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In any dimension N ≥ 1, for given mass m > 0 and for the C 1 energy functional

we revisit the classical problem of finding conditions on F ∈ C 1 (R, R) insuring that I admits global minimizers on the mass constraint

Under assumptions that we believe to be nearly optimal, in particular without assuming that F is even, any such global minimizer, called energy ground state, proves to have constant sign and to be radially symmetric monotone with respect to some point in R N . Moreover, we manage to show that any energy ground state is a least action solution of the associated free functional. This last result settles, under general assumptions, a long standing open problem.

Introduction

Let N ≥ 1 and I : H 1 (R N ) → R be a C 1 energy functional defined by

I(u) := 1 2 R N |∇u| 2 dx - R N F (u)dx
where F (t) := t 0 f (τ )dτ for some function f ∈ C(R, R). In this paper we focus on the minimization problem

E m := inf u∈Sm I(u), (Inf m )
where m > 0 is prescribed and

S m := u ∈ H 1 (R N ) | u 2 L 2 (R N ) = m .
By a direct application of Lagrange multiplier's rule, if u ∈ S m solves (Inf m ) then there exists

µ = µ(u) ∈ R such that -∆u = f (u) -µu in H 1 (R N ). (1.1) 
A minimizer of (Inf m ) is often called an energy ground state and E m the ground state energy.

The study of problem (Inf m ) naturally arises in the search of standing waves for nonlinear scalar field equations the form

iψ t + ∆ψ + f (ψ) = 0, ψ : R × R N → C. (1.2) 
By standing waves, we mean solutions to (1.2) of the special form ψ(t, x) = e iµt u(x) with µ ∈ R and u ∈ H 1 (R N ). Clearly ψ(t, x) satisfies (1.2) if u(x) satisfies (1.1) for the corresponding µ ∈ R.

The study of such type of equations, which already saw major contributions forty years ago, [START_REF] Berestycki | Nonlinear scalar field equations I: Existence of a ground state[END_REF][START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case, part 1[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case, part 2[END_REF][START_REF] Stuart | Bifurcation for Dirichlet problems without eigenvalues[END_REF], now lies at the root of several models linked with current physical applications (such as nonlinear optics, the theory of water waves, ...). For these equations, finding solutions with a prescribed L 2 -norm is particularly relevant since this quantity is preserved along the time evolution. In addition, if the solutions correspond to energy ground states, then, in most situations, it is possible to prove that the associated standing waves are orbitally stable. This likely explains why the study of problem (Inf m ) is still the object of an intense activity. Among many others possible choices, we refer to [START_REF] Carles | On soliton (in)-stability in multi-dimensional cubic-quintic nonlinear Schrödinger equations[END_REF][START_REF] Carles | Orbital stability vs. scattering in the cubic-quintic Schrödinger equation[END_REF][START_REF] Cazenave | Semilinear Schrödinger equations[END_REF][START_REF] Dovetta | Action versus energy ground states in nonlinear Schrödinger equations[END_REF][START_REF] Hajaiej | On the variational approach to the stability of standing waves for the nonlinear Schrödinger equation[END_REF][START_REF] Hirata | Nonlinear scalar field equations with L 2 constraint: mountain pass and symmetric mountain pass approaches[END_REF][START_REF] Jeanjean | Nonradial normalized solutions for nonlinear scalar field equations[END_REF][START_REF] Lewin | The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications[END_REF][START_REF] Shibata | Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term[END_REF][START_REF] Stefanov | On the normalized ground states of second order PDE's with mixed power nonlinearities[END_REF] and to the references therein.

Our first main result concerns the solvability of (Inf m ). It can be viewed as an extension of the one of [START_REF] Shibata | Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term[END_REF] already obtained in a very general setting. The following assumptions on f ∈ C(R, R) will be required. and the map m → E m is nonincreasing and continuous. Moreover,

(i) there exists a number m * ∈ [0, ∞) such that E m = 0 if 0 < m ≤ m * , E m < 0 when m > m * ; (ii) when m > m * , the global infimum E m is achieved and thus (Inf m ) has an energy ground state v ∈ S m with I(v) = E m < 0; (iii) when 0 < m < m * , E m = 0 is not achieved; (iv) m * = 0 if in addition lim t→0 F (t) |t| 2+ 4 N = +∞, (A.1)
and m * > 0 if in addition

lim sup t→0 F (t) |t| 2+ 4 N < +∞. (A.2)
Remark 1.2 (i) As it will be clear from the proof of Theorem 1.1 (ii), see also Remark 2.4, when m > m * we also show that any minimizing sequence for (Inf m ) is, up to a subsequence and up to translations in R N , strongly convergent.

(ii) When 0 < m < m * , it is proved in Theorem 1.1 (iii) that the global infimum E m = 0 is not achieved, but this does not mean that the constrained functional I |Sm may not admit critical points with positive energies, see the companion work [START_REF] Jeanjean | Normalized solutions with positive energies for a coercive problem[END_REF].

(iii) In the case m * > 0, studying existence and nonexistence of global minimizers with respect to E m * = 0 seems to be a delicate issue. Since it exceeds our scope of the present paper, we shall not explore further general conditions on f that ensure the existence or nonexistence but refer the interested reader to [START_REF] Jeanjean | Normalized solutions with positive energies for a coercive problem[END_REF] and [START_REF] Shibata | Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term[END_REF]Theorem 1.4] for some existence results.

(iv) For convenience of statement, we introduce the notation

m f m *
with the understanding that m ≥ m * if m * > 0 and E m * = 0 is achieved, and m > m * if otherwise. As one may observe, when m f m * and for any minimizer v ∈ S m of (Inf m ), the associated Lagrange multiplier µ = µ(v) is positive. Indeed, from the Pohozaev identity corresponding to (1.1), see [START_REF] Berestycki | Nonlinear scalar field equations I: Existence of a ground state[END_REF]Proposition 1],

P (v) := N -2 2N R N |∇v| 2 dx + 1 2 µ R N |v| 2 dx - R N F (v)dx = 0
and the fact that

I(v) = E m ≤ 0, we have 0 ≥ I(v) = I(v) -P (v) = 1 N R N |∇v| 2 dx - 1 2 µm
and hence µ > 0.

Remark 1.3 Let us give some examples of nonlinearities satisfying

(f 1) -(f 3). (i) f (t) = |t| p-2 t + A|t| q-2 t with A ∈ R and 2 < q < p < 2 + 4 N .
In particular, (A.1) and (A.2) hold when A ≥ 0 and when A < 0 respectively.

(ii) f (t) = |t| p-2 t -|t| q-2 t with    2 < p < q < ∞, if N = 1, 2, 2 < p < q ≤ 2N N -2 , if N ≥ 3.
In particular, (A.1) and (A.2) hold if p < 2 + 4 N and if p ≥ 2 + 4 N respectively, and when N = 1, 2, 3 we cover the so-called cubic-quintic nonlinearity

f (t) = |t| 2 t -|t| 4 t
which attracts much attention due to its physical relevance, see for example [START_REF] Carles | On soliton (in)-stability in multi-dimensional cubic-quintic nonlinear Schrödinger equations[END_REF][START_REF] Carles | Orbital stability vs. scattering in the cubic-quintic Schrödinger equation[END_REF][START_REF] Killip | Solitons and scattering for the cubic-quintic nonlinear Schrödinger equation on R 3[END_REF][START_REF] Lewin | The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications[END_REF][START_REF] Stefanov | On the normalized ground states of second order PDE's with mixed power nonlinearities[END_REF]. These examples are only some special cases, our Theorem 1.1 and the subsequent Theorems 1.4 and 1.6 apply to more general nonlinearities, in particular to those which are not a sum of powers.

Our next result shows that any energy ground state has constant sign and enjoys symmetry and monotonicity properties.

Theorem 1.4 Assume that N ≥ 1, f ∈ C(R, R) satisfies (f 1) -(f 3)
, and in addition f is locally Lipschitz continuous when N = 1. Let m f m * , where m * ≥ 0 is the number given by Theorem 1.1. Then any minimizer v ∈ S m of (Inf m ) satisfies the following properties:

(i) v has constant sign, (ii) v is radially symmetric up to a translation in R N ,
(iii) v is monotone with respect to the radial variable.

Our last theorem is the heart of the present paper, it answers for nonlinear scalar field equations a long standing open problem. To explain what is at stake, we need the following definition.

Definition 1.5 For given µ > 0, a nontrivial solution w ∈ H 1 (R N ) of the free problem

-∆u = f (u) -µu in R N , u ∈ H 1 (R N ), (Q µ )
is said to be a least action solution if it achieves the infimum of the C 1 action functional

J µ (u) := I(u) + 1 2 µ R N |u| 2 dx
among all the nontrivial solutions, namely

J µ (w) = A µ := inf{J µ (u) | u ∈ H 1 (R N ) \ {0}, J ′ µ (u) = 0}.
For future reference, the value A µ is called the least action of (Q µ ).

The open problem can be now formulated as follows.

Open Problem: We know that a ground state energy minimizer v ∈ S m is a nontrivial solution to (Q µ ), where µ = µ(v) > 0 is the associated Lagrange multiplier. Is the minimizer v ∈ S m a least action solution to (Q µ )? In other words, does an energy ground state is necessarily a least action solution?

For some odd f ∈ C(R, R) satisfying (f 1) -(f 3) it is known that there exists a unique positive solution to (Q µ ) and that it is a least action solution, see for example [START_REF] Carles | Orbital stability vs. scattering in the cubic-quintic Schrödinger equation[END_REF][START_REF] Killip | Solitons and scattering for the cubic-quintic nonlinear Schrödinger equation on R 3[END_REF][START_REF] Lewin | The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications[END_REF]. Thus, in such situations, Theorem 1.4 implies that any energy ground state is a least action solution. However, apart in some particular cases of this type where some uniqueness property was used, the Open Problem remained unsolved until recently. In 2020 a positive answer was given in [START_REF] Fernandez | Some non-homogeneous Gagliardo-Nirenberg inequalities and application to a biharmonic non-linear Schrödinger equation[END_REF] for a related problem of biharmonic type with a power nonlinearity, see [11, Proposition 3.9 and Theorem 1.3]. Also, very recently in [START_REF] Dovetta | Action versus energy ground states in nonlinear Schrödinger equations[END_REF], the authors answered positively the Open Problem for nonlinearities modeled on f (t) = |t| p-2 t, p ∈ (2, 2 * ) which allow to benefit from a Nehari manifold in the sense given in [START_REF] Szulkin | The method of Nehari manifold, Handbook of nonconvex analysis and applications[END_REF], see [START_REF] Dovetta | Action versus energy ground states in nonlinear Schrödinger equations[END_REF]Theorem 1.3] for more details. Note that the results of [START_REF] Dovetta | Action versus energy ground states in nonlinear Schrödinger equations[END_REF] also hold when the analog of problem (Q µ ) is set on an arbitrary domain Ω ⊂ R N . Finally, we mention [START_REF] Ilyasov | On orbital stability of the physical ground states of the NLS equations[END_REF] in which the Open Problem was claimed to be solved for a nonlinearity which is a sum of two powers.

Our result in that direction covers all the previous particular cases, at least when the associated equations are set on all the space R N .

Theorem 1.6 Assume that N ≥ 1, f ∈ C(R, R) satisfies (f 1) -(f 3)
, and in addition f is locally Lipschitz continuous when N = 1. Let m f m * and denote by µ(v) the Lagrange multiplier corresponding to an arbitrary minimizer v ∈ S m of (Inf m ), where m * ≥ 0 is the number given by Theorem 1.1. Then the following statements hold.

(i) Any minimizer v ∈ S m of (Inf m ) is a least action solution of (Q µ ) with µ = µ(v) > 0.
In particular,

A µ = E m + 1 2 µm. (ii) For given µ ∈ {µ(v) | v ∈ S m is a minimizer of (Inf m )}, any least action solution w ∈ H 1 (R N ) of (Q µ ) is a minimizer of (Inf m ), namely w 2 L 2 (R N ) = m and I(w) = E m . Remark 1.7 (i)
The conclusions of Theorem 1.6 (ii) were also observed in [START_REF] Dovetta | Action versus energy ground states in nonlinear Schrödinger equations[END_REF][START_REF] Fernandez | Some non-homogeneous Gagliardo-Nirenberg inequalities and application to a biharmonic non-linear Schrödinger equation[END_REF][START_REF] Ilyasov | On orbital stability of the physical ground states of the NLS equations[END_REF] in the corresponding frames.

(ii) For alternative variational characterizations of the energy ground states, in related problems, we refer to [START_REF] Cingolani | Normalized solutions for fractional nonlinear scalar field equations via Lagrangian formulation[END_REF][START_REF] Cingolani | Ground state solutions for the nonlinear Choquard equation with prescribed mass, to appear on Geometric Properties for Parabolic and Elliptic PDE's[END_REF][START_REF] Hirata | Nonlinear scalar field equations with L 2 constraint: mountain pass and symmetric mountain pass approaches[END_REF]. Note that in [START_REF] Cingolani | Normalized solutions for fractional nonlinear scalar field equations via Lagrangian formulation[END_REF][START_REF] Cingolani | Ground state solutions for the nonlinear Choquard equation with prescribed mass, to appear on Geometric Properties for Parabolic and Elliptic PDE's[END_REF], a variational characterization of the associated Lagrange multiplier is proposed, see also [START_REF] Dovetta | Action versus energy ground states in nonlinear Schrödinger equations[END_REF]Theorem 1.2] in that direction.

(iii) It is known, see for example [START_REF] Carles | On soliton (in)-stability in multi-dimensional cubic-quintic nonlinear Schrödinger equations[END_REF][START_REF] Jeanjean | Normalized solutions with positive energies for a coercive problem[END_REF][START_REF] Lewin | The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications[END_REF], that under the assumptions (f 1) -(f 3) there may exist least action solutions which are not energy ground states.

The paper is organized as follows. In Section 2 we prove Theorem 1.1. Section 3 is devoted to the proof of Theorem 1.4. Finally, in Section 4 we prove Theorem 1.6.

Notations. Throughout this paper, for any

p ∈ [1, ∞), L p (R N ) is the usual Lebesgue space endowed with the norm u L p (R N ) := R N |u| p dx 1/p
, and H 1 (R N ) the usual Sobolev space endowed with the norm

u H 1 (R N ) := ∇u 2 L 2 (R N ) + u 2 L 2 (R N ) 1/2 .
Moreover, for given u ∈ H 1 (R N ) and any s ∈ R, we define the scaling function

s ⋄ u := e N s/2 u(e s •),
which remains in H 1 (R N ) and preserves the L 2 norm when s ∈ R varies.

This section aims to prove Theorem 1.1 and in particular we shall show the existence and nonexistence of minimizers of (Inf m ) for suitable range of the mass m > 0. As a necessary preparation, we have the following lemma the proof of which is standard.

Lemma 2.1 Assume that N ≥ 1 and f ∈ C(R, R) satisfies (f 1) -(f 2).
Then the following statements hold.

(i) For any bounded sequence {u n } in H 1 (R N ), lim n→∞ R N F (u n )dx = 0 if lim n→∞ u n L ∞ (R N ) = 0, and 
lim sup n→∞ R N F (u n )dx ≤ 0 if lim n→∞ u n L 2+4/N (R N ) = 0. (ii) There exists C = C(f, N, m) > 0 such that I(u) ≥ 1 4 ∇u 2 L 2 (R N ) -C(f, N, m) for any u ∈ H 1 (R N ) satisfying u 2 L 2 (R N ) ≤ m.
In particular, I is coercive on S m .

To proceed further, we recall the global infimum

E m := inf u∈Sm I(u)
and make below a detailed study of its basic properties.

Lemma 2.2 Assume that N ≥ 1 and f ∈ C(R, R) satisfies (f 1) -(f 3). Then the following statements hold.

(i) -∞ < E m ≤ 0 for all m > 0.
(ii) There exists m 0 > 0 such that E m < 0 for any m > m 0 .

(iii) E m < 0 for all m > 0 if (A.1) holds, and E m = 0 for small m > 0 if (A.2) holds.

(iv) For any m > m ′ > 0 one has E m ≤ m m ′ E m ′ . (2.1)
If E m ′ is achieved then the inequality is strict.

(v) The function m → E m is nonincreasing and continuous.

Proof. (i) By Lemma 2.1 (ii), I is bounded from below on S m and thus

E m > -∞. For a fixed u ∈ S m ∩ L ∞ (R N ), we have ∇(s ⋄ u) L 2 (R N ) → 0 and s ⋄ u L ∞ (R N ) → 0 as s → -∞. In view of Lemma 2.1 (i), E m ≤ lim s→-∞ I(s ⋄ u) = 0. (ii) From (f 3) and Step 1 of [1, Proof of Theorem 2], there exists u ∈ H 1 (R N ) such that R N F (u)dx > 0. For any m > 0, set u m := u(m -1/N • u 2/N L 2 (R N ) • x) ∈ S m . Since I(u m ) = 1 2 R N |∇u m | 2 dx - R N F (u m )dx = m N-2 N 2 u 2(N -2)/N L 2 (R N ) R N |∇u| 2 dx - m u 2 L 2 (R N ) R N F (u)dx =: Am N-2 N -Bm =: g(m), it follows that E m ≤ I(u m ) = g(m) < 0 for any sufficiently large m > 0. (iii) When (A.1) holds, we choose u ∈ S m ∩ L ∞ (R N ). For D := R |∇u| 2 dx R N |u| 2+4/N dx > 0, by (A.1), there exists δ > 0 such that F (t) ≥ D|t| 2+4/N for all |t| ≤ δ. Since s ⋄ u L ∞ (R N ) ≤ δ for some s < 0, it is clear that E m ≤ I(s ⋄ u) ≤ 1 2 R |∇(s ⋄ u)| 2 dx -D R N |s ⋄ u| 2+4/N dx = 1 2 e 2s R |∇u| 2 dx -De 2s R N |u| 2+4/N dx = - 1 2 e 2s R |∇u| 2 dx < 0. When (A.2) is satisfied, there exists C f > 0 such that F (t) ≤ C f |t| 2+4/N for any t ∈ R. By the Gagliardo-Nirenberg inequality, R N F (u)dx ≤ C f C N m 2/N ∇u 2 L 2 (R N )
for all u ∈ S m .

For any m > 0 small enough such that C f C N m 2/N ≤ 1/4, we have

I(u) ≥ 1 4 ∇u 2 L 2 (R N ) > 0,
and thus E m ≥ 0. From Item (i), it follows that E m = 0 for m > 0 small.

(iv) Let t := m/m ′ > 1. For any ε > 0 there exists u ∈ S m ′ such that

I(u) ≤ E m ′ + ε. Clearly, v := u(t -1/N •) ∈ S m and then E m ≤ I(v) = tI(u) + 1 2 t N-2 N 1 -t 2 N R N |∇u| 2 dx < tI(u) ≤ m m ′ (E m ′ + ε). (2.2)
Since ε > 0 is arbitrary, we see that the inequality (2.1) holds. If E m ′ is achieved, for example, at some u ∈ S m ′ , then we can let ε = 0 in (2.2) and thus the strict inequality follows.

(v) By Item (i) and (2.1), it is clear that E m is nonincreasing. Our remaining task is to prove the continuity and this is equivalent to show that for given m > 0 and any positive sequence

{m k } such that m k → m as k → ∞, one has lim k→∞ E m k = E m . We first claim that lim sup k→∞ E m k ≤ E m . (2.3) 
Indeed, for any u ∈ S m and each k ∈ N + , set

u k := m k /m • u ∈ S m k . Since u k → u strongly in H 1 (R N ), it is clear that lim k→∞ I(u k ) = I(u) and thus lim sup k→∞ E m k ≤ lim sup k→∞ I(u k ) = I(u).
By the arbitrariness of u ∈ S m , we conclude that (2.3) holds. To complete the proof of the continuity, we only need to show lim inf

k→∞ E m k ≥ E m . (2.4) 
For each k ∈ N + , there exists v k ∈ S m k such that

I(v k ) ≤ E m k + 1 k . (2.5) 
Setting

t k := (m/m k ) 1/N and ṽk := v k (•/t k ) ∈ S m , we have E m ≤ I(ṽ k ) ≤ I(v k ) + I(ṽ k ) -I(v k ) ≤ E m k + 1 k + I(ṽ k ) -I(v k ) =: E m k + 1 k + C(k),
where

C(k) ≤ 1 2 |t N -2 k -1| • R N |∇v k | 2 dx + |t N k -1| • R N |F (v k )|dx =: 1 2 |t N -2 k -1| • A(k) + |t N k -1| • B(k).
Since t k → 1, the proof of (2.4) can be reduced to showing that A(k) and B(k) are bounded.

To justify the boundedness, by (2.5) and (2.3), we have lim

sup k→∞ I(v k ) ≤ E m . Noting that v k ∈ S m k and m k → m, it follows from Lemma 2.1 (ii) that {v k } is bounded in H 1 (R N ). Since f ∈ C(R, R) satisfies (f 1
) and (f 2), it is clear that A(k) and B(k) are both bounded and thus the continuity is proved.

Remark 2.3 When N ≥ 2 the function m → E m is concave.
To see this we define for given u ∈ S 1 and any m > 0 the real function

Φ u (m) := I(u(m -1 N •)) = m 1-2 N ∇u 2 L 2 (R N ) -m R N F (u)dx.

It is clear that

E m = inf u∈S 1 Φ u (m).
Each function m → Φ u (m) being concave since

Φ ′′ u (m) = - 2 N 1 - 2 N m -2 N -1 ∇u 2 L 2 (R N ) ≤ 0,
we deduce that m → E m is a concave function. In particular, it is continuous.

Proof of Theorem 1.1. We define

m * := inf{m > 0 | E m < 0}.
It is easily seen from Lemma 2.2 that m * ∈ [0, ∞),

E m = 0 if 0 < m ≤ m * , E m < 0 when m > m * ; (2.6)
in particular, m * = 0 if (A.1) holds, and m * > 0 if (A.2) holds. Let us first show that if 0 < m < m * then E m = 0 is not achieved. Indeed, assuming by contradiction that E m = 0 is achieved for some m ∈ (0, m * ), we infer from Lemma 2.2 (iv) that 

E m * < m * m E m =
n→∞ R N F (u n )dx ≤ 0 via Lemma 2.1 (i); noting that I(u n ) ≥ -R N F (u n )dx, we obtain a contradiction: 0 > E m = lim n→∞ I(u n ) ≥ -lim n→∞ R N F (u n )dx ≥ 0.
Since {u n } is non-vanishing, there exists a sequence {y n } ⊂ R N and a nontrivial element

v ∈ H 1 (R N ) such that up to a subsequence u n (• + y n ) ⇀ v in H 1 (R N ) and u n (• + y n ) → v almost everywhere on R N . Set m ′ := v 2 L 2 (R N ) ∈ (0, m] and w n := u n (• + y n ) -v. It is clear that lim n→∞ w n 2 L 2 (R N ) = m -m ′ (2.8)
and, using the splitting result [16, Lemma 2.6],

E m = lim n→∞ I(u n ) = lim n→∞ I(v + w n ) = I(v) + lim n→∞ I(w n ).
(2.9)

We shall prove below a claim and then conclude the whole proof.

Claim. lim n→∞ w n L 2 (R N ) = 0. In particular, m ′ = m by (2.8).

Let (2.8) gives that m ′ ∈ (0, m). In view of the definition of E tn and Lemma 2.2 (v), we obtain

t n := w n 2 L 2 (R N ) for each n ∈ N + . If lim n→∞ t n > 0, then
lim n→∞ I(w n ) ≥ lim n→∞ E tn = E m-m ′ .
From (2.9) and (2.1), it follows

E m ≥ I(v) + E m-m ′ ≥ E m ′ + E m-m ′ ≥ m ′ m E m + m -m ′ m E m = E m .
Thus necessarily I(v) = E m ′ and this shows that E m ′ is achieved at v ∈ S m ′ . But then still using (2.9) and (2.1), we obtain a contradiction:

E m ≥ E m ′ + E m-m ′ > m ′ m E m + m -m ′ m E m = E m ,
and so the claim is proved.

Conclusion.

Clearly, v ∈ S m by the above claim and thus I(v) ≥ E m . Since the claim and Lemma 2.1 (i) imply that

lim n→∞ R N F (w n )dx ≤ 0, (2.10)
we also have lim n→∞ I(w n ) ≥ 0. Therefore, by (2.9) we get E m ≥ I(v) and hence E m < 0 is achieved at v ∈ S m .

Remark 2.4 One can deduce further that u

n (• + y n ) → v in H 1 (R N )
. Indeed, from (2.9), (2.10) and the fact that

I(v) = E m , it follows ∇w n L 2 (R N ) → 0 as n → ∞.
Since lim n→∞ w n L 2 (R N ) = 0, we obtain the strong convergence.

Sign, symmetry and monotonicity

This section is devoted to the proof of Theorem 1.4. Unless otherwise noted, for given µ > 0 we use the notations

g µ (t) := -µt + f (t) and G µ (t) := - 1 2 µt 2 + F (t).
To deal with the case N = 1, a special treatment is required. To be more precise, we shall make use of the following classification result which is deduced by means of simple methods of ordinary differential equations.

Lemma 3.1 Assume that N = 1, f is a locally Lipschitz continuous function on R satisfying (f 1), and w ∈ H 1 (R) is a nontrivial critical point of J µ for some µ > 0. Then w have a sign. More precisely we have

(a) If w is negative somewhere, then ζ -:= sup{t < 0 | G µ (t) = 0} ∈ (-∞, 0), g µ (ζ -) < 0,
and after a suitable translation of the origin w satisfies

(a1) w(x) = w(-x) for any x ∈ R, (a2) w(x) < 0 for any x ∈ R, (a3) w(0) = ζ -, (a4) w ′ (x) > 0 for any x > 0. (b) If w is positive somewhere, then ζ + := inf{t > 0 | G µ (t) = 0} ∈ (0, ∞), g µ (ζ + ) > 0,
and after a suitable translation of the origin w satisfies

(b1) w(x) = w(-x) for any x ∈ R, (b2) w(x) > 0 for any x ∈ R, (b3) w(0) = ζ + , (b4) w ′ (x) < 0 for any x > 0.
In particular, w is a translation of the unique solution to the initial value problem -u ′′ = g µ (u) with u(0) = ζ -(or u(0) = ζ + ) and u ′ (0) = 0.

Proof. By regularity w ∈ C 2 (R, R) and thus

-w ′′ = g µ (w) in R. (3.1) 
Since |w(x)| and |w ′ (x)| decay to zero exponentially as |x| → ∞, we have

1 2 |w ′ (x)| 2 + G µ (w(x)) = 0 for x ∈ R. (3.2) 
Without loss of generality, we only consider the case when w is negative somewhere. By translating the point where w achieves its negative minimum to the origin, one may assume that w ′ (0) = 0. In view of (3.2),

G µ (w(0)) = 0 and ζ -> -∞.
Since (f 1) gives that G µ (t) < 0 for any t < 0 close enough to the origin, we also have ζ -< 0. Now assume by contradiction that

g µ (ζ -) ≥ 0. Since w(0) ≤ ζ -, there exists x * ∈ R such that w(x * ) = ζ -. Then w ′ (x * ) = 0 and w ′′ (x * ) = -g µ (ζ -) ≤ 0 via (3.
2) and (3.1) respectively. If g µ (ζ -) > 0, then since whenever w(x) = ζ -one also has w ′ (x) = 0 and w ′′ (x) < 0, w can never go above ζ -< 0, which is impossible. On the other hand, if g µ (ζ -) = 0, then by uniqueness the conditions

w(x * ) = ζ - and w ′ (x * ) = w ′′ (x * ) = 0 imply w ≡ ζ -, which is also impossible. With the desired conclusion g µ (ζ -) < 0 at hand, there exists ε > 0 such that G µ (t) > 0 for any t ∈ (ζ --ε, ζ -). If w(0) < ζ -, then w(x * ) ∈ (ζ --ε, ζ -) for some x * ∈ R and so 1 2 |w ′ (x * )| 2 + G µ (w(x * )) > 0.
This contradicts (3.2), and therefore w(0) = ζ -. Since w is the global solution of (3.1) with the initial conditions w(0) = ζ -and w ′ (0) = 0, the rest follows from a standard adaptation of some arguments in [1, Proof of Theorem 5].

Remark 3.2 Even though the nonlinearity f in Lemma 3.1 is locally Lipschitz continuous, the nontrivial critical points of J µ (if exist) are not necessarily unique up to a translation in R and up to a sign since we allow f to be not odd.

In the higher dimensional case N ≥ 2, the radial symmetry of minimizers will be obtained as a direct consequence of a general symmetry result in [START_REF] Mariş | On the symmetry of minimizers[END_REF], and the proof of the monotonicity relies on Lemma 3.3 below. We remark that the first part of Lemma 3.3 is well known and the second part is a simple corollary of [2, Lemma 3.2]. Lemma 3.3 Let v be a nonnegative measurable function defined on R N such that for any α > 0 the function (v -α) + belongs to H 1 (R N ) and has compact support, and denote by v * the Schwarz rearrangement of v. Then

R N |∇v * | 2 dx ≤ R N |∇v| 2 dx. (3.3) 
Moreover, if the equality in (3.3) holds then the level set

χ α := {x ∈ R N | v(x) > α}
is equivalent to a ball for any α ∈ (0, ess sup(v)).

Proof of Theorem 1.4 By Lemma 3.1, the case N = 1 is proved. We treat below the case N ≥ 2. For given minimizer v ∈ S m of (Inf m ), we set v + := max{0, v} and v -:= min{0, v}.

If m ± := v ± 2 L 2 (R N ) = 0, then Lemma 2.2 (iv) gives that E m = I(v) = I(v + ) + I(v -) ≥ E m + + E m -≥ m + m E m + m - m E m = E m ,
and thus E m ± is achieved at v ± ∈ S m ± . Using Lemma 2.2 (iv) again, we obtain a contradiction:

E m ≥ E m + + E m -> m + m E m + m - m E m = E m .
Hence v has constant sign. Since any minimizer of (Inf m ) is a solution of (Q µ ) for some µ > 0 and then by regularity must be of class C 1 , we also deduce from [24, Theorem 2] that v is radially symmetric up to a translation in R N . To proceed further, without loss of generality, we may assume that v ≥ 0 and v(x) = v(|x|) for some one variable function v : [0, ∞) → [0, ∞). By the fact that v(x) → 0 as |x| → ∞, it can be seen that v is bounded and for any α > 0 the function (v -α) + belongs to H 1 (R N ) and has compact support. Since the Schwarz rearrangement v * satisfies v * ∈ S m and

R N F (v * )dx = R N F (v)dx, it follows from Lemma 3.3 that E m ≤ I(v * ) ≤ I(v) = E m and thus R N |∇v * | 2 dx = R N |∇v| 2 dx.
By Lemma 3.3 again, for any α ∈ (0, max(v)), the level set χ α is equivalent to a ball. We now assume by contradiction that v is not nonincreasing. Then v(r 2 ) > v(r 1 ) > 0 for some r 2 > r 1 ≥ 0.

Since v(r) → 0 as r → ∞, there exists r 3 > r 2 such that v(r 3 ) = v(r 1 ). Denoting a := v(r 1 ) and b := v(r 2 ), one may see that for any α ∈ (a, b) the level set χ α is nonempty but not equivalent to a ball. This gives a contradiction and thus v is nonincreasing with respect to the radial variable.

Least action characterization

In this section we show the least action characterization for any minimizer v ∈ S m of (Inf m ) by using a mountain pass characterization of nontrivial solutions of (Q µ ) with µ = µ(v) > 0. This mountain pass characterization, see Lemma 4.1 below, is the core of the proof of Theorem 1.6. It highlights the role of the L 2 mass and seems to have not been formulated before. Some of our arguments are motivated by [START_REF] Byeon | Standing waves for nonlinear Schrödinger equations with a general nonlinearity: one and two dimensional cases[END_REF][START_REF] Jeanjean | A remark on least energy solutions in R N[END_REF][START_REF] Jeanjean | A note on a mountain pass characterization of least energy solutions[END_REF]. and suppose in addition that f is locally Lipschitz continuous when N = 1. Then for any nontrivial critical point w ∈ H 1 (R N ) of J µ , any δ > 0 and any M > 0, there exist a constant T = T (w, δ, M ) > 0 and a continuous path γ :

[0, T ] → H 1 (R N ) satisfying (i) γ(0) = 0, J µ (γ(T )) < -1, max t∈[0,T ] J µ (γ(t)) = J µ (w);
(ii) γ(τ ) = w for some τ ∈ (0, T ), and

J µ (γ(t)) < J µ (w) for any t ∈ [0, T ] such that γ(t) -w L 2 (R N ) ≥ δ; (iii) m(t) := γ(t) 2 L 2 (R N ) is a strictly increasing continuous function with m(T ) > M .
Proof. When N ≥ 3 and for the given w ∈ H 1 (R N ), we set

γ(t) :=    w • t , for t > 0, 0, for t = 0. Note that m(t) := γ(t) 2 L 2 (R N ) = t N w 2 L 2 (R N )
and by the Pohozaev identity

J µ (γ(t)) = 1 2 t N -2 R N |∇w| 2 dx -t N R N G µ (w)dx = 1 2 t N -2 - N -2 N t N R N |∇w| 2 dx.
For any δ > 0 and M > 0, we can thus choose a large constant T = T (w, M ) > 0 such that the continuous path γ : [0, T ] → H 1 (R N ) satisfies Items (i) -(iii) of Lemma 4.1.

In the case of N = 1, without loss of generality, we only consider the situation when the given w ∈ H 1 (R) is negative somewhere. Then the statement (a) of Lemma 3.1 holds and we can define a negative continuous function W : R → R by

W (x) =      w(x), for x ≥ 0, ζ --x 4 , for x ∈ [-ε, 0), ζ --ε 4 , for x < -ε.
Here ε > 0 is a chosen small constant such that

1 2 |W ′ (x)| 2 -G µ (W (x)) = 8x 6 -G µ (ζ --x 4 ) < 0 for x ∈ [-ε, 0), (4.1) 
and it follows from G µ (ζ -) = 0 and g µ (ζ -) < 0. Setting

γ(t) := W (| • | -ln t), for t > 0, 0, for t = 0, one may see that the path γ : [0, ∞) → H 1 (R) is continuous, m(t) := γ(t) 2 L 2 (R) =                w 2 L 2 (R) - -ln t ln t |w(x)| 2 dx, for t ∈ (0, 1), w 2 L 2 (R) , for t = 1, w 2 L 2 (R) + 2 0 -ln t |W (x)| 2 dx, for t > 1,
and

J µ (γ(t)) =                J µ (w) - -ln t ln t 1 2 |w ′ (x)| 2 -G µ (w(x)) dx, for t ∈ (0, 1), J µ (w), for t = 1, J µ (w) + 2 0 -ln t 1 2 |W ′ (x)| 2 -G µ (W (x)) dx, for t > 1.
By the fact that G µ (w(x)) < 0 for x = 0 and (4.1), we have

J µ (γ(t)) < J µ (w) for t = 1 and J µ (γ(t)) < J µ (w) -2G µ (ζ --ε 4 ) • (ln t -ε) → -∞ as t → ∞.
Noting also that m(t) is strictly increasing and m(t) → ∞ as t → ∞, for any δ > 0 and M > 0 there exists a large constant T = T (w, M ) > 0 such that γ : [0, T ] → H 1 (R) is a desired continuous path of Lemma 4.1 when N = 1.

To cope with the remaining case N = 2, we adapt some arguments from [3, Proposition 2]. For the given w ∈ H 1 (R 2 ), we define Ψ : [0, ∞) × (0, ∞) → R by Ψ(θ, s) := J µ θw

• s = 1 2 θ 2 R 2 |∇w| 2 dx -s 2 R 2
G µ (θw)dx.

It can be easily seen that

Ψ θ (θ, s) = θ R 2 |∇w| 2 dx -s 2 R 2 g µ (θw)wdx, Ψ s (θ, s) = -2s R 2 G µ (θw)dx, d dθ R 2 G µ (θw)dx = R 2
g µ (θw)wdx.

Since the Nehari and Pohozaev identities give respectively 

→ (1, 1 + ε) → (1 + θ * , 1 + ε) → (1 + θ * , ∞).
Here θ * = θ * (w, δ) ∈ (0, 1) is a chosen constant satisfying

θ * ≤ min{1 -θ 1 , θ 2 -1, ϑ 1-ε , ϑ 1+ε },
and each segment is horizontal or vertical. Let 0 =: t 0 < t 1 < • • • < t 6 < t 7 := ∞ be such that for each k = 0, 1, • • • , 7, the element η(t k ) ∈ R 2 is an end point of a linear segment of the piecewise linear curve η. We define γ(t) := θ(t)w • s(t) , t ≥ 0.

(f 1 ) 3 )

 13 lim t→0 f (t)/t = 0. (f 2) When N ≥ 3e αt 2 = 0 ∀α > 0;and also for any N ≥ 1There exists ζ = 0 such that F (ζ) > 0.Theorem 1.1 Assume that N ≥ 1, f ∈ C(R, R) satisfies (f 1) -(f 3). Then E m := inf u∈Sm I(u) > -∞

Lemma 4 . 1 when N = 2 ,

 412 Assume that N ≥ 1, µ > 0 and f ∈ C(R, R) satisfies the conditions (f 1) and (f 2) ′ when N ≥ 3, lim sup t→∞ |f (for any α > 0 lim t→∞ f (t) e αt 2 = 0,
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 2 µ (w)dx = 0, there exist two positive constantsθ 1 < 1 < θ 2 such that d dθ R 2 G µ (θw)dx > 0 for θ ∈ [θ 1 , θ 2 ], for θ ∈ (1, θ 2 ].

  for (θ, s) ∈ [θ 1 , 1) × (0, ∞), = 0, for (θ, s) ∈ {1} × (0, ∞), < 0, for (θ, s) ∈ (1, θ 2 ] × (0, ∞).

(4. 3 ) 2 |∇w| 2 dx -s 2 R 2 g 2 |∇w| 2 2 |∇w| 2 dx -s 2 R 2 h

 32222222222 On the other hand, noting thatΨ θ (1, s) = R µ (w)wdx = (1 -s 2 ) R dx,for any s = 1 there exists ϑ s ∈ (0, 1) such thatΨ θ (θ, s) > 0, for (θ, s) ∈ [1 -ϑ s , 1 + ϑ s ] × (0, 1), < 0, for (θ, s) ∈ [1 -ϑ s , 1 + ϑ s ] × (1, ∞). a small constant s * ∈ (0, 1) such that Ψ θ (θ, s) = θ R (θw)w 2 dx > 0 for (θ, s) ∈ (0, 1] × (0, s * ]. (4.5)Now for any δ > 0 we fix a small constant ε = ε(δ) > 0 such that 1 -ε > s * andw • s -w L 2 (R 2 ) < δ for s ∈ [1 -ε, 1 + ε],and denote by η(t) = (θ(t), s(t)) : [0, ∞) → R 2 the piecewise linear curve joining(0, s * ) → (1 -θ * , s * ) → (1 -θ * , 1 -ε) → (1, 1 -ε) → (1, 1)

  It is clear that {u n } is bounded in H 1 (R N ) by Lemma 2.1 (ii) and then one may assume that up to a subsequence lim n→∞ R N |∇u n | 2 dx and lim n→∞ R N F (u n )dx exist. Since E m < 0 by (2.6), we deduce that {u n } is non-vanishing, namely

	lim n→∞	sup y∈R N B(y,1)	|u n | 2 dx > 0.	(2.7)

0 and this leads a contradiction since E m * = 0 by (2.6). The rest is to prove that the global infimum E m is achieved when m > m * . Fix m > m * and let {u n } ⊂ S m be any minimizing sequence with respect to E m . Indeed, if (2.7) were not true, then u n → 0 in L 2+4/N (R N ) by Lions Lemma [23, Lemma I.1] and thus lim
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Then the function J µ (γ(t)) = Ψ(η(t)) is strictly increasing on (t 0 , t 1 ), (t 1 , t 2 ) and (t 2 , t 3 ) by (4.5), (4.3) and (4.4) respectively. One may also see that J µ (γ(t)) is constant on (t 3 , t 4 ), (t 4 , t 5 ) by (4.3), and strictly decreasing on (t 5 , t 6 ) and (t 6 , t 7 ) via (4.4) and (4.3) respectively. Moreover, using (4.2),

Finally we observe that the mass function m(t

is strictly increasing and

Since for any M > 0 we can deduce from (4.6) and (4.7) the existence of a large constant

) is a desired one and this completes the proof of Lemma 4.1.

Proof of Theorem 1.6. To prove Item (i), denoting by w ∈ H 1 (R N ) an arbitrary nontrivial critical point of J µ , we only need to show that

For a fixed δ > 0 and M := m > 0, let γ : [0, T ] → H 1 (R N ) be the continuous path given by Lemma 4.1. In view of Lemma 4.1 (i) and (iii), there exists t 0 ∈ (0, T ) such that

and thus

We now prove Item (ii). In view of Item (i), an arbitrary least action solution w ∈ H

Assume by contradiction that w 2 L 2 (R N ) = m. Then, for

we have the continuous path γ : [0, T ] → H 1 (R N ) given by Lemma 4.1. Noting that by Lemma 4.1 (iii) there exists t 0 ∈ (0, T ) such that

it follows from Lemma 4.1 (ii) a contradiction:

Since we have proved w 2 L 2 (R N ) = m, it is easy to see further that I(w) = E m by (4.8).