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Some non-homogeneous Gagliardo-Nirenberg inequalities and
application to a biharmonic non-linear Schrodinger equation

Antonio J. FERNANDEZ, Louis JEANJEAN,
Rainer MANDEL and Mihai MARIS

Abstract

We develop a new method, based on the Tomas-Stein inequality, to prove some non-
homogeneous Gagliardo-Nirenberg-type inequalities in R™. Then we use these inequalities
to study standing waves minimizing the energy when the L?—norm (the mass) is kept fixed
for a fourth-order Schrédinger equation with mixed dispersion. We prove optimal results
on the existence of minimizers in the mass-subcritical and mass-critical cases. In the
mass-supercritical case global minimizers do not exist. However, if the Laplacian and the
bi-Laplacian in the equation have the same sign, we are able to show the existence of local
minimizers. The existence of those local minimizers is significantly more difficult than the
study of global minimizers in the mass-subcritical and mass-critical cases. They are global in
time solutions with small H2—norm that do not scatter. Such special solutions do not exist
if the Laplacian and the bi-Laplacian have opposite sign. If the mass does not exceed some
threshold g € (0, 400), our results on ”"best” local minimizers are also optimal.

Keywords: biharmonic NLS with mixed dispersion, standing waves, Gagliardo-Nirenberg
inequalities, global and local minimization.
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1 Introduction
We consider the biharmonic non-linear Schrédinger equation with mixed dispersion
(BNLS) 100 + aA%) + LAY 4 [1h[*7p = 0 in R x RV,

where a,0 > 0 and 5,7 € R, v # 0. This equation has been introduced by Karpman and
Shagalov in [I2] and [I3] to take into account the role of small fourth-order dispersion terms
in the propagation of intense laser beams in a bulk medium with Kerr non-linearity; see also
[10]. Tt has also been used to describe the motion of a vortex filament in an incompressible
fluid ([I1]). The equation received considerable attention since then.

By simple scaling it is possible to get rid of the parameters a, 3,v. Indeed, if 3 # 0, taking
Y(t,z) = ap (L, %) where a = a‘ﬁ|ﬂ/2|5|ﬂy|_2~%, b=az|3/2]"2, and ¢ = 4a|8| 2, we sece
that ¢ solves the above equation if and only if ¥ solves (after dropping ” ~7)

(1.1) iy + A%+ 2eAY +I9[*7p = 0 in R x RY,

where € = sgn(f) € {—1,0,1} and ¥ = sgn(y) € {—1,1}. By analogy to the usual non-linear
Schrodinger equation, the case v > 0 (or ¢ = 1) is called defocusing, and the case v < 0 (or
¥ = —1) is called focusing.

Equations (BNLS) and (LJ]) are Hamiltonian. Two important quantities are conserved by
the flow associated to (II)): the "mass” [[1(¢,-)||7., and the "energy”

9
E(‘/’) :/ |A1/1|2 dx—?e/ |V1/;|2 de + —— |1/)|20'+2 de.
RN RN oc+1 RN
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The natural ”energy space” associated to (L)) is H?(RY). Equation (ILT)) is mass-critical for

o= %, and energy-critical when N > 5 and 0 = ﬁ (this corresponds to 2042 = 2**, where
2% = 28 is the Sobolev exponent satisfying [ul| g2+ < C||Aul|p2 for any u € H*(RY)).

The Cauchy problem for (II]) has been considered in several articles; see [22] and references
therein. In the energy-subcritical case (that is, N < 4 and ¢ € (0,00), or N > 5 and
0<o< ﬁ), B. Pausader proved local existence in H2(R") as well as the conservation of
mass and energy in all cases (see Proposition 4.1 p. 204 in [22]).

In the defocusing case (¥ = 1) B. Pausader also proved global existence for any e €
{=1,0,1} and all initial data (Corollary 4.1 (a) p. 205 in [22]), and scattering provided that
cee{-1,0}, N>5and § <o < ﬁ. In low dimensions 1 < N < 4, scattering has been
proved in [23] (see Theorem 1.1 p. 2177 in [23]) provided that ¢ € {—1,0} and o > . The
latter condition can be weakened to o > % if € = —1; this is due to the fact that Strichartz
estimates are better for e = —1.

In the focusing case (9 = —1), global existence holds provided that o is energy-subcritical
and the initial data is sufficiently small in H*(R"), or o < % and the initial data is arbitrary,
or o = + and the initial data is sufficiently small in L?(RY) (Corollary 4.1 (b)-(d) p. 205
in [22]). Global existence in the energy-critical case N > 5 and o = 5 in also shown for
any radial initial data (Theorem 1.1 p. 198 in [22]) and for non-radial but small initial data,
as well as scattering for radial data if e € {—1,0}. Notice that in the case e =1, N > 5 and
% < 0 < 1, Theorem [[ 4] and ([@9) below imply the existence of standing waves with small
H?—norm, and these solutions do not scatter.

Equation (II)) admits an important class of special solutions, the standing waves. These
are solutions of the form (¢, z) = e~ *!u(z), where w € R and u is a complex-valued function.
They appear as a balance between non-linearity and dispersion and are supposed to play an
important role in the dynamics. The standing wave profile u satisfies the equation

(1.2) APy + 2eAu 4 wu + 9u* u =0 in RV,

Solutions of (I2) are critical points of the action
9
(1.3) Fo(u) = / |Aul? — 2€¢|Vul® + wlu|® + ——[¢[*? T2 dz = E(u) + w||ul|3..
RN g + 1

Taking into account the Hamiltonian structure of (II]), it is natural to search for standing
waves as minimizers (or local minimizers) of the energy when the L?—norm is kept fixed. By
a standard application of the approach laid down by T. Cazenave and P.-L. Lions [9], the set
of solutions obtained in this way is orbitally stable. Studying the behaviour of the energy
with respect to the mass and to the scaling gives an insight into possible blow-up scenarios.
We refer to [6] and [3] for blow-up results.

In the case e = —1, the existence of standing waves has been investigated in several papers
(see [2], B], [, [B]) by using various methods, including minimisation of the energy at fixed
mass (see Theorem 1.1 p. 3050 in [4]). Some qualitative properties of these solutions as well
as the orbital stability of the set of minimizers have also been established.

In the case e = —1, it has been observed in [5], Theorem 1.1 and in [4], Theorem 1.2 that it
is possible to minimize [,y |Au|? —2|Vu|? +w|u|? dz under the constraint [p y [u[*7 T2 dz = 1
provided that w > 1. Although this approach gives the existence of standing waves, it is not
completely satisfactory because the considered quantities are not conserved by the flow of
(1), and consequently it does not give much information about the dynamics of (II)).

The case ¢ = 1 (corresponding to S > 0 in (BNLS)) is more difficult and, as far as we
know, there are no satisfactory results in the literature concerning the minimisation of the
energy at fixed L?2—norm. Our aim is to clarify this situation in the focusing case (9 = —1 in
(T or v < 0 in (BNLS)). In the sequel we will always assume that e = 1, although most of
our results are still valid if € = 0 or if ¢ = —1. Rewriting our proofs with e = —1 would give
alternate proofs of some results in [2], [3], [4], [5].



To be more precise, we focus our attention on the minimisation problem

1
minimize F(u) := / |Au|? dx — 2/ Vul? do — |27+ dz
RN RN N

c+1Jr
(Prm)
in the set S(m) := {u€H2(RN) ‘ / |u|2dx:m}.
RN
We denote
(1.4) Epin(m) == inf{E(u) | u € S(m)}.

The basic properties of the function FE,,;, are given in Proposition 3.l In particular, we
show that E,,;,(m) is finite for any m > 0 if No < 4, and E,p,;,(m) = —oo for any m > 0 if
No > 4 (of course, this is related to the fact that () is mass-critical for ¢ = +). If No = 4,

there exists some k. > 0 such that E,,;,(m) is finite for m € (0,k,) and Ey(m) = —o0
if &k > k.. A simple scaling argument shows that we have always E,,;,(m) < —m. If
Epin(m) = —m, the minimisation problem (P,,) does not have solutions, and all minimizing

sequences converge weakly to zero. If E,.;,(m) < —m, it is shown in Theorem B.4] that
there exist minimizers for (P,,) and that all minimizing sequences are pre-compact (after
translation), which gives the orbital stability of the set of minimizers by the flow associated
to (CI). If 0 < 0 < 3, there exists mg > 0 such that Epi,(m) = —m for m € (0,mg] and
E,in(m) < —m for m > myg. It is an important question whether my = 0 or my > 0. Notice
that the presence of standing waves prevents scattering for (ILI)). Therefore, if mo = 0 we
cannot expect a scattering theory for solutions of (II)) having small L?—norm.
It is easily seen that for any v € H*(RY) with ||u[%. = m we have

2642 lull2553
B+l = 8-+l — el = -+l (1 e fie
(1.5)
— A 2 1 m° Hu”ic;;i2 —IA 2 1 m? 2042
= H u—|—u||L2 — U—Hm = || ’LL—'—’LLHL2 T o+l Q(U) 5
where

[[ufl 2o+

Q(U’) = _o 1 -

lull 72" | Au+ ul 72"

Let M = sup{Q(u) | u € H*(RY),u # 0}. If M is finite, it follows from (LH) that E(u) +
[ul|2. > 0 for any u satisfying ||u||7. = m provided that m is small enough, so that 1 —
M 2042 > (0. This shows that E,,;n,(m) = —m for sufficiently small m, and consequently
(Ppm) does not admit minimizers for small m. If M = oo, then for any m > 0 we may find

u € H*(RN), u # 0 such that 1 — 22 Q(u)?°*2 < 0. Then taking v = %u we see that
L

o+1
vl L2 = m, Q(v) = Q(u), and (L) gives E(v) + |[v||3: < 0, which implies Ey,;,,(m) < —m.
Notice that M is finite if and only if the Gagliardo-Nirenberg-type inequality

_o 1
[ull 2o+ < Cllull7z" [[Auw + ul 72"

holds true for all w € H?(RY). Obviously, M is the best possible constant in this inequality.
We will study slightly more general inequalities, namely we will investigate whether there
exists C' > 0 such that

llull e < Clullf2| | D]*u — u||1L§N for all u € HS(RN),

where p € (2,00), £ € (0,1) and |D|* is the Fourier integral operator given by |D|*u =
F~1(]-|*F(u)). This leads us to study the boundedness of the quotient

[[ull e
Qr(u) = ~ —.
[l (| D] = 1) ull}

when u € H*(R™) \ {0}. We obtain the following result.



Theorem 1.1 Let N € N*, p € (2,00), k € (0,1), and s > 0. Then Q,, is bounded on
H*(RN)\ {0} if and only if

1 N (1 1 N+1 1
1.6 Z 5 d —(z—--)<l-k<——(=2—--).
(1.6) nZg o 5(2 p> ST (2 p>

To prove Theorem [[.I] we are led to develop an original approach, based on the Hausdorff-
Young inequality in space dimension N = 1, and on the Tomas-Stein inequality in higher
dimensions. This method is not limited to the study of Q. here above. It is much more
general and can be used to prove non-homogeneous Gagliardo-Nirenberg inequalities of the
form

[ullLe < Cl|PL(D)ulfs || Po(D)ull 12",
where P, (D) and P»(D) are Fourier integral operators defined by P;(D)(u) = F ! (P;(-)F(u)) .
See Remark Some quantitative variants are also available: see Remark
Using Theorem [T with s = 2, p = 20 + 2, and £ = ;%5 we infer that the quotient Q
in (IF) is bounded on H2(RY)\ {0} if and only if max (1

B3).

As a matter of fact, our method works in the simpler case when ¢ = —1 in (2.

Proceeding as in (IH) we write E(u) = (||Aul|2, + 2| Vul2.) (1 - L2 oy )20+2), where

<o < £ (see Proposition

4
» N+1 N

lull L2o+2
_1
llull 75 o (I1aw]? ,+2(Vul|?, ) 7+T
Q to dec1de Whether Epin(m) <0 for all m > 0 or E,,4,(m) = 0 for small m. In this way it
is possible to give an alternate (and shorter) proof of Theorem 1.1 p. 5030 in [4].

Qu) = , and we need to study the boundedness of the quotient

Having at hand Theorem [[LT] we establish the existence of solutions to the problem (P,,)
under optimal assumptions. We use some ideas in [I8] and [19], but all our proofs are self-
contained. The next Theorem summarizes our main results on the existence of minimizers for
(P). It covers all possible situations.

Theorem 1.2 Let N € N*. Let Eyp be as in (1.7]). The following assertions hold true.

(1) If 0 < 0 < max (1, ﬁ) and o < + we have —00 < Epyin(m) < —m for all m > 0.

(1) If max ( W) <0 < =, there exists mo > 0 (given by (Z18)) such that Epn(m) =
—m for all m € (0, mg] and —0o < Epin(m) < —m for any m > my.
(iii) If o = +, let mg = 0 if 0 < 1 and let mo be as in (FI0) if o > 1. Let k. be as

in Proposition Iﬂ (vi). Then we have mg < ki and Epyim(m) = —m for all m € (0, mg],
—00 < Emin(m) < —m for m € (mg, k) and Epin(m) = —oo for m > k.

(iv) If ¢ > 4+ we have Epn(m) = —oo for all m > 0.
Problem (Py,) admits solutions whenever —oo < Epin(m) < —m; moreover, any minimiz-
ing sequence for (Py,) has a subsequence that converges strongly in H*(R™) modulo transla-

tions. Minimizers of (Py,) solve (L3) for some w > 1.
Problem (Py,) does not admit minimizers if mg > 0 and m € (0,myg).

If e=1and ¢ = —1, as we assume throughout this paper, writing w = 1 4 ¢ equation
(C2) becomes
(1.7) A?u 4 2Au+ (1 + c)u — [u[*u =0 in RY.

As already mentioned, solutions of (7)) are critical points of the action functional

1
Se(u) := /RN |Au|? = 2|Vu|® + (1 + ¢)|ul* — e 272 d

(1.8)
1
= E(U) + (1 —|— C)HUH%Q = Tc(u) — U—_H - |1/}|20'+2 dx,



where T.(u) = / |Aul?* — 2|Vu|? + (1 + ¢)|u|* dz. A classical approach to find solutions
RN

for (LZ) is to show that t(c) := inf{T.(u) | u € H*(RY), [gu |[u[*?T?dz = 1} is achieved.
In Theorem we prove that minimizers for ¢(c) exist for any ¢ > 0 and any o € (0,00)
if N < 4, respectively any o € (0, ﬁ) if N > 5. Moreover, if u is a minimizer for ¢(c)
then v := ¢(c)2-u solves () and for any other solution w € H2(RN) of (7)) we have
Se(v) < Se(w) (see Proposition B8); we say that v is a minimum action solution of ().
Therefore equation (7)) admits minimum action solutions for any energy-subcritical o and
for any ¢ > 0. The next result shows that minimizers given by Theorem are minimum

action solutions for (L7)):

Theorem 1.3 Assume that 0 < o < %. Let u be a minimizer for problem (Py,), as given by
Theorem [L2. The following properties hold true:

(1) There exists some ¢ = c(u) > 0 such that u is a minimum action solution for (1.7).
Furthermore, any minimum action solution of [I77) with ¢ = c(u) is also a minimizer for

(Prm)-
(11) If m1 < maq, the function uy solves (Prm,,) and us solves (Pp,), then c(u1) < c(uz).

(i) If 0 < o0 < &

& we have c¢(u) — o0 as m — 00.

() If 0 < 0 < max (Lﬁ

solution of the minimisation problem (Py,), denote v, = f}—% = W’
ml

) and o < 4 we have c(u) — 0 as m — 0. If uyy, is any
so that ||vm ||z = 1.
Then we have

Avplle — 1, |[|Vomllzz — 1, [[(A+ Dogllze — 0 as m — 0,
and ||vm||Le — 0 for any p € (2,00) if N > 4, respectively for any p € (2,2**) if N > 5.

It is proven in Proposition B that ¢(c) < C'v/c as ¢ — 0 and Corollary B.I4] below shows

that for any energy-subcritical o > 0, we have t(c) ~ ¢}~ 3@ as ¢ — 0o. The behaviour
of minimum energy solutions of (L7) (and, in particular, the behaviour of minimizers for the
problem (P,,) as m — oo in the case 0 < o < +) is described in Proposition and
Corollary 314t after rescaling and translation, they converge to minimizers of the functional
K(u) := [gn |Aul? + |u|? dz under the constraint [py |[u[***?de = 1.

Let us stress that we state and prove Theorems and for pure power nonlinearities
only for simplicity. One can replace the term a+-1 Ja~ [u[?*?dz in the expression of E(u)
by fRN F(u)dz. Under appropriate assumptions on F, similar results can be obtained with
minor changes in the proofs. In order to avoid technicalities and to keep this paper reasonably
long, we have chosen not to pursue in this direction.

In the case o > % we have E,,;,(m) = —oo for any m > 0 and the minimization problem
(Pp) does not make sense. In this case we investigate the existence of local minimizers of
E when the L?—norm is kept fixed. By local minimizer we mean a function u € H?(RY)
such that there exists an open set &/ C H%(R") having the property that u € U and E(u) =
inf{E(v) | v el and ||v] 2 = ||ul|p2}-

We find an open set O C H?(RY) (described in ([@4)) such that any possible local min-
imizer of E at fixed L?—norm must belong to O. The set O U {0} is star-shaped and is an
open neighbourhood of the origin in H2(RY), and O is unbounded in H?(RY). We denote

Epin(m) = inf{E(u) | u € O and ||Ju||2, = m}.

The problem of finding minimizers for Epi, (m) (which are "best possible” local minimizers
of E when the L?—norm is fixed) in the mass-supercritical case o > % is much harder than
finding global minimizers for FE,,;, in the subcritical and critical cases. To the best of our
knowledge this problem has not been addressed in the literature. Understanding the behaviour
of E with respect to the L?—norm is also an important step in understanding the dynamics

associated to (II). Our main results in the case o > % are given below.



Theorem 1.4 Suppose that o > % and o < oo if N < 4, respectively o < ﬁ if N > 5.
The following assertions are true.

(i) Assume that N > 5 and % < o < 1. Then we have Emin(m) < —m for any m > 0.
(i) If % <o ando > 1, there exists mg > 0 such that Emm(m) = —m for any m € (0, mg]
and the infimum Epi,(m) is not achieved for any m € (0,my).

(i) Assume that 0 < m < po, where g is given by (4.0, and Epin(m) < —m. Then
E,in(m) is achieved and any minimizing sequence for Epi,(m) has a subsequence that con-
verges strongly in H*(R™) modulo translations.

() Any minimizer for Epmi,(m) solves (I8) for some ¢ = c¢(u) satisfying

(No —2)2 8(No — 2)

0 -1 .
<e< It oo -0 T NNo -2y

Moreover, if N 25 and + < o < 1 we have c(u) — 0 as m — 0.

Any solution u of (7)) provided by Theorem [[4] must satisfy (9), and consequently
there is some explicit constant C' > 0 such that ||u||g2z < C||lu||z2. Therefore if N > 5 and
+ < 0 <1 equation (L) admits standing waves with small H?—norm and this rules out a
scattering theory for small solutions of (IIJ). It is an open question whether small solutions
of ([LJ)) scatter or not in the remaining cases.

In the case o > %, the least energy solutions of () given by Proposition have small
L?—norm as ¢ — oo, but they have large H2—norm and do not belong to the set O (see
Remark 1Tl and Corollary B.14). Thus we have two types of interesting standing waves
with small L?2—norm: the minimum action solutions for ¢ — oo, and the local minimizers
provided by Theorem [[.41

Let us compare our results to similar results in the cases € = —1 and € = 0. Let us consider
the problem (P,,) with E replaced by

1
(1.9) E(u) = / Auf? do — 26/ Valdr - -1 [ e
RN RN g + 1 RN

We define Fy;, as in ([L)). Then Theorem 1.1 p. 5030 in [4] and Theorem 1.2 p. 2170 in [2]
give the following result:

Theorem. ([4 2]) Assume that e = —1. Then:
(i) If 0 < 0 < %, we have —00 < Epin(m) < 0 for any m > 0.

(i) If % <o < %, there exists me,. > 0, depending on o and N, such that E;,(m) =0
for any m < me, and —oc0 < Epin(m) <0 for any m > me,.

(i1i) If o = %, there exists me, > 0 such that Enim(m) = 0 for any m < me, and
Epin(m) = —oo for m > mey, and Enn(m) is never achieved.

(iv) If ¢ > « we have Epn(m) = —oo for all m > 0.

The problem (Py,) admits solutions whenever —oo < Epin(m) < 0. Moreover, all mini-

mizing sequences have subsequences that converge strongly in H*(R™) (modulo translations).

Quite remarkably, Proposition 2.8 (ii) p. 5038 in [4] shows that for o € (%, ) and for m =
Mer, problem (P, ) admits solutions despite the fact that there exist minimizing sequences
that do not have any convergent subsequence (modulo translations). In fact, proceeding as
in (LE) it is easily seen that in this case one has

o+1 Hul\i%ifz 2N
o =P | we H2RY)\ {0}
g, { [l (1Aull2. + 2 Vul?.)



and that u is a minimizer for (P,,,,) if and only if |lu||2. = m., and u is an optimal function
for the non-homogeneous Gagliardo-Nirenberg inequality

_o_ _1
[v]| 2o+ < Cllol|737 (|Av]172 + 2[|Vo[[F72) 2.

We stress that local minimizers of the energy at fixed mass are specific to the case e = 1.
Such solutions do not exist if € < 0, see Remark L2l If e = —1 it is shown in [2], Theorem 1.3
p. 2171 that one can minimize E in the set {u € H*(RY) | [Ju[?. = m and Pi(u) = 0} for
some values of m > 0, where P; is a Pohozaev-type functional given in (338). The minimizers
found in [2] are minimum action solutions of (L2)), but are not minimizers of E at fixed L?—
norm. They correspond to solutions given by Theorem and Proposition below. The
instability by blow-up of such minimum action solutions has been proven in [3], Theorem 1.1
provided that they are radial and % <o<4(and o < ﬁ if n > 5), and that instability
result is an indication that those solutions cannot be local minimizers of the energy at fixed
L?—norm.

The case € = 0 is much simpler. Proceeding as in (L) we find
20+2

||u||202 llull 7%+ m?
1.10)  E(u) = ||Aul/%. [ 1 - —£ L = ||Au|?, (1 - —— 2o+2
( ) (’U,) ” uHL2 ( o+ 1 Hu| %%HAUH%Z ” uHL2 0’+1QO(U)

for any u € H*(R"Y) such that [|u[?. = m, where Qy(u) = lullp2o-+2 . A simple

Tl s AUl ooy
scaling argument shows that the quotient Qq is unbounded on H*(R™)\ {0} if o # 4. With
the above notation we get:

. : 4
(i) —00 < Epin(m) <0 forany m > 0if 0 <o < .

(ii) If o = %, there exists m., > 0 such that E,,;,(m) = 0 for any m < me, and E,pi,(m) =
—oo for m > mep. Epin(mer) is achieved by some optimal function for the Sobolev-
Gagliardo-Nirenberg inequality (33), and E,,;,(m) is never achieved if m # me;.

(ili) Emin(m) = —oc0 if 0 > +.

Assertions (i) and (iii) are proven exactly as statements (v) and (i), respectively, in Proposition
Bl below, and (ii) follows from (LI0). The existence of minimizers for any m > 0 in case (i)
is standard (one may use a simplified version of the proof of Theorem B.4]).

If € < 0, equation (2) has infinitely many solutions that can be obtained by using
topological methods (see, e.g., Theorem 1.4 p. 2172 in [2]). This is presumably true for e = 1,
too. In this paper we focus on standing waves that minimize the energy at fixed mass, which
are the most important for the dynamical study of (L.

This paper is organized as follows. In the next section we develop a method to deal
with non-homogeneous Gagliardo-Nirenberg inequalities and we prove Theorem [Tl We sep-
arate the cases N = 1 (when a simple argument based on the Hausdorff-Young inequality
is sufficient, see Theorem 23]) and N > 2 (when a more involved argument relying on the
Tomas-Stein inequality is needed, see Theorem 2.6)). Examples 2.4 and 27 show that the
results we obtain are optimal for the operator |D|® — 1. Extensions to more general operators
are indicated in Remarks and

In SectionBlwe consider the problem (P,,) and we prove Theorems[[2and[[3] Statements
(1)-(iv) in Theorem [[2] follow from Propositions Bl and The existence of minimizers and
the pre-compactness of minimizing sequences are given by Theorem 34l Theorem [[3] (i)-(iii)
follows from Propositions[3.5 and B.9] (see also Remark B2l and PropositionB.3]), and Theorem
.3 (iv) is CorollaryBI2l Some asymptotic properties of minimum action solutions as ¢ — 0
and as ¢ — oo are given in Propositions [3.11] and BI3] respectively, and in Corollary .14

In Section E] we consider the more delicate problem of minimizing the energy at fixed
L?—norm in the set @ when o > + and we prove Theorem [l Statement (i) and the first
part of (i) in Theorem [[4] follow from Lemma 4] and the second assertion in (ii) follows
from Remark [£9 Part (iii) is Theorem .8l For (iv), see Remark .10



2 A class of non-homogeneous Gagliardo-Nirenberg in-
equalities

Let (X, A, ) be an arbitrary measure space and let f be a complex-valued measurable function
on X. We say that f # 0 if the set {x € X | f(z) # 0} has positive measure. Obviously, if
f# 0 then [ |f|*dpu > 0 for any a > 0. If f1, fo are measurable and f1 fa # 0, then f; # 0
and fo #Z 0. We use the convention ;;Eg =0if f1(z) = fa(z) = 0.

The following elementary lemma will be very useful in the sequel.

Lemma 2.1 Let (X, A, p) be an arbitrary measure space, let g € [1,2) and k € (0,1). Con-
sider three measurable functions w,wy, wg : X — C such that wwy # 0, wwy Z 0 and w =0
on the set {x € X | wi(x) =0 and wa(x) = 0}. Let

lewllzs

lowl|Fa - llpwall 12"

ow; Z0 fori=1,2

L2-a

Then My < (1 — k)" k™5 M,. Moreover, if (X, A, ) is o—finite or if there exists t, > 0
_1 ko1l g
such that w (wi + t.|ws|?) ? € L;_qq(X), then My = (1 — k)2 k™% M.

‘ T2
M, = sup{ @ is measurable, pw; € L*(X), } . and

w

My = sup =
t>0

. oL
(wi + tlwa|?)*

Remark 2.2
(i) Let A; = {x € X | wi(zx) = 0} for i = 1,2. We have H% P
(wi+t|ws|?)2 IL2=a (X)
H& 2g. , and H%— 2q >t || 2g . We infer that if My < oo,
[wi] L= (As) (wit|ws|2)2 IIL2=7 (X) [wa] L2170 (A;)

then necessarily w = 0 a.e. on A; U Ay (here we use the assumption that w = 0 on A; N As
and the convention § = 0).

(ii) For any fixed a,b > 0, the function ¢(t) = % = m achieves its maxi-
mum on (0,00) at tmer = (122)'1 and g(tmaz) = £%(1 — k)1 "% a="b"" 1. Hence for any

e _1 «
x € X such that wy(x)wa(z) # 0 we have max [tlT (Jwr (2)]? +t|w2(x)|2) 2} =kr2(1—
>
/i)lfTﬁ |wy ()| " |wa (x)]"'. We have thus a sufficient condition for the finiteness of M, namely
24
M; < o if w =0 a.e. on the set A; U Ay and w|w;|~"|ws|*~ € L2 (X).
1 g
(iii) Assume that there is ¢, > 0 such that w (Jw1]* + t.|wz|?) 2 € L;fq(X). We have
. t |uu|2—kth02F t
2.1 1,4 ) ¢ M TRl 1, - h : 0,0).
(2.1) min ( t*> 12 T L[] max y whenever (wy,ws) # (0,0)

29

_1

Since w = 0 if (w1, ws) = (0,0), we infer that w (Jwi > 4 tjwz|*) * € L7 (X) for any ¢ > 0.
Now let

t2"w

F(t) = | ———
(w} + thws?)?

2 / jw(z)| =7
29 = —— ap.
L0 Jx (15w ()2 + 5w () [2) T

Clearly, M, is finite if and only if F' is bounded from above. For any z € X, the mapping

jw(z)| =7

(¢ fwn (2)2 + % ws (2)[2) 7

is continuous on (0,00). Then the estimates (2] and the dominated convergence theorem
imply that F' is continuous on (a,b) for any 0 < a < t. < b, hence F is continuous on (0, c0).
In order to show that M5 is finite, we only have to prove that F' is bounded in a neighbourhood
of zero and in a neighbourhood of infinity.

(iv) If (X, A, ) is o—finite and M; < oo, the second part of Lemma 2] implies that we

must have w(|w; |2 4 tjws|?)" 2 € L%(X) for all ¢ > 0.



Proof of LemmalZl First notice that for any given A, B > 0, the function f(t) = At"~ 1+

Bt" achieves its minimum on (0, 00) at ¢, = % and f(tmin) = (1 — k)" FARBYF,
Let ¢ be a measurable function such that pw; € L?(X) and gw; # 0 for i = 1, 2. Using

the previous observation with A = [[ow1 |32, B = ||pws||3, and tmim = Towal?
L2

we get

2(1— _ _
lpwn]|25 - [lpwa 25~ = (1 — &) 5w" (¢ lowr |22 + i llows122)

(2:2) = (1= r) 7wt [y 1ol (Jwr]? + tinfwel?) du
= (1= 1) et (Jwn 2 + i w0 [2) 7 |2,

Holder’s inequality implies that for any two measurable functions f, g defined on X there holds

(2.3) 1£gllze <N fllz2llgll | 2o -
Using Z3) with f = ¢ (Jwi|? +tmin|w2|2)% and g = w (Jw; [? —i—tmm|w2|2)_% we obtain
@4 el < e (0l + tminlwzl)? g2 - [0 (012 + toinl2?) 7|2
From (22) and 24) we get

low|| e (=R o (Jun? + foanual?) | o

lew |72 - lpwall 2
<(1- K)%K_%Mz.
Since the above chain of inequalities holds for any measurable function ¢ such that pw; €
L?(X) and gw; # 0 for i = 1, 2, taking the supremum we get M; < (1 — K)%H_%Mz.
_1
Next, assume that there is ¢, > 0 such that w (Jwi|? + t.|ws]?) 2 € L7 (X). By Remark

1
2.2 (iii) we have w (Jwy[? + t{wo|?) * € L%(X) for any t > 0.

If a measurable function ¢ satisfies pw; € L*(X) and pw; # 0 for i = 1, 2, it is obvious
that ([22)) holds if we replace ., by any t > 0 and the first 7=" by ”7<.” In other words, we
have

-k Kk k—1 1
lpwillza - lpwal 12" < (1= k)= w577 |l (Jwr|* + tlwe[*)* |2 forany ¢ >0

and consequently

( e el for all ¢ > 0.

7w lI5s - llpwall @ (lwr 2+ tlws[2)? || .

For any z € C we denote sgn(z) = 0 if z = 0 and sgn(z) = % if 2z # 0. Let ¢p =

[2]

o
sgn(w)|w| =77 (Jwi|? + t|lwe|?) 77 . Then tw; # 0 because ww; # 0, and
2 - 1, 2¢ -
s [* < ol =0 (Jwn - twa?) 727wl < Sfwl T (Junf + tlugl?) T
hence Yw; € L?(X) for i = 1,2. It is easily seen that
2 2\~ 35 || 727
Ipwllea = (fun* + thoal®) " |73,

and .
1 -1 .
[ thon )| 2 = (o + ) ™2 2



Using (23] with ¢ = 1, we discover

[l o
Tl e = 7 T e (et 2
17z 2

(2.6) e

Since ([Z6) holds for any ¢ > 0 we infer that My > (1 — k)2 k™% Ms.

Finally assume that (X, A, 1) is o—finite. Consider a collection of sets (X,),>1 C A such
that pu(X,) < oo, X, C X,y for all n and U,>1X,, = X. Fix t > 0 and denote 4,, =
{x € X | |w(@)(Jwi(z)]? + thwa(z)[? _%‘ < n} NX,. Then 4, C Ap+1, n(Ayn) < p(Xy) < o0

1
for any n and U,>14, = X. Let b, = sgn(w)|w|z 7 (Jwi]? + t{wa|*) 7 14,. For all n

sufficiently large we have ww;1 4, # 0, and consequently 1, w; # 0.
As above we see that

—_9
nwn |2 < [w]27a (Jwy|? + tlwa|?) T 7 L4, <nZaly, and

[y

1 _2q —_a_ _2q
|[pnws|* < ¥|w|2}q (lwr[? + tlwa]?) 777 14, < gn%qq 1a,,

hence ¥, w; € L?(X). Proceeding as in the proof of ([Z6) with v, instead of ¢ we get

_1
?|

My > (11— H)%H_%t% |w (Jwi]? + t|ws]?)

2 for all n sufficiently large.
L2-a (Ay)

Then letting n — oo and using the monotone convergence theorem we find

My > (1— 8) 5 5 555wy (1+ tluof?) 2 I o

Since this is true for any ¢ > 0, we have My > (1 — ﬁ)%ﬁ_%Mg and Lemma 2.1]is proven.
O

We consider the Fourier transform defined by F(u)(§) = = [~ € u(z) do if
u € LY(RY), and extended as usually to tempered distribut1ons We consider the Fourier
integral operator |D|® — 1 defined by

(D" = Du=F1((-]" - D).

L>R™)}.

The space H*(RY) is defined by H*(RY) = {u € S'(RY) | (1 +|-[?)31u €
u € L*RY) and

Given a tempered distribution u, we have u € H*(RY) if and only if @
(|-]* = 1)@ € L% RY). Moreover, by Plancherel’s identity we have

1 . 1
~ [l 2wy and [|(|D]° = D)ul| 2wy =

(2m)=
Let p € (2,00) and let s € (0,1). Define

2.7) llullz2@y) = ~ (-1 = Dll 2.

l[ull e s(RN
2.8 (u) = for all w € H*RN)\ {0},
(2.8) Qx(u) AT or all u € H*(R™)\ {0}
and
(2.9) M := sup Q. (u).

u€Hs(RN)\{0}
We will investigate whether M is finite. In the one-dimensional case we have the following:
Theorem 2.3 Assume that N =1, s € (0, oo), p € (2,00), and k € (0,1). The supremum
M in (Z3) is finite if and only if 5- < U=mp < 3

p—2




If N =1, the condition in Theorem [Z3] is equivalent to condition (L) in Theorem [I11

Proof. Let N € N*. Since p > 2, by the Hausdorff-Young Theorem (see, e.g., Therem
1.2.1 p. 6 in [I]) we have

N

P
(2.10) [ullLr @y < (2m)7

—Nj~ /
/ where p' = ——.
@l . (RN)» rep 1

Taking into account Plancherel’s identity and the fact that v € H*(R"Y) if and only if u €
L*(RYN) and (|- |* — 1)u € L*(RY), we infer that M < (2w)%7%M3 , where

||90||LP’
(2.11) M3 = sup { —
lellza ]| (|- 15 = 1) ||

Hence M is finite if M3 is finite. To prove the finiteness of M3 we may use Lemma 2.1] in
RY endowed with the Lebesgue measure, with w = w; = 1 and wo(¢) = |[¢|* — 1. By Lemma

211 it suffices to show that My := sup <t12N / > is finite. Notice that

o, (|- I" =Dy e LX®RY)\ {0} }

S S
‘(1+t( \-\5—1)2)%

t>0 L
% = 2f2. Given any p > 2 and any ¢ > 0, the function £ —s ——L—— belongs to
per (14t -1)?)2

L2 (RY) if and only if % > N (which is equivalent to p(N — 2s) < 2N). Let

p—2 1

11—k

t— =z
(1+t(|~|5—1)2)%

(2.12) F(t) = ‘ 5
LP_QE RN (t“fl—l-t’{ (|€|S_1)2) p—2

In view of Remark 22 (iii), F' is continuous on (0, c0) provided that % > N.

Assume now that N = 1 and % < % < % Then ;fg > ﬁ > 1, hence F is
continuous on (0, 00) and we need only to check that F' is bounded in a neighbourhood of

zero and of infinity. We have

F(t) = 2/000 f(r,t)dr, where f(r,t)= ! —.

(t“*l 5 (rs — 1)2) T

For any fixed A > 0 we have

A A
(A=r)p (A—r)p
/ |f(r,t)|dr§/ t vz dr=At"r»2 —0 ast—0.
0 0

1
s

Choose A > 25, so that r® > r* —1 > %rs for r > A. We have then

1 1
< f(r,t) < - for any r > A.

(tn71+tnr25)p_f2 (tnfl_kitn?ds)ﬁ

Using the change of variable r = t‘ﬁy we get

o e 1 a-mp_1 [ 1
0< flrt)dr < ——dr=t7r> "2 [ —dy.
A A (tnfl 4 it/-chs) p—2 135 A (1 4 %y%) p—2

We conclude that F' is bounded in a neighbourhood of zero if (11:%)]” > 2_15
Let us study the behaviour of F' as t — oo. We have

oo o0 1 N oo 1
O</ f(r,t)dr</ Ldrztfp_*p?/ ————dr — 0 as t — oo.
: s (1) A

11



There exist two positive constants ca, 2 such that cily| < |1+ y[* — 1| < czlyl for all
€ [-1,1]. Using the change of variable r = 1 + y, the above estimate and then the change
of variable y = t~22 we get

2 1 1 1 1
/ f(r,t)dr:/ Ldyg/ 5 —— dy
0 - (t’f—l + 5| L+ yls — 1}2) " -1 (et - trey?) e

[N

— t
:t‘%"‘(lpfz)p/ ) 1 ——dz
43 (1 + 0%22);772

and we infer that F' is bounded in a neighbourhood of infinity if % < %

So far we have proved that Mj is finite (and consequently M is finite) if % < (1;%2)10 < %

The fact that M = oo if one of these two inequalities is not satisfied follows from the next

example. (I
. 22

Example 2.4 Given 7 > 0, we define u,(z) := €' 2-2. It is clear that v € S(R) and direct

computations give

2 (g-1)?

2
(2.13) (&) =V2rre™ 7, lus|?. = Var  and ||u7|\gp:,/?”7.

Using Plancherel’s formula we get
s 2 1 s =~ 12
IADP® = Durlze = o lI(1- 1° = - |z
77_2 _1)\2
(2.14) =2 [ (e 1y ag
-1

_)
= 7'1725/ (Ir + | — %)% " dz ~ 7'1 ) wT e
R 7 %% asTt— 0.

Thus we obtain

1
» 1 1
(2.15) Qr(ur) ~ :271 =73TTF 300 asT o0 if—+=—k>0,
T2T 2 p 2
while in the limit 7 — 0 we have
1
» e (1-29)(1-x 1 1—2s)(1—
(2.16) QK(UT)N%:T%_f_(I e — 0 if__f_w<0.
kT 2
Notice that for p > 2 and & € (0, 1), the inequality % + % — Kk > 0 is equivalent to % > %

and the inequality % - £ W < 0 is equivalent to (1;%2)17 < %

5 =

Remark 2.5 Let F be as in ([ZI2). Using polar coordinates in R" and proceeding as in the
N
2s
and F is bounded near infinity if and only if (11:%)]” < % By Lemma 2] Mj is finite if and
only if F' is bounded, and a necessary condition for the boundedness of F' would be 2—]\2 < %,
or equivalently N < s. Thus any attempt to show that M < oo by proving that Mz < oo
will fall short from providing the optimal range of parameters (k, s) for which the supremum
in ([2.9) is finite, given by Theorem 2.6l The Hausdorff-Young inequality (that we have used
successfully in dimension one) is not sufficiently accurate in higher dimensions and a more

subtle argument is needed. See also the second part of Remark 2.8

proof of Theorem 2.3] one can prove that F' is bounded near zero if and only if % >

The next theorem gives optimal conditions for the finiteness of M in any space dimension

N > 2. Its proof is based on the Tomas-Stein Theorem, which asserts that for p > %,

12



there exists a positive constant Crg depending only on p and on N such that for any ¢ €
L?(SN=1 do) there holds

(2.17) 1F dol| Logrry < Crsllfll e,

(see, e.g., Theorem 7.1 p. 45 in [24]). Here S¥~! = {w € RY | |w| = 1} is the unit sphere in
RY, o is the usual surface measure on the unit sphere, L?(S™ 1, do) is the space of measurable
functions deﬁngd\ on the unit sphere which are square integrable with respect to the surface
measure, and [ do is the Fourier transform of the measure f do, given by

—

fdo(€) = /SN 1 f(w)e ™ do(w) for any ¢ € RY and any f € L'(SV !, do).

Theorem 2.6 Let N € N, N > 2, p € (2,00), k € (0,1), and s > 0. Then Q, is bounded
on H*(RN)\ {0} (that is, M in (Z3) is finite) if and only if

1 N /1 1 N+1 1
(2.18) k> and —(s—-)<1-n<t(2o2).
2 s \2 »p 2 2 P
Observe that the last condition in ([ZI8) implies that s > 1\2,—1[1 and it is equivalent to
Nﬁ:i)g <p< m if 2(1 — k)s < N, respectively to N(+4+1) <pif2(l—k)s > N.

Proof.  Assume that (ZI8) hold and assume also in a first stage that p > 2(}{7\/_+11)7 S0

that we may apply the Tomas-Stein Theorem. Let u € S(R”). Using the Fourier inversion
formula and passing to polar coordinates in R we get

1

w(z) = ——— 00er1 W(rw)e ™Y do(w r:—l Ooerlﬂj\a —rx)dr.
@ =g [ [ ) o) dr = e [ e (—ra)a

Using Minkowski’s inequality in integral form (see, e.g., Theorem 2.4 p. 47 in [16]), then the
Tomas-Stein inequality we get

1 o0
||u||Lp(RN) < W/o N lH dU HLP RN)d

1 NN o
:W/o PNt P||u(r-)d0||Lp(RN)dr

C 0 NC1_ N~
<@ ), I

1
Denoting z,(r) = r = (fsN  [a(rw)|? do(w))? , we have proved that there exists C' > 0
depending only on p and on N such that

2N +2
N-1"

N
P

(2.19) [JullLr@yy < C/ I zu(r)dr for all uw € S(RY) and for all p >
0

On the other hand, using Fourier’s inversion formula and polar coordinates in R" we have

rw)|? do(w)

1 e 1 o
2.20 ul|3. = u w)dr = / 22(r)dr
( ) H HL (27T)N o SN—1| ( ) (27T)N o ( )

and

1 ~
10DI" = Dulze = w01 = Dl

(2.21)

= 5N OOTN_lTS— 2 U(rw)|? do(w) dr = OOTS— 222(r) dr.
_(27T)N/0 (r*=1) /SNJ( )P do(w)d (27T)N/o( 1)222(r) d



From ([2I9) - 221)) it follows that there is C' > 0 such that for all u € S(RY) we have

fOOOTNgl_%zu(r) dr
1-k "

2ullF2(0,00) (Jo (r* = 1)225(r) dr) 2
(0,00)

Notice that z, € L?(0,00) and (| - |* — 1) z, € L?(0,00) by 20) and (Z2I]). We use Lemma

2din (0, 00) endowed with the usual Lebesgue measure and we take w(r) = P

1 and wy(r) =r° — 1. We get

(2.22) Qr(u) <C

2

N u}l(r) =

(2.23) sup . wa”Ll(Opol)fn < Csup tl—Tm #1 .
p€L2(0,00)\{0} ||90||L2(0700)Hw%PHLz(o_,oo) t>0 (1 + t|wy|2)? 1£2(0,00)
Let
1-r o) N—1-2X o)
17z w 2 T P
2.24 G(t) := Hi :/ dr ::/ r,t)dr.
e A S G A S

s \2 P
Remark 222 (iii) implies that G is continuous on (0, 00).
For any fixed A > 0 we have

Since N —2s— % < 0 (because ¥ (l - l) < 1—+k < 1), we have g(-,t) € L*(0,00) and then

A A o AN-Z
O</ g(r,t) dr<t1_“/ PN dr:tl_”ﬁ —0 ast — 0.
0 0 -

We have r* — 1 > %rs if r> 27, Taking A > 2% and using the change of variable r = t’%y
we find

>~ > TN?li% 1 2N e nylf%
0< / g(’f’,t)dT < / ﬁdrztliniﬂ(NiT)/l 712dy
A A thT +ZtKTS t25 A 1+Zy5

We infer that G is bounded ast — 0if 1 —x > & (% — %)
It is clear that

oo ooTN—l—%
O</ g(r,t)dr<t7“/ ——dr—20 as t —» 00.
2 2

2N

There is C' > 0 such that 7V '~ % < C for r € [0,2] because N — 1 — % > 0 (recall that
p > 2NE2). There is ¢; > 0 such that (|1 +y[* — 1) > ¢;y? for all y € [~1,1]. Using the

change of variable r = 1 + y, the previous observations, then the change of variable z = t%y
we get

2 1 1 Vit 1k
C C Ct2
0< ) dr < dy< | ——L—dy= = 4
/og( ) /_1 (L y —1)2 Y /_1 ety 2y Y /_ﬁ1+c%22

We conclude that G is bounded as t — oo if kK > %

We have thus proved that if (2I8) and the additional assumption p > % hold, the
function G is bounded on (0, c0) and therefore the supremum on the right hand side of (Z23))
is finite. Then [222) and (Z23)) imply that there exists C(x) > 0 such that Q. (u) < C(k) for
any u € S(R™) \ {0}. Since u — Q,(u) is continuous on H*(RY)\ {0} and S(RM) \ {0} is
dense in H*(R"), we infer that Q. (u) < C(k) for any u € H*(R™)\ {0}.

2(N+1) 2(N+1)
N4 <p<

It remains to consider the case —3 < =5—i-- We proceed by interpolation.

Denote ¢ := % We see that % (% — l) = % Since 2 < p < ¢, there is some 6 € (0,1)

T q
such that L = g + =% We have
p q

=3 (-3) - g) s (s ) -

14




Since k < 1, the above inequality gives § < k. By Holder’s inequality we have
-0
lullze < flullZe - lullzz

and then for any u € H*(R"™)\ {0} we find

0 {116 ~ 1—8
(2.25) Qulw) <« —z i (g )"
[ullZ=11(D1* = Dull
where & = 228, so that 1 — & = =%, and Qr(u) = el o . Notice that the

Tl %5 (1 DJ* —Dull L5~

inequality 6 < 2x — 1 implies that & > % and then we get 1 — &k < % = % (% — %) Using
([Z18) and the fact that 3 — % =(1-0) (% - %), we get

1_,521_'{2(1_9)*1E 1 1 :ﬁ 1 1 )
1-46 s \2 p s \2 ¢

Thus we see that (ZI8) is satisfied with ¢ and & instead of p and &, respectively. From the
first part of the proof we infer that Qx is bounded from above on H*(RY)\ {0}, and then
Z2Z3) implies that @, is also bounded.

So far we have proved that Q, is bounded on H*(RY)\ {0} if (ZIS) hold. Now let us
show that ([ZI8) is necessary for the boundedness of Q.. Let u € S(RY), u # 0. For 7 > 0

let ur(z) =u(%). A simple computation gives |[u-||ps = e ||| L for any g € [1,00) and

N—-2s

D1 = Dulfe = Tsp [ (1P =216l + ) [ ds.

Thus we find
A=mN N _eN_ (1) (X —s) [[ullzr

Qulur)=2m) 2 17 2 — T
lull 52 (Jru (1125 = 2751€]5 + 729) [a(€)[2 d€)

If Q. (ur) remains bounded as 7 — 0 we must have % — 8 — (1 —k)(& —5) >0 and this

is equivalent to 1 — k > % (% — %)

The next example shows that @, is not bounded if kK < % or if % (% — %) <l-—k. 0O
Example 2.7 We consider a variant of Knapp’s example related to the Tomas-Stein inequal-
ity (see, e.g., [24] p. 46). For small § > 0, let S5 = {w = (w1,...,wy) € SN 7! |wy > 1 -2},
It is easily seen that there exist positive constants C7, Co such that for all § € (0, %), say, we
have

CléN_l < 0'(55) < CQ(SN_l,

where ¢ is the surface measure on S¥ 1. For small ¢ > 0, § > 0 we define Ve,s RY — R by

Ve s(€) = 1if1—5<|§|<1+aand‘—2‘635,
’ 0 otherwise.
Let
1 14¢ )
(2.26)  wes = F ‘(ves), that is ue 5(z) = ~ / rN_l/ e (9) do(w) dr.
(27T) 1—e Sg

Since .5 = ves is bounded and compactly supported, we have u. s € H*(R"Y) for all s. By
Plancherel’s identity we get

1 1 1+e B _
L2 = W/RN e, (€)[* dg = W/l o (85) dr ~ 20"

—€

(2.27) [le,s]

15



and

1

1IDF = Vel = g [ (€1 =1 oes(€) de

(2.28)

1 1+e
= 20~ /1 N7 = 1)20(S5) dr ~ 36N L.

Let ey = (0,...,0,1) € RY. Tt is clear that

1+4e
s @) = I (0] = | [P [ o)
’ 27T 1

Let Acs = {2 € RN | |z.(rw —en)| < Zforallr € (1 —¢,1+¢) and allw € S5}. For any
r€A.5, 7€ (l—¢e,1+¢), and w € S5 we have Re(e™ (" ~e~)) > 1 hence

1 e N—-1 3 w—
> iz.(ro—en)) g d
|u875(x)| (2 )N /1 r /55 Re (e ) a(< ,) r

€

1+e
>c/ 1o(Ss) dr > Ce6N !
1

—E&
for some C' > 0 independent of € and §. We infer that
(2.29) e sl orry > lluesllzoa, ;) > Ced¥ A gl7.

We will find a lower bound for | A, s|. Denote = = (2/,zy), w = (W', wn) where 2/, 0’ € RV 71,
and assume that ¢ < 1. We have

|z.(rw —en)| = |z.(rw’, rwny — 1) < rla’ |+ oy (roy — 1)].
For w = (W' ,wn) € S5 and r € [1 —¢,1+¢] we have |w'| < v/26 and |rwy — 1| < 262 +¢, hence
rla’ W'l < §if 2] < %5 Vand oy (roy — 1) < § if |zn] < £(26% + )~ '. We conclude

that
\/_ o

(2/,an) ERV TP XR| |2/ < =671, Jan| < = (252+6) }CAN;.

Hence there exists C' > 0 independent of £ and ¢ such that |A. 5| > W and (Z29)
gives

(2:30) lluesllLe @y = CS5<N71)(1*%)(52 + 5)*%'
From ([2.27), (228), and ([2.30) we obtain
(2:31) Qulues) > CSNDE=Der—3 (52 4 o)~5,

Fix 0o € (0, 35) and let ¢ — 0. If Q,(ue.s,) remains bounded, [Z31)) implies that x > 3.

Putting € = 6% in (Z31) we get Qu(us2s) = coN - 1)(_7_”2“ =3 If Q(us2 5) remains
bounded as § — 0 we must have (N — 1)(% — l) + 2k —1— 2 >0, and this is equivalent to

N+1 (1 1

Remark 2.8 The method used in the proof of Theorem 2.6] is very flexible and can be used
to prove non-homogeneous Gagliardo-Nirenberg inequalities of the form

(2.32) lull e < ClPUD)ul%: || Po(D)ull 2",

where N > 2, p > 20542 and Py(D), Py(D) are Fourier integral operators defined by

Pz'(D)(u):]:_l (Pz()a)v i=1,2.
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Assuming that there exist non-negative functions py1,ps : [0,00) — R such that |P;(¢)| >
pi(|€]) for all € € RV, i = 1, 2 and proceeding as in (Z20) and Z2I)) we get for all u € S(RY)

1 o No1
(233) ||P1(D)U||%2 2 W/ pf(r)zi(r) dT, where Zu(’l”) =7r 2 ||U(T-)HL2(SN—1).
0

In order to prove the inequality [232)) in some function space 2~ (typically 2" = H*(RY),
but other spaces might be considered), one needs to show the continuity of the LP—norm and
of the operators P;(D) and P»(D) on 27, as well as the density of S(R") in 2". Then, taking

N—
into account (ZI9) and ([Z33) and denoting w(r) = r*= %, it suffices to show that

w s )
sup NH 90||L1(07 )17,{ ‘ pip € L2(O, OO) \ {O}7 i=1,2
||p1<PHL2(0700)Hp280||L2(0700)

is finite. To do this, by Lemma 21l and Remark (i) it suffices to prove that the function

tliTNw 2 o TN_l_%
2.31) e Preed I B
(p2 + tlpa[2)? 122 000) o t5TIPR(r) + top3(r)

is bounded on (0, c0).

If N =1 or if the Tomas-Stein inequality is not available (for instance, if 2 < p < QJf,V—_JrlQ),
one may try to use the Hausdorff-Young Theorem to prove the inequality ([Z32), as in the
proof of Theorem 2.3 Indeed, to establish ([2.32)) it suffices to show that the supremum

sup HfHLPl Py e LQ(RN) \{0},i=1,2
| Prollss || Pael| -

is finite, and by Lemma 2] this amounts to proving that the function

1—k

t—z
(P2 +1tP2)?

p—2

1
e /RN (t= 1 [PLE) 2 + 17| Pa()[2) 72

Lp—2

(2.35) K(t) = de

is bounded on (0,00). However, we expect the approach based on the Hausdorff-Young in-
equality to give weaker results than the approach based on the Tomas-Stein inequality. For
instance, if P; and P» are radial and non-negative (that is, if P;(§) = p;(|¢]) > 0), it is easily
seen that the boundedness of the function K implies the boundedness of the function H, but
the converse might not be true. See Remark

As a matter of fact, the Gagliardo-Nirenberg-Sobolev inequality

17N(4p72) Nip72)
Ul|lLr & u 2 - u P
lullze < Cllullp. ™" [[(=A)%ull "

(with 2 < p < N2i\£15 if s < %) can be proven by using our method and the Hausdorff-Young
inequality; in this case P; = 1 and P5(€) = [€]?%, and the integral in K (t) is easily evaluated

using polar coordinates and the change of variables r = t‘ﬁy. For s =1 and p = 20 + 2, this

gives (B3).

Remark 2.9 More quantitative variants of (Z32]) can be proved, too. For instance, in some
applications it is useful to dispose of inequalities of the form (232) under the additional
constraint ||Py(D)ul|r2 < R||Pi(D)ulr2, where R > 0 is given. To obtain such inequalities
we may use a slight modification of Lemma 211

With the notation and the assumptions in Lemma 2] let

| ol
lpwi[Z2 - [lpwall L2

¢ is measurable, pw; € L?(X) for i =1, 2,
and 0 < ||ows]|r2 < Rljowi]| L2 ’

29 .
L2-aq

w

S oL
(wf + thoo|?)?

t>a

M3 = sup (tl_f
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(-r)
Then we have ME < (1 — k)" k5 M,"F* .
To prove the above statement we use again the observation that for any A, B > 0, the
function f(t) = At"~!+ Bt" achieves its minimum on (0, 00) at ¢, = % and f(tmin) =
(1— k)" k=" A®B1=% If ¢ is a measurable function satisfying pw; € L*(X) for i = 1, 2 and

. 1— 2
0 < lpwslzs < Rllgwi |2, taking A= [l 3z, B = [lpuwsl[3z and tr = aeplis
L

see that ([2:2)) holds and, moreover, i, > %. Then we use ([22) and 2] and we proceed
exactly as in the proof of Lemma 2.1]

)

Assume that P; and Py are radial, that is P;(§) = p;(|€]) for i = 1,2. Then we have equality
in (Z.33) and the condition || Py(D)ulz> < R||Pi(D)ul > is equivalent to [|p2(] - [)ul| L2@myy <
R|p1(] - |)ﬂ||L2(RN) and to ||p2zull22(0,00) < Rl[P12ullL2(0,00)- We infer that

l[ullzr
(2.36) sup - —
1P (D)ull72 | Pa(D)ull

u € S(RM),0 < |Pa(D)ul| > < R|P2(D)u||Lz}

is finite if one of the functions H or K defined in (234) and in (Z33)) is bounded on [(i;;) ,00).

If H(t) (respectively K (t)) is finite for some ¢ > 0, it suffices to verify the boundedness of H
(respectively of K) in a neighbourhood of infinity. Of course, having explicit bounds on H or

(i}';) ,00) would provide explicit bounds on the supremum in (2.30]).

on K on the interval |
Remark [Z9 enables us to state the following quantitative variant of Theorems 23] and

Corollary 2.10 Let Q, be as in (2Z8). The supremum

@37 sup{Qulw) |ue H'RY)\ {0} and | (DI = Dullzz < Rfullze}

is finite for any fized R > 0 if

5 1 N+1/1 1
- = > - d l—r<—F—|z—-).
N K25 an K 5 (2 p>

1
2.38 = >
(2.38) ,

N =

Proof. We have already seen in the proofs of Theorems 2.3 and that the functions F

. . : el 1 s
given by (2.I2) and G given by [2.24) are well-defined and continuous on (0, 00) if & > 5 — %

In the proof of Theorem 2.3]it is shown that F' is bounded in a neighbourhood of infinity
ifl—k< % — %, and Remark 2.9] above implies Corollary 2.10 in dimension N = 1.

Assume that N > 2. In the case p > %, it is shown in the proof of Theorem
that the function G is bounded near infinity if x > % and this proves Corollary 2101 In the

AN+D) 2(N+1) 2(

case yip—3 SP < “x-1 the conclusion follows from the case p = Jffv—jll) by interpolation,

using (Z25)). O

3 Global minimisation of the energy at fixed L?—norm

In this section we study the minimisation problem (P,,). Recall that E,,;, has been introduced
in (L4). Scaling properties of various terms appearing in F will be important. It is easily

z

seen that for any function u € H*(R") and for any a,b > 0, letting uq;(z) = au () we have

/ |Atg p|? do = a2bN74/ |Aul? dz, / | Vg p|? do = a2bN72/ |Vul|® d,
RN RN RN RN

/ [t p|? 2 do = a2"+2bN/ lu|? da, / [t p|* do = a2bN/ lu|? da.
RN RV RV RN

Using the Plancherel Theorem we have for all u € H?(R")

(3.1)

1 1 2

8ulE: = G Pl = G [ ar e ma ||

= (2;)1\, Hﬁjékﬂﬂiz-

0%u ‘

x ;02

L2
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It is then obvious that || 522 89% < ||Au||2. We have also the interpolation inequality
J

Iz

1 o 1 B

(3.2) IVullZ. = WH - fullze < W” -

ullzellullze = [|Aullp2[lul 2.
Notice that we have strict inequality in (32]), except for u = 0.

We denote 2** = oo if N < 4 and 2** = 28 if N > 5. It is well-known (see, e.g., [§]
section 9.3) that H2(RY) ¢ L>(RY) if N < 3, H*(R"Y) c LP(RY) for any p € [2,00) if
N =4 and H*(RN) c L*"(RN) if N > 5. Moreover, in the latter case we have the Sobolev
inequality [|ul| 2+« < Cs||Aul/z2 for any v € H?(RY).

For any o € [0, % — 1) we have the Gagliardo-Nirenberg-Sobolev inequality

oy 2420 -2
2 [ullze

(3.3) |ul2552% < Bl|Aul|, for all u € H*(RN),

where B is independent of u (see e.g. [21I] or the end of Remark 28]). We denote by B(N, o)
the best possible value of the constant B in ([B3]), namely

2042
(3.4) B(N,o)=  sup - ||L2‘;f20,
weH2 (RN, 020 | Aull A [lull 3]

It is also well known that there exist optimal functions for ([4); that is, the supremum in
B4) is, in fact, a maximum (see, e.g., Example 3.10 in [19]).
Let E,,n be as in ([L4). The properties of the function F,,;, will be crucial in the sequel.

They are summarized in the next Proposition and in the remark following it.

Proposition 3.1 The function m — Ep,in(m) has the following properties:
(i) If N > 4 we have Epin(m) = —oo for all m > 0.

For the following statements we assume that 0 < oN < 4. We have:
(ii) The function E,y is concave on (0,00).
(i1i) For any m > 0 there holds Ein(m) < —m.

Emin
(iv) lim E,in(m) = 0 and lim Emin(m) =-1.
ml0 ml0 m
(v) If 0 < oN < 4 we have E,(m) > —oo for all m > 0 and there exist A€ R, B> 0
Emin
such that Epin(m) < Am — Bm° ™t (thus, in particular, Emin(m)
m

Moreover, for any ki, ka > 0 the set {u € H*(RY™) | ||lullz: < k1 and E(u) < ka} is bounded
in H?(R™N).

(vi) Assume that cN = 4. Let B(N,o) be as in [37)) and let k. = (o + 1)sB(N,0)" 7.

Then E,in(m) is finite for any m € (0,ky) and Epin(m) = —00 if m > k..

In addition, for any ki < k. and any ky > 0, the set {u € H*RY) | |ul?. <
ki and E(u) <k} is bounded in H*(RY).

— —00 as m — o0).

Remark 3.2 The function E,,;, is finite and concave on (0,00) if oN < 4, respectively
n (0,k,) if oN = 4, hence it is continuous and admits left and right derivatives at any
pomt of these intervals. We denote by E; ;. ,(m) and Ej ;. .(m), respectively, the left and

right derivatives of Ep, at m. The functions B, i and E,’nm , are nonincreasing, we have

Eine(m) = B, (m) for all m and equality must occur at all but countably many m’s.
Proposition B1] (1v) implies that
hm Emzn Z( ) = Sup Emzn Z( ) = hm Emzn r( ) = sup Emzn 7‘( ) = -1
m>0
Let
(3.5) mg :=sup{m > 0 | Epn(m) = —m}.
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It is clear that E,,;,(m) = —m on (0,mg) and Ep,in(m) < —m on (mg,00). If m > myg
and En(m) > —oo we must have FE/ m) < —1. If N < 4 we have my < oo and

min, E(
hm Ein.o(m) = hm B, in.r(m) = —00 because lim E"‘#(m) = —oo by Proposition B1]
).

m—r oo
Proof of Proposition [31. (i) Let m > 0. Choose u € H*(R") satisfying ||ul|?, = m.
We use [BI) with uqp = au(;) and a = t4,b=t"z2. It is obvious that lugnsa, 172132 =
|ull32 = m for any ¢ > 0, and consequently Epin(m) < E(ugn/a 4-1/2) for all t. From (@)
we have

(36) E(’utN/47t71/2) = t2/

RN

|Au|2dx—2t/ |Vul? do— 1% / |ul?7%2 d.
RN RV

If No > 4, letting t — oo we discover E,,(m) < tlim E(uina p—172) = —00.
—00 ’

(ii) Tt is obvious that u € S(m) if and only if there exists v € S(1) such that v = /muv.
Hence for any m > 0 we have

Epin(m) = inf{E(y/mv) | v e S(1)}

ma—i—l
= inf {m (/ |Av? dx — 2/ |Vol? dw) - / [v|>7 2 dx } v e S(l)} .
RN RN o+ 1 RN

+1

For any A € R and any B > 0 the function m — Am — Bm“*! is concave on (0,00). The
infimum of a family of concave functions is also a concave function and statement (ii) follows.

(iii) Let m > 0 and € > 0. Choose a function n € C2°(R”) such that [|5]|2. = (27)"m
and the support of 7 is contalned in the annulus B(0,1) \ B(0,1 —¢). Let u = F1(n).
Then v € S(RY) and ||ul|2, = 277 == |nl|7. = m. Using the basic properties of the Fourier

transform, Plancherel’s formula and the fact that 0 < (|§ |2 — 1) < 4¢? on the support of n
we get

2 2 2, 1 4 2 ~eV)2
|aupar=2 [ vupdrs [ e = e [ (el <206+ 1) @) P de

S —1¢P)? 24 et 2 g¢ — 4e2m,
2m)N /B(O,l)\B(O,l—E) (1= [€1%)" [n(&)]* dg < L /RN In(&)? d¢ = 4*m.

We infer that
BEpmin(m) +m < E(u) + |lul|2: < / |Au|? dz — 2/ |Vul|? da +/ lul? do < 4e*m,
RN RN

that is Epin,(m) < —m + 4e?m. Since £ > 0 is arbitrary, (iii) follows.

(iv) Counsider first the case 0 < o N < 4. Let 0 < ¢ < 1. Using the Gagliardo-Nirenberg-
Sobolev inequality ([B3]) and Young’s inequality (Jab| < % + % if %—i—% = 1) with exponents
p:ﬁandq 4iN,Wegetf0ranyU€H2(RN)

8(c+1)—20N

242 —
2T el Av)E + Cue)oll e T

ol < Bl ol

where (' (¢) is independent of v. It follows that

8(oc+1)—20 N

(3.7) E(v) > (1= ¢)|Avli — 2[VolZ: — Ci(e)]vll = =77

Using Plancherel’s formula we get

1 1—¢ 1 2
A 2 \v4 2 2 2 -~ 2 l
. - 2 — 2+ —— 2 = TN I e— 2
(3 8) (1 E)H UHZ/ 2” UHL 1 EHUHZ/ (2 )N/N <|€| 1 E> |’U(€)| g 0
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Notice that the inequality in ([B.8)) is strict if u # 0. From B.71) and &8) we get

1 8(c+1)—20N

—EH’UH%2 = Ci()lvl " for all v € H*(RM).

(3.9) E(v) = T

Taking the infimum in B3) over all v € H2(RY) satisfying [[v|2. = m we discover

(3.10) Epin(m) > —% —Ci(e)m = for any m > 0.
. 1 o Emin(m)
From (iii) and (8I0) it follows that E,,n(m) — 0asm — 0 and — T < hmjglf <
— & m m

Emin
lim sup ﬂ
mJl0 m
Next consider the case cN = 4. The Gagliardo-Nirenberg-Sobolev inequality (B3] be-
comes

< —1. Since ¢ is arbitrary, (iv) is proven.

(3.11) [vll7555: < BllAv|Zallv]Z3

Let 0 < ¢ < 1. Using B10)), for any v € H?(R") satisfying %HM 29 < & we get

E(v) > (1 - o) Av|[7. — 2| VolZ,
and then using [B8) we obtain E(v) > —=||v[|2.. This gives Epin(m) > — 72 for all m > 0
satisfying %m% < e. Taking into account (iii), statement (iv) is now obvious.
(v) Using BI0) with e = 1, say, it is clear that Ey,,(m) > —oo for any m > 0.
Fix v € H?*(RY) such that ||uljz= = 1. Let A = / |Au|? dz — 2/ |Au|? dz and
RN RN

1 o
- oc+1 7
Am — Bm° T,
If ||ul| L2 < k1 and E(u) < ks, using (B:2) and [B3]) we get

dx. For all m > 0 we have |mzul|%, = m, hence Epn(m) < E(u) =

B 24-2 oN
> Al — 2k Aallge — 2k Al
Since 2 < 2 the above inequality implies that ||Aul|z2 is bounded. Then [B2]) and the
inequality ’ Fo,00 Lo < [|Aul| g2 imply that [[ul| g2(g~) is bounded.
J

(vi) Assume oN = 4. By B2) and 33) we have for all u € H2(R")

E() > Aul3s = 2]ulg2]Aullz — ZE2 | A3 |l

U+1
(3.12)
= (1 2D u)25) | AulZe — 2l coll vl o
Let ky < ky = (0 +1)s B(N,0)~=. Let 7(ki) = 1 — 282 kg > 0. For any u € H2(RV)

such that [ul|2, < ki, by BI2) we get

k

(3.13) E(u) = 7(k)||Aul|Z2 — 2k ||Aul| g2 > mln( (k1)s® — 2kys) = L
sER 7(k1)

We infer that E,,;,(m) > — (k y > =0 for all m € (0, k1]. Since k1 < k. was arbitrary, we

see that E,y is finite on (0,k,). Moreover, if |[ul|3, < k1 < ks and E(u) < ko then BI3)
implies that || Aul|z> is bounded and arguing as in part (v) we see that ||ul| z2(g~) is bounded.
Let @ be an optimal function for the Gagliardo-Nirenberg-Sobolev inequality (B3) with

1
o = 4+ such that ||Q 2 = kZ = (0 + 1)2¢ B(N,0) " 27. Such a function Q exists because
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whenever u is an optimal function for ([B3), the rescaled functions u, ,(-) = au (B)are optimal
functions, too. We have

1 ; 1
QI = — < BOV.0)[AQIR: QI = 1AQI.
For t > 0 let u,(z) = t3Q(t>x). From (FI) and @0) it follows that [us]|2, = |Q||2. = k.
and E(u;) = —2t|VQ||3,. Letting ¢ — co we discover Epn(ky) = —oo. If m > k., using
1
the test function m2 k. u; and letting t — oo we find E,,in(m) = —00. O

As we will see later, problem (P,,) admits solutions if and only if —co < Epin(m) < —m.
We have already seen that E,,;,(m) = —oo for all m if o > %. Proposition 3.3 gives necessary
and sufficient conditions to have Ep,;,, (m) < —m whenever o € (0, %] Its proof relies on the
functional inequalities proved in Section 2] and on the test functions constructed there.

Proposition 3.3 Let N € N*. We have:

(1) If 0 < 0 < max (1, %) , then Eyin(m) < —m for all m > 0.

(11) If max (1, ﬁ) < 0 < %, there exists mg > 0 such that Epin(m) = —m for any
m € (0, mg] and Eyin(m) < —m for any m > mg. Moreover, my is given by (Z106) below.

(iii) Assume that o = + and let k. be as in Proposition [31 (vi). Let mo be as in (Z10).
Then mgy < k. and we have Enn(m) = —m if m € (0,mq], respectively —oo < Epin(m) <
—m if m € (mg, ky).

Proof. (i) Assume that N = 1 and 0 < ¢ < 2. Fix m > 0 and let u, be as in
Example Z4 Denote v, = 737 2mZzu,. By [ZI3) we have [vr)|2: = m, |v- 2352 =
(0 + 1) 2za~ Em =7 and @I4) gives (A + Do |32 ~ CmT 2as 7 — oo. For 7
sufficiently large we have E(v:) + [lor[|3. = (A + D)vr|17. — 7=l v, ||2542, < 0, and this
implies Eypin(m) < —m.

If N > 2, for small €,§ > 0 let uc 5 be as in ([Z26). Denote w. s = Wus 5, SO that
|we,s]|%2 = m. By 227) and (Imb We have [|(A + 1)we s]|22 ~ me?, while (227) and (2.30)
give ||we, 5||L2L,+2 > Cmotteot1§o(N=1)(§2 4 £)=! for some C > 0.

If o € (0,1), fix a small dp > 0 and observe that

1 o
(3.14) B(wes,) + lwesllze = 1(A+ Dwesollze = ——7 lwesl73:5 <0
if ¢ is sufficiently small, hence E,,;,(m) +m < 0.
Ifoe (O, N+1> taking & = 62 it follows from the above estimates that ||(A+1)wsz 5(|2, ~

md* and [|wsz 53557 > Cmo 167 V+D for some C' > 0 and any small § > 0. As in (3I4), this
implies E(ws2 5) + ||[ws2 5]|22 < 0 for sufficiently small §, and consequently Ey,i,, (m) +m < 0.

(ii) It is easy to see that for any u € H*(R") we have

1 lullZ ul| 7522
E(w)+|ul?2 = [(A+1D)ul|?o— ——[ul|?3F2, = (A+Dul]?. | 1 - L L .
( ) || ||L2 ”( ) ”L2 0,+1|| ||L2 +2 ”( ) ”L2 o+ 1 ||’U,|%%||(A+1)’U,H%2
ol s | .
Let k=227 and Q,(u) = (see ([Z8)). The above equality can be written as

lull 2 [l (A+1)ull 2"

[[ull7%
oc+1

(3.15) E(u) + |Jull2s = [|(A + 1)ul2. (1 - Q,.;(u)%”) for all u € H*(RN)\ {0}.

We use the results in Section Pl with s =2, p =20 + 2 and k = P

If N = 1, condition 2—15 < (1;%2)17 < % in Theorem 2.3 is equivalent to 4 > o > 2. Hence

Qy, is bounded from above if o € [2,4].
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If N > 2, the condition x > 5 in (ZI8) is equivalent to o > 1, N (% — l) <1—-kis

1

5 S P

equivalent to o < %, and 1 — k < % (% — %) is equivalent to o > NLH. By Theorem 2.6]
Q) is bounded from above if and only if max (1, ﬁ) <o < %.

Whenever Q) is bounded from above, let M = sup Qx(u), as in [29)), and let
ueHs(RN)\{0}

_ 2042

(3.16) mo=(oc+1)7M 5
If m € (0,mo], using (3IH) we infer that E(u) + |[ul|?, > 0 for any u € H*(R") satisfying
|ul|?: = m, hence Ey,in(m) 4+ m > 0. Then Proposition Bl (iii) implies E,;, (m) = —m.

If m > mo, we have (o + 1)%7m~ %7 < M. Choose u € H*RY), u # 0, such that
Qr(u) > (o + 1)ﬁm72;ﬁ. Let v = ﬁu, so that [|v]|7. = m and Q. (v) = Qx(u). From

L
BI5) we get E(v) + ||lv]|2. < 0, hence Epyip(m) < —m.

(iii) Taking into account (BI6) and the expression of k. in Proposition Bl (vi), the in-
equality mg < ki is equivalent to B(N,0) < M?°™2 where B(N, o) is given by ([34). Denote
by O(u) the quotient appearing in ([4). Let u. be an optimal function for (84). Then
Ur = Uy (\7) is also an optimal function for 4], that is Q(u,) = B(N, o) for all 7 > 0.
The conclusion follows if we find 7 > 0 such that Q(u,) < Q. (u,)?°2, and this is equivalent

to (A + Lu,||3. < [[Aus||32, or using Plancherel’s theorem, / (1€1* - 7')2 [a. (&) d¢ <

RN

/ . €] T2 (€) d€. The last inequality can be written as
R

_ 2,&*2 2 a*Q
o [ PP i+ [P d <0

2|| |-[@]|3 2

and holds true if 0 < 7 < oAk
12,
from part (ii) and Proposition B (vi). O

. We have thus shown that mg < k.. The rest follows

The next Theorem establishes the existence of minimizers for the problem (P,,) as well as
the pre-compactness modulo translations of all minimizing sequences.

Theorem 3.4 Assume that No < 4 and m > 0 is such that Ep,in(m) < —m.

Then for any sequence (un)n>1 C H2RYN) satisfying M(u,) — m and E(u,) —
Epin(m) there exist a subsequence, still denoted (un)n>1, a sequence of points (Tpn)n>1 C RV
and a function u € H*(RY) such that u,(- + z,) — u strongly in H?(RN).

In particular, there exists a solution u € H*(RY) to the minimization problem (P,,).

The same conclusion holds if No = 4, 0 < m < k. (where k, is as in Proposition [Z1]
(vi)), and Eyin(m) < —m.

P

Proof. Let (un)n>1 be a minimizing sequence. It follows from Proposition Bl (v) or (vi)
that (u,)n>1 is bounded in H2(RY).
Using ([B.8) with ¢ = 0 we infer that for any u € H?(R"Y) there holds

/ |u|> 2 de = (0 + 1)/ |Au? — 2|Vul|? + [u* dz — (o + 1)(E(u) + ||jul|32)
(3.17) RN RN
> —(0+ 1)(E(u) + |lull1,)-

Choose ¢’ > o such that 20’ +2 < 2**. We denote by LV the Lebesgue measure in RV,
Using Hélder’s inequality and the Sobolev embedding we get for any u € H?(RY) and for
any t > 0,

Jow W72 dx = [y P72 d [y 277 do

o+1

o o’ o’ 1— a/+1
(3.18) <2 f{|u\<t} |2 da + (f{|u\>t} |u[20'+2 dw) LN (Jul =t e

<2 |[ull2s + (Csllull g2)? 2 £V ({Ju] > 1))~ 751 |
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Choose § > 0 such that 26 < —(o+1)(Ey,in(m)+m) (this is possible because Epin (m) < —m).
Since |lunl|2; — m and E(u,) — Epin(m), BID) implies that / i |27+2 dar > 26 for

all n sufficiently large. Choose to > 0 such that ¢3°(m + 1) = 4. Using @I8) for u,, and the
boundedness of (u,,),>1 in H2(RY), we infer that there exists a constant a > 0, independent
of n, such that £V ({|u,| = to}) > a for all sufficiently large n. Using Lieb’s Lemma (see
Lemma 6 p. 447 in [I5] or Appendix 2 in [19]) we infer that there exists a constant b > 0,
independent of n, and for each n large there exists x, € R" such that

oN ({x € B(zn,1) | [un] > %0}) >b.

From now on we replace u,, by u,(- + x,), which is still a minimizing sequence and satis-
fies LV ({z € B(0,1) | [un| = 2}) > b. Since (un)n>1 is bounded in H?(RY) there exists a
subsequence, still denoted (uy,),>1, and there is u € H*(RY) such that

Uy — U weakly in H2(RY),
Uy — U in LP (RN) for 1 < p < 2** and a.e.

loc

(3.19)

It is clear that fB(O 1 |un|Pdx > b (%’)p for all n sufficiently large. Take any p € [1,2*)

and pass to the limit to get fB(O 1 |u|Pde = b (%))p. In particular, we infer that u # 0.

Let my = ||lu||2.. It is clear that 0 < my < liminf,, s [[un||32 = m. We will show that
m; = m. We argue by contradiction and we assume that m; < m. The weak convergence in
a Hilbert space gives as n — o0

lunllZe = llullZe + llun — ullZz +o(1),
(3.20) IVunlz: = [VullZ: + 1V (un — w72 + o(1),
[Aun|Z2 = |AulZ2 + |A(un — u)]|72 + o1).

Using the Brezis-Lieb Lemma (see e.g. Lemma 4.6 p. 10 in [14]) we get

(3.21) / [, |27 dx = / |u|?7 2 dx +/ [y — ul?7 T2 dx 4 o(1).
RN RN RN
From (320) and B2I) we get
(3.22) E(uyp) = E(u) + E(un —u) + o(1) as n — 00.

It is obvious that E(u) > Epin(mi) and E(up, — u) = Epin(|lun — ul|32). By B20) we
have ||u, — u|2. — m —my. The function E,,;, is continuous on (0,00) if 0 < oN < 4,
respectively on (0, k) if o N = 4, and passing to the limit in (322]) we get

(323) Eoin (m) > Foin (ml) + Eoin (m — ml).

Since Epin is concave and Epin(n) — 0 as n — 0 we have Epin(m1) = T2 Epi(m)
and Fpin(m —my) > T E,in(m). Moreover, equality may occur in one of these in-
equalities if and only if Fy,;, is linear on (0,m]. Summing up and comparing to ([B23) we
infer that necessarily we have i, (m1) = L Eyin(m) and Ey,i, must be linear on (0, m].
Then Proposition B (iv) implies that E,,:,(n) = —n for any n € (0,m], and in particular

E,in(m) = —m, contradicting the fact that E,,;,(m) < —m. This contradiction shows that
necessarily m; = m.
Since u, — u weakly in L2(RY) and ||u,||2. — m = |lu||2. we infer that u, — u

strongly in L2(RY). Using @2) and B3) for u,, — u we infer that Vu,, — Vu strongly in

L?(RY) and u,, — u strongly in L?°+2(RY). The weak convergence u, — u in H?(RY)

gives ||Aul|2, < liminf |[|Auy,||72, and consequently we get F(u) < liminf E(u,) = Epin(m).
n—roo n—roo

On the other hand we have E(u) > Epin(m) because ||ul|2, = m. Therefore E(u) = Epin(m)
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and u solves the problem (P,,). Moreover, we have ||Au,|?, — ||Aul|?,. Since Au, —
Au weakly in L2(R”), we infer that Awu, — Au strongly in L?(RY). The inequality

‘ %{5’% L < ||Av| 2 for any v € H?*(RY) implies that u, — u strongly in H*(RY) and
Theorem [3.4] is proven. O

Proposition 3.5 Assume that cN < 4, m > 0 and u € H*(RY) is a solution of the mini-
mization problem (Py,). Then there exists ¢ = c(u) > 0 such that u satisfies the equation

(3.24) A%u+2Au+ (14 c)u— [ul*u=0 in H-2(RM).
Moreover, we have:
(i) 1+ ce[=Ep, (m), —Ep, . (m)].
(11) If mo = 0 (where mq is given by (4.0)), then c(u) — 0 as m — 0.
(1ii) If oN < 4 we have c(u) — 00 as m — 00.

() If m > mqo and E,,;,, ,(m) > E},;, .(m), there exist at least two solutions u1 and uz

for the problem (Py,) such that 1+ c(u1) = —E, ., ,(m) and 1 + c(uz) = —E7,;,, .(m).

(v) If mi < ma, the function ui solves (Pp,) and ua solves (Prm,), then c(u1) < c(us).

(vi) If mo > 0, problem (P,,) does not admit solutions for any m € (0,my).

Proof. Since E and M (u) := |Ju||%, are C" functionals on H*(R"), the existence of a Lagrange
multiplier A, € R such that E'(u) = A, M'(u) in H?(R") is standard. Then we have

(3.25) A2u 4 2Au — Ayu — |u|* u =0 in H2(R").

We claim that A € [E},,, .(m), B/, ,(m)]. We have ||(1+ t)ul7, = (1+£t)?*m, hence E(u +
tu) = Emin (1 £¢)?m) and therefore

E(u+tu) — E(u)

2Aum = 2, ||ul|2; = A M/ (u).w = E'(u).u = lim

10 t
Emin 1 t 2 - Emzn
t10 t ’
We conclude that A\, > E},;, .(m). Proceeding similarly with 1 — ¢ instead of 1+t we get
—Au = —E,;,, (m) and the claim is proven. Denoting c(u) = —A, — 1, statement (i) follows.
Taking the H 2 — H? duality product of (3.25]) and of u we get
(3.26) / Aul? dz — 2/ Vul? dz — )\u/ luf? do —/ |27+ s = 0,
RN RN RN RN
Using (3:20) and the identities ||ul|?. = m, E(u) = Epin(m) we get
(3.27)
1 1 Ay
Jul| 722, = 7 (Epmin(m)—Aym) and / |Aul? - 2|Vu|?dr = ot Eppin(m)—=—m.
g RN g

Since Epin(m) < —m for all m > 0, the first part in (8.27) implies that for any m > 0 and for
any solution u of (P,,) we must have A\, < —1, that is c¢(u) > 0. If mg > 0, m € (0,my) and
u is a solution to the problem (P,,) by (i) we should have A, = —1, a contradiction. Thus
(vi) is proven.

Consider m > my such that FE,,;,(m) is finite. Take an increasing sequence (my,),>2 in
(mo, m) such that m, — m. For each n, let u, be a solution of the minimization problem
(Pm,,) (the existence of u, is guaranteed by Theorem [B4). Then (u,),>2 is a minimizing
sequence for (P,,). Using Theorem [B4] again we see that there exists a subsequence, still
denoted (un)n>2, and there exists a solution u; of the problem (P,,) such that w, — uy
strongly in H2(RY). Identity (3.26) and the strong convergence in H?(RY) imply that
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Ay, = nh_}rrgo Au,, - On the other hand, (i) and the basic properties of concave functions imply

that Ay, — E,;,,(m). Thus we have \,, = E, ; ,(m). Taking a decreasing sequence
m, — m and proceeding similarly we see that there exists a solution ug of (P,,) such that
Ay, = E! . (m). This proves (iv).

min,r

To prove (v) we argue by contradiction and we assume that there are m; < ms and there
are solutions u; and ug of (P, ) and of (P, ), respectively, such that c(u;) = ¢(uz). Since
-1- C(ul) 2 E;nin,r(ml) 2 E;nin,f(mQ) z—-1- C(U’Q)’ we see that Ev/nin,r(ml) - E;nin,f(m2)5
and this implies that E,,;, is affine on [my, ms]. Hence there exist A < —1 and B € R such
that Ein(m) = Am+ B for any m € [my, ms]. For any m € (mq, ma), Theorem B4 gives the
existence of a solution u to the problem (P,,) and statement (i) above implies that A, = A,
or equivalently c¢(u) = ¢(u1) = ¢(uz). Fix ms € (m1, mz2) and let u be a minimizer for (P, ).
The first part of (B.27) gives HuHi‘éjfz = 2L B, hence B > 0. Using v/tu as test function and
taking ([B:27) into account we get for ¢ sufficiently close to 1,

o+1
Xtm3 + B = Epin(tms) < B(Vtu) = tﬂw|Au|2 —2|Vul|?dx — ZTIRN |ul?9+2 dx
(3.28)
1 ta+1
—Mms+ B+ 2B (1 - -2 ).
o c+1 o+1
Since B > 0 and t — % — 557 <O0fort#1, (B28) gives a contradiction. This proves (v).
All other statements in Proposition are obvious. O
So far we have solved the global minimization problem (P,,) in H2(R") in the case o N < 4

and we have shown that any solution satisfies ([3.24)) for some ¢ > 0. Obviously, u € H?(RY)
solves ([B.24) if and only if w is a critical point of the following functional, called action:

1
Se(u) = / |Au|2dx—2/ |Vu|? do + (1+c)/ |u|? dox — —— |u|?7 2 d.
RN RN RN o+1 RN

At this stage it is not clear that given any ¢ > 0, there exists m > 0 and a solution u of (P,,)
such that ¢(u) = ¢. We will show that for any ¢ > 0 and for any o > 0 satisfying 20 +2 < 2**,
equation ([3:24) has solutions and, moreover, it has solutions minimizing the action S. among
all solutions (these are called minimum action solutions or ground states). Moreover, we will
show that all minimizers of a problem (P,,) are ground states. To this end we introduce
another family of minimization problems.

Let ¢ > 0. We consider the minimization problem

minimize T,(u) := / |Aul|? dz — 2/ |Vul|? dz + (1 + c)/ lu|? dz
RN RN RN
(7e)
in the set U := {u€H2(RN) ’ / |u|2“+2dx_1}.
RN

We denote t(c) = inf{T.(u) | u € U}. It is clear that

(3.29) Se(u) = Te(u) — ! / |u|?7 2 de = E(u) + (1 + c)/ u|? de.

g + 1 RN RN
Theorem 3.6 Assume that 0 <o < oo if N >4 and 0 < 0 < ﬁ if N > 4. Then for any
¢ > 0 we have t(c) > 0 and the minimization problem (T.) admits solutions. Moreover, for
any sequence (un)n>1 C H*(RN) satisfying [gn [un|?*" T dz — 1 and T,(u,) — t(c) there
exist a subsequence (un, )r>1, a sequence (xx)r>1 C RY and a minimizer u for (T.) such that
Un,, (- + 1) — u strongly in H2(RY).

Proof. The proof is standard, so we only sketch it. Fix ¢ > 0. Then fix € > 0 such that
L +e < 1+c. Using BF) we get T(v) > e[| Av||2. +¢l|v||2, for any v € H*(RY), and then

1
it is clear that T2 is a norm on H?(R”) and that it is equivalent to the usual norm. By the
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Sobolev embedding there exists K. > 0 such that ||v]| 2042 < KCTC% (v), thus t(c) = K2 > 0.
For any v € H2(RY), v # 0 we have € U, hence T, (#) > t(c) and this gives

U
vl 2042 vl 2042

(3.30) T.(v) = t(c)||v]|3 2042 for any v € H*(RY).

Let (un)n>1 be a sequence as in Theorem It is obvious that (uy)n>1 is bounded in
H?(RY). We choose 0’ > o such that 20’ +2 < 2** and we use [B.I8)) for u,, to infer that there
exists constants ¢g, a > 0, independent of n, such that £~ ({|u,| = to}) > a for all sufficiently
large n. Then Lieb’s Lemma implies that there exists a constant b > 0, independent of n,
and for each n large there exists x,, € RY such that £V ({x € B(xp,1) ‘ [tn| = %’ ) > b. We
replace u,, by u,(- + 2, ), which is still a minimizing sequence and satisfies fB(O,l) |t |P da >

b (%O)p for all n. Since (u,)n>1 is bounded in H?(RY) there is a subsequence, still denoted

(tn)n>1, and there is u € H?(RY) such that I9) holds. The convergence u, — u in
LY for 1 < p < 2** gives fB(o y [ulPda > b(%)", and therefore u # 0. Denote 7 =
Ja~ [u**t?dz > 0. By Fatou’s Lemma we get 7 < 1. It is obvious that (320) and (3.2I)
hold. By B2I) we have [ [un — u[*?T?dz — 1 — 7 and then using 20) and B30) we
find

To(tn) = To(tty — u) + To(u) + 0(1) = t(c) ||t — u]|2 2012 + t(c)||[t]|2 2042 + o(1).

Letting n — oo in the above inequality we obtain 1 > (1 — 17)(7%1 + 770%1 and this implies
that n = 1, that is uw € U. Then we must have T,(u) > t(c). On the other hand, T.(u) <
liminf T, (u,) = t(c) by weak convergence, and therefore T.(u) = ¢(c¢) = lim T.(uy). Since
n—roo n—oo

T, is a norm on H?(RY) we infer that u,, — u strongly in H2(R”), as desired. O

Proposition 3.7 The mapping ¢ — t(c) is strictly increasing on (0,00) and there is C' > 0
such that t(c) < Cy/c for all sufficiently small c. In particular we have t(c) — 0 as ¢ — 0.

Proof. Let 0 < ¢; < ¢2. Let u be a minimizer for the problem (7;,). We have u € U and
t(co) = Te,(u) > Tpy (u) = t(c1). Hence the mapping ¢ — t(c) is strictly increasing.

Let uc 5 be as in Z26). Fix 6y = 55 and let v, = u s 45, By @27), @28) and Z30) we

have
leclZa < Crct, [ AvlZs — 21 VuellZ + loclZs < Cacd and  fucllgoss > Caed

for some C1,C5, C5 > 0, so that T.(v.) < C’4c%. Using ([3.30) we see that t(c) < ”UTH#
clly 2042
C/c.

Proposition 3.8 Let u be any minimizer for the problem (T,). Then v := t(c)zeu i
solution of (3-24). Moreover, for any solution w € H*RN) of [3.24) we have S.(w)

Se(v) = ULHt(c)UTH. In other words, v is a least action solution of ([3.27).

Conversely, if v is any least action solution of (3-27)) then @ := t(c)" 259 is a solution of (T,).

/AN

S

A\VARSY

Proof.  Assume that u solves (7c). The functionals T, and u — [Ju|[3317, are C' on

H?(RY), and consequently there exists a Lagrange multiplier x € R such that
(3.31) Au 4 2Au+ (1 + c)u = k|u|*"u in H2(RN).

Taking the H—2 — H? duality product of (B31) with u we get Te(u) = £ [g |u[>** T2 dz, which
implies that ¢(c¢) = k. Denoting v = t(c)27u = k27 u, it is clear that v solves (F24). We have

o+1
o

(3.32) Se(v) =t(c)-T,

a&#/IW”%ﬁ:“t@
RN

oc+1 oc+1

Let w # 0 be an arbitrary solution of ([8:24]). The duality product of (3:24) with w gives

(3.33) T.(w) = / lw|?7 2 da.
RN
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+1

From 333)) and 330) we obtain T,.(w) < t(c)~~'T.(w)°+! and this implies T,.(w) > t(c) %= .
(By ([B33) we have also the lower bound [, [w]* 2 dz = Te(w) > t(c)%.) Using again
B33) we find

1 g g o+1
Se(w) = To(w) — 2 Ay = ——To(w) > te) " = S.(v).
() = Tew) = = [ " de = —Zo T (w) > (0 (v)
Conversely, let © be a least action solution of ([B:24). Then we have S.(0) = S.(v) =
;th(c)i§l. On the other hand, by B33) we get S.(0) = z5T.(0) = 57 [0]75 2. We
conclude that T,.(v) = H€)||2L‘T2jf2 = t(c)UT+1 and then one immediately checks that @ = t(c)~

a1
e,
is a minimizer for the problem (7¢). O

Proposition 3.9 Assume that u € H2(RY) is a solution of the minimization problem (Py,)
for some m > 0 and that u solves (3.24). Then:

(1) w is a minimum action solution of (3.24)).

(i) If v is any minimum action solution of (3.24) we have ||v||3. = m and v is a minimizer
for (Pn,).

Proof. Since u solves (P,,) and [B24]), using Proposition B8 we get

(334)  Epin(m) + (14 Jm = E(w) + L+ Julfa = Solw) > —==1(0)=.

Let v be an arbitrary minimum action solution for ([B:24) (the existence of such solutions
follows from Theorem [B.6] and PropositionBEl) From the proof of Proposition B.8 we know

that T,(v) = [gw |v|2"Jr2 dx = t(c)* . Denote m’ = ||v||2,. For any a > 0 we have [|azv|2, =
am’ and taking a3v as test function we discover

Eoin(am’) + (1 + ¢)am’ < E(azv) + (1 + c)Ha%UH%g

(3.35) .
1 7 o
= Tc(a%v) - / |a%v|2‘7+2 dx = (a — ) t(c)$.
RN

oc+1 o+1

The mapping a — ¢(a ) _ reaches its maximum value on (0,00) only at a = 1 and

U+1
the maximum is ¢(1) = Comparmg B34) and B35) we get
o o+l m o+l o o+l
— ) gEmm(m)—F(l—l—c)mg(p(W)t(c) R G

We infer that we must have equality throughout in the above sequence of inequalities. There-
fore S.(u) = ULHlf(c)dT+1 and v is a minimum action solution for (3.24). Moreover, we must

have m = m/, that is any minimum action solution v of [324)) satisfies |[v||3> = m. Then we
find E(v) = S ()= (1+c)||lv)|Fe = Se(u) = (1+c)||ul|3: = E(u) = Enin(m), and consequently
v solves (Pp,). O

Remark 3.10 (Some integral identities) Taking the H =2 — H? duality product of ([3.24]) with
u we see that any solution u € H2(RY) of ([3.24) satisfies the identity N.(u) = 0, where

330) Nw= [ |SPdo-2[ [GuPderro) [ uPdo- [Pt
RN RN RN RN
Any solution u € H?(RY) of [3.24)) satisfies the identity P.(u) = 0, where

N —4 N —2
P = [ 18 e - 2702 /RN |Vu|2dx+(1+c)/RN fuf? de

1
- / |u|?7 2 da.
U+ 1 RN
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The functionals N, and P, are the Nehari and Pohozaev functionals, respectively, and N.(u) =
0 and P.(u) = 0 are the Nehari and Pohozaev (or Derrick-Pohozaev) identities. The Pohozaev
identity expresses the behaviour of the action functional S, with respect to dilations: for any
u € H?*(RYN) we have P.(u) = %‘HISC (u(3)). and consequently one expects Pe(u) = 0
for any critical point of S.. To giVé a formal proof of this fact, one first uses a bootstrap
argument to prove some regularity of solutions of B24) (v € H3(RY) is enough). Then
consider a cut-off function x € C°(R”) such that y = 1 on B(0, 1) and supp(y) C B(0,2),
take the H~2 — H? duality product of [24) with y () Zjvzl "EjaaTuj and integrate by parts,
then let n — co. See Lemma 2.1 in [3] for details.
Two other functionals are of interest:

(338) Piw) = T (V) = Pew) = [ JAuPdo= [ 9 de— s [ et
and
Py(u) = %Nc(u) - Uijc(u)

_ (%_1) /RN |Au|2d;v—2<%—l> /RN |Vu|2d:c—(1+c)/RN luf? de.

Obviously, any solution u € H*(RY) of B24) satisfies Pi(u) = Po(u) = 0. If u € H?*(RY)
satisfies N.(u) = 0 and P;(u) = 0 for some i € {1,2}, then P.(u) = Py(u) = Pa2(u) = 0.
Given u € H?(RY) and t > 0, we denote

(3.39) ug(x) =t+u(t>z) and u'(x) = t#u(t:r).

By @) we have ||u¢]|r2 = ||ullp2 and ||ul| p20+2 = ||u||p20+2 for all ¢ > 0.

One has 2 (S. (u)) = 4 (E(u)) = 2P (uy). If the mapping t — E(u;) (or, equiva-
lently, t — S.(u¢)) achieves a local minimum or a local maximum at ¢t = 1 we must have
%ItzlE (uz) = 0 and this gives P;(u) = 0.

If t — T.(u') (or, equivalently, ¢ — S.(u')) achieves a local minimum at ¢ = 1 we must
have %ItﬂTc (u') = 0 and this gives Py(u) = 0.

It follows from Proposition B that ¢(0) = 0 and that the minimization problem (7p) has
no solution (any function u € H?(RY) satisfying Ty(u) = 0 must be zero a.e.). Therefore one
would expect that after renormalization, minimum action solutions of (324) do not have a
meaningful limit as ¢ — 0. This is proven in the next Proposition.

Proposition 3.11 Assume that 0 > 0 and (N — 4)o < 4. Let u. be any minimum action
solution of (324) and let v, = ”uZ—ﬁLw so that ||ve||rz = 1. We have

(3.40) [Avellz — 1, [|[Voellrz — 1, [[(A+ Dvel|pz — 0 as ¢ — 0,
and ||vellLe — 0 for any p € (2,00) if N > 4, respectively for any p € (2,2**) if N > 5.

Proof. We claim that for any ¢y > 0 there exists C'(N, o, ¢p) > 0 such that for any solution
u€ H2RN)\ {0} of B24) with 0 < ¢ < ¢ we have ||Aul[z2 < C(N, 0, co)|ullLz.

To prove the claim we use the identity Py(u) = 0 (which is satisfied by all solutions of
@B24) in H?(RY), see Remark B.I0). If (N —2)o > 2 we have % —1 < 0 and the identity
P3(u) = 0 implies that (% - 1) Jrn [Au)?de < (14 ¢) [ju ul? de.

If (N —2)o > 2, denote t = 12ullez - yWe divide Py(u) = 0 by [Jul|7. and we use [B2) to

lullp2
get (% — 1) t?2 -2 (% - 1) t — (1 +¢) < 0. This inequality implies that ¢ remains

bounded (the bound can be explicitly computed in terms of N, o and c), and the claim follows.
If u is a solution of ([3.24) as above, using ([3.3)) we see that there exists C'(N,o,¢) > 0
such that ||u|| 2042 < C(N,0,¢)||u|r2, and C(N,o,c) is bounded if ¢ is bounded.
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Now let u. be any minimum action solution of ([3:24]). We have seen in the proof of

Proposition B that T.(u.) = ||uc||2LU2?,Lf2 = t(c)UTH. Let v, = ”uj—ﬁﬂ Using Proposition B.7]
we get
Te(u lucll 7552 _ A 8
(3.41)  T.(ve) = ”;(H;) = ||; ﬁ? 2 < C(N,0,0)?|uc)|2%0+2 = C(N,0,¢)%t(c) — 0
cll 2 cll 2

as ¢ — 0. Dividing B3T) by [uc|%. and proceeding as above we get

N —4 N -2
(3.42) THAUCH%Q - 2T||VUC||%2 + (1 +)||lvel|72 — 0 as ¢ — 0.

From 41, 3:42) and the fact that ||v.|| 2 =1 we infer that (340) holds.

We claim that for any sequence ¢, — 0 and for any sequence (z,),>1 C R”, the only
possible weak limit in H?(RY) of v., (-+,) is zero. Indeed, assume that v, (-+,) — w # 0
weakly in H2(R”). Then by weak convergence we have

A + 1wl gz <liminf [[(A + 1)ve, (- + @)| L2 = liminf [[(A + 1o, ||z = 0,
n—r00 n—oo

and then Plancherel’s identity implies (|- — 1)@ = 0 a.e. in RY, thus w = 0, a contradiction.
The claim is thus proven. It is then standard to show that v. — 0 strongly in LP(R") for
all p € (2,00) if N > 4, respectively for all p € (2,2**) if N > 5 (see, e.g., Lemma 6.1 in [20]).
O

From Proposition B3] (i), Theorem B4, Proposition (ii), Proposition and Propo-

sition BTl we get the following result on the behaviour of solutions of the problem (P,,) as
m — 0.

Corollary 3.12 Assume that 0 < o < max(1, NLH) and o < 4. For any m > 0 let uy,
be any solution of the minimisation problem (Pr,), as given by Theorem[37) and Proposition
[23, and let ¢, = c(um,) be the Lagrange multiplier given by Proposition[3.3, so that (U, ¢m)

solve (3-27]). Denote vy, = = m, so that ||vm||2 = 1. Then we have

(3.43) lAvpllze — 1, [|Vumllzz — 1, |[[(A+ Doyl — 0 as m — 0,
and ||vm||Lr — 0 for any p € (2,00) if N > 4, respectively for any p € (2,2**) if N > 5.

We will study the behaviour of minimum action solutions of ([B.24]) as ¢ — co. To do this
we use once again the scaling properties of functionals. Given ¢ > 0 and v € H?(RY), we
denote

(3.44) Kc(v):/RN |Av|? dx — 2

\/1+C RN

and K (v) = [gn [Av[?dz + [gv |v|* dz. We consider the minimisation problems

|VU|2d:E+/ |v|? da
RN

Ae minimize K,.(v) in H? R”Y) under the constraint o272 dg = 1,
(

RN
A minimize K (v) in H*(R"Y) under the constraint |22 de = 1.
(

RN

Let ¢ > 0. Take b= (14 ¢)~4. Using (3] we see that for any u € H2(RY) we have

To(tap) = a*(1 + c)lf%Kc(u) and ltta,b] 2LUJ+22 =a* (1 + 0)7% ||u||i‘§j'f2
Now choose a such that a2 *2(1 4+ ¢)=% = t(c)%, that is a = (1 + C)ﬁt(c)%. With
choice of a and b and using Proposition we see that u, is a minimum action solution
for 324) if and only if u is a minimizer for (A.). Theorem B0 and Proposition B.8 give the
existence of minimizers for (A.) for any ¢ > 0. The existence of minimizers for (A) is standard
(see, e.g., Example 3.10 in [19]), as well as the pre-compactness of any minimizing sequence
modulo translations. We have the following:
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Proposition 3.13 Let (¢)n>1 be any sequence of positive numbers such that ¢, — oo.
Assume that for each n, vy, is a minimizer for the problem (A.,). There exists a subsequence
(cny)k>1, a sequence of points (xx)k>1 C RY and a minimizer v for the problem (A) such
that v, — v strongly in H?(RY).

Proof. Tt suffices to show that (v,)p>1 is a minimizing sequence for the problem (A).
Then the conclusion of Proposition B.13] is a consequence of the pre-compactness modulo
translations of minimizing sequences for problem (A). Let

(3.45) I =inf{K(u)|ue H*RY) and ||ul|p 2012 = 1}.

From [B.3]) we have I > 0. £
Since ||vy, | 2042 = 1 for any n, all we have to do is to show that K (v,) — I as n — 0.
From (B8] we have

Kc(u) < (1— )K(u) for any u € H*(R™), u # 0.

1
Vi+e
Let @ be a minimizer for the problem (A) and let v, be a minimizer for (A.). Taking Q as
test function in (A.) we get K (v.) < K.(Q) and taking v, as test function in (A) we obtain
K(Q) < K(u,), hence

316 (1oL ) K@ < (1- o= ) Kl < Kufu) < K(Q) < K(Q)

Using (3.46) we infer that K (v,,) is bounded, thus (v, ),>1 is bounded in H*(R"). Moreover,
the above inequality implies that lim K (v,) = K(Q) = I and the conclusion of Proposition
n—oo

follows. O

Corollary 3.14 Let I be as in (347). For any ¢ > 0 we have

1 1—-DNo 1—_No
(3.47) (1 ——— ) (1+¢) T <tlc)<(l+¢) WD L
Vvi+e

Moreover, if u. is any minimum action solution of (3.24)) we have

N_1 4(c+1)—No _on
3.48 1 g Pde — L
(3.48) A+0¥E [ e — X
N _ 1 No o+1
3.49 L4y o7t Aucl* de — ———1 = d
(3.49) Rl I n
(3.50) (1+c)%_%_1/ |uc|2""’2dgc—>ldT+1 as ¢ — o0.
RN

Proof. If Q is a minimizer for (A) and Q'(z) = t#Q(t:r) is as in (339), the mapping
t — K(Q") achieves its minimum on (0,00) at ¢ = 1, hence %h&:lK(Qt) =0 and this gives

No No
4— AQ|? dx — 2dz = 0.
< UH)/RNWMUH/RN@MO

From this identity and the fact that K(Q) = I we get

No 4(c+1)— No
AQPdr = ———1 d 2y = ———~— 1.
Jonlaaror =gyt [0 e = S

No 1

4(oc+1)

Tt can be proved that I = 4((;\;— ) (4((;\]+ D _ 1> B(N, U)iﬁil, where B(N, o) is as in ([34), and
o o

that minimizers for (A) are optimal functions for (3], but we will not make use of this fact. See [19] for details.
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Notice that the above identities hold for any minimizer of (A). For ¢ > 0, let v, be any
minimizer for the problem (A.). Then Proposition B3] and the previous identities imply
that

(3.51)

N 4 1)—-N
/ |Av,|? do — 7 I and / [ve|? do = MI as ¢ —» 00.
RN 4(c+1) RN 4(c+1)

Given ¢ > 0, let u. be a minimum action solution of B24). Let a = (1 + ¢) 80}11)1%(0)%,
b= (14c¢) 4, and let v, = (Uc)a—1 p-1 = 2uc(-). We have already seen that v, is a minimizer
for problem (A.). We have u, = (v¢)q,p and

o) = To(ue) = a®(1+ o) T Ko(v) = (1 + ) " T80 ¢(c) 7 Ko (v0).

From the above equality and [B.46]) we get [B4T). We have also

/ [ue|? do = a2bN/ [ve|? do = (1 + cf“gil) t(c)% / [ve|? d and
RN RN RN

ot

/ |Auc|2dx:a2bN*4/ |Ave|? da = (1+c)1*—4<fi’1>t(c)%/ | Ave|? da.
RN RN RN

Then taking into account (351 we obtain (B48) and BZJ). Recall that [g [uc[*? T2 dz =
t(c)gTH, and consequently [350) follows from B47). O

Remark 3.15 We have 1 + L — & > 0 because 2 + 20 < 2**, and (FZJ) implies that
we have always ||Auc|lpz — o0 as ¢ — oo. On the contrary, from (48] we see that
lluellpz — o0 if No < 4 and |lucl|pz — 0 if No > 4. In the case No = 4, (848) implies

that ||ue||r2 — (0 + 1) B(N,0)" 7 = k,, where k, is as in Proposition B (vi).

Remark 3.16 For any o > 0 such that 20 + 2 < 2**, the functional S, has a mountain-pass
geometry. Indeed, we have

T(u) o+1
c =T - 202+22 =1 - c .
5.0) = Tow) = a3t > o) - (S )
o+1 ot1
The mapping ¢(t) = t— =4~ %) is increasing on [0, t(c) % ] decreasing on [t(c) =, 00),
and ¢ (t(c)%“ — 2 1(¢) > 0. Denoting B i= {u € HXRY) | T.(u) < t(c)5"}, we
have:
o S.(u) = ¢ (Te(u)) >0 for any u € B, and inf S.(u) = S.(0) = 0.
ueB c
o inf{S.(u) |ue HX(RN) and Te(u) = t(c) "= } = z%5t(c) "= > 0.

lim S.(tu) = —oo for any u # 0.
Let T' := {v : [0,1] — H?*RY) | v is continuous, v(0) = 0 and S.(y(1)) < 0}. It is
obvious that for any v € T' there exists s € (0,1) such that T,(v(s)) = t(c)“ and therefore

o+1 g o+1
o = inf Se > tic) = | = t B 0.
! wllelr (521[3)11 (7(5))) 14 ( (c) ) oc+1 (c) ~

On the other hand, let u. be a minimum action solution of (324, as given by Theorem
and Proposition 3.8 We have

Se(T2u.) = 7t(c) ™= — t(c) ™=

and we see that maxS’ (T%uc) = Sc(ue) = %t(0)$. We conclude that necessarily i, =
o

a+1t( )7 that for a > 0 sufficiently large the mapping 7 — T3 au. is an optimal path in
I, and that u. is a ”mountain-pass solution” of ([B:24]).
Conversely, if u is any critical point of S, at the mountain-pass level i, (that is, S.(u) = i.),
by Proposition B.8 we know that u is a minimum action solution of (3:24]).
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4 Local minimization in the case No > 4

Throughout this section we assume that o > % and 20 +2 < 2**, that is 0 < 00 if N < 4 and
o < 5 if N > 5. By Proposition Bl (i) we have Ei,(m) = —oo for any m > 0. We will
1nvest1gate the existence of local minimizers of E when the L?—norm is kept fixed. By local
minimizer we mean a function u € H?(R") such that there exists an open set i C H2(R")
such that v € U and E(u) = inf{E(v) | v € U and ||v||p2 = ||u| L2}
For any u € H2(RN) let uy(x) = t 7 u(t2z) be as in [339). We denote
L

<Pu(t) = E(Ut) =¢? / . |Au|2dx — Qt/ |Vu|2 T — ? |u|20'+2 dI,
R

and

No No
_ 2. _ 2042
(4.1) D(u) —/RN |Au|® dx o+ 1) ( 5 1) /RN [ul dx.

The behaviour of the function ¢, inspired the local minimization approach developed below.
For later use we state here the following elementary lemma.

Lemma 4.1 Leta, b, ¢ > 0 and define f : [0,00) — R by f(t) = at® — 2bt — ct™=*. We have:

(i) The second derivative f" is decreasing. There exists a unique ti,p; > 0 such that
. . . No—4
[ (ting1) =0, and it is given by tinp = (m) .

(i1) The derivative f" is increasing on [0, 1] and decreasing on [tin 1, 00), and we have
No

8 (Naf4)7 2
No(No—2) \ No—2

f'(ting1) > 0 if and only if al = F i 2¢ <
For the next statements we assume that f'(tins) > 0.

(11i) There exist a unique t1 € (0,ting1) and a unique to € (tingi,00) such that f'(t1) =0
and f'(t2) = 0. The map f is decreasing on [0, 1], increasing on [t1,t2], decreasing on [ta, 00)
and reaches its minimum value on [0,t3] at t1.

(iv) Forty <t <" we have f(t") — f(t') < 3" —1')2 " (t2).

(v) We have f(tinsi1)

/\

No
m”) Z ¢, where
o) = § (3 +1) (3 =) = B (3 = 1) 4 B (3 - 1) F 0 B 1)L,
The function h satisfies h(1) = h'(1) = h"(1) =0

W(s) =22 (52 = 1) (7 = 2) s T (s = D [(3 +1) s = (37 = 3)],
thus h is positive, increasing and convex on (1,00).

Proof. This is simple Calculus. We have

N - N N -
() = 2at — 2b— TactNT71 and F'(t) = 2a — i <—U - 1> "2,

Statements (i), (ii), (iii) are obvious. For (iv) we use the fact that f” is decreasing on [0, o)
and f' < 0 on (t2,00). We have:

t"’ s "’ s
s - sy = [ (rere [roa)as< [ aras = 500,

(vi) Let s = % Recall that s > 1 because t1 < tinp. From the identity f”(tins1) =
No_9 g
f"(t1s) =0 we get a = % (% —1)cty? 2g% -2, Replacing this into the identity f'(¢1) =
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N_— (e
0 we obtain b = ~Zct,? ! [(% — 1) s 2 1] . Replacing these values of a and b into

f(tis) — f(t1) we get the announced identity. The properties of the function h are obtained
by direct computation. 0

Recall that the functional P; has been introduced in (3:38]). We have
(4.2)

Notz 1 2P (u
A(t) = 2t fon |Auf2 da — 2 [ [Vul? di — W/RN 2742 gy = y and

Not™® =2 (N
GUt) =2 fuu | Al do — —7— ( -

2
S (22 2042 gy = = D(uy).
200 +1) \ 2 )/RNM v =g D)

For any u # 0 there exists a unique ty in i > 0 such that ¢ (¢, ingi) = 0. It is given by

2 2

8(0 + 1) 5 No—4 5 “No—4
4. tuinfl = | ~———2— Aul*d 724 :
(43) anfl <N0(N0 -2) /RN [Aul x) </RN ful ‘

We have ¢!/ > 0 on (0,ty,ins) and ¢, < 0 on (tyinfi, 00), hence ¢!, is increasing on (0, ty inf1]
and decreasing on [ty inf1, 00), therefore reaches its maximum value at ¢y, in 1. If @) (tuinf1) <
0, the mapping ¢,, is (strictly) decreasing on (0,00) and consequently none of the functions
(ut)t>0 can be a local minimizer of E when the L?—norm is kept fixed. If ¢/, (tyins1) > 0,
it is easily seen that there exist a unique t,1 € (0,ty,ins) and a unique ty 2 € (fyingi, 00)
such that ¢} (tu1) = ¢}, (tu,2) = 0. We have ¢!, < 0 on (0,%,,1) U (ty,2,00) and ¢!, > 0 on
(tu,1,tu2), therefore ¢, is decreasing on (0, %, 1], increasing on [ty 1,%,,2] and decreasing on
[ty,2,00). It is now clear that among the functions (u)>0, the only one that could eventually
be a local minimizer of E when the L?—norm is fixed is w, ,. If u is a local minimizer of E at
constant L?—norm, we must have ty1 =1and 1 < tyins < ty2, thus necessarily D(u) > 0.
The above discussion indicates that it is natural to look for local minimizers of E at fixed
L?—norm in the set

O = {u € HQ(RN) | u #£ 0, Luyinft > 1 and (p;(tu,infl) > 0}
(4.4)
= {ue H*RY)|u#0, D(u) >0 and ¢ (tyinf) > 0}.

It is clear that u — tyinp and u — Pi(ug, ;) are continuous on H*(RMN)\ {0} (see
@3), hence O is open. Given any u € H?*(RY) \ {0}, using Lemma [A1] (ii) we see that
@i, (tu,ing1) > 0 if and only if

K No _
(4.5) H(u) := (fRN |Au)? dx) 2 . No & . No — 2\ 22
| | Jaw lul? 2 da - (fon [Vul? d:zc)]%_2 4o +1)\ 2 No —4 '

Using [B.2)) (with strict inequality because u # 0) and (B3] we have

Le_2
/ |u|2“+2dx-(/ |Vu|2dx> < BN, 0)|| Au|[ Yo 2] u %
RN RN

1
Therefore H(u) > BVl Denote
No (N T (No—2\7 %
1 o o v o—2\°

4.6 =B(N,0) o |—— | — —1
(4.6) Ho =B, ) {4(04—1)( 2 ﬂ (NU—4>
We infer that ([H) holds for any u € H2(RY)\ {0} satisfying ||ul|2, <

Using (B3) we see that D(u) > [|Au2, — 124 (2 — 1) B(N, a)||Au|\ Hu|\20+2
for any u, hence D(u) > 0if u # 0 and 1 > (a-il) (%2 —1) B(N, U)||AUHL_272|| ||20Jr2

Let

——2 2042— o
O {u e H2RN) | u#0, [AullF 2llul 2™ < goaZiamsy and [lull2. < uo}.
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Obviously, O1 U {0} is an open neighbourhood of 0 in H?(R") and O; C O. It follows
immediately from the definition of D and from () that O U {0} is ”star-shaped”: for all
u € O and for all a € (0,1) we have au € O.

For any m > 0 we denote
(4.7) Epin(m) = inf{E(u) |u e O and |ul|?2 = m}.

It is obvious that (u;)s = us. If w € O and t > 0 we have u, € O if and only if ¢ < ty insis
and ty, inf1 = t“’it"“, by, i = “TZ for i = 1,2. If u € O satisfies |[ul|2, = m, the previous
discussion shows that min{E(us) | 0 < t < tuinsi} = E(uy, ) and u,, , is the only function
among (ut)o<t<t, ;,; Where P; vanishes. We have thus proved that

(4.8) Emin(m) =inf{E(u) |ue O and ||u||%2 =m and P;(u) = 0}.

Remark 4.2 If ¢ > 4 and E is as in () with ¢ < 0, there do not exist non-trivial

minimizers of E at fixed L2—norm. Indeed, let v € H2(RN)\ {0}, let u, = t3u(t2-),
as in (B39), and let ¢, (t) = E(u;) as above. There exists a unique t, s > 0 such that
O (tu,inst) = 0 and it is given by [@3). We have ¢!/ > 0 on (0,tyns) and ¢!/ < 0 on
(tw,insi,00). There exists a unique ¢, > 0 such that ¢/, (¢t,) = 0 and we have t, > ty insi,
¢!, > 0on (0,t,) and ¢, < 0 on (t,,00). Therefore ¢, is increasing on (0,%,), decreasing
on (t,,00), it achieves its global maximum at ¢ = ¢,, and it has no local minimum on (0, co).
The previous discussion shows that no function v € H*(RY) \ {0} can be a local minimizer
of the energy at fixed mass.

Lemma 4.3 The following assertions hold true:

(i) For any m > 0, the set {u € O | |[ul|?. = m and Py(u) = 0} is not empty (thus
~ ~ 2
Epin(m) < 00), and Emin(m) > _%m.

(i1) For all m > 0 and all d,e € R, the set
{ue H*RN) | D(u) > d, ||ul|?2: <m and E(u) < e}
is bounded in H?(R™N).
(iii) Eoin is sub-additive: E’mm(ml +ms2) < Emm(ml) + E’mm(mg) for any my1,mo > 0.
(v) Epmin(m) < —m for any m > 0.
(v) Epin is decreasing and continuous on (0,00) and Eyim,(m) — 0 as m — 0.

(vi) Let m > 0. Assume that (up)p>1 i a bounded sequence in H*(RN) such that
Unl|?2. — m and E(u,) — e as n — oo, where e < —m. Then we have lim inf || Au,, 2, >
L L

n—oo
0. In addition, if e < —m then we have liminf ||u,[|3%2, > 0.
n—r00

(vii) If u € H?*(RYN) satisfies D(u) > 0 and Pi(u) =0, we have

No —2 No -4 No No
eIl > 19l > T2l > 120 (B =) [ o
Proof. (i) If m < po (where pg is as in ([8)), we have seen that any v € H2(RY)
with [ul|2, = m satisfies [@H), and then uy,, € O, |jug, ,||2. = m and Pi(u,,) = 0. If
m > g, choose an integer n such that 2 < po, and take v € C°(RY) such that ||v[|2, = 2.
Let w = vy, ,, so that w € C(RY), [wl?. = 2, Pi(w) = 0 and D(w) > 0. Choose
R > 0 such that supp(w) C B(0,R), then choose o € R such that |zo| > 2R. Let
u=w+w(-+zo) +w(- +2x0) + -+ w(- + (n— 1)z0). Then we have |[ul|2, = n|jw|/2. =m,
Pi(u) =nPi(w) =0and D(u) = nD(w) > 0. From ([£2]) we see that ¢}, (t) >0if ¢ > 1 and ¢
is close to 1, hence ¢/, (ty,inf1) > 0 and therefore u € O.
We use ([I8) to obtain a lower bound for E,i,(m). Let u € H*(RN) such that ||ul|?, =m

and Py (u) = 0. From the identity P;(u) = 0 we obtain

1 4 4
/ |u|?° T2 dx = —/ |Aul? da — —/ |Vu|? d.
o+ 1 Jgw~ No Jg~ No Jg~
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Replacing this into F(u) and using ([B.2]) we get

E(u) = (1 - %) fRN |Au|? do — (2 - %) fRN |Vul? dx
> (1= 55) 1AulZ: — (2= <) [Auloalul e > inf {(1- 55) 2 = (2= ) mis)

(No—2)?
T No(WNo—a)

The above estimate is true for any u satisfying [|u||?, = m and Py(u) = 0, and (i) follows
from (£3).

(11) From D(U) 2 d we get ULH«[RN |'LL|2U+2 dfl? RS mfRN |A'LL| dfl? — ﬁdd*m
Using this inequality, the bound E(u) < e, then (32) and the fact that ||u[3. < m we find

e > B(u) = (1= wois ) Jus 1Auf do = 2 o [Vul? do + i,
> (1= 5= ) [|Au)|2, — 2m2 [|Aul| 2 + w=S0—.
= No (Ncr 2) L No(No—2)

Notice that 1 — m > 0 because No > 4, and the above inequality implies that ||Aul| 2
is bounded. Since [Jul|?, < m, we infer that ||u g2 is bounded.

(iii) Fix m1,ma > 0 and € > 0. Using the density of C*(RY) in H2(RY), it is easily
seen that for i € {1,2} there exist u; € C2°(RY) N O such that |lu;]|2, = m; and E(w;) <
E’min(mi) + 5. We may assume that P;(u;) = 0 for ¢ = 1,2 (otherwise we replace u; by
(i), ,)- Choose R > 0 so large that supp(u;) C B(0, R) for i = 1,2. Choose 2o € R" such
that |zo| > 2R and define u = uy + ua(- + o). It is obvious that ||u[|?. = [|[u1]|2s + [Juzl|?. =
m1 + me, D(u) = D(u1) + D(uz) > 0 and Py(u) = Py(u1) + Pi(uz2) = 0. This implies that
Pi(uy) > 0 for t > 1 and ¢ close to 1, and we infer that ¢ (tu,inf1) > 0 and consequently
u € O. Then we have

Ermin(my +m2) < BE(u) = E(uy) + E(u2) < Epin(mi) + Emin(ma) + €.

Since ¢ is arbitrary, the conclusion follows.

(iv) Let m > 0 and € > 0. Let u be the function constructed in the proof of Proposition 3]
(iii). Since supp(u) C B(0,1)\ B(0,1—¢), we have ||Au||L2 < ||ul|3 2. Then using (B3) and the

242 JL
fact that No > 4 we get HuHi‘;jfz < B(N, c7)||Au||L2 flull; 2 12 < B(N, U)||Au||2L2||u| QL%,
and consequently

D(w) > [|Auls (1—“““"2) N:2) 2 )

8(c+1)

Denote m; = min <,u0, (%)%) If m < mjy we have D(u) > 0 by the above

inequality. It is obvious that u satisfies (L5) because ||ul|%, < p0, hence u € O. In the proof
of Proposition (1] (iii) we have shown that E(u) < —|[ul|2. + 4¢%m, thus Eny, (m) < B(u) <
—m + 4e?m. Since € > 0 is arbitrary, assertion (iv) is proven in the case m < mj.

If m > my, choose n € N* such that 2 < m;. Using the sub-additivity of Ermin we get

n

(v) Form (i) and (iv) we get Emm( ) —0asm — 0. If 0 < my < mag, by (iil) and (iv)
we have Emm(mg) < B n(my) + Emm(mg —my) < Emm(ml) (ma — myq), thus Eoin is
decreasing.

Fix M > 0. By (ii), the set {u € O | ||ul|?2. < M and E(u) < 0} is bounded in H?(RY).
Using the Sobolev embedding we see that there exists K = K(M, N, o) > 0 such that for any
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u in the above set we have U—HHuHi‘éjfz < K. It is easily seen that for any u € O and any

a € (0,1) we have au € O. Let 0 < my < mg < M and denote a = (%)7_ Let u € O such
that |lu||2. = ms and E(u) < 0. We have au € O, |laul|?, = my and consequently

5 2 a® —a? 20+2 2 20+2
Emin(m1) < E(au) = a”E(u) + ————— H ull 1555 < @*B(u) + (a® — a® K.

Taking the infimum in the above inequality we find

~ - o+1
Epin(m1) < mEm-n(mz) + <E - m1—> K.

mo my  mg Tt
Thus 0 < Emm(ml) Epin(ms) ( - ) Epin(ms) + (z—; — (,H) K. Using (i) we infer
that E,i, is continuous on (0, M). Since M is arbitrary, (v) is proven.
(vi) Let ¢ = hnrgloréf||un||2;2jf2 If ¢ = 0, there is a subsequence (up,)r>1 such that
[un||3%57 — 0 and using B8] with € = 0 we get liiri)sip E(up,) = —m. Since E(u,, ) —
e < m we infer that necessarily e = —m. Moreover, using again [B.8)) we have

2~ 1 o
/ (1€ = 1) [t ()7 dg = (2m)™ (E(unk) + llun, 172 + —Iunkliszz> —0
RN oc+1

as k — oo. Using Plancherel’s formula, the Cauchy-Schwarz inequality, the above conver-
gence and the boundedness of (uy),>1 in H*(RY) we get

180, 12 = o, 22| < i S [1614 = 1]l (€)1

[N

< i (Jaw (67 =1 (©P d) " (Jron (62 +1)% [@n, (O d€) " — 0

as k — oo and we conclude that lim [|Au,, |72 = lim [u,, |72 = m.
k—o0 k—o0

If £ > 0, from B3] and the fact that ||u,|/2 is bounded it follows that there exist 7 > 0
and ng € N such that || Auy,||z2 = 7 for all n > ng, thus liminf || Au,[|?: > 7?.
n—oo

Obviously, our arguments hold for any subsequence of (u,,),>1. We infer that there cannot
be a subsequence (upn,);>1 satisfying ||Auy; |2 — 0 as j — oo, and this implies that
liminf || Au,|/22 > 0.

n—oo

It follows from the above arguments that in the case e < —m we must have ¢ > 0 and the

second assertion in (vi) is now clear.

(vii) Assume that u € H?(RY) satisfies D(u) > 0 and Py(u) = 0. From D(u) > 0

we get [pn |[Aul? dz > 4(0_‘:1) (22 —1) g~ [u|?***2dz, which is the last inequality in (Z3).

Replacing this into P;(u) = 0 we obtain the second inequality in (Z9). Then the second
inequality in (Z3) and @2) give |lu|/zz > N¥2=2||Aul|2. Combining this with (F2) we get

No—2
the first inequality in (£9). O
Lemma 4.4 (i) If N >5 and 5 < o < 1, we have Epin(m) < —m for any m > 0.
(it) If &+ < o and o > 1, there exists mo > 0 such that Epin(m) = —m for any m €
(Ovmo]'

Proof. (i) Let m > 0. We use the same test functions as in the proof of Proposition
B3 constructed in Example 271 For small €,§ > 0 let u. s be as in (Z26) and let w. 5 =
ﬁug 5, so that ||wes[|2. = m. Fix & € (0,75). We have already seen in the proof of
Proposition B3] that E(we s5,) + ||we,s,|[32 < 0 for all sufficiently small e (cf. (BI4)).

The conclusion of Lemma [14] (i) follows if we show that w. s, € O for all sufficiently small
e. Since supp(@e,s,) = supp(Ue,s,) C B(0,1+¢)\ B(0,1—¢), we have (1 — €)?||wes,z2 <
|Awe 50|22 < (14 &)[lwe g l| 22 and (1 = &)l|we g, [l L2 < Ve sllze < (1+€)llwe 0l ze-
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By the Hausdorff-Young inequality (2I0) and Holder’s inequality we have

1

~ BN ~ 2041 1 1\ 725
e lgzes < Ol 322 < Cllegy Lo - Isupplabe s,) |55 F < Oy (265 ~1) 77

Since &y is fixed, we have ||lwes)7547 < Cm7+e? and therefore D(w.s,) > (1 —€)*m —
Cm°t1e? > 0 if € is small enough. Moreover, if H is given by ({@F) we have H(w.s,) =
Cm™%e77 — oo as ¢ — 0 and we conclude that w, 5, € O for all sufficiently small €.

(ii) Recall that by BI5) we have

[[ull 73
oc+1

(4.10) E(u) + ||ul?s = [|(A+ 1)u||2s (1 - Q,.;(u)%”) for any u € H*(R™)\ {0},
where £ = 225 and Q) is given in ([2.8).

Lemmalﬂl (vii) implies that there exists Ry > 0 such that ||(A + 1)u||z2 < Ro|ul| 2 for
any u € H*(R") satisfying D(u) > 0 and P;(u) = 0. Since 4 < o and o > 1, condition

([2.38) is satisfied with s = 2, p =20 +2 and x = ;55. Then Corollary Z.T0 implies that there

exists M > 0 such that Q. (u) < M for any u as above. Using ([A8)) and [@I0) we infer that

Epin(m) +m > 0if 0 <m < (6 +1)s M~ "% . The conclusion follows from this inequality
and Lemma IZ{I (iv). O

Lemma 4.5 Let (up)n>1 C O be a sequence satisfying
(a) Py (un) — 0,
(b) [[un|zs — m as n — 0o and m < g, where pg is given by ({f.0), and
(c) there exists k > 0 such that || Auy| 2 = k for all n.
Then linrgioréf D(uyp) > 0. Moreover, if || Auy|| 12 is bounded then we have lim ioréf tun infl > 1.

n—

Proof. 'We have D(u,,) > 0 for all n because u,, € O. We argue by contradiction and we
assume that there is a subsequence, still denoted (uy,)n>1, such that D(u,) — 0. We have

No 2042 _ 2 / 2
(4.11) ey /RN P4 e = 2 ( [ JAuPdr—D(u,)).

Using this identity in the expression of P;(u,) we get

No -4 2
4.12 Pi(u,) = Auy|? d — nl® D(up).
@12) Pt = go— [ 1w fde= [ (Vude + 5 D)
From the equality above and (8.2]) we obtain
No —4 2
| Aunllgelfunllze > [ VenlFe = Fo—5 1AunlEe + 57— Dln) = Pr(wn).

The last inequality, assumptions (a) and (b) and the fact that D(u,) — 0 imply that
|Auy, | 2 is bounded. We rewrite the last inequality in the form

No—2 e — 2 D(uy) Py (up)
No—4 \"""* 7 N 2 Aunllzz | | Aun e

Using the definition of D (see (@) and (B3) we get

(4.13) | Al 2 <

No(No —2) No(No —2)B(N,o0) 2042— N
A n 7 -D n 5 - 1 Un 2012 X , A n n
I Bunls = Dlun) = =g 3582 < =TT e 32
Dividing by [|Auy,||%. and using @I3) we discover
D(u,) No(No—2)B(N,o) 20+2— e
1= MAunZ, = < 8(o+1) ||A n||L2 H nH
No
No(No—2)B(N,o) | No—2 2 D(uy) Py (uy) 2 204+2—
< NoNg2apio) | Ne=2 (lualoe - wi ity + il )] © lual
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Letting n — oo in the above inequality and using assumptions (b), (¢) and (@) we obtain
1<z I contradicting the fact that m < po. We have thus proved that hm mf D(u,) > 0.

Slnce u, € O we have t,, insi > 1 for each n. We argue again by contradlctlon for the
second part of Lemma [L5] and we assume that there is a subsequence, still denoted (up)n>1,

_Ne
such that t,, ins1 — 1 as n — oco. By ([@3]) we have D(u,) = (1 —t, 2 +2) |Au, |3, and

U ,in fl

the boundedness of ||Auy,|/ ;2 implies that D(u,) — 0, contradicting assumption (c). O

Lemma 4.6 Assume that m < pg, where po is given by ([{.0]). Suppose that the sequence
(un)n>1 C H2(RYN) satisfies ||un||2. — m and D(u,) — 0 as n — oco.
Then we have iminf E(u,) = FEpin(m).
n—oo
Moreover, if Emm(m) < —m we have liminf E(u,) > Eim(m).

n—roo

Notice that in Lemma [0l we do not assume that (u,),>1 C O.
Proof. The sequence (uy)n>1 is bounded in H?(R”Y) by Lemma B3 (ii). By Lemma E3]
(iv) we have Epin(m) < —m, so the conclusion of Lemmal[4.Glis obvious if lim inf E(u,) > —m.
n—oo

Form now on we only consider the case when lim inf E(u,) < —m. Passing to a subsequence
n—roo

we may assume that F(u,) — e < —m as n — oo and that [Ju,||7. < po for all n > 1, so
that ¢, (tu,,inf1) > 0 and ty, 1, ty, 2 do exist.

It follows from Lemma 3] (vi) that there exist 7 > 0 and ng € N such that ||Auy,|/2 > n
for all n > ng. Using [@II) and B3] we get for n > ny,

No 20+2— 2
—B(N Auy, Unp
o B lAu Y > 2 (

1 n_zp(un))

Then using ([@12), B2) and the above inequality we obtain for n > ng

Pi(un) > || Aunllzs (¥4 1Aunllzz = unllzz) + 525 Dlun)

No—4 8(o+1) 1 N T 2D (uy,)
> (1 8unlee (822 (s (1= 2 0@)) ™ lunlle * 7 = funllzs) + 225

) |

Since 0 < m < po, where o is given by ([@@]), the right-hand side of (ZI4) is equal to

Letting n — oo and using the fact that D(u,) — 0 we discover

2
imi No —4 8(c +1) No—1 _2042-Ng
4.14 1 f Py (uy,) > e S
(4.14)  liminf Py (up) n(NU_2<NU(NU_2)B(N70)) m T —m

Nl

20
nm% ((%) Ne=4 _ 1) and this quantity is positive. We conclude that there exists n; € N
such that P;(u,) > 0 for all n > ny. This means that t,, 1 <1 <t,, o for all n > ny.

We denote v, = (un)t,, ., s0 that v, € O, |lvnllz2 = |lun|L2, Pi(ve) = 0 and E(v,) <
E(uy) for each n > ny (recall that ¢t — FE(u;) is increasing on [ty 1,%y.2]). By Lemma A3
(ii), the sequence (v;,)n>1 is bounded in H2(R]\I). Since Epin(||vn|32) < E(vn) < E(un),
passing to the limit and using the continuity of E,,;, (see Lemma 3] (v)) we get
(4.15) Epin(m) <liminf E(v,) < limsup E(v,) < lim E(u,) = e.

n—roo n—oo n—roo

We show that if Epi,(m) < —m, then at least one inequality in (I5) is strict. This
clearly implies the conclusion of Lemma We assume that equality occurs in the first
two inequalities in (AIH), which means precisely that E(v,) — Epnin(m) < —m. We show

that in this case the last inequality in (I5) must be strict. Denote ¢ := liminf [|v, |33/, .
n—00

Using Lemma (vi) we see that £ > 0 and there exist 7y > 0 such that [|Avy,| 2 = m
for all sufficiently large n. Now we may apply Lemma to (vn)n>1 and we infer that
lim inf D(v,,) > 0 and hm 1nf o infl > 1.

n—oo
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Denote s, = (ty, 1)~ !, so that u, = (v,)s,. Recall that ¢,, 1 < 1, hence s,, > 1 for all
n > ni. We have

D(uy) = D((vp)s,) = s2 </R |Av, |2 dz — sn ‘2% /RN v, [27+2 dx).

Since D(u,) — 0, the second factor in the expression of D((’Un)sn) here above must tend to
0, and from (@3] and the fact that ¢ > 0 we infer that r,, := —2— — 1 as k — oco. Using

tun infl
the boundedness of (uy),>1 in H2(RY) we obtain then

(4.16) E(un) — E((n)ty, inp) = E(un) — E((un),-1) — 0 as n — o0.
From Lemma ET] (v) we have
h Ly, inf
(1.17) B((0n)ty 1) = Blon) = omittt) [ o g,
g + 1 RN

Fix t, such that 1 < ¢, < liminf¢,, ;np. From (£10) and [@IT) we see that E(u,)—E(vy,) >
n—oo

ﬁh(t*) for all sufficiently large n. Therefore the last inequality in ([@I5) is strict and the

conclusion of Lemma follows. O

Lemma 4.7 Let po be as in {{-0). Denote mg = inf{m € (0, uo] | Epin(m) < —m}. Then:
(i) The mapping m — En#l(m)

(Mo, o] B
(11) If m € (0, po| satisfies Epin(m) < —m, then for any m' € (0,m) we have

is non-increasing on (0, po)], and it is decreasing on

Proof. Tt is easy to see that for any u € O and any a € (0,1) we have au € O.
Assume that v € H*(R") satisfies D(u) > 0, Pi(u) = 0 |[ul|?. < po. We show that

_Ho
"l
automatically satisfies (5] and we only have to prove that D(azu) > 0. Using 33) and the
fact that |lul|r2 > 22| Aul| 2 (see (@) we have

for any a € {1 ] we have azu € O. Since [lazul|?, = aljul|2, < po, the function a>u

1 g g o g
D(au) = al| Au}, — 72 (52 — 1) a7 |lul| 3502,
o o s No 20+2— 82
> alldul3 (1- 225 (32 = 1) e BV, o) | Al £ lul357 )

No

g g o— 2 -2 o Lo}
> al|Aul2, <1 - s (B - 1) B(V,0) (¥2=2) © a |u|§2) .

The last expression is non-negative if aljul|2, < po by (G), hence azu € O. Thus we have

(4.18)
Epin(alul|?2) < E(a?u) = aBE(u) + / |u|?? "2 dx for any a € (O H 'MHO ] .
RN

Let m € (0,up). Take a minimising sequence (un)n>1 C O such that ||uylLz = m,

Pi(u,) =0 and E(u,) — E’mm( ). By (B8)) we have U+1 HunHiijz > —(E(u,) + ||un||%2)
for each n. Using this in ({I8) and letting n — oo we obtain

a— aa'Jrl

c+1

Epmin(am) < aEpin(m) + (a°™ = a)(Emin(m) +m) for any a € [1, @}
m

or equivalently

(4.19) Enin (am) < Einin (m) + (a® = 1) (;min(m) + 1) for any a € [1, %} .

am m



Since Eyin(m) < —m (see Lemma B3 (iv)), conclusion (i) of Lemma BT follows easily from
EID). N ~
(ii) It follows from the continuity of Emin that Epn (m') < —m/ for m’ in a neighbourhood

of m, and using part (i) we infer that Emi:;(m) < E””Z;Em/) for all m’ € (0,m). In particular,
for m’ € (0,m) we have E’":L(m) < E’”;’ésml) and E’":L(m) < E’";’;(_Ty;m,). Combining the last

two inequalities we get (ii). O

Theorem 4.8 Assume that 0 < m < ug and E’mm (m) < —m. Then Emm(m) is achieved.

Moreover, for any sequence (up)n>1 C O satisfying |unl3. — m and E(up,) —
Emin(m) there exist a subsequence (un, )k>1, a sequence of points (vx) C RN and u € O
such that w,, (- + zx) — u strongly in H*(RY). (Then, obviously, ||ul|2, = m and E(u) =
Epin(m).)

Proof. Let (un)n>1 be a sequence as in Theorem I8 It follows from Lemma 3] (ii) that
(tn)n>1 is bounded in H2(RY). Lemma [3 (vi) implies that there exist 6 > 0 and £ > 0
such that [|Auy,||rz > 6 and |Ju,[|3257 > ¢ for all sufficiently large n.

Proceeding exactly as in the proof of Theorem [3.4] we see that there exists a subsequence,
still denoted (uy)n>1, there exist points z, € RY and there is v € H*(RY), u # 0 such
that after replacing u, by u, (- + x,), (8I9) holds. Then the weak convergence u,, — u gives
(20), while Brezis-Lieb Lemma and the fact that u,, — u a.e. give B21]).

We denote v, = (un)¢,,, - Then we have v, € O for all n, ||v,|[r2 = [Junl|z2, Pi(ve) =0,
and Epin([vn]|22) < E(v,) < E(uy,) for all n, thus

(4.20) E(v,) — Epin(m) < —m as n — o0.

Lemma (ii) implies that (v,)n>1 is bounded in H*(R"), and by Lemma (vi) there
exist 6 > 0 and £ > 0 such that ||Av,|[z> > é and ||un||2L‘72jf2 >/ for all sufficiently large n.
We have ||Avy||p2 = ty, 1]|Aun| L2, and |[|Av, |2 as well as ||Auy, |2 are bounded and stay
away from zero, thus the sequence (t,, 1)n>1 is bounded and stays away from zero. We infer
that there exist t1 € (0, 00) such that after passing to a subsequence of (uy,)n>1, still denoted
the same, we have t,, 1 — t1 as n — oco. It is easy to see that (un)e, , — uy # 0 as
n — oo. Let v = uy,. Then v # 0 and v, — v weakly in H2(R”). Passing eventually to
further subsequences of (un)n>1 and of (v,)n>1, still denoted the same, we may assume in
addition that v,, — v in Lfoc(RN ) for any 1 < p < 2** and almost everywhere. It is then
clear that (320) and (B2I)) hold with v,, and v instead of u,, and u, respectively.

Our strategy is as follows. We will show firstly that |[v||3. = m. Then we prove that
v, — v strongly in H2(R") and that v € O. Finally we show that necessarily ¢; = 1 (thus
u = v) and that u,, — u strongly in H?(R™).

To carry out the first step of our plan we argue by contradiction and we assume that
[v]|2. < m. Then @B20) implies that ||v, — v|[2. — m — |[v||2, € (0,m) as n — co. By

B20) and B2I) we have

(4.21) E(v,) = E(v) + E(v, —v) + o(1),
(4.22) D(v,) = D(v) + D(v, —v) +0(1), and
(4.23) 0= Pi(v,) = Pi(v) + Pi(v, —v) +0(1) as n — oo.

Passing to a further subsequence if necessary, we may assume that

/ |vp —v[* T2 de — ¢
RN

/ |Av, — Av|*dz — a, ||Vv, — Vv||3. — b and
RN o+1

as n —» 00, where a, b, ¢ > 0. Notice that liminf D(v,) > 0 by Lemma L5 and using ([£22)
n—oo

and passing to the limit we infer that D(v) +a — &2 (52 — 1) ¢ > 0. Thus at least one of the
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quantities D(v) and a — % (% — 1) ¢ must be positive. There are several possibilities and

we analyse all of them, showing that in each case we get a contradiction.

Case 1. D(v) > 0 and a — &2 (52 —1)¢ > 0. In this case we have v € O and
D(v, —v) > 0 (thus v, — v € O) for all sufficiently large n, hence E(v) = Enmin(||v]|2.) and
E(w —vy) = Emin(|jv — vy ||32). Using (@2I), 20) and the continuity of Ey,i;, we get

(4.24) Emm(m) > Emm(”””%?) + Emm(m - ||U||%2)
and this contradicts Lemma [7] (ii).
Case 2. D(v) >0 and a — 22 (82 — 1) ¢ = 0. We have v € O and D(v, —v) — 0, and

Lemma 6 implies lim inf E(v, — v) = Epin(m — |[v]|22). Proceeding as in the first case we
n—oo

get [24)), and this is in contradiction with Lemma 1] (ii).

Case 3. D(v) =0and a— % (% — ) ¢ > 0. As in Case 1, for all sufficiently large n we

have D(v, —v) > 0, hence v, —v € O and we find lim inf E(v, —v) = Epin(m — |Jv]|22). We
n—r00

have ty ins1 = 1, hence E(v) > E(vy, ) 2 Epin(||v]|32) and using @21) we get @24) (with
strict inequality), contradicting again Lemma (A7 (ii).

Case 4. a— 82 (22 —1)c <0. In this case we have necessarily D(v) > 0, hence v € O
and E(v) = Epin(||v]|22). We distinguish two subcases:

Subcase A. There is a subsequence (vp, )k>1 such that Py (v,, —v) = 0, that is ¢, —y)1 <
1 < t(,, —v)2- For all k sufficiently large we have [lv,, — v||2, < po and then (v, —
v)t@nk _oya € O, hence

E(vn, =) 2 E (0, = Vi, ) > Emin (1o, = 0ll32)

Letting k — oo we discover likm inf B(vn, —v) = Emin (m — ||v||72) . Then using @20) and

—r 00

@2T) for the subsequence (vy, )r>1 we infer that (£24]) holds and we reach a contradiction
as in the previous cases.

Subcase B. Py(v, —v) < 0 for all sufficiently large n. To simplify notation, let w,, = v, —v.
Since v,, satisfies [3.19), we have w,, — 0 weakly in H?(R") and w,, — 0 strongly in LP(R")
for all p € [1,2**) and almost everywhere, and it is clear that for any fixed ¢ > 0, the sequence
((wn)t)n>1 has the same properties. We fix ¢ > 1 (and ¢ sufficiently close to 1) such that

No (N .
D(v)+at2—TU (%—1) ot > 0.

Such ¢ exists because D(v)+a—22 (852 — 1) ¢ > 0. Let @, = v+ (wy);. The weak convergence
(wp)e — 0 weakly in H2(RY) gives
1TalZ2 = lollZ> + [wn)ellZ2 +o0(1) = lllZ> + walZ + 0(1) = |lvnll72 + 0(1) = m + o(1),
IV3nlz2 = IVollZe + [V (wn)ell 22 + o(1),
1ATalIZ2 = [|AV]IZ2 + [ A(wn)ell72 + o(1).
Since (wy); — 0 a.e. and ||(wn)t||i‘§j+22 is bounded, using Brezis-Lieb Lemma we have

~ No
I19nll7532 = [0l 7552 + 1(wn)ell 7552 + 0(1) = [WI7552% + 27 wall753% + o(1).

In particular, we infer that
(4.25) E(t,) = E(v) + E((wn)¢) + o(1) as n — 0.

It follows from the above that D(&,) — D(v)+at? — 22 (&2 — 1) ct’® >0 asn — oo,

hence D(,,) > 0 and consequently v, € O for all sufficiently large n. This implies E(?,) >

Epmin(|0]]32), and letting n — oo and using the continuity of Ey,i, we get

(4.26) lim inf E(#,) > Epin(m).

n—r00
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On the other hand, from [@21]) and ([25]) we get
E(on) — E(va) = E((wn)i) — E(wn) + o(1).
For all sufficiently large n (so that P;(w,) < 0), using (£2) and Lemma [£T] (iv) we obtain
E((wy):) — E(wy) < 2(t — 1)Py(wy) — (t — 1)2D(w,,) < (t — 1)2D(wy,).
We infer that
limsup E(#,) < lim E(v,) + (t —1)? lim D(w,)

n—oo n—oo n—roo

(4.27)

= Epin(m) + (t — 1)2 (a— 22 (B2 —1) ¢) < Enin(m)
and this is in contradiction with (Z26]).

Case 5. D(v) < 0. This case is very similar to Case 4, and a bit simpler. We have

necessarily a — % (% — 1) ¢ > 0, thus D(v, —v) > 0 and consequently v, —v € O for all

sufficiently large n, and we find E(vy,—v) = Eynin (||vn—v]|22), which implies lim inf E(v,—v) >
n—oo

Enin(m — [[0]22). )

If Pi(v) > 0 we have t;, < 1 < ta,, hence E(v) = E(v, ,) 2 Emin(||v]32) and we find
that ([@24) holds.

If Pi(v) < 0 we may choose t > 1 such that D(v;) +a — &2 (£2 — 1) ¢ > 0. Denoting
vf, = vy + v, — v we see that |[vf]|2, — m and D(v}) > 0 if n is sufficiently large. Thus
v € O for all large n and then it is easy to see that linIr_1)i£f E(v}) > Epnin(m). On the other

hand,

nll)rrgo E(}) = B(v) + nll)rrgo E(v, —v) < E(v) + nll)rrgo E(vy, —v) = nll)rrgo E(vy,) = Emin(m),
which is a contradiction.

Cases 1-5 here above cover all possible situations and all of them lead to a contradiction.
We have thus proved that [[v]|2. = m. Now let us prove that v, — v in H*(R") and
v € O. The weak convergence v, — v in L?(RY) and the convergence of norms |[v,[|3. —
m = ||v||2. imply that v, — v strongly in L?(R"). Then @2), (3) and the boundedness
of v, in H2(RY) imply that v, — v in L2*2(RY) and Vv, — Vv in L2(RY). Since
Av, = Av in L?(R") we have || Av,||2. = ||Av||2, + || Av, — Av||2 5 +0(1), therefore E(v,) =
E(v) +||Av, — Av||2, + o(1). We have E(v,) — Eynin(m) and we infer that [|Av, — Av|2,
converges in R. It is clear that D(v,) = D(v) + [[Av, — Av||3, 4 o(1). Recall that by
Lemma we have liniiréw(“") > 0, hence D(v) + nlLIEo||A(vn —v)||I32 > 0. We may
thus choose ¢t € (0,1) such that D(v) + t*||A(v, — v)[|2. > 0 for all n sufficiently large and
we denote ¥, = v + t(v, —v). Since v, — v in L? N L2 T2(RY) we have 9, — v in
L2 N L2 T2(RY). Similarly we get Vo, — Vo in L2(RY). Since Av,, — Av — 0 we get
A, |22 = ||Av||25 4+ %[ A(v, —v)||22 +0(1) and then D(2,) = D(v)+t?||A(v,, —v)||2: 4+ 0(1).
Therefore ||0,]|3. < po and D(v,) > 0 for all sufficiently large n, which implies that v, € O
and consequently F(9,) = Epmin(]|0,]/22) for all large n. Letting n — oo we get

lim inf E(#,) > Epin(m).

n—oo

On the other hand we have
E(tn) = E(v) + | A(v, = 0)[[72 + 0(1) = E(v) + (£ = 1)[[A(v, — 0) |72 + (1)
and letting n — oo we find

Epin(m) < liminf E(0,) = Epin(m) + (> = 1) lim [|A(v, — v)]|22.

n—oo n—oo

We conclude that necessarily ||Av, — Av||pz — 0. Since ||v, — v|[pz — 0, this implies
that v, — v in H*>(R"), as desired. Then D(v) = lim D(v,) and Lemma implies
n—00
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that D(v) > 0, hence v € O. Moreover, we have E(v) = lim E(v,) = Epin(m), hence v
n—oo
minimizes E in the set {w € O | |[w[|?, =m}, and P;(v) = lim Py(v,) =0.
n—oo
Recall that v, = (un),, , and ty, 1 — t1 € (0,00) as n — oo. Then we have u, =
(vn),-1 - Since v, — v in H?(RYN), it is easy to show that u, — v;," in H*(RN). This
implies that E(u,) — E(v;"), that is E(v;') = Epin(m). We have D(u,) > 0 for all n
and we infer that D(’U;l) > 0; in other words, t; ! < ty,infi- Therefore 0 < til < Loinfl
and E(v;,") = E(v) = Epin(m). Since t — E(v;) reaches its minimum on [0, %, ;] only at
t = 1, we infer that necessarily ¢; = 1, thus u = v and u,, — u strongly in H%(R"). This

completes the proof of Theorem O
Remark 4.9 If there exists mg > 0 such that Emm(m) = —m on (0,mg], it is eagily seen

that E~mm(m) is not achieved for m € (0,myp). Indeed, if u € O is a minimizer for E,;,(m)
then \/au € O for a > 1 and a close to 1 and we get Ey,in(am) < E(y/au) < aE(u) = —am,
contradicting the fact that E,,;,(am) = —am.

Remark 4.10 Let u be a minimizer for E’mm (m), as given by Theorem It is obvious
that Py (u) = 0 and u satisfies (@3). In particular, we have ||u[|2. < Cm = C|ju||%., where C
depends only on N and on o.

Since u minimizes E at constant L?—norm in the open set O C H2(RY), it is standard to
see that there exists a Lagrange multiplier )\, such that (3:25) holds. Taking the H =2 — H?
duality product of ([B:25) with u we see that u satisfies ([B.26]) and this integral identity can
be written as

g a
B(w) ~ — T35 = Al
Si 0 |lyll2et2 « BWa=2) 4, 2 infi
ince 0 < 255 |[ull7%5 < N(No—1)? lull52 (see (@9), we infer that
“1z>—=> X > - :
m m N(No —4)?
Denoting A, = —1 — ¢(u) and using the above estimate and Lemma (i) we see that u
2
satisfies (B24) with 0 < c(u) < =1+ J\§<]7V(3V_¢727)4) + J\%%Z:E;Z' Thus we have an explicit bound

on Lagrange multipliers associated to local minimizers provided by Theorem [£8

Using (3.8) with ¢ = 0 and 20) we get c(u)|ul|?. < ||u||2L‘722,Lf2 Then using (B3) and
[@9) we see that there is C' > 0, depending only on N and o, such that ||u||2L‘722,Lf2 < Clul|3572.
These estimates give c(u) < C||ul[23 = Cm° and we conclude that necessarily c(u) — 0 as
m — 0.

Remark 4.11 Let u. be a minimum action solution of (3224) as provided by Theorem
and Proposition B.8 We have already seen (cf. ([B48) and Remark BI3) that in the case
No > 4 we have |luc||2. — 0 as ¢ — co. Using (3.49) and B.50) we see that as ¢ — oo,

N 1 NO' NO' o+1
1 T 'D(u, — (2-—")I7= <o
(I+c¢) (u)—>4(0+1)< 2> <

Therefore for sufficiently large ¢ we have [Juc/[7. < po and D(uc) < 0, hence u. ¢ O. We
conclude that if c is large enough, . cannot be a local minimizer of E when the L?—norm is
kept fixed. (See Remark for another interesting variational characterization of u.)

We have thus proved that there are at least two types of small L?— norm solutions for
equation (324):

(a) the minimizers in O of the energy E at fixed L?— norm. They exist for any L?—norm
smaller than . Their Lagrange multipliers are bounded, and their H?—norm is controlled
by their L2—norm because they satisfy ([@3).

(b) the minimum action solutions u, for large values of the Lagrange multiplier ¢. These
solutions have large H2—norm: although [|u.|/;> — 0, we have ||Au.||z2 — co (see Remark
[B15). We were no able to show that the set {||uc||32 | ¢ > 0} contains an interval of the form
(0,a) with a > 0.
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Remark 4.12 Some related results have been obtained in [I7]. The authors have worked
in the space of radial functions HZ2 ; = {u € H*(RY) | u is radially symmetric} and for m
sufficiently small they proved the existence of two solutions of ([3.24) with L?—norm equal to
m. The first one is a local minimizer, and the second one is a mountain-pass type solution.
The associated Lagrange multipliers are not explicit (they are part of the problem).

It is an open question whether the minimizers provided by Theorems [3.4] and
are or not radially symmetric (some partial results if o is an integer can be found in [7]).
We could have worked in HZ ; too. All our arguments are valid when working in this
space, and most proofs become much simpler. In this way we get the analogues of Theorems
B4 and in H? ,, which give the existence of radial solutions to (324). We do not
know whether the energies of solutions in HZ ; are higher or not than the energies of the
corresponding solutions in H?(RY). Our main motivation is to understand the existence and
the properties of standing waves to a fourth-order non-linear Schrodinger equation. Since F
and the L?2—norm are conserved quantities by that equation, the set of travelling waves that
we obtain is orbitally stable. When working in H? ; one can get stability only with respect
to radial perturbations.
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