c) min 0<t≤s + u F(u t ) and inf u∈Λ -(c) F(u) = inf u∈S(c) max s + u <t≤s - u F(u t ). (3.5) Now let u ∈ S(c) and v ∈ S r (c) be the Schwarz rearrangement of |u|. Taking into account that A(v) ≤ A(u), C(v) = C(u),
and by the Riesz's rearrangement inequality (see [START_REF] Lieb | Analysis[END_REF]Section 3.7]), B(v) ≥ B(u), we have for all t > 0,

F(v t ) = 1 2 t 2 A(v) - γ 4 tB(v) - a p t σ C(v) ≤ 1 2 t 2 A(u) - γ 4 tB(u) - a p t σ C(u) = F(u t ). (3.6)
Observe that, for any w ∈ S(c),

g ′ w (t) = tA(w) - γ 4 B(w) - aσ p t σ-1 C(w) and g ′′ w (t) = A(w) - aσ(σ -1) p t σ-2 C(w).
Thus we have

g ′ v (0) ≤ g ′ u (0) < 0 and g ′′ v (t) ≤ g ′′ u (t), ∀t > 0.
This implies that 0 < s

+ u ≤ s + v < s - v ≤ s - u . Hence, we deduce from (3.6) that min 0<t≤s + v F(v t ) ≤ min 0<t≤s + u F(u t ) and max s + v <t≤s - v F(v t ) ≤ max s + u <t≤s - u F(u t ).
In view of (3.5), the inequality (3.4) holds. Now if

u 0 ∈ Λ + (c) is such that F(u 0 ) = inf u∈Λ + (c) F(u) we see that v, the Schwarz rearrangement of |u 0 |, belongs to Λ + r (c). Indeed, if either A(v) < A(u 0 ) or B(v) > B(u 0 ) then F(v t ) < F(u t 0 )
. Hence, in view of the above arguments, we get inf

u∈Λ + (c) F(u) = inf u∈S(c) min 0<t≤s + u F(u t ) ≤ min 0<t≤s + v F(v t ) < min 0<t≤s + u 0 F(u t 0 ) = inf u∈Λ + (c) F(u) a contradiction. Thus A(v) = A(u 0 ), B(v) = B(u 0 ) and C(v) = C(u 0 ) from which we deduce that v ∈ Λ + r (c) and F(v) = F(u 0 ). The case of u 0 ∈ Λ -(c) such that F(u 0 ) = inf u∈Λ -(c) F(u)
is treated similarly. This ends the proof of the lemma.

Recalling that γ + (c) and γ + (c) are defined in (1.6) we have Lemma 3.7. For any c ∈ (0, c 1 ), there exists a bounded Palais-Smale sequence

(u + n ) ⊂ Λ + r (c) for F restricted to S(c) at level γ + (c) and a bounded Palais-Smale sequence (u - n ) ⊂ Λ - r (c) for F restricted to S(c) at level γ -(c).
In order to prove Lemma 3.7 we define the functions

I + : S(c) → R, I + (u) = F(u s + u ), I -: S(c) → R, I -(u) = F(u s - u ).
Note that since the maps u → s + u and u → s - u are of class C 1 , see Lemma 3.4, the functionals I + and I -are of class C 1 . Lemma 3.8. For any c ∈ (0, c 1 ), we have that dI

+ (u)[ψ] = dF(u s + u )[ψ s + u ] and dI -(u)[ψ] = dF(u s - u )[ψ s - u ] for any u ∈ S(c), ψ ∈ T u S(c).
Proof. We first give the proof for I + . Let ψ ∈ T u S(c), then ψ = h ′ (0) where h : (-ǫ, ǫ) → S(c) is a C 1 -cure with h(0) = u. We consider the incremental quotient

I + (h(t)) -I + (h(0)) t = F(h(t) s t ) -F(h(0) s 0 ) t , (3.7)
where s t := s + h(t) , and hence s 0 = s + u . Recalling from Lemma 3.4 that s 0 is a strict local minimum of s → F(u s ) and u → s 0 is continuous, we get

F(h(t) s t ) -F(h(0) s 0 ) ≥ F(h(t) s t ) -F(h(0) s t ) = s 2 t 2 A(h(t)) -A(h(0)) - γs t 4 B(h(t)) -B(h(0)) - as σ t p C(h(t)) -C(h(0)) =s 2 t R 3 ∇h(τ 1 t) • ∇h ′ (τ 1 t)tdx -γs t R 3 R 3 |h(τ 2 t)(x)| 2 h(τ 2 t)(y)h ′ (τ 2 t)(y) |x -y| dxdy -as σ t R 3 |h(τ 3 t)| p-2 h(τ 3 t)h ′ (τ 3 t)dx,
for some τ 1 , τ 2 , τ 3 ∈ (0, 1). Analogously

F(h(t) s t ) -F(h(0) s 0 ) ≤ F(h(t) s 0 ) -F(h(0) s 0 ) =s 2 0 R 3 ∇h(τ 4 t) • ∇h ′ (τ 4 t)tdx -γs 0 R 3 R 3 |h(τ 5 t)(x)| 2 h(τ 5 t)(y)h ′ (τ 5 t)(y) |x -y| dxdy -as σ 0 R 3 |h(τ 6 t)| p-2 h(τ 6 t)h ′ (τ 6 t)dx,
for some τ 4 , τ 5 , τ 6 ∈ (0, 1). Now, from (3.7) we deduce that

lim t→0 I + (h(t)) -I + (h(0)) t =(s + u ) 2 R 3 ∇u∇ψdx -γ(s + u ) R 3 R 3 |u(x)| 2 u(y)ψ(y) |x -y| dxdy -a(s + u ) σ R 3 |u| p-2 uψdx = R 3 ∇u s + u ∇ψ s + u dx -γ R 3 R 3 |u s + u (x)| 2 u s + u (y)ψ s + u (y) |x -y| dxdy -a R 3 |u s + u | p-2 u s + u ψ s + u dx =dF(u s + u )[φ s + u ],
for any u ∈ S(c), ψ ∈ T u S(c). The proof for I -is similar.

Let G be the set of all singletons belonging to S r (c). It is clearly a homotopy stable family of compact subsets of S r (c) with closed boundary (an empty boundary actually) in the sense of [START_REF] Ghoussoub | Duality and perturbation methods in critical point theory[END_REF]Definition 3.1]. In view of Lemma 3.6 we have that

e + G := inf A∈G max u∈A I + (u) = inf u∈S r (c) I + (u) = inf u∈Λ + r (c) F(u) = inf u∈Λ + (c) F(u) = γ + (c). e - G := inf A∈G max u∈A I -(u) = inf u∈S r (c) I -(u) = inf u∈Λ - r (c) F(u) = inf u∈Λ -(c) F(u) = γ -(c).
Lemma 3.9. For any c ∈ (0, c 1 ), there exists a Palais-Smale sequence

(u + n ) ⊂ Λ + (c) for F restricted to S r (c) at level e + G and a Palais-Smale sequence (u - n ) ⊂ Λ -(c) for F restricted to S(c) at level e - G .
Proof. We first treat the case of e + G . Let (D n ) ⊂ G be such that max

u∈D n I + (u) < e + G + 1 n ,
and consider the homotopy

η : [0, 1] × S(c) → S(c), η(t, u) = u 1-t+ts + u .
From the definition of G, we have

E n := η({1} × D n ) = {u s + u : u ∈ D n } ∈ G. Lemma 3.4 implies that E n ⊂ Λ + (c) for all n ∈ N. Let v ∈ E n , i.e. v = u s + u
for some u ∈ D n , and hence I + (v) = I + (u). So, we have max

v∈E n I + (v) = max u∈D n I + (u).
Therefore, E n is another minimizing sequence for e + G . Applying [23, Theorem 3.2], in the particular case where the boundary B = ∅, there exists a Palais-Smale sequence (y n ) for

I + on S(c) at level e + G such that dist H 1 (R 3 ) (y n , E n ) → 0 as n → ∞. (3.8)
Now writing s n := s + y n we set u + n := y s n n ∈ Λ + (c). We claim that there exists a constant C > 0 such that

1 C ≤ s 2 n ≤ C (3.9)
for n ∈ N large enough. Indeed, notice first that

s 2 n = A(u + n ) A(y n )
.

By F(u + n ) = I + (y n ) → e + G = γ + (c) < 0 we deduce from (3.1) that there exists M > 0 such that 1 M ≤ A(u + n ) ≤ M. (3.10)
On the other hand, since E n ∈ Λ + (c) is a minimizing sequence for e + G and F is H 1 (R 3 ) coercive on Λ + (c), we obtain that E n is uniformly bounded in H 1 (R 3 ) and thus from (3.8), it implies that sup n A(y n ) < ∞. Also, since E n is compact for every n ∈ N, there exist a v n ∈ E n such that v n -y n H 1 (R 3 ) → 0 as n → 0 due to (3.8). Using Lemma 3.1 again, we have, for a δ > 0,

A(y n ) ≥ A(v n ) -A(v n -y n ) ≥ δ 2 .
This proves the claim (3.9). From (2.9), and by Lemma 2.4, Lemma 3.8, we have

dF |S(c) (u + n ) * = sup ψ ≤1,ψ∈T u S(c) dF(u + n )[ψ] = sup ψ ≤1,ψ∈T u S(c) dF(u + n ) ψ 1 s n s n = sup ψ ≤1,ψ∈T u S(c) dI + (y n ) ψ 1 s n .
This implies that (u + n ) ⊂ Λ + (c) is a Palais-Smale sequence for F restricted to S(c) at level e + G since (y n ) is a Palais-Smale sequence for I + at level e + G and and ψ

1 s n ≤ C 1 ψ ≤ C 1 due to (3.9).
For the case of e - G the proof is identical except that we use Lemma 3.5(ii) along with (3.1) to conclude that there exists a M > 0 such that (3.10) holds for

A(u - n ) replacing A(u + n ).
Proof of Lemma 3.7. Applying Lemma 3.9, we deduce that there exists a Palais-Smale sequence (u

+ n ) ⊂ Λ + r (c) for F restricted to S(c) at level e + G = γ + (c) and a Palais-Smale sequence (u - n ) ⊂ Λ - r (c) for F restricted to S(c) at level e - G = γ -(c).
In both cases the boundedness of these sequences follows from Lemma 3.1. Proof. Since F restricted to Λ(c) is coercive on H 1 (R 3 ) (see Lemma 3.1), (u n ) is bounded. Hence, up to translation, u n ⇀ u c weakly in H 1 (R 3 ). Let us argue by contradiction assuming that u c = 0, this means that (u n ) is vanishing. By [37, Lemma I.1], we have, for 2 < q < 6,

The compactness of our

u n L q (R 3 ) → 0, as n → ∞.

This implies that

C(u n ) → 0,
and

B(u n ) ≤ K 1 u n 4 L 12 5 (R 3 )
→ 0, due to (2.2). Since (u n ) ⊂ Λ(c), we have Q(u n ) = 0, and hence

A(u n ) = γ 4 B(u n ) + aσ p C(u n ) → 0. (3.11)
If we assume that (u n ) ⊂ Λ -(c) we recall that by Lemma 3.5, there exists α > 0 such that

A(u n ) ≥ α > 0, ∀n ∈ N, contradicting (3.11). If we assume that (u n ) ⊂ Λ + (c) then since F(u n ) = 1 2 A(u n ) - γ 4 B(u n ) - a p C(u n ) → 0
we reach a contradiction with the fact that

F(u n ) → γ + (c) = inf u∈Λ + (c) F(u) < 0.
The lemma is proved. 

u n → u c ∈ Λ r (c) strongly in H 1 r (R 3 ).
In particular u c is a radial solution to (1.2) for some λ c > 0 and u c 2

L 2 (R 3 ) = c.
Proof. Since the embedding H 1 r (R 3 ) ⊂ L q (R 3 ) is compact for q ∈ (2, 6), see [START_REF] Walter | Existence of solitary waves in higher dimensions[END_REF] and, up to translation, u n ⇀ u c weakly in H 1 r (R 3 ), we have, up to translation, u n → u c strongly in L q (R 3 ) for q ∈ (2, 6) and a.e in R 3 . Since (u n ) ⊂ H 1 (R 3 ) is bounded, following [13, Lemma 3], we know that

F ′ |S(c) (u n ) → 0 in H -1 (R 3 ) ⇐⇒ F ′ (u n ) - 1 c F ′ (u n ), u n u n → 0 in H -1 (R 3 ).
Thus, for any w ∈ H 1 (R 3 ), we have

o n (1) = F ′ (u n ) - 1 c F ′ (u n ), u n u n , w = R 3 ∇u n ∇wdx + λ n R 3 u n wdx -γ R 3 R 3 |u n (x)| 2 u n (y)w(y) |x -y| dxdy -a R 3 |u n | p-2 u n wdx, (3.12) 
where o n (1) → 0 as n → ∞ and

λ n = -1 c [A(u n ) -γB(u n ) -aC(u n )] = 1 c 3γ 4 B(u n ) + a 1 - σ p C(u n ) , due to Q(u n ) = 0. Since u n ∈ H 1 r (R 3 ), we have C(u n ) → C(u c ) and B(u n ) → B(u c ) (see Lemma 2.5
). Hence, we obtain that

λ n → λ c = 1 c 3γ 4 B(u c ) + a 1 - σ p C(u c ) .
Now, using [54, Lemma 2.2], the equation (3.12) leads to

R 3 ∇u c ∇wdx + λ c R 3 u c wdx -γ R 3 R 3 |u c (x)| 2 u c (y)w(y) |x -y| dxdy -a R 3 |u c | p-2 u c wdx = 0 (3.13)
due to the weak convergence in H 1 r (R 3 ) and λ n → λ c ∈ R. This implies that (u c , λ c ) satisfies

-∆u c + λ c u c -γ(|x| -1 * |u c | 2 )u c -a|u c | p-2 u c = 0 in H -1 (R 3 ).
By the assumption u c 0 and by Lemma 2.2, we obtain that Q(u c ) = 0 and λ c > 0.

Now choosing w = u n in (3.12) and choosing w = u c in (3.13), we obtain that

R 3 |∇u n | 2 dx + λ n R 3 |u n | 2 dx -γB(u n ) -aC(u n ) → R 3 |∇u c | 2 dx + λ c R 3 |u c | 2 dx -γB(u c ) -aC(u c ).
We can deduce from

B(u n ) → B(u c ), C(u n ) → C(u c ) and λ n → λ c that R 3 |∇u n | 2 dx + λ c R 3 |u n | 2 dx → R 3 |∇u c | 2 dx + λ c R 3 |u c | 2 dx.
Since λ c > 0, we conclude that u n → u c strongly in H 1 r (R 3 ). The lemma is proved.

Proof of Theorem 1.2 in the subcritical case p ∈ ( 10 3 , 6). We give the proof for γ + (c), the treatment for γ -(c) is identically. For any c ∈ (0, c 1 ), by Lemma 3.7, there exists a bounded Palais-Smale sequence (u + n ) ⊂ Λ + r (c) for F restricted to S(c) at level γ + (c). From Lemma 3.10 and Lemma 3.11, we deduce that u

+ n → u + c ∈ Λ r (c) strongly in H 1 r (R 3
) and that there exists Lemma 3.12. Let c ∈ (0, c 1 ) and

λ + c > 0 such that (u + c , λ + c ) is a solution to (1.2). Since Λ 0 (c) = ∅ (see Lemma 3.3), we conclude that u + c ∈ Λ + r (c
(u n ) ⊂ Λ + r (c) or (u n ) ⊂ Λ - r (c) be a Palais-Smale sequence for F restricted to S(c) at level m ∈ R which is weakly convergent, up to subsequence, to the function u c . If (u n ) ⊂ Λ + r (c) we assume that m 0 and if (u n ) ⊂ Λ - r (c) we assume that m < 1 3 √ aK GN . (3.14)
Then u c 0 and we have the following alternative:

(i) either

F(u c ) ≤ m - 1 3 √ aK GN , (3.15) (ii) or u n → u c strongly in H 1 r (R 3 ). (3.16)
Proof. Since u n ⇀ u c weakly in H 1 r (R 3 ), we have, up to subsequence, u n → u c strongly in L q (R 3 ) for q ∈ (2, 6) and a.e in R 3 .

Let us first show that u c 0. We argue by contradiction assuming that u c = 0, this means that (u n ) is vanishing. By [37, Lemma I.1], we have, for 2 < q < 6,

u n L q (R 3 ) → 0, as n → ∞. This implies from (2.2) that B(u n ) ≤ K 1 u n 4 L 12 5 (R 3 ) → 0. Since (u n ) ⊂ Λ(c), we have A(u n ) = aC(u n ) + o n (1).
Passing to the limit as n → ∞, up to subsequence we infer that

lim n→∞ A(u n ) = lim n→∞ aC(u n ) := ℓ ≥ 0.
Using Lemma 2.1(ii), we have

ℓ = lim n→∞ aC(u n ) ≤ lim n→∞ aK GN [A(u n )] 3 = aK GN ℓ 3 .
Therefore, either ℓ = 0 or ℓ ≥ (aK GN ) -1 2 . If (u n ) ⊂ Λ + (c), we have A(u n ) > 5aC(u n ), and then ℓ = 0. This implies that F(u n ) → 0 and this contradicts the assumption that m 0. Also, if (u n ) ⊂ Λ -(c), Lemma 3.5(ii) ensure that ℓ ≥ (aK GN ) -1 2 . Hence, we have

m + o n (1) = F(u n ) = σ -2 2σ A(u n ) - γ(σ -1) 4σ B(u n ) = 1 3 A(u n ) + o n (1) = 1 3 ℓ + o n (1) ≥ 1 3 √ aK GN + o n (1),
which contradicts our assumption (3.14). Thus, we have that u c 0. Now, since (u n ) ⊂ H 1 (R 3 ) is bounded, following [13, Lemma 3], we know that

F ′ |S(c) (u n ) → 0 in H -1 (R 3 ) ⇐⇒ F ′ (u n ) - 1 c F ′ (u n ), u n u n → 0 in H -1 (R 3 ).
Thus, for any w ∈ H 1 (R 3 ), we have

o n (1) = F ′ (u n ) - 1 c F ′ (u n ), u n u n , w = R 3 ∇u n ∇wdx + λ n R 3 u n wdx -γ R 3 R 3 |u n (x)| 2 u n (y)w(y) |x -y| dxdy -a R 3 |u n | p-2 u n wdx, (3.17) 
where o n (1) → 0 as n → ∞ and

λ n = -1 c [A(u n ) -γB(u n ) -aC(u n )] = 3γ 4c B(u n ), due to Q(u n ) = 0. By B(u n ) → B(u c ) (see Lemma 2.5), we obtain that λ n → λ c = 3γ 4c B(u c ). (3.18)
Now, using [54, Lemma 2.2], the equation (3.17) leads to

R 3 ∇u c ∇wdx + λ c R 3 u c wdx -γ R 3 R 3 |u c (x)| 2 u c (y)w(y) |x -y| dxdy -a R 3 |u c | p-2 u c wdx = 0 (3.19)
due to the weak convergence in H 1 r (R 3 ) and λ n → λ c ∈ R. This implies that (u c , λ c ) satisfies

-∆u c + λ c u c -γ(|x| -1 * |u c | 2 )u c -a|u c | p-2 u c = 0 in H -1 (R 3 ).
By Lemma 2.2, we obtain that Q(u c ) = 0 and λ c > 0.

Let v n := u n -u c ⇀ 0 in H 1 r (R 3 ). By Brezis-Lieb lemma (see [START_REF] Brézis | A relation between pointwise convergence of functions and convergence of functionals[END_REF]), we obtain that Lemma 2.5) and by Q(u n ) = 0, we have

A(u n ) = A(u c ) + A(v n ) + o n (1), C(u n ) = C(u c ) + C(v n ) + o n (1). (3.20) By B(u n ) → B(u c ) (see
A(u c ) + A(v n ) - γ 4 B(u c ) -a[C(u c ) -C(v n )] = o n (1).
Taking into account that Q(u c ) = 0, we get A(v n ) = aC(v n ) + o n (1). Passing to the limit as n → ∞, up to subsequence we infer that

lim n→∞ A(v n ) = lim n→∞ aC(v n ) := k ≥ 0.
Using Lemma 2.1(ii), we have 

k = lim n→∞ aC(v n ) ≤ lim n→∞ aK GN [A(v n )] 3 = aK GN k 3 . Therefore, either k = 0 or k ≥ (aK GN ) -1 2 . If k ≥ (aK GN ) -
m = lim n→∞ F(u n ) = lim n→∞ 1 2 A(u n ) - γ 4 B(u n ) - a 6 C(u n ) = lim n→∞ 1 2 A(u c ) + 1 2 A(v n ) - γ 4 B(u c ) - a 6 C(u c ) - a 6 C(v n ) = F(u c ) + 1 3 k ≥ F(u c ) + 1 3 (aK GN ) -1 2 .
This implies that alternative (i) holds.

If instead k = 0, then by (3.20), we have A(u n ) → A(u c ) and C(u n ) → C(u c ). Choosing w = u n in (3.17) and w = u c in (3.19), we obtain that

A(u n ) + λ n u n 2 L 2 (R 3 ) -γB(u n ) -aC(u n ) → A(u c ) + λ c u c 2 L 2 (R 3 ) -γB(u c ) -aC(u c ).
This implies that u n L 2 (R 3 ) → u c L 2 (R 3 ) . Thus, we conclude that u n → u c strongly in H 1 r (R 3 ).

Proof of Theorem 1.2 in the critical case p = 6 for γ + (c). Since γ + (c) < 0, the fact that it is reached is a direct consequence of Lemma 3.7, Lemma 3.12 and of the property, which is established in Lemma 3.21(iii) to come, that the map c → γ + (c) is non-increasing. The rest of the proof is identical to the one in the case p ∈ ( 10 3 , 6). In the rest of this subsection, we shall prove Theorem 1.2 in the critical case p = 6 for γ -(c). We deduce from Lemma 3.12 that u n → u c strongly in H 1 (R N ) and the conclusions follow.

Now we shall show that

Lemma 3.14. For any c ∈ (0, c 1 ), we have that

γ -(c) < γ + (c) + 1 3 √ aK GN .
As already indicated our proof is inspired by [START_REF] Wei | Normalized solutions for Schrödinger equations with critical sobolev exponent and mixed nonlinearities[END_REF]Lemma 3.1]. Let u ε be an extremal function for the Sobolev inequality in R 3 defined by 

u ε (x) := [N (N -2)ε 2 ] N -2 4 [ε 2 + |x| 2 ] N -2 2 , ε > 0, x ∈ R 3 . (3.22) Let ξ ∈ C ∞ 0 (R N ) be a radial non-increasing cut-off function with ξ ≡ 1 in B 1 , ξ ≡ 0 in R N \B 2 . Setting U ε (x) = ξ(x)u ε (x)
∇U ε 2 L 2 (R 3 ) = 1 K GN + O(ε) and U ε 2 * L 2 * (R 3 ) = 1 K GN + O(ε 3 ).
(ii) For some positive constant K > 0,

U ε q L q (R 3 ) =              Kε 3-q 2 + o(ε 3-q 2 ) if q ∈ (3, 6), ωε 3 2 | log ε| + O(ε 3 2 ) if q = 3, ω 2 0 ξ q (r) r q-2 dr ε q 2 + o(ε q 2 ) if q ∈ [1, 3).
In the rest of the subsection we assume that c ∈ (0, c 1 ) is arbitrary but fixed. Let u + c be as provided by Theorem 1.2. We recall that u + c ∈ Λ + (c) satisfies F(u + c ) = γ + (c) and is a bounded continuous positive Schwarz symmetric function. Lemma 3.16. For any 1 ≤ p, q < ∞, it holds that

R 3 |u + c (x)| p |U ε (x)| q dx ∼ R 3 |U ε (x)| q dx.
Proof. On one hand, since u + c is bounded, we have that

R 3 |u + c (x)| p |U ε (x)| q dx ≤ u + c p L ∞ (R 3 ) R 3 |U ε (x)| q dx.
On the other hand, since u + c > 0 on R 3 is continuous and the function U ε is compactly supported in B 2 , we have that

R 3 |u + c (x)| p |U ε (x)| q dx = B 2 |u + c (x)| p |U ε (x)| q dx ≥ min x∈B 2 |u + c (x)| p B 2 |U ε (x)| q dx = min x∈B 2 |u + c (x)| p R 3 |U ε (x)| q dx.
The lemma is proved.

For any ε > 0 and any t > 0, we have

A(u + c + tU ε ) = ∇(u + c + tU ε ) 2 L 2 (R 3 ) = A(u + c ) + 2 R 3 ∇u + c (x) • ∇(tU ε (x)) dx + A(tU ε ) (3.23) and (3.24) u + c + tU ε 2 L 2 (R 3 ) = c + 2 R 3 u + c (x)(tU ε (x))dx + tU ε 2 L 2 (R 3 ) .
Using that, for all a, b ≥ 0, (a + b) 6 ≥ a 6 + 6a 5 b + 6ab 5 + b 6 , and that both u + c ∈ H 1 (R N ) and U ε are non negative, we readily derive that

C(u + c + tU ε ) = u + c + tU ε 6 L 6 (R 3 ) ≥ C(u + c ) + C(tU ε ) + 6 R 3 (u + c (x)) 5 (tU ε (x))dx + 6 R 3 u + c (x)(tU ε (x)) 5 dx. (3.25)
Also, still using that u + c ∈ H 1 (R N ) and U ε are non negative, we get by direct calculations that

B(u + c + tU ε ) = R 3 R 3 |u + c (x) + tU ε (x)| 2 |u + c (y) + tU ε (y)| 2 |x -y| dxdy ≥ B(u + c ) + B(tU ε ) + 4 R 3 R 3 |u + c (x)| 2 u + c (y)(tU ε (y)) |x -y| dxdy.
(3.26)

Finally, since u + c is solution of the following equation

-∆u + λ + c u -γ(|x| -1 * |u| 2 )u -a|u| p-2 u = 0 in R 3 for a λ + c > 0, we have that -λ + c R 3 u + c (x)(tU ε )(x)dx = R 3 ∇u + c (x)∇(tU ε )(x)dx -γ R 3 R 3 |u + c (x)| 2 u + c (y)(tU ε (y)) |x -y| dxdy -a R 3 (u + c (x)) 5 (tU ε (x))dx. (3.27) Now, we define for t > 0, w ε,t = u + c + tU ε and w ε,t (x) = √ θw ε,t (θx) with θ 2 = 1 c w ε,t 2 L 2 (R 3 )
. The proof of Lemma 3.14 will follow directly from the three lemmas below. Lemma 3.17.

It holds that γ -(c) ≤ sup t≥0 F(w ε,t )
for ε > 0 sufficiently small. Lemma 3.18. There exist a ε 0 > 0 and 0 < t 0 < t 1 < ∞ such that 

F(w ε,t ) < γ + (c
F(w ε,t ) < γ + (c) + 1 3 √ aK GN ,
for any ε ∈ (0, ε 0 ] where ε 0 and t 0 , t 1 are provided by Lemma 3.18.

Proof of Lemma 3.17. By direct calculation we get

(3.28) A(w ε,t ) = A(w ε,t ), C(w ε,t ) = C(w ε,t ),
and

(3.29) w ε,t 2 L 2 (R 3 ) = θ -2 w ε,t 2 L 2 (R 3 ) , B(w ε,t ) = θ -3 B(w ε,t ). Since θ 2 = 1 c w ε,t 2 L 2 (R 3 )
, we have that w ε,t ∈ S(c). By Lemma 3.4 there exists s - ε,t > 0 such that (w ε,t ) s - ε,t ∈ Λ -(c). We claim that s - ε,t → 0 as t → +∞ uniformly for ε > 0 sufficiently small. Indeed, we have

A((w ε,t ) s - ε,t ) = γ 4 B((w ε,t ) s - ε,t ) + aC((w ε,t ) s - ε,t ) or equivalently (s - ε,t )A(w ε,t ) = γ 4 B(w ε,t ) + a(s - ε,t ) 5 C(w ε,t ). This implies that A(w ε,t ) ≥ a(s - ε,t ) 4 C(w ε,t ). (3.30)
In view of (3.23), (3.28), Lemma 3.15(i) and using Hölder's inequality, we have

A(w ε,t ) = A(w ε,t ) = A(u + c ) + 2 R 3 ∇u + c (x) • ∇(tU ε (x))dx + A(tU ε ) ≤ A(u + c ) + 2t ∇u + c L 2 (R 3 ) ∇U ε L 2 (R 3 ) + t 2 A(U ε ) → A(u + c ) + 2J A(u + c ) t + Jt 2 as ε → 0. (3.31)
In view of (3.25), (3.28) and Lemma 3.15(i), we also have

C(w ε,t ) = C(w ε,t ) ≥ C(tU ε ) = t 6 C(U ε ) → Lt 6 as ε → 0. (3.32)
Combining (3.30)-(3.32), we obtain that, for ε > 0 sufficiently small

A(u + c ) + J A(u + c ) t + Jt 2 ≥ a(s - ε,t ) 4 Lt 6 ,
which implies the claim. Since w ε,0 = w ε,0 = u + c and u + c ∈ Λ + (c) we obtain, see Lemma 3.4, that s - ε,0 > 1. Still by Lemma 3.4, the map t → s - ε,t is continuous which implies that there exists t ε > 0 such that s - ε,t ε = 1. It follows that w ε,t ε ∈ Λ -(c) and thus sup t≥0

F(w ε,t ) ≥ F(w ε,t ε ) ≥ γ -(c).
The lemma is proved.

Proof of Lemma 3.18. In view of (3.28) and (3.29), we have that

F(w ε,t ) = 1 2 A(w ε,t ) - γ 4 θ -3 B(w ε,t ) - a 6 C(w ε,t ).
Hence, by (3.23), (3.25) and (3.26), we get that

F(w ε,t ) ≤ 1 2 A(u + c ) + 2 R 3 ∇u + c (x) • ∇(tU ε (x)) dx + A(tU ε ) - γ 4 θ -3 B(u + c ) - a 6 C(u + c ) + C(tU ε ) = F(u + c ) + γ 4 (1 -θ -3 )B(u + c ) + R 3 ∇u + c (x) • ∇(tU ε (x)) dx + 1 2 A(tU ε ) - a 6 C(tU ε ) ≤ F(u + c ) + γ 4 (1 -θ -3 )B(u + c ) + t ∇u + c L 2 (R 3 ) ∇U ε L 2 (R 3 ) + 1 2 t 2 A(U ε ) - a 6 t 6 C(U ε ) := I(t).
By Lemma 3.15(i), we see that, uniformly for ε > 0 small, I(t) → -∞ as t → +∞ and I(t) → F(u + c ) as t → 0 due to θ → 1. Hence, there exists ε 0 > 0 and 0 < t 0 < t 1 < ∞ such that

F(w ε,t ) < γ + (c) + 1 6 √ aK GN
for t [t 0 , t 1 ] and ε ∈ (0, ε 0 ]. The lemma is proved.

Proof of Lemma 3.19. We assume throughout the proof that t ∈ [t 0 , t 1 ]. By using (3.26), we can write,

F(w ε,t ) = 1 2 A(w ε,t ) - γ 4 θ -3 B(w ε,t ) - a 6 C(w ε,t ) ≤ 1 2 A(w ε,t ) - γ 4 θ -3 B(u + c ) + B(tU ε ) + 4 R 3 R 3 |u + c (x)| 2 u + c (y)(tU ε (y)) |x -y| dxdy - a 6 C(w ε,t ) = I 1 + I 2 , (3.33)
where

I 1 := 1 2 A(w ε,t ) - γ 4 B(u + c ) + B(tU ε ) + 4 R 3 R 3 |u + c (x)| 2 u + c (y)(tU ε (y)) |x -y| dxdy - a 6 C(w ε,t ),
and

I 2 := γ 4 (1 -θ -3 ) B(u + c ) + B(tU ε ) + 4 R 3 R 3 |u + c (x)| 2 u + c (y)(tU ε (y)) |x -y| dxdy . (3.34)
In view of (3.23), (3.25) and using crucially (3.27), we have

I 1 ≤ 1 2 A(u + c ) + 2 R 3 ∇u + c (x) • ∇(tU ε (x)) dx + A(tU ε ) - γ 4 B(u + c ) + B(tU ε ) + 4 R 3 R 3 |u + c (x)| 2 u + c (y)(tU ε (y)) |x -y| dxdy - a 6 + c ) + C(tU ε ) + 6 R 3 (u + c (x)) 5 (tU ε (x))dx + 6 R 3 u + c (x)(tU ε (x)) 5 dx = F(u + c ) + F(tU ε ) -λ + c R 3 u + c (x)(tU ε (x))dx -a R 3 u + c (x)(tU ε (x)) 5 dx. (3.35)
Now, we shall evaluate I 2 . By (3.24) and Lemma 3.15(ii), we get that

θ 2 = w ε,t 2 L 2 (R 3 ) c = 1 + 2 c R 3 u + c (x)(tU ε (x))dx + t 2 c U ε 2 L 2 (R 3 ) = 1 + 2 c R 3 u + c (x)(tU ε (x))dx + t 2 c ω 2 0 ξ(r)dr ε + O(ε 2 ) = 1 + 2 c R 3 u + c (x)(tU ε (x))dx + O(ε). (3.36)
Note that, by Lemma 3.15(ii) and Lemma 3.16, (3.37)

R 3 u + c (x)(tU ε (x))dx ∼ ∇U ε L 1 (R 3 ) = O(ε 1 2 ).
Observing that the Taylor expansion of (1 + x) -3 2 around x = 0 is given by (1 + x) -3 2 = 1 -3 2 x + O(x 2 ), we get, in view of (3.36) and (3.37), that

1 -θ -3 = 1 -(θ 2 ) -3 2 = 1 -1 + 2 c R 3 u + c (x)(tU ε (x)) + O(ε) -3 2 = 1 -1 - 3 c R 3 u + c (x)(tU ε (x)) + O(ε) = 3 c R 3 u + c (x)(tU ε (x)) + O(ε). (3.38)
Concerning the term B(tU ε ), in view of (2.2) and Lemma 3.15(ii), we have

B(tU ε ) = t 4 B(U ε ) ≤ t 4 K 1 U ε 4 L 12 5 (R 3 ) = t 4 K 1 U ε 12 5 L 12 5 (R 3 ) 10 6 = t 4 K 1 K 2 ε 6 5 + o(ε 6 5 ) 10 6 
= O(ε 2 ). (3.39) Also, using the Hardy-Littlewood-Sobolev inequality (2.1), Lemma 3.16 and Lemma 3.15(ii) we have

R 3 R 3 |u + c (x)| 2 u + c (y)(tU ε (y)) |x -y| dxdy ≤ K 2 u + c 2 L 12 5 (R 3 ) u + c U ε L 6 5 (R 3 ) ≤ K 3 U ε L 6 5 (R 3 )
= O(ε 

B(u + c ) + B(tU ε ) + 4 R 3 R 3 |u + c (x)| 2 u + c (y)(tU ε (y)) |x -y| dxdy = B(u + c ) + O(ε 3 5 ).
Taking into account, see (3.18), that

cλ + c = 3γ 4 B(u + c )
we obtain, combining (3.34), (3.37), (3.38) and (3.41), the following evaluation of I 2

I 2 ≤ 3γ 4c B(u + c ) R 3 u + c (x)(tU ε (x))dx + O(ε) = λ + c R 3 u + c (x)(tU ε (x))dx + O(ε). (3.42)
At this point, in view of (3.33), (3.35) and (3.42) we deduce that

F(w ε,t ) ≤ F(u + c ) + F(tU ε ) -a R 3 u + c (x)(tU ε (x)) 5 dx + O(ε) ≤ F(u + c ) + F(tU ε ) -at 5 0 R 3 u + c (x)(U ε (x)) 5 dx + O(ε). (3.43)
In view of Lemma 3.15(i), a direct calculation shows that max

t∈[t 0 ,t 1 ] F(tU ε ) = max t∈[t 0 ,t 1 ] 1 2 A(tU ε ) - γ 4 B(tU ε ) - a 6 C(tU ε ) ≤ max t∈[t 0 ,t 1 ] 1 2 A(tU ε ) - a 6 C(tU ε ) ≤ max t>0 1 2 A(tU ε ) - a 6 ε ) = 1 3 √ aK GN + O(ε). (3.44) 
In view of (3.43) and (3.44), by Lemma 3.15(ii) and Lemma 3.16, we conclude by observing that

-at 5 0 R 3 u + c (x)(U ε (x)) 5 dx ∼ -U ε (x) 5 L 5 (R 3 ) = -Kε 1 2 + o(ε 1 2 ).
Proof of Theorem 1.2 in the critical case p = 6 for γ -(c). We conclude that γ -(c) is reached by combining Lemma 3.7, Lemma 3.13 and Lemma 3.14. The rest of the proof is identical to the one in the case p ∈ ( 10 3 , 6).

3.4. The compactness of any minimizing sequence associated to γ + (c) for p ∈ ( 10 3 , 6]. In this subsection we give the proof of Theorem 1.5. For short we introduce the following notations,

M := p aσ(σ -1)K GN , N := 4(σ -2) γ(σ -1)K H , k 0 := N -2 , and k 1 := k 0 c 3 1 . (3.45) Note that c 1 = N 3p-10 4(p-3) M 1 2(p-3) . Lemma 3.20. Let p ∈ ( 10 3 , 6] and c ∈ (0, c 1 ). (i) If u ∈ Λ + (c) then we have A(u) < k 0 c 3 . (3.46) (ii) Λ + (c) ⊂ V (c) and γ + (c) = inf u∈Λ + (c) F(u) = inf u∈V (c) F(u). (iii) If u c is a minimizer for the minimization problem inf u∈V (c) F(u) then u c ∈ V (c) and γ + (c) is reached.
This implies (3.48) and the point (ii) is proved.

iii) If we assume that u c ∈ ∂V (c), namely A(u c ) = k 1 and

F(u c ) = min{F(u)|u ∈ V (c)} = min{F(u t )|t ∈ R, A(u t ) ≤ k 1 },
and we have a contradiction with (3.50). Thus, we have u c ∈ V (c). Now, since the minimizer u c lies in the open (with respect to S(c)) set V (c), we deduce from Lemma 2.2 that u c ∈ Λ(c). By Λ -(c) ∩ V (c) = ∅ and Λ 0 (c) = ∅, we conclude that u c ∈ Λ + (c) and thus γ + (c) is reached.

Lemma 3.21. It holds that (i) γ + (c) < 0, ∀c ∈ (0, c 1 ). (ii) c ∈ (0, c 1 ) → γ + (c) is a continuous mapping. (iii) Let c ∈ (0, c 1 ), for all α ∈ (0, c), we have γ + (c) ≤ γ + (α) + γ + (c -α) and if γ + (α) or γ + (c -α) is reached then the inequality is strict.
Proof. Point (i) follows from Lemma 3.5. To prove (ii), let c ∈ (0, c 1 ) be arbitrary and (c n ) ⊂ (0, c 1 ) be such that c n → c. From the definition of γ + (c n ), for any ε > 0, there exists

u n ∈ Λ + (c n ) such that F(u n ) ≤ γ + (c n ) + ε. (3.51) By (3.46), we have A(u n ) < k 0 c 3 n . We set y n := c c n • u n .
Hence, we have y n ∈ S(c) and

A(y n ) = c c n A(u n ) < c c n k 0 c 3 n = k 0 c 2 n c < k 0 c 3 1 = k 1 .
This implies that y n ∈ V (c). Taking into account that c c n → 1, we have

γ + (c) ≤ F(y n ) = F(u n ) + o n ( 1). (3.52) 
Combining (3.51) and (3.52), we get [START_REF] Claudianor | Normalized solutions for a Schrödinger equation with critical growth in R N[END_REF].

γ + (c) ≤ γ + (c n ) + ε + o n
Reversing the argument we obtain similarly that

γ + (c n ) ≤ γ + (c) + ε + o n (1).
Therefore, since ε > 0 is arbitrary, we deduce that γ + (c n ) → γ + (c). The point (ii) follows.

iii) Note that, fixed α ∈ (0, c), it is sufficient to prove that the following holds

∀θ ∈ 1, c α : γ + (θα) ≤ θγ + (α) (3.53)
and that, if γ + (α) is reached, the inequality is strict. Indeed, if (3.53) holds then it follows directly that

γ + (c) = c -α c γ + (c) + α c γ + (c) = c -α c γ + c c -α (c -α) + α c γ + c α α ≤ γ + (c -α) + γ + (α)
with a strict inequality if γ + (α) is reached. To prove that (3.53) holds, note that for any ε > 0 sufficiently small, there exist u ∈ Λ + (α) such that

F(u) ≤ γ + (α) + ε. (3.54) By (3.46), we have A(u) < k 0 α 3 . Consider now v := √ θu, we have v L 2 (R 3 ) = θ u L 2 (R 3 ) , A(v) = θA(u), B(v) = θ 2 B(u), C(v) = θ 3 C(u).
Therefore, we obtain that v ∈ S(θα) and

A(v) = θA(u) < k 0 θα 3 < k 0 (θα) 3 ≤ k 0 c 3 < k 1 .
Hence, v ∈ V (θα) and we can write

γ + (θα) ≤ F(v) = 1 2 A(v) - γ 4 B(v) - a p C(v) = 1 2 θA(u) - γ 4 θ 2 B(u) - a p θ 3 C(u) < 1 2 θA(u) - γ 4 θB(u) - a p θC(u) = θF(u) ≤ θ(γ + (α) + ε).
Since ε > 0 is arbitrary, we have that γ + (θα) ≤ θγ + (α). If γ + (α) is reached then we can let ε = 0 in (3.54) and thus the strict inequality follows.

Lemma 3.22. Let (v n ) ⊂ H 1 (R 3 ) be such that B(v n ) → 0 and A(v n ) ≤ k 1 .
Then there exists a b > 0 such that

F(v n ) ≥ bA(v n ) + o n (1). (3.55)
Proof. Indeed, using B(v n ) → 0 and Lemma 2.1(ii), we have

F(v n ) = 1 2 A(v n ) - a p C(v n ) + o n (1) ≥ 1 2 A(v n ) - a p K GN c 6-p 4 [A(v n )] σ 2 + o n (1) = bA(v n ) + o n (1), where b := 1 2 -lim sup n→∞ a p K GN c 6-p 4 [A(v n )] σ 2 -1 ≥ 1 2 - a p K GN c 6-p 4 1 k σ 2 -1 1 = 1 2 - 1 σ(σ -1)
.

Hence, b > 0 due to σ > 2. The lemma is proved.

Lemma 3.23. For any c ∈ (0, c 1 ), any minimizing sequence (u n ) for F on V (c) is, up to translation, strongly convergent in H 1 (R 3 ). In addition all minimizers lies in V (c). In particular γ + (c) is reached.

Proof. Since (u n ) ⊂ V (c), it is bounded in H 1 (R 3 ). Also, from γ + (c) < 0 we deduce from Lemma 3.22 that there exists a β 0 > 0 and a sequence (y n ) ⊂ R 3 such that

B(y n ,R) |u n | 2 dx ≥ β 0 > 0, for some R > 0.
This implies that

u n (x -y n ) ⇀ u c 0 in H 1 (R 3 ), for some u c ∈ H 1 (R 3 ).
Our aim is to prove that w n (x [START_REF] Claudianor | Normalized solutions for a Schrödinger equation with critical growth in R N[END_REF]. Thus, we have [START_REF] Claudianor | Normalized solutions for a Schrödinger equation with critical growth in R N[END_REF]. (3.56) By the similar argument,

) := u n (x -y n ) -u c (x) → 0 in H 1 (R 3 ). Clearly u n 2 L 2 (R 3 ) = u n (x -y n ) 2 L 2 (R 3 ) = u n (x -y n ) -u c (x) 2 L 2 (R 3 ) + u c 2 L 2 (R 3 ) + o n (1) = w n 2 L 2 (R 3 ) + u c 2 L 2 (R 3 ) + o n
w n 2 L 2 (R 3 ) = u n 2 L 2 (R 3 ) -u c 2 L 2 (R 3 ) + o n (1) = c -u c 2 L 2 (R 3 ) + o n
A(w n ) = A(u n ) -A(u c ) + o n (1). (3.57)
More generally, taking into account that any term in F fulfills the splitting properties of Brezis-Lieb (see [START_REF] Brézis | A relation between pointwise convergence of functions and convergence of functionals[END_REF] for terms A and C; see [START_REF] Zhao | On the existence of solutions for the Schrödinger-Poisson equations[END_REF]Lemma 2.2] or [START_REF] Bellazzini | Stable standing waves for a class of nonlinear Schrödinger-Poisson equations[END_REF]Proposition 3.1] for term B), we have

F(u n -u c ) + F(u c ) = F(u n ) + o n (1),
and by the translational invariance, we obtain

F(u n ) = F(u n (x -y n )) = F(u n (x -y n ) -u c (x)) + F(u c ) + o n (1) = F(w n ) + F(u c ) + o n (1). (3.58) Now, we claim that w n 2 L 2 (R 3 ) → 0 as n → ∞. (3.59)
In order to prove this, let us denote c := u c 2 L 2 (R 3 ) > 0. By (3.56), if we show that c = c then the claim follows. We assume by contradiction that c < c. In view of (3.56) and (3.57), for n large enough, we have w n

2 L 2 (R 3 ) ≤ c and A(w n ) ≤ A(u n ) ≤ k 1 . Hence, we obtain that w n ∈ V ( w n 2 L 2 (R 3 ) ) and F(w n ) ≥ γ + w n 2 L 2 (R 3 ) . Recording that F(u n ) → γ + (c), in view of (3.58), we have γ + (c) = F(w n ) + F(u c ) ≥ γ + w n 2 L 2 (R 3 ) + F(u c ).
Since the map c → γ + (c) is continuous (see Lemma 3.21(ii)) and in view of (3.56), we deduce that γ + (c) ≥ γ + (cc) + F(u c ). (3.60) We also have that u c ∈ V ( c) by the weak limit. This implies that F(u c ) ≥ γ + ( c). If F(u c ) > γ + ( c), then it follows from (3.60) and Lemma 3.21(iii) that

γ + (c) > γ + (c -c) + γ + ( c) ≥ γ + (c -c + c) = γ + (c),
which is impossible. Hence, we have F(u c ) = γ + ( c), namely u c is local minimizer on V ( c). So, we can using Lemma 3.21(iii) with the strict inequality and we deduce from (3.60) that

γ + (c) ≥ γ + (c -c) + F(u c ) = γ + (c -c) + γ + ( c) > γ + (c -c + c) = γ + (c),
which is impossible. Thus, the claim follows and u c 2 L 2 (R 3 ) = c. Let us now show that A(w n ) → 0. This will complete the proof of the lemma. In this aim first observe that since (w n ) is a bounded sequence in H 1 (R N ) we have, using Lemma 2.1(i), not only that w n 2 L 2 (R 3 ) → 0 but also that B(w n ) → 0. Now we remember that 

(3.61) F(u n ) = F(u c ) + F(w n ) + o n (1) → γ + (c). Since u c ∈ V (c)
+ (c)| ≤ K 1 c 3 and λ + c ≤ K 2 c 2 .
Proof. By Lemma 3.20(i), we have

A(u + c ) < N -2 c 3 = γ(σ -1)K H 4(σ -2) 2 c 3 .
Hence, we can deduce from Lemma 2.1(i) that

B(u + c ) ≤ K H A(u + c )c 3 2 < γ(σ -1)K 2 H 4(σ -2) c 3 .
Therefore, we have

|γ + (c)| = |F(u + c )| = σ -2 2σ A(u + c ) - γ(σ -1) 4σ B(u + c ) ≤ σ -2 2σ A(u + c ) + γ(σ -1) 4σ B(u + c ) < σ -2 2σ γ(σ -1)K H 4(σ -2) 2 c 3 + γ(σ -1) 4σ γ(σ -1)K 2 H 4(σ -2) c 3 = 3γ 2 (σ -1) 2 K 2 H 32σ(σ -2) c 3 := K 1 c 3 .
We deduce from (2.6) that

2(3p -6)cλ + c = 2(6 -p)A(u + c ) + (5p -12)γB(u + c ) < 2(6 -p) γ(σ -1)K H 4(σ -2) 2 c 3 + (5p -12)γ γ(σ -1)K 2 H 4(σ -2) c 3 .
This implies that there exists a constant K 2 > 0 such that λ + c ≤ K 2 c 2 . The lemma is proved. Proof. By u - c ∈ Λ -(c), we have

A(u - c ) < aσ(σ -1) p C(u - c ).
Using Lemma 2.1(ii), we obtain that

A(u - c ) < aσ(σ -1) p K GN c 6-p 4 [A(u - c )] σ 2 ,
which implies that

A(u - c ) > p aσ(σ -1)K GN 2 σ-2 c - 6-p 3p-10 .
We have that

|γ -(c)| = |F(u - c )| = - 1 2 A(u - c ) + a(σ -1) p C(u - c ) > σ -2 2σ A(u - c ) > σ -2 2σ p aσ(σ -1)K GN σ-2 2 c - 6-p 3p-10 := K 1 c - 6-p 3p-10 .
We deduce from (2.6) that

λ - c = 1 c 1 2(3p -6) [2(6 -p)A(u - c ) + (5p -12)γB(u - c )] > 1 c 6 -p 3p -6 A(u - c ) > 1 c 6 -p 3p -6 p aσ(σ -1)K GN σ-2 2 c - 6-p 3p-10 := K 2 c - 2p-4 3p-10 .
The lemma is proved.

Lemma 3.26. Let p = 6. There exists a constant K 1 > 0 such that if λ - c denote the Lagrange parameter associated to a solution u - c lying at the level γ -(c) then we have

γ -(c) → 1 3 √ aK GN as c → 0 and λ - c ≤ K 1 c 1 2 .
Proof. Since F(u) restricted to Λ(c) is coercive on H 1 (R 3 ) (see Lemma 3.1) we have that A(u - c ) remain bounded. We deduce from (2.6) and Lemma 2.1(i) that

λ - c = 1 c 3γ 4 B(u - c ) ≤ 1 c 3γ 4 K H A(u - c )c 3 2 := K 1 c 1 2 . We have that B(u - c ) → 0 as c → 0 due to B(u - c ) ≤ K H A(u - c )c 3 2 . Since Q(u - c ) = 0, we have A(u - c ) = aC(u - c ) + o c (1)
, where o c (1) → 0 as c → 0. Passing to the limit as c → 0, up to subsequence we infer that

lim c→0 A(u - c ) = lim c→0 aC(u - c ) := ℓ ≥ 0.
Using Lemma 2.1(ii), we have

ℓ = lim c→0 aC(u - c ) ≤ lim c→0 aK GN [A(u - c )] 3 = aK GN ℓ 3 .
Therefore, either ℓ = 0 or ℓ ≥ (aK GN ) -1 2 . Using Lemma 3.5(ii), we ensure that ℓ ≥ (aK GN ) -1 2 . Hence, we have

γ -(c) + o c (1) = F(u - c ) = σ -2 2σ A(u - c ) - γ(σ -1) 4σ B(u - c ) = 1 3 A(u - c ) + o c (1) = 1 3 ℓ + o c (1) ≥ 1 3 √ aK GN + o c (1), which implies that γ -(c) ≥ 1 3 √ aK GN as c → 0.
Recording Lemma 3.14, the lemma is proved. 

Proof. Let 0 < c 2 < c 3 < c 1 , Since γ -(c 2 ) is reached, there exists u ∈ S(c 2 ) such that F(u) = γ -(c 2 ). We define v ∈ S(c 3 ) by v(x) = √ θu(θx) where θ = c 2 c 3 < 1. By direct calculations we have (3.62) A(v) = A(u), B(v) = θ -3 B(u) and C(v) = θ p 2 -3 C(u). Now observe that, since θ < 1, for all t > 0, F(v t ) = 1 2 t 2 A(v) - γ 4 tB(v) - a p t σ C(v) = 1 2 t 2 A(u) - γ 4 tθ -3 B(u) - a p t σ θ p 2 -3 C(u) < F(u t ). ( 3 
A(u s + u ) < k 1 < A(v s - v ),
and thus s + u < s - v due to A(v) = A(u). Hence, we can deduce from (3.63) that

F(v s - v ) < max s + u <t F(u t ) = F(u) = γ -(c 2 ).
This implies that γ -(c 3 ) < γ -(c 2 ) and hence, the lemma is proved.

4. The case γ > 0, a < 0 and p ∈ ( 10 3 , 6]. Throughout this section, we assume that γ > 0, a < 0 and p ∈ ( 10 3 , 6]. Lemma 4.1. F restricted to S(c) is coercive on H 1 (R 3 ) and bounded from below.

Proof. Let u ∈ S(c). Using Lemma 2.1(i), we obtain

F(u) = 1 2 A(u) - γ 4 B(u) - a p C(u) ≥ 1 2 A(u) - γ 4 K H A(u)c 3 2 - a p C(u).
Since γ > 0, a < 0, this concludes the proof.

In what follows, we collect some basic properties of m(c) defined in (1.3). Proof. i) For any u ∈ S(c), we recall that u t ∈ S(c) and

g u (t) = F(u t ) = 1 2 t 2 A(u) - γ 4 tB(u) - a p t σ C(u) and also g ′ u (t) = tA(u) - γ 4 B(u) - aσ p t σ-1 C(u).
We observe that g u (t) → 0 and g ′ u (t) → -γ 4 B(u) < 0 as t → 0. Therefore, there exists t 0 > 0 such that F(u t 0 ) = g u (t 0 ) < 0. Thus, we have m(c) < 0.

ii) We assume that c n → c. From the definition of m(c n ), for any ε > 0, there exists u n ∈ S(c n ) such that Reversing the argument we obtain similarly that

F(u n ) ≤ m(c n ) + ε. ( 4 
m(c n ) ≤ m(c) + ε + o n (1).
Therefore, since ε > 0 is arbitrary, we deduce that m(c n ) → m(c). The point (ii) follows.

iii) Let t := c 2 c 1 > 1. For any ε > 0, there exist u ∈ S(c 1 ) such that

F(u) ≤ m(c 1 ) + ε. (4.3) Let v := u(t -1 3 x). Then we have v 2 L 2 (R 3 ) = t u 2 L 2 (R 3 ) = c 2 , hence v ∈ S(c 2 )
. Moreover, we have

A(v) = t 1 3 A(u), B(v) = t 5 3 B(u), C(v) = tC(u).
Therefore, we have

m(c 2 ) ≤ F(v) = 1 2 A(v) - γ 4 B(v) - a p C(v) = 1 2 t 1 3 A(u) - γ 4 t 5 3 B(u) - a p tC(u) < 1 2 tA(u) - γ 4 tB(u) - a p tC(u) = t 1 2 A(u) - γ 4 B(u) - a p C(u) = tF(u) ≤ t(m(c 1 ) + ε) = c 2 c 1 m(c 1 ) + c 2 c 1 ε. Since ε > 0 is arbitrary, we have c 1 m(c 2 ) ≤ c 2 m(c 1 ). If m(c 1
) is reached then we can let ε = 0 in (4.3) and thus the inequality follows. iv) Assume first that 0 < c 1 ≤ c 2 . Then, by (iii), we have that

m(c 1 + c 2 ) ≤ c 1 + c 2 c 2 m(c 2 ) = m(c 2 ) + c 1 c 2 m(c 2 ) ≤ m(c 2 ) + c 1 c 2 c 2 c 1 m(c 1 ) = m(c 1 ) + m(c 2 ).
If m(c 1 ) or m(c 2 ) is reached, then we can use the strict inequality in (iii) and thus the strict inequality follows. The case 0 < c 2 < c 1 can be treated reversing the role of c 1 and c 2 .

Lemma 4.3. Let (u n ) ⊂ S(c) be any minimizing sequence for m(c). Then, there exist a β 0 > 0 and a sequence (y n ) ∈ R 3 such that

B(y n ,R) |u n | 2 dx ≥ β 0 > 0, for some R > 0. (4.4)
Proof. Since F restricted to S(c) is coercive on H 1 (R 3 ) (see Lemma 4.1), the sequence (u n ) is bounded. Now, we assume that (4.4) does not hold. By [37, Lemma I.1], we have, for q ∈ (2, 6), u n L q (R 3 ) → 0, as n → ∞. This implies that

B(u n ) ≤ K 1 u 4 L 12 5 (R 3 )
→ 0, due to (2.2). Hence, we obtain

F(u n ) = 1 2 A(u n ) - γ 4 B(u n ) - a p C(u n ) → 1 2 A(u n ) - a p C(u n ) ≥ 0,
due to a < 0. This contradicts F(u n ) → m(c) < 0, see Lemma 4.2(i). Proof. Since F restricted to S(c) is coercive on H 1 (R 3 ) (see Lemma 4.1), the sequence (u n ) is bounded in H 1 (R 3 ). We deduce from the weak convergence in H 1 (R 3 ), the local compactness in L 2 (R 3 ) and Lemma 4.3 that u n (x -y n ) ⇀ u c 0 in H 1 (R 3 ).

Our aim is to prove that w n (x) := u n (x -y n ) -u c (x) → 0 in H 1 (R 3 ). Now, taking into account that F fulfills the following splitting properties of Brezis-Lieb type (see [START_REF] Brézis | A relation between pointwise convergence of functions and convergence of functionals[END_REF] for terms A and C; see Combining (4.9) and (4.10), we obtain that F(w n ) → 0. Hence, by (4.9) and by a < 0, we have A(w n ) → 0 and C(w n ) → 0. Thus, we get w n → 0 in H 1 (R 3 ). The lemma is completed.

Proof of Theorem 1.8. The proof follows directly from Lemma 4.4 for the convergence of the minimizing sequence and from Lemma 2.2 for the sign of the Lagrange parameter. Thus, the lemma is proved.

5. The case γ < 0, a > 0 and p = 6.

Throughout this section, we assume that γ < 0, a > 0 and p = 6. To prove the non-existence of the positive solution to (1.2), we first recall a Liouville-type result, see [2, Theorem 2.1], Proposition 5.1. Assume that N ≥ 3 and the nonlinearity f : (0, ∞) → (0, ∞) is continuous and satisfies lim inf 

This implies that

A(u) > 1 aK GN .

Using again Q(u) = 0 we have that

F(u) = 1 2 A(u) - γ 4 B(u) - a 6 C(u) = 5a 6 C(u) - 1 2 A(u) > 1 3 A(u) > 1 3 √ aK GN ,
proving point (i). To prove point (ii), we assume by contradiction that there exists a positive solution u ∈ H 1 (R 3 ) to (1.2). Then, by point (i), the associated Lagrange multiplier λ is strictly negative. In view of (2.8), there exists R 0 > 0 large enough such that 

  Λ(c) into the disjoint union Λ(c) = Λ + (c) ∪ Λ 0 (c) ∪ Λ -(c), where Λ + (c) := {u ∈ Λ(c) : g ′′ u (1) > 0} = {u ∈ S(c) : g ′ u (1) = 0, g ′′ u (1) > 0}, Λ 0 (c) := {u ∈ Λ(c) : g ′′ u (1) = 0} = {u ∈ S(c) : g ′ u (1) = 0, g ′′ u (1) = 0}, (u) = 0 .

  Palais-Smale sequences in the Sobolev subcritical case p ∈ ( 10 3 , 6). Lemma 3.10. Let p ∈ ( 10 3 , 6). For any c ∈ (0, c 1 ), if either(u n ) ⊂ Λ + (c) is a minimizing sequence for γ + (c) or (u n ) ⊂ Λ -(c) is a minimizing sequence for γ -(c), it weakly converges, up to translation, to a non-trivial limit.

Lemma 3 . 11 .

 311 Let p ∈ (10 3 , 6). Assume that a bounded Palais-Smale sequence (u n ) ⊂ Λ r (c) for F restricted to S(c) is weakly convergent, up to translation, to the nonzero function u c . Then, up to translation,

3. 3 .

 3 The compactness of our Palais-Smale sequences in the Sobolev critical case p = 6. Our next lemma is directly inspired from[START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF] Proposition 3.1].

1 2 ,

 2 then by(3.20) and by B(u n ) → B(u c ), we have

Lemma 3 . 13 . 2 L 2 (

 31322 Let c ∈ (0, c 1 ). If γ -(c) < γ + (cthen there exists a u c ∈ Λ - r (c) with F(u c ) = γ -(c) which is a radial solution to (1.2) for some λ c > 0 with u c R 3 ) = c. Proof. By Lemma 3.7 there exists a Palais-Smale sequence (u n ) ⊂ Λ -(c) for F restricted to S(c) at the level γ -(c). If (3.21) holds then necessarily (3.14), with m = γ -(c) holds, and (3.15) cannot holds.

  we recall the following result, see [29, Lemma 7.1]. Lemma 3.15. Denoting ω the area of the unit sphere in R 3 , we have (i)

Lemma 3 . 25 .

 325 Let p ∈ ( 10 3 , 6). There exist two constants K 1 > 0 and K 2 > 0 such that is λ - c denotes the Lagrange parameter associated to a solution u - c lying at the level γ -(c), |γ -(c)| > K 1 c -

3. 6 .Lemma 3 . 27 .

 6327 The monotonicity of the map c → γ -(c). When p ∈ ( 10 3 , 6], the function c → γ -(c) is strictly decreasing on (0, c 1 ).

  .63) By (3.46) and (3.49), we have that

Lemma 4 . 2 .

 42 It holds that(i) m(c) < 0, ∀c > 0. (ii) c → m(c) is a continuous mapping. (iii) For any c 2 > c 1 > 0, we have c 1 m(c 2 ) ≤ c 2 m(c 1 ). If m(c 1 ) is reached then the inequality is strict. (iv) For any c 2 , c 1 > 0, we have m(c 1 + c 2 ) ≤ m(c 1 ) + m(c 2 ). If m(c 1 )or m(c 2 ) is reached then the inequality is strict.

. 1 )

 1 We set y n := c c n • u n . Taking into account that y n ∈ S(c) and c c n → 1, we have m(c) ≤ F(y n ) = F(u n ) + o n (1). (4.2) Combining (4.1) and (4.2), we get m(c) ≤ m(c n ) + ε + o n (1).

Lemma 4 . 4 .

 44 Any minimizing sequence (u n ) ⊂ S(c) for m(c) is, up to translation, strongly convergent in H 1 (R 3 ).

[ 54 ,n 2 L 2 ( 2 L 2 (R 3 ) + u c 2 L 2 (R 3 ) + o n ( 1 ) = w n 2 L 2 (R 3 ) + u c 2 L 2 ( 2 L 2 (R 3 ) = u n 2 L 2 (R 3 ) -u c 2 L 2 ( 2 L 2 2 L 2 (R 3 ) 2 L 2 (R 3 ) 2 L 2 ( 2 L 2 ( 3 L 2 (R 3 ) 9 ) 2 L 2 (

 542222322312232222322322222232232222323922 Lemma 2.2] or[START_REF] Bellazzini | Stable standing waves for a class of nonlinear Schrödinger-Poisson equations[END_REF] Proposition 3.1] for term B),F(u n -u c ) + F(u c ) = F(u n ) + o n[START_REF] Claudianor | Normalized solutions for a Schrödinger equation with critical growth in R N[END_REF], and by the translational invariance, we obtainF(u n ) = F(u n (x -y n )) = F(u n (x -y n ) -u c (x)) + F(u c ) + o n (1) = F(w n ) + F(u c ) + o n (1), (4.5) and u R 3 ) = u n (x -y n ) 2 L 2 (R 3 ) = u n (x -y n ) -u c (x) R 3 ) + o n[START_REF] Claudianor | Normalized solutions for a Schrödinger equation with critical growth in R N[END_REF]. Thus, we havew n R 3 ) + o n (1) = cu c → 0 as n → ∞. (4.7)In order to prove this, let us denote c 1 := u c > 0. By (4.6), if we show that c 1 = c then the claim follows. We assume by contradiction that c 1 < c. Recording that F(u n ) → m(c), in view of (4.5), we havem(c) = F(w n ) + F(u c ) ≥ m w n R 3 ) + F(u c ).Since the map c → m(c) is continuous (see Lemma 4.2(ii)) and (4.6), we deduce thatm(c) ≥ m(cc 1 ) + F(u c ). (4.8) If F(u c ) > m(c 1 ), then it follows from Lemma 4.2(iv) that m(c) > m(cc 1 ) + m(c 1 ) ≥ m(cc 1 + c 1 ) = m(c),which is impossible. Hence, we have F(u c ) = m(c 1 ), namely u c is global minimizer with respect to c 1 . So, we can using Lemma 4.2(iv) with the strict inequality and we deduce from (4.8) thatm(c) ≥ m(cc 1 ) + F(u c ) = m(cc 1 ) + m(c 1 ) > m(cc 1 + c 1 ) = m(c),which is impossible. Thus, the claim follows and u c R 3 ) = c.At this point, since w n is a bounded sequence in H 1 (R 3 ) and by Lemma 2.1(i), we haveB(w n ) ≤ K H A(w n ) w nOn the other hand, since u c R 3 ) = c, we deduce from (4.5) that F(u n ) = F(w n ) + F(u c ) + o n (1) ≥ F(w n ) + m(c) + o n (1), and by F(u n ) → m(c), we have that lim sup n→∞ F(w n ) ≤ 0. (4.10)

Lemma 4 . 5 . 2 ,2 c 3 2 .K 1 c 3 + K 2 c 2p- 3 .

 452233 There exist three constants K 1 , K 2 , K 3 > 0 such that if λ c denote the Lagrange parameter associated to a solution u c lying at the level m(c) then we have|m(c)| ≤ K 1 c 3 + K 2 c 2p-3 and λ c ≤ K 3 c 2 .Proof. By the fact that m(c) < 0 and by using Lemma 2.1(i), we get that 0 > m(c) = F(u c ) due to our assumption γ > 0 and a < 0. This implies thatA(u c ) < γK HTherefore, using again Lemma 2.1, we obtain that|m(c)| = |F(u c )K 3 c 2 .

s→0 s -N N - 2 f

 2 (s) > 0.Then the differential inequality -∆u ≥ f (u) has no positive solution in any exterior domain of R N .Proof of Theorem 1.9. Let u ∈ H 1 (R 3 ) be a non-trivial solution to (1.2). By Lemma 2.2, we have λ < 0 and Q(u) = 0. Hence,aC(u) = A(u) -γ 4 B(u) > A(u)and using Lemma 2.1(ii), we obtain that A(u) < aC(u) ≤ aK GN [A(u)] 3 .

(|x| - 1 *

 1 |u| 2 )(x) ≤ -λ 2γ for |x| > R 0 .Therefore, we get that-∆u(x) = -λ + γ(|x| -1 * |u| 2 )(x) + a|u(x)| 4 u(x) ≥ -λ + γ(|x| -1 * |u| 2 )(x) u(x) ≥ -λ 2 u(x) for |x| > R 0 .By applying Proposition 5.1 with f (s) = -λ 2 s, we obtain a contradiction, and thus point (ii) holds.

  Assume that γ ∈ R and a ∈ R. If u ∈ H 1 (R 3 ) is a weak solution to

	Lemma 2.3. Let p ∈ ( 10 3 , 6].		
	(2.6)	2(6 -p)A(u) + (5p -12)γB(u) = 2(3p -6)λD(u).
	3 , 6], we have If γ > 0 and p ∈ ( 10 2(6 -p) ≥ 0, Hence, λ > 0. If γ < 0 and p = 6, we have	(5p -12)γ > 0,	2(3p -6) > 0.
	This implies that λ < 0.	2(6 -p) = 0,	(5p -12)γ = 18γ < 0,	2(3p -6) = 24 > 0.

  ), we obtain that K 1 * |u| 2 and K 2 * |u| 2 are continuous. Also

	lim |x|→∞	(K 1 * |u| 2 )(x) = 0 and lim |x|→∞	(K 2 * |u| 2 )(x) = 0.
	Hence, we get that K * |u| 2 is continuous and	
	(2.8)	lim |x|→∞	(K * |u| 2 )(x) = 0.
	Therefore, K * |u| 2 is bounded. At this point, we deduce from [48, Proposition B.1

  ). From Lemma 3.6 we can thus assume that u + c is a Schwarz symmetric function. Hence, u + c is non-negative. At this point, we can deduce from Lemma 2.3 that u + c is a bounded continuous positive function.

  by weak convergence property, we have, byLemma 3.20(ii), that F(u c ) ≥ γ + (c). Thus from (3.61) we deduce, on one hand, that necessarily F(w n ) ≤ o[START_REF] Claudianor | Normalized solutions for a Schrödinger equation with critical growth in R N[END_REF]. On the other hand, sinceA(w n ) ≤ A(u n ) ≤ k 1 , Lemma 3.22 implies that F(w n ) ≥ bA(w n ) + o n[START_REF] Claudianor | Normalized solutions for a Schrödinger equation with critical growth in R N[END_REF] for some b > 0. Hence, we conclude A(w n ) → 0 and thus that u n → u c ∈ V (c) strongly in H 1 (R 3 ). Finally, by Lemma 3.20(iii), we have u c ∈ V (c) and γ + (c) is reached. The lemma is proved. 3.5. Asymptotic behavior of the Lagrange multipliers. Lemma 3.24. Let p ∈ ( 10 3 , 6]. There exist two constants K 1 > 0 and K 2 > 0 such that for any c ∈ (0, c 1 ), if λ + c is the Lagrange parameter associated to a solution u + c lying at the level γ + (c) then we have |γ

Acknowledgments: The authors thank S. Cingolani for providing to us the statement and proof of Lemma 3.2 and Colette De Coster for pointing to us [51, Theorem 3.27].

Thus, we obtain that if 0 < c < c 1 then g ′ u (t ⋆ u ) > 0. Lemma 3.3. For any c ∈ (0, c 1 ), it holds that Λ 0 (c) = ∅.

Proof. We assume that there exists u ∈ Λ 0 (c). Since g ′′ u (1) = 0 and t ⋆ u is the unique solution of equation g ′′ u (t) = 0, we have t ⋆ u = 1. So, we have g ′ u (t ⋆ u ) = g ′ u (1) = 0. This contradicts with g ′ u (t ⋆ u ) > 0 in Lemma 3.2. Thus, we obtain Λ 0 (c) = ∅. Lemma 3.4. For any c ∈ (0, c 1 ) and any u ∈ S(c), there exists 

which implies that

Hence, the point (i) holds.

ii) By (3.47), we obtain that Λ + (c) ⊂ V (c) and hence

F(u).

To prove the point (ii), it is sufficient to show that inf

and using Lemma 2.1(ii), we obtain that

This implies that

By direct computations, we can check that

which implies that for all 0 < c < c 1 ,

Therefore, the claim holds. Next, let u ∈ S(c). Since the mapping t → A(u t ) is continuous increasing, there exists a unique t 1 u > 0 such that A(u t 1 u ) = k 1 . By Lemma 3.4 and (3.47), (3.49), we have

Since s + u is the unique local minimum point for g u on (0, s - u ), we have that F(u s + u ) ≤ F(u t ) for all t ∈ (0, t 1 u ]. Therefore, we obtain that

In particular, if u ∈ V (c) we have

Remark 5.2. In [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Theorem 1.2], the author considers the equation

) is a non-trivial solution to (5.1) then by [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Theorem 1.2], the associated Lagrange multiplier λ is positive and following the arguments in [48, Proof of Theorem 1.2], one obtains that

with R 1 > 0 large enough. Hence, by applying Proposition 5.1, we see that (5.1) has no positive solution u ∈ H 1 (R N ) for all N ≥ 3, improving slightly the conclusions of [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Theorem 1.2]. Actually, borrowing an observation from [START_REF] Berestycki | Nonlinear scalar field equations. I. Existence of a ground state[END_REF], the non-existence results of [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Theorem 1.2] can be further extended by showing that (5.1) has no non-trivial radial solutions in H 1 (R N ) when N ≥ 3 and

Then (5.2) has no solution in view of Kato's result [32, page 404], also see [START_REF] Simon | Tosio Kato's work on non-relativistic quantum mechanics, Part 2[END_REF] which states that Schrödinger operator H = -∆ + p(x) has no positive eigenvalue with an L 2 -eigenfunction if p(x) = o(|x| -1 ).

Remark 5.3. One may wonder if a non-existence result for radial solutions also holds for (1.2) under the assumptions of Theorem 1.9. The difficulty one faces is that, for any u ∈ H 1 (R N ), (|x| -1 * |u| 2 )(x) ≥ C|x| -1 for |x| > R for some C, R > 0 (see [START_REF] Bellazzini | Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations[END_REF] or [START_REF] Moroz | A guide to the Choquard equation[END_REF]Appendix A.4]). Thus, the result of Kato used in Remark 5.2 cannot be directly applied and the non-existence of radial solutions to (1.2) when γ < 0, a > 0 and p = 6 is an open problem.