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Abstract

A computational model for arbitrary brittle crack propagation, in a fault-like layer within a 3-d elastic domain, and its
ssociated quasi-static and dynamic fields is developed and analyzed. It uses a FFT-based solver for the balance of linear
omentum and a Godunov-type projection-evolution method for the crack evolution equation. As applications, we explore

he questions of equilibria and irreversibility for crack propagation with and without surface energy, existence of strength and
oughness criteria, crack propagation under quasi-static and dynamic conditions, including Modes I, II and III, as well as

ultiaxial compressive loadings.
c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Field Crack Mechanics; Brittle fracture; FFT-based solver; Dynamics

1. Introduction

This paper develops a computational strategy and uses it to critically evaluate the capabilities of a recently
roposed continuum mechanical model of fracture that we shall refer to as Field Crack Mechanics (FCM) [1,2],
estricted here to brittle bulk response and to evolution of arbitrary crack patterns in a fixed plane. Beyond basic
erification, the evaluation is carried out in the context of analyzing several illustrative initial–boundary-value
roblems in nonlinear fracture involving elasto-statics/dynamics in three space dimensions. The model has been
laced in the context of existing literature in the aforementioned references, in particular classical fracture mechanics
e.g. the monograph by Freund [3], Salvadori and Fantoni [4]), cohesive zone approaches to fracture (e.g. [5–7]),
he eigenerosion approach to fracture (e.g. [8]), phase field methods for fracture (e.g. [9–12]) regularizing the
ariational approach to fracture [13,14] and also independently conceived from the Ginzburg–Landau paradigm
e.g. [15]), peridynamics (e.g. [16,17]), and dislocation based approaches to fracture (e.g. [18–20]); of note is also
he work of Smyshlyaev and Willis [21] on accounting for crack-face contact constrains in dynamic fracture, and
he extension of the variational approach to fracture to elastodynamics [22]. Our computational strategy adapts the
rior work of Morin et al. [23] for the computation of the Field Dislocation Mechanics (FDM) model of plasticity
o FCM, with extension to the entire range of crack evolution under quasi-static to dynamic balance of forces.
otably, to our knowledge, our work involves the first fully dynamic implementation of the FFT method for solid
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mechanics due to Moulinec and Suquet [24]. In this connection, we develop a general set of sufficient conditions that
guarantee formal uniqueness of solutions of the linear, spatio-temporally heterogeneous, ‘periodic’ elastodynamic
system relevant to the class of problems we analyze. The FFT method for ‘stress analysis’ is combined with a
central-upwind scheme for a Hamilton–Jacobi equation representing the evolution of the crack field.

Two distinguishing features of our physical model are the representation of crack patterns by a vector field whose
irection at any field point represents the direction of the crack-surface normal, with its magnitude representing the
xtent of the elastic modulus degradation, i.e. brittle damage, at that location. This uniquely equips the model to
istinguish between compressional and extensional loadings normal to the crack surface in a physically transparent,
irect manner, without reliance on volumetric–deviatoric [25] or eigen-decomposition [26–28] splits of the strain
ensor that do not work uniformly (consider the possibility of deviatoric-strain energy driven fracture propagation of
planar crack under transverse compression utilizing the volumetric split and see, e.g., [29], for a simple example

elated to simple shearing vis-a-vis the eigen-decomposition split); an attempt to define a crack-surface normal field,
nd the difficulties in doing so in a physically appropriate manner, within a ‘scalar’ phase field model of fracture
an be appreciated from [29]. The evolution of our vectorial crack field is a direct consequence of a conservation
aw for topological charge associated with the crack-tip field, constrained by the second law of thermodynamics.
rack propagation in the presence of material inertia is a natural consequence of the model, as is the representation
f zero-surface energy cracks leading to irreversibility in crack evolution under unloading, without relying on any
rreversibility criteria put in ‘by hand.’ This latter fact is the second distinguishing feature of our model: allowing
or the possibility of crack growth without any surface energy cost, while maintaining classical expectations on
rediction of strength and toughness. Furthermore, while lending itself naturally to non-singular crack-tip stress
elds and geometric representation of cracks by a field in contrast to classical fracture mechanics, it is a manifest
eature of the theory that crack evolution is localized around the crack-tip field, regardless of levels of stress or
nergy, or elastic wave propagation in the body, much like physical notions of classical fracture.

This paper is organized as follows. In Section 2, the Field Crack Mechanics theory is recalled and a planar
nsatz, in which the crack field is constrained in a thin layer, is derived. A numerical formulation of the model
s proposed in Section 3, relying on a FFT-based solver for the balance of linear momentum and Godunov-type
rojection-evolution solver for the crack evolution equation. In Section 4, several problems including Mode I,
hear and compressive loadings are investigated in quasi-static conditions. Crack evolution in dynamic loadings
s then considered in Section 5. Section 6 demonstrates the capability of our framework in modeling progressive
racture in materials with a random initial (small) crack microstructure. Section 7 contains concluding remarks, and
he Appendix contains arguments for formally deducing uniqueness of solutions in spatio-temporally heterogeneous,
eriodic, elastodynamics.

. The Field Crack Mechanics model of brittle fracture

.1. General case

The problem we are addressing is the numerical simulation of brittle crack propagation in an elastic solid. The
pproach that we follow relies on the use of a crack field as an internal variable [1,2]. This requires solving (i) for
echanical force balance (with or without inertia) for a given crack field and some applied macroscopic loading

n an heterogeneous anisotropic elastic media and (ii) an evolution problem, consisting of the evolution of the
rack field involving the local mechanical and crack-related energetic fields constrained by kinematics related to
onservation of topological charge of the crack-tip field.

The objective of this work is to study the local and overall mechanical fields of brittle materials with complex
icrostructures containing cracks that can propagate. Thus, this work focuses on the effect of cracks within some

eterogeneous material and is in line with previous studies devoted to the simulation of materials with heterogeneous
icrostructures for which it is well established that FFT-based methods are adapted to solve the mechanical

roblem [24]. Indeed, it is a powerful tool to solve the elasticity equations with heterogeneous fields that are periodic,
uch as in polycrystalline or composite materials. In the case of cracked media, heterogeneity is also built-in as
he crack field modifies the local elastic properties, which makes this method appealing. In the case of a phase-

eld fracture model, the FFT-based approach has proved to provide valuable insights in brittle crack propagation

2
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problems [30–32]. Periodic boundary conditions, intrinsic of the method,1 are of course slightly restrictive in crack
propagation problems, but the benefits of the method outweigh this limitation in several practical cases as, e.g. the
solution to arbitrary static crack distributions [35], problems with random distributions of cracks, and in general
any large scale problems with complex microstructures.

With in mind the use of FFT-based methods, we are thus concerned with a medium with a periodic microstructure
so that the crack field vector c(x, t) and the (possibly damaged) elastic moduli tensor C(x, c(x, t)) are periodic

elds. The unit-cell is a 3D cubic domain Ω = [−L , L]3 with 2L the period of the microstructure. Tensorial
components refer to a system of Cartesian coordinates (e1; e2; e3). In quasi-statics, the problem consists in finding,
he local stress, strain and displacement fields (respectively denoted by σ (x, t), ε(x, t) and u(x, t)) and the crack
eld c(x, t), for given initial conditions on c and some prescribed, generally time-dependent boundary conditions.
n dynamics, initial conditions on the displacement u and velocity u̇ are required, in addition. These fields satisfy
in the absence of body force)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

div(σ ) = ρ
∂2u
∂t2 Balance of linear momentum

σ = C : (ε(u∗) + ε) Elasticity law

ε(u∗) =
1
2

(∇u∗
+ ∇

Tu∗) Strain–displacement relation

ċ = −curl(c) × V Crack evolution,

(1)

here ρ is the time-independent mass density field (corresponding to the reference configuration of the body from
hich all displacements are measured) and V is the crack velocity field. In the above, the local strain ε(x) is split

nto its average ε = ⟨ε⟩ (where ⟨·⟩ denotes the spatial average over the unit-cell Ω ) and a fluctuation term ε(u∗(x)):

ε(u(x)) = ε(u∗(x)) + ε or equivalently u(x) = u∗(x) + ε.x. (2)

he fluctuating part u∗(x) is periodic (notation: u∗(x)#) and the traction σ .n is anti-periodic on the boundary
etween two neighboring cells with n the outer normal along the boundary ∂Ω of Ω (notation: σ .n − #).

It should be noted that the crack evolution equation can be modified in order to account for some irreversibility
ondition of crack propagation in order to prevent crack healing; this condition would read

ċ =

⎧⎨⎩ −curl(c) × V if
∂

∂t
|c| =

c
|c|

· (−curl(c) × V ) > 0

0 otherwise.
(3)

The free energy function ψ is supposed to be of the form

ψ(ε, c, curl(c)) = ψE (ε, c) + ϕ(c, curl(c)), (4)

where ψE is the elastic strain energy density of the material (with its elastic modulus degraded) and ϕ is an energy
function which should account notably for an energy barrier to damage from an undamaged state. The positivity of
the mechanical dissipation D implies that the crack velocity is of the form [1,2]

V = M
(

−
∂ψE

∂c
−
∂ϕ

∂c
− curl

(
∂ϕ

∂curlc

))
× curlc, (5)

here M is a symmetric, positive definite tensor of crack mobility; in the isotropic case it is given by

M =
1
B

I, (6)

where I is the identity matrix and B is a (positive) scalar drag coefficient.
We assume that the elastic strain energy density is of the form

2ψE (ε, c) = (1 − H (|c|)) ε : Ci : ε + H (|c|)
[
ε : Cd : ε + (1 − H (εn))αε2

n

]
. (7)

1 Mention has to be made of the work of Nguyen et al. [33] who considered mixed periodic and stress-free boundary conditions and the
recent work of Gélébart [34] which extends the FFT-based method to Dirichlet boundary conditions, allowing to remove the most important

rawback of the method (i.e. periodic boundary conditions).
3



L. Morin and A. Acharya Computer Methods in Applied Mechanics and Engineering 386 (2021) 114061

T
t
o

I

m
e

w

w
v

w
a
f
f

In this equation, Ci denotes the elasticity tensor of the intact material and Cd corresponds to the damaged moduli
(depending on the crack field). The function H (x) is the Heaviside step function which is given by

H (x) =

{
0 if x ≤ 0
1 if x > 0. (8)

he last term in Eq. (7) permits to introduce a different behavior in the compressive regime in the direction normal
o the crack surface in order to prevent the interpenetration of crack flanks (corresponding to an undamaged behavior
r some prescribed contact stiffness), which corresponds to the case εn < 0 where εn is given by

εn = ε : (nc ⊗ nc), nc =
c
|c|
. (9)

n the case of a non-damaged behavior in compression, the constant α would read

α = (Ci − Cd) :: (nc ⊗ nc ⊗ nc ⊗ nc) . (10)

From the definition of the elastic strain energy, the stress tensor is given by

σ =
∂ψE

∂ε
= (1 − H (|c|))Ci : ε + H (|c|)

[
Cd : ε +

(
1 − H (εn) −

δ(εn)εn

2

)
αεnnc ⊗ nc

]
, (11)

where δ is the Dirac delta function. Assuming the term δ(εn)εn to be negligible (since, in the sense of generalized
functions (cf. [36]), the product of δ(x) with x is equal to 0), the stress tensor reduces to

σ = (1 − H (|c|))Ci : ε + H (|c|)
[
Cd : ε + (1 − H (εn)) αεnnc ⊗ nc

]
. (12)

This allows the expression of the elasticity tensor:

C(ε, c) = (1 − H (|c|))Ci + H (|c|)
[
Cd + (1 − H (εn))α nc ⊗ nc ⊗ nc ⊗ nc

]
. (13)

Typical examples of intact and damaged elastic behaviors Ci and Cd in the isotropic case (in the strain argument)
are given by

Ci = λI ⊗ I + 2µI, Cd = λ̃(|c|)I ⊗ I + 2µ̃(|c|)I, (14)

where λ and µ are Lamé’s coefficients of the intact material, λ̃(|c|) and µ̃(|c|) are Lamé’s coefficients of the damaged
aterial, I is the fourth-order identity tensor and I is the second-order identity tensor. Simple forms for the damaged

lastic moduli λ̃ and µ̃ are monotonically decreasing convex functions of the magnitude of cracking:{
λ̃(|c|) = λ f (|c|)
µ̃(|c|) = µ f (|c|), (15)

here f is a degradation function of a non-negative scalar argument of the form

f (d) =

⎧⎨⎩ 1 − 2(1 − fm)
|d|

dc
+ (1 − fm)

(
d
dc

)2

if 0 ≤ |d| ≤ dc

fm if |d| ≥ dc

(16)

here fm ≪ 1 is the coefficient describing the maximal degradation of the elastic modulus and dc is a threshold
alue of |c| for inducing this maximal degradation in elastic stiffness.

The simplest form of the crack energy density ϕ may be expected to be of the form

ϕ(c, curlc) = η(|c|) + t|curlc|2, (17)

here η(|c|) is a non-convex local crack energy density function representing an energy barrier to crack growth
nd the other term is the crack-tip energy density representing a lowest-integer-order approximation of any smooth
unction that assigns an energy cost to the formation of a crack-tip. In this paper we will deal with two candidate
unctions⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

η2(|c|) =

⎧⎨⎩ a
(

1 − cos2
(
π

|c|
ω2

))
if 0 ≤ |c| ≤ ω2

0 if |c| ≥ ω2.

η1(|c|) =

{
η2(|c|) if 0 ≤ |c| ≤ ω1 =

ω2

2

, (18)
η2(ω1) if |c| ≥ ω1

4
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Fig. 1. Surface energy functions considered.

sketched in Fig. 1. The functions correspond to qualitatively different mechanisms of energy storage in cracked
regions. The function η1 represents a ‘Griffith’ type energy cost to cracked regions, endowing a permanent energy
cost to the formation of a crack. The function η2, on the other hand, while presenting an energy barrier that has to
be surmounted for a material point to be cracked leaves no residual stored energy (beyond a small amount of strain
energy density, regulated by the residual stiffness related to the coefficient fm) once the material is at or beyond
the damage threshold ω2.

Before proceeding further, we nondimensionalize our model.
In the presence of quasi-static loading (i.e., rates of loading asymptotically slower than the time scales of elastic

ave propagation in the body or the relaxation dictated by the drag B) the dimensional equations to be solved
re div(σ ) = 0 and −curl(c) × V = 0 (considerations of the irreversibility condition do not change the essential
rgument here). Non-dimensionalizing physical quantities with dimensions of length by L a linear extent of the
omain, stresses and energy densities by the shear modulus µ (we consider c as dimensionless, cf. [2]), assuming
he crack mobility tensor to be of the form (6) and denoting all dimensionless quantities by a ‘circle superscript’,
he resulting nondimensional system of equations is

0 = div◦(σ ◦)

0 = curl◦(c) ×

(
∂ψ◦

∂c
× curl◦(c)

)⎫⎬⎭ quasi-static evolution. (19)

The rates of evolution are entirely controlled by the time-rates of the applied boundary conditions.
For rates of loading (perhaps ‘slow’) where inertial effects cannot be ignored, we again nondimensionalize lengths

y L , stresses and energy densities by µ, and time by L
vs

, where vs =

√
µ

ρ
is the elastic shear wave speed, to obtain

the following non-dimensional system:

∂2u◦

∂t◦2 = div◦(σ ◦)

∂c
∂t◦

=
1
B◦

(
curl◦(c) ×

(
∂ψ◦

∂c
× curl◦(c)

))
⎫⎪⎪⎬⎪⎪⎭ dynamic evolution with B◦

=
BL2(
L
vs

)
µ

=
BL

√
µρ
. (20)

n both cases the irreversibility condition is appended when used.
In the rest of the paper we deal with the above nondimensional systems and, for notational convenience, all
‘circle exponents’ will be dropped, except when explicitly noted to the contrary.

5
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Fig. 2. Layer problem considered.

2.2. A planar ansatz

Hereafter we consider a simplified planar ansatz in which the crack field is confined in a thin layer (see Fig. 2).
This constitutes a first step towards the simulation of fully 3d crack propagation in heterogeneous materials and
follows developments in [23] and [37] for the case of dislocation mechanics.

The two outer regions outside of the layer are supposed to be purely elastic isotropic linear with material constants
µ and λ. This problem will allow to reduce the crack evolution equation to a scalar degenerate parabolic equation

ith dominant nonlinear wave transport behavior for which efficient numerical solvers can be deployed.
In this planar problem, the following ansatz is assumed:

(1) The crack surface is supposed to be the plane x3 = 0. The crack field c and the crack-tip velocity field V are
supposed to be constrained in a layer of finite thickness h around the crack surface, and to be of the form

c = c3(x1, x2)e3,

V = V1(x1, x2)e1 + V2(x1, x2)e2.

(2) The elastic energy (7) is given by

2ϕE(ε, c3) = C1111(ε2
11 +ε2

22)+C3333ε
2
33 +2C1122(ε11ε22 +ε11ε33 +ε22ε33)+2C1212(ε2

12 +ε2
13 +ε2

23), (21)

or alternatively

2ϕE(ε, c3) = H (c3)
[
λI1(ε) + 2µI2(ε)

]
+ (1 − H (c3))

[
λ̃I1(ε) + 2µ̃I2(ε) + (1 − H (ε33))αε2

33

]
, (22)

where I1 and I2 are functions of some symmetric second-order tensor A given by{
I1(A) = (trA)2

I2(A) = A : A. (23)

The non-negative components of the stiffness tensor C, accounting for the tension–compression asymmetry
according to the crack normal e3, are given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C1111 = C2222 = (1 − H (|c3|)) (2µ+ λ)+ H (|c3|)
(

2µ̃(|c3|) + λ̃(|c3|)
)

C1122 = (1 − H (|c3|))λ+ H (|c3|)λ̃(|c3|)

C3333 = (1 − H (|c3|)) (2µ+ λ)+ H (|c3|)
[
2µ̃(|c3|) + λ̃(|c3|) + (1 − H (ε33))α

]
C1212 = C1313 = C2323 = C1111 − C1122.

(24)

The elasticity behavior is thus heterogeneous due to the crack field c3, non-linear and tension–compression
asymmetric with respect to ε due to the compressive behavior of the crack flanks. In a case of a non-damaged
33

6
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t
p

compressive behavior of the crack flanks, the constant α reads

α = 2µ+ λ−

(
2µ̃(|c3|) + λ̃(|c3|)

)
. (25)

In the following we will only consider this case.
(3) The degradation function appearing in the damaged moduli (15) reduces to

f (|c3|) =

⎧⎨⎩ 1 − 2(1 − fm)
|c3|

dc
+ (1 − fm)

(
c3

dc

)2

if 0 ≤ |c3| ≤ dc

fm if |c3| ≥ dc.

(26)

(4) The evolution equation for the crack field consistent with (24) and this ansatz is

ċ3 =
1
B

[
2t

(
∂2c3

∂x2
1

+
∂2c3

∂x2
2

)
−

⟨
∂ϕE

∂c3

⟩
layer

−
∂η

∂c3

] [(
∂c3

∂x1

)2

+

(
∂c3

∂x2

)2
]
, (27)

where ⟨·⟩layer represents an average of · over the height of the layer. Since the crack is defined only in the
planar layer, the driving force related to the strain energy density is averaged within the layer (this is motivated
from a similar result in the FDM model [37] where it is shown that such a fault-thickness averaged elastic
driving ‘force’ is adapted to the assumed layer-kinematics ansatz, and exactly satisfies thermodynamics). In
the case of a non-damaged compressive behavior where α is given by Eq. (25), one has⟨

∂ϕE

∂c3

⟩
layer

=sign(c3)
∂ f
∂|c3|

( λ
2h

∫
−h/2

−h/2

(
I1(ε) − (1 − H (ε33))ε2

33

)
dx3

+
µ

h

∫
−h/2

−h/2

(
I2(ε) − (1 − H (ε33))ε2

33

)
dx3

)
, (28)

where h is the thickness of the layer.

. Numerical formulation

.1. General procedure

The resolution will consist in finding the mechanical state Sn+1 = {εn+1 , un+1, σ n+1, cn+1} at time tn+1, knowing
he previous mechanical state Sn = {εn , un , σ n , cn} at time tn and considering boundary conditions (typically
rescribed overall strain ε = ⟨ε⟩ or stress σ = ⟨σ ⟩). We follow the strategy adopted in [23] for FDM problems,

which consists in treating separately the elasticity problem and the evolution problem through a staggered strategy:

• The crack evolution equation will be solved using Godunov-type solvers;
• Two distinct solvers will be developed for the elasticity problem, a non-linear FFT-based solver in the absence

of inertial effects (elastostatic problem) and a dynamic explicit solver in the presence of inertial effects
(elastodynamic problem).

3.2. Elastostatic problem

The static problem will be solved using a FFT-based solver. This class of solvers is particularly interesting in
heterogeneous elasticity problems [24], as it is the case with cracks [35] (see also [38]). The present case differs
slightly from that considered by Moulinec and Suquet [24] and Gasnier et al. [35] because the elastic behavior
is non-linear due to the condition of non-interpenetration of crack flanks (the components of the elasticity tensor
depend on ε).

Assuming that the present crack field cn+1 is known, the static problem is first written as the so-called auxiliary
problem [24]{

div(σ n+1) = 0
σ n+1(x) = C0 : εn+1(x) + τ (x) (29)

where C0 is the stiffness tensor of some homogeneous medium and τ (x) is the polarization tensor given by

τ (x) = C(c , ε ) − C : ε (x). (30)
( n+1 n+1 0) n+1

7
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In practice, the reference stiffness tensor C0 can be taken isotropic with Lamé’s coefficients µ0 and λ0 generally
given by [39]

λ0 =
1
2

(
inf
x∈Ω

λ(x) + sup
x∈Ω

λ(x)
)
, µ0 =

1
2

(
inf
x∈Ω

µ(x) + sup
x∈Ω

µ(x)
)
. (31)

The principle of FFT-based solvers is to iterate in order to determine the correct polarization tensor solution of
he problem. The basic scheme of Moulinec and Suquet [24] permits to solve linear (elastic) as well as non-linear
visco-plastic) problems; here this scheme is slightly adapted in order to account for the non-linearity of the stiffness
ensor with respect to the strain field. In fact it is actually straightforward to consider this non-linearity since, with
his method, the stress field is deduced from the strain field by the constitutive law. The following fixed point
lgorithm is thus considered in order to determine τ (x):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Initialization ε0
n+1(x) = εn+1 (with prescribed overall strain)

σ 0
n+1(x) = C

(
cn+1, ε

0
n+1

)
: ε0

n+1(x)
Iterate i + 1 εi

n+1 and σ i being known
(a) τ i (x) = σ i

n+1(x) − C0 : εi
n+1(x)

(b) τ̂ i
= F

(
τ i

)
(c) Convergence test
(d) ε̂i+1

n+1(ξ ) = −Γ̂
0
(ξ ) : τ i (ξ ) ∀ξ ̸= 0 and ε̂i+1

n+1(0) = εn+1

(e) εi+1
n+1 = F−1

(̂
εi+1

n+1

)
(f) σ i+1

n+1(x) = C
(
cn+1, ε

i+1
n+1

)
: εi+1

n+1

n step (d), Γ̂
0

is the classical (continuous) Green operator related to the reference medium C0 [24]. Convergence
s reached when σ i

n+1 is in equilibrium. In practice, the iterative procedure is stopped when the error serving to
heck convergence [24]

ei
=

(⟨div(σ i
n+1)

2
⟩)1/2

⟨
σ i

n+1

⟩ (32)

is smaller than a prescribed (small) value (typically 10−4 in practice).
It should be noted that other derivatives rules (such as the finite differences rule proposed by Willot et al. [40])

r the rotated finite difference scheme of Willot [41] could be used to improve the numerical results. In particular,
he rotated finite difference scheme of Willot [41] would permit to handle infinite contrasts using the fixed point

ethod as shown by Djaka et al. [42]. Nevertheless, we have checked that the continuous operator together with
he fixed point were sufficient to handle cracks with reasonable (finite) values for the degradation function (roughly
fm = 0.01).

.3. Elastodynamic problem

We develop a fully dynamic, FFT based explicit solver for the balance of linear momentum including the effects
f material inertia. In the Appendix we deduce sufficient conditions for formal uniqueness of solutions in spatio-
emporally heterogeneous and periodic elastodynamics that indicate an appropriate set of supplementary conditions
hat allow for a well-set problem in this ‘periodic’ setting. The local acceleration field is assumed to be of the form

ü(x) = ü∗(x) + ε̈.x, (33)

here the fluctuation of the acceleration ü∗(x) is a periodic field. The macroscopic acceleration term, ε̈, is assumed
to vanish in the algorithm. This is actually not restrictive because piecewise constant strain rate loadings are

admissible within this setting, as argued in the Appendix.
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The following algorithm (explicit central difference in time) is thus considered:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Step time n + 1 û∗

n,
ˆ̇u∗

n,
ˆ̈u∗

n, σ n and cn+1 being known

(a) û∗

n+1 = û∗

n + ∆tˆ̇u∗

n +
∆t2

2
ˆ̈u∗

n

(b) (̂εkl)n+1(ξ ) =
ı
2

(
ξk (̂u∗

l )n+1 + ξl (̂u∗

k )n+1

)
∀ξ ̸= 0 and ε̂n+1(0) = εn+1

(c) εn+1 = F−1 (̂εn+1)

(d) σ n+1 = C (cn+1, εn+1) : εn+1
(e) σ̂ n+1 = F−1 (σ n+1)

(f)
(̂
ü∗

k

)
n+1 =

ı
ρ
(ξ1 (̂σk1)n+1 + ξ2 (̂σk2)n+1 + ξ3 (̂σk3)n+1)

(g) ˆ̇u∗

n+1 = ˆ̇u∗

n +
∆t
2

(̂ü∗

n + ˆ̈u∗

n+1)

In practice, the dynamic explicit solver was found to be quite sensitive to numerical artifacts (oscillations),
merging from pseudospectral differentiation in the presence of traction jumps [43]. Thus, to improve the
omputation of the local field and remove spurious oscillations, the pseudospectral differentiation rule is replaced
y finite differences. Following [40] (see also [44]), the strain field is computed from the displacement field using
backward finite difference rule; in step (b) the term ξi is replaced by ki given by

ki =
exp (ıξi∆x) − 1

ı∆x
. (34)

The acceleration is, on the other hand, computed from the stress field using a forward finite difference rule; in step
(f) the term ξi is replaced by k ′

i given by

k ′

i =
1 − exp (−ıξi∆x)

ı∆x
. (35)

We have verified our implementation by the ‘method of manufactured solutions’.

.4. Crack evolution problem

Following [23], we consider the central scheme of Kurganov et al. [45] for the resolution of the crack evolution
roblem, because it is a nonoscillatory high-resolution Godunov-type projection-evolution method. The crack
volution problem given by (27) can be formally written as

∂c
∂t

+ Ĥ
(
∂c
∂x
,
∂c
∂y

)
= 0, (36)

here c = c3, x = x1, y = x2. The Hamiltonian Ĥ is defined by

Ĥ
(
∂c
∂x
,
∂c
∂y

)
= −

e0

B

[(
∂c
∂x

)2

+

(
∂c
∂y

)2
]
, (37)

here the energetic driving force, e0, is given by

e0 = 2t
(
∂2c
∂x2 +

∂2c
∂y2

)
−
∂ϕE

∂c
−
∂η

∂c
. (38)

his term e0 will be evaluated at the beginning of the time step; following [45], the Laplacian (diffusion) term
n Eq. (38) is discretized by a fourth-order central difference scheme.

A uniform grid (defined at the voxels’ nodes) is chosen with the following notations: x j = j∆x , yk = k∆y,
tn

= n∆t and cn
jk = c(x j , yk, tn), where ∆x , ∆y and ∆t are respectively the spatial step sizes and the time step.

Provided that the value of c is known at time tn , we are looking for the point values of c at time tn+1. The algorithm
s briefly detailed below:

tep 1: construction of a continuous piecewise interpolant. A continuous piecewise quadratic interpolant c̆(x, y, tn)
s constructed in order to avoid spurious oscillations (see [46] for the full details). A nonlinear limiter is used in the
efinition of the quadratic interpolant in order ensure the nonoscillatory behavior of the central scheme. In practice,

one-parameter family of the minmod limiters is considered [23].

9
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Step 2: estimation of the one-sided local speed of propagation. The one-sided local speeds of propagation in the
x- and y-directions are evaluated at the grid point (x j , yk):

a+

jk = max
±

{
∂ Ĥ
∂cx

(c±

x , c±

y ), 0
}
, a−

jk = min
±

{
∂ Ĥ
∂cx

(c±

x , c±

y ), 0
}
,

b+

jk = max
±

{
∂ Ĥ
∂cy

(c±

x , c±

y ), 0
}
, b−

jk = min
±

{
∂ Ĥ
∂cy

(c±

x , c±

y ), 0
}
, (39)

here c±
x = c̆x (x j ± 0, yk, tn) and c±

y = c̆y(x j , yk ± 0, tn) are the right and the left derivatives in the x- and
y-direction, deduced from the quadratic interpolant [46].

tep 3: approximate solution of the Hamilton–Jacobi equation at intermediate grid points. The Hamilton–Jacobi
quation (36) is then solved at the intermediate points (xn

j± = x j + a±

jk∆t, yn
k±

= yk + b±

jk∆t). This leads to the
pproximate Riemann solver

cn+1
j±,k±

= c̆(xn
j±, yn

k±
, tn) − ∆t Ĥ

(
c̆x (xn

j±, yn
k±
, tn), c̆y(xn

j±, yn
k±
, tn)

)
. (40)

tep 4: projection of the intermediate solution onto the original grid. The solution previously obtained at the
ntermediate points x j± and yk± is projected onto the original grid which leads to the fully discrete scheme

cn+1
jk =

a−

jkb−

jk

(a+

jk − a−

jk)(b+

jk − b−

jk)

(
c̆(xn

j+, yn
k+
, tn) − ∆t Ĥ

(
c̆x (xn

j+, yn
k+
, tn), c̆y(xn

j+, yn
k+
, tn)

))
+

a−

jkb+

jk

(a+

jk − a−

jk)(b+

jk − b−

jk)

(
c̆(xn

j+, yn
k−
, tn) − ∆t Ĥ

(
c̆x (xn

j+, yn
k−
, tn), c̆y(xn

j+, yn
k−
, tn)

))
+

a+

jkb−

jk

(a+

jk − a−

jk)(b+

jk − b−

jk)

(
c̆(xn

j−, yn
k+
, tn) − ∆t Ĥ

(
c̆x (xn

j−, yn
k+
, tn), c̆y(xn

j−, yn
k+
, tn)

))
+

a+

jkb+

jk

(a+

jk − a−

jk)(b+

jk − b−

jk)

(
c̆(xn

j−, yn
k−
, tn) − ∆t Ĥ

(
c̆x (xn

j−, yn
k−
, tn), c̆y(xn

j−, yn
k−
, tn)

))
. (41)

In problems of dislocation motion with constant velocity, the predictions of this solver almost coincide with the
xact solution [23].

. Crack evolution in quasi-static loadings

.1. Description of the simulations

Quasi-static loadings can be performed by combining the FFT-based solver for the static problem with the
odunov-type algorithm for the evolution problem. In practice, we apply successive macroscopic strain increments
ε. In order to ensure the quasi-static evolution, we let the crack field evolve for a given macroscopic strain

increment. When the crack field is converged, we move to the next macroscopic strain increment and so on. The
algorithm related to the quasi-static runs is provided in Fig. 3.

Since FFT algorithms require data sampled on a regular grid, we consider throughout the paper a [−1, 1] ×

[−1, 1] × [−1, 1] regular unit-cell discretized with 128 × 128 × 128 voxels (the mechanical fields are evaluated at
the center of each voxel) so the spatial step is ∆x = 0.015625 and we have L = 1. The planar layer is supposed
to be centered in the plane x3 = 0 and a constant thickness h = 0.046875 is considered for the layer, which
corresponds to a number of 3 voxels.2 The following values are taken for the elastic properties: µ = 1 and λ = 2
(which corresponds to a Poisson ratio ν = 1/3, typical of metallic materials). Finally the values ec = 10−5 and
ei

= 10−4 have been chosen for the convergence criteria, where ei serves in the convergence criterion of the iterative
FFT-based solver (see Eq. (32)) while ec serves in the convergence test of the evolution problem (see Fig. 3). The

2 The layer’s thickness, h, was checked to have a small influence on the results for nominally thin layers. We note that the stress fields
remain non-singular as h → 0 for

√
t/a > 0.
10
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Fig. 3. Flow chart for quasi-static calculations.

(artificial) time step ∆t which enters in the evolution equation is chosen in order to check the following stability
constraint

∆t ≤
∆x
vl
, (42)

n Eq. (42), vl is the maximal local speed of propagation given by

vl = max
i, j

(a+

i j , a−

i j , b+

i j , b−

i j ), (43)

here a+

i j , a−

i j , b+

i j and b−

i j are the local speeds of propagation given by Eq. (41). In practice we take the value

∆t = 0.5
∆x
vl
. (44)

t was checked that decreasing the time step does not modify significantly the results.
It should be noted that in the evolution problems studied (Sections 4.3 to 4.6), the irreversibility condition for

rack propagation given by Eq. (3) will always be considered. The possible irreversibility of crack propagation

ithout the condition (3) will be investigated separately in Section 4.7.

11
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Fig. 4. Distribution of the crack density field c3 for an initial penny-shaped crack. (a) Plane x2 = 0 and (b) Plane x3 = 0.

.2. Stress distribution at the tip of a penny-shaped crack

We begin with the study of the stress distribution at the tip of a penny-shaped crack without crack evolution.
his (static) problem is of interest since it admits an analytical solution which will allow to assess the FFT-based
lgorithm developed in Section 3.2.

Let us consider an infinite (isotropic) body containing a penny-shaped circular crack with radius R. We denote
y r the radial coordinate and the crack plane is (x3 = 0). The infinite body is loaded by a uniform remote stress
∞ at infinity in the longitudinal x3 direction, which corresponds to Mode I conditions. The analytical solution for

his circular penny-shaped crack of radius R dates back to [47] (see also [48] and [49]) and the normal stress (σ33)
in the crack plane (x3 = 0) is given by

σ33(r ) =
2
π
σ∞

(
R

√
r2 − R2

+ arccos
(

R
|r |

))
. (45)

The stress field created by a penny-shaped circular crack in an infinite isotropic medium can be envisaged in a
eriodic framework with a sufficiently large unit-cell with a prescribed strain tensor of the form

ε = ε33e3 ⊗ e3. (46)

or the simulations, an initial penny-shaped circular crack of radius R = 0.25 is considered (see Fig. 4). The values
c = 1 and fm = 0 have been chosen so that the material properties are totally degraded within the crack region.

First, the normalized stress field σ33/σ∞ calculated numerically (in the simulations σ∞ corresponds to σ 33) is
epresented in Fig. 5 in the planes x2 = 0 (corresponding to a plane orthogonal to the crack plane) and x3 = 0
corresponding to the crack plane). Some numerical artifacts can be observed on the solution close to the crack
ip. Those artifacts corresponds to (non-physical) spurious oscillations that arise in FFT-based solutions due to
he pseudo-spectral differentiation operator in presence of discontinuous material fields [43]. This can be easily
ircumvented by adding smoothness to the material properties field [43] (which corresponds in this case to a
preading of the crack tip) or by using other differentiation rules [40]. In what follows in this paper, the crack-tip
s always spread out since

√
t/a ̸= 0 and hence this is not a concern in static.

The numerical solution is then compared in Fig. 6a to the analytical solution (45). Since in our case the crack
is spread onto 3 voxels, the average stress component ⟨σ33⟩layer is considered for the comparison. A very good
agreement is observed between the analytical solution and the numerical results. It should be noted that the case
fm = 0 induces an infinite contrast between the elastic properties of the crack and the bulk, which implies that it is
challenging for the FFT-based solver as it requires a large number of iterations with the basic scheme of Moulinec
and Suquet [24] (which is considered in this work). Thus, it is of interest to consider non-null values for fm

leading to a finite contrast between the elastic phases. The distribution of the average stress component ⟨σ33⟩layer is
represented in Figs. 6b and 6c for the cases fm = 0.001 and fm = 0.01 respectively. For these values, the effect of
the parameter fm is negligible on the stress concentration at the crack tip. Consequently in the following, the case

fm = 0.01 will be considered for the sake of practical expedience related to the adopted FFT-based scheme.

12
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Fig. 5. Distribution of the normalized stress field σ33/σ∞ calculated numerically. (a) Plane x3 = 0, (b) Plane x2 = 0, (c) Plane x2 = 0
(zoom).

Fig. 6. Distribution of the normalized stress σ33/σ∞ in the crack plane on the line x2 = 0. (a) Case fm = 0, (b) Case fm = 0.001 and (c)
ase fm = 0.01.

.3. Initial crack equilibrium

The previous case was of interest since it has permitted to assess the FFT-based solver. However the initial crack
istribution considered previously may not be initially at equilibrium. Indeed, even in absence of macroscopic
oading (inducing a microscopic strain field), the energetic driving force e0 (given by Eq. (38)) appearing in the

crack evolution equation (36) is not null due to the presence of the non-convex local crack energy and crack-tip
energy densities, so an initial driving force (5) may initially exist.

First we consider the non-convex local crack energy density η2 with ω2 = 1. Since in quasi-static evolution
the drag coefficient B does not play any role, only the ratio t/a is relevant. Several values are considered:
(t/a)/L2

= [0, 10−3, 1, ∞]. As explained previously, we let the crack field evolve until it reaches an equilibrium;
such equilibria are represented in Fig. 7 for the cases (t/a)/L2

= [0, 10−3, 1].
In the absence of the non-convex local crack energy term (t/a = ∞) the initial crack completely expands due to

he smoothing from the Laplacian term arising from the crack-tip energy density, even in the absence of any loading
hence t/a = ∞ is not presented in Fig. 7). Conversely, in the absence of the crack-tip energy density (t/a = 0),
he initial crack is already at equilibrium due to the absence of any elastic driving force due to loading, and thus
t does not move. In the other intermediate cases (a ̸= 0 and t ̸= 0), the effect of the crack-tip energy density
onsists in a regularization of the crack tip which spreads on a finite domain. This corresponds to some interphase

etween the damaged and undamaged areas (the crack-tip region) whose size depends on the ratio t/a. As explained

13
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Fig. 7. Distribution of the equilibrated crack field in the plane x3 = 0 for the local crack energy density η2. (a) Case (t/a)/L2
= 0, (b)

ase (t/a)/L2
= 10−3 and (c) Case (t/a)/L2

= 1.

Fig. 8. Distribution of the equilibrated crack field in the plane x3 = 0 in the case (t/a)/L2
= 10−3. (a) Function η1 with ω1 = 0.5, (b)

Function η2 with ω2 = 1.

previously, a spreading of the crack tip also improves the calculation of the local stress field by removing numerical
oscillations produced by the FFT-based solver [43].

The influence of the relative strength of the non-convex, local crack energy density is now investigated in Fig. 8,
in the case (t/a)/L2

= 10−3. In each case an equilibrium is reached and the shapes obtained are quite close. The
sizes of the crack-tips between the damaged and undamaged zones are similar in all cases.

4.4. Crack evolution in uniaxial tensile loadings

4.4.1. Evolution of a circular crack in mode I
We first investigate the response of a crack under a mode-I tensile loading (normal to the crack surface). An

initially equilibrated penny-shaped crack is thus subjected to an increasing macroscopic strain ε = ε33(t)e3 ⊗ e3
with ε33(t) > 0); a strain increment ∆ε33 = 5×10−6 was chosen and it was checked to be small enough to capture

precisely the onset of failure. The non-convex local crack energy density η2 has been chosen and the parameters
considered for the simulation are given in Table 1.

The evolution of the (normalized) macroscopic tensile stress σ 33/µ is represented in Fig. 9 and shows three
domains:

• A linear regime without any evolution of the crack field (between the instants 0⃝ and 1⃝);
• A quasi-linear evolution with a stable crack propagation (between the instants 1⃝ and 2⃝). This regime

corresponds to an alternation of propagation and equilibrium of the crack tip. The crack slightly propagates
after some strain but then stops propagating due to the local elastic unloading: this corresponds to a
discontinuous increase of the crack field mimicking a stick–slip behavior.
14
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Table 1
Parameters considered for the mode-I tensile loading.

Elastic degradation
functions

Local crack
energy density

Crack-tip
energy density

fm dc a/µ ω2 (t/a)/L2

0.01 1 10−4 1 10−3

Fig. 9. Evolution of the normalized macroscopic tensile stress σ 33/µ in mode-I tensile loading.

• A steep softening evolution associated with an unstable crack propagation (after the instant 2⃝). After some
critical strain, the crack continuously propagates until it reaches the cell boundary. This defines a threshold
after which the crack evolution appears to propagates ‘instantly’.

To illustrate the different regimes observed in the macroscopic strain–stress curve, the distributions of the crack
field c3 and the normalized stresses σ33/µ and σ13/µ are respectively represented at several instants in Figs. 10–
12. Furthermore, the (normalized) norm of the FCM crack evolution rate

⏐⏐Ĥ
⏐⏐ /max(

⏐⏐Ĥ
⏐⏐) as well as the quantity

|e0|/max(|e0|) given by Eq. (38) (the purely energetic crack evolution rate) are represented in Fig. 13 (the max are
over the spatial domain).

Some comments are in order:

• The crack field distribution just before the stable crack propagation (see Fig. 10a) corresponds exactly to the
initial crack field after equilibrium (corresponding to the snapshot 0⃝) which is represented in Fig. 7b. This
confirms that during the linear regime there is no crack evolution. Thus in this regime, the driving force from
elastic energy is balanced by that from the non-convex local crack energy which results in a nil net driving
force in the crack evolution equation. This points to the possible existence of a threshold stress to crack motion
in the model, much like a Peierls stress for dislocation motion.

• After the stable crack propagation regime the crack field shows slight growth (see Fig. 10b). The stable regime
is characterized by a continuous balance of strain increase (due to the loading conditions) and softening (due
to dissipation associated with crack propagation).
15
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t

Fig. 10. Distributions of the crack field c3 in the plane x3 = 0, (a) At the end of the elastic regime (snapshot 1⃝), (b) At the end of the
stable crack propagation regime (snapshot 2⃝) and (c) During unstable crack propagation (snapshot 3⃝).

Fig. 11. Distributions of the normalized normal stress σ33/µ in the plane x2 = 0, (a) At the end of the elastic regime (snapshot 1⃝), (b) At
he end of the stable crack propagation regime (snapshot 2⃝) and (c) During unstable crack propagation (snapshot 3⃝).

Fig. 12. Distributions of the normalized shear stress σ13/µ in the plane x2 = 0, (a) At the end of the elastic regime (snapshot 1⃝), (b) At
the end of the stable crack propagation regime (snapshot 2⃝) and (c) During unstable crack propagation (snapshot 3⃝).

• The unstable part is characterized by a growth of the crack without an increase of the macroscopic strain (see
Fig. 10c). At the end of the calculation, the whole crack plane is totally damaged due to periodic boundary
conditions.

• The distribution of the normal stress follows a similar profile as that investigated in Section 4.2 in the static
case. It is worth noting that the stress field at the crack tip is smooth and shows no numerical artifacts, due
to the crack-tip energy density term which induces a regularization of the crack front (through a Laplacian in
16
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Fig. 13. Distributions of the crack evolution rate in the plane x3 = 0 from snapshots 1⃝ to 3⃝. (a–c) ‘Purely energetic’ crack evolution rate
|e0|/max(|e0|), (d–f) FCM crack evolution rate

⏐⏐Ĥ
⏐⏐ /max(

⏐⏐Ĥ
⏐⏐). The yellow regions have values in the interval [0.5, 1.0].

this layer ansatz, with a quasilinear, degenerate ‘diffusion coefficient’). It is interesting to note that the crack
propagation is associated with the expansion of a large domain at a very low stress level (normal to the crack
surface), which results in the softening observed on the macroscopic stress–strain curve.

• The distribution of the FCM crack evolution rate
⏐⏐Ĥ

⏐⏐ /max(
⏐⏐Ĥ

⏐⏐) is highly localized at the crack tip (see
Fig. 13), regardless of the overall situation being close to or strongly out-of-equilibrium. This is consistent with
classical notions of crack evolution, while requiring no singularity in stresses or the geometric representation
of the crack. This is a direct structural consequence of the theory; the evolution of the crack field is not only
of purely energetic/thermodynamic origin, but is additionally constrained by the special kinematics obeyed
by the crack tip field which allows evolution only at locations where there is a crack-tip (represented by a
non-vanishing value of curl(c)). As shown by the comparison between the two rows of Fig. 13, the purely
energetic evolution-rate (as would be operational in a phase field/(L2) gradient flow model) cannot discern the
crack-tip in out-of-equilibrium/strongly driven situations. The implications of this feature of dynamic crack
propagation in our model, vis-a-vis modeling by phase field models as explained in [50], remain to be explored.

.4.2. Preliminary strength and toughness predictions of the model
We investigate predictions of toughness and local crack-tip stress in the model for onset of unstable crack

ropagation. For this problem, the stress intensity factor is given by [49]

K I = 2σ 33
√

R/π. (47)

set of (initial) crack radii are considered: R/L = [0.15, 0.25, 0.5, 0.75], where L = 1 is the half-period of the
icrostructure. The macroscopic normal stress σ 33/µ, the maximal local normal stress σ33/µ, and the normalized

stress intensity factor K I /(µ
√
t/a) at the onset of unstable propagation are represented in Fig. 14 for initially

circular cracks (with differing radii).
17
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Fig. 14. Influence of the radius size: (a) Macroscopic and maximal local stress and (b) Stress intensity factor.

The macroscopic stress promoting crack propagation increases as the crack radius decreases. However the
aximum local stress (located at the crack tip) is almost constant for all crack radii, which suggests that the onset

f unstable crack propagation is driven by a local stress criterion (the so-called σc value). In the case R/L = 0.15
it slightly increases; it should be noted that in this case, the ratio R/h (where h is the thickness of the planar layer)
is more important than in the other cases. It appears that smaller R/h ratios beyond a threshold exhibit a different
scaling of local strength against crack propagation, but this needs to be studied further. It is also worth noting that
the stress intensity factor is bounded by a critical constant, which seems to imply that an apparent toughness (K I c)
is predicted by the model: crack propagation is triggered when the stress intensity factor reaches a critical value (at
least for crack radii above a threshold), which would correspond to some toughness criterion.

These preliminary results of our model appear to be in agreement with the strength–toughness paradox in
brittle materials [51]: when fracture occurs, both criteria (strength and toughness) appear to be approximately
simultaneously fulfilled.

4.4.3. Influence of the ratio a/µ
Since the driving force from the local crack energy density η balances the elastic energy release in the definition

of the crack velocity, the ratio a/µ should have an important effect on the onset of unstable propagation. Thus we
now study the influence of this ratio. The values a/µ = [10−8, 10−6, 10−4] are considered and the corresponding
evolution of the macroscopic stress σ 33/µ is represented in Fig. 15a. Again, the stress–stain curves are composed

f three regimes, (i) a linear regime with no crack propagation, (ii) a stable crack propagation and (iii) an unstable
rack propagation. An increase of the ratio a/µ delays the unstable crack propagation occurrence because a greater
train energy is required to exceed the energy barrier from the non-convex local crack energy density: the ratio a/µ
hus permits to define the threshold of crack propagation.

It is interesting to note that the maximum value of the stress σ 33/µ is approximately scaled by a function of the
atio a/µ. Indeed the quantity

max(σ 33/µ)/
√

a/µ (48)

s approximately constant for the ratios a/µ considered (see Fig. 15b).
18



L. Morin and A. Acharya Computer Methods in Applied Mechanics and Engineering 386 (2021) 114061

a

4

t

Fig. 15. Influence of the ratio a/µ on the macroscopic stress–strain curve in mode-I tensile loading. (a) Macroscopic stress–strain curve
nd (b) Scaling of the maximum macroscopic stress.

.5. Crack evolution in shear loadings; modes II and III

We now consider the response of a circular crack under a shear loading (cf. [52]). The macroscopic strain is
hus of the form

ε = ε13(t)(e1 ⊗ e3 + e3 ⊗ e1), (49)

with ε13(t) > 0. Again a strain increment ∆ε13 = 5 × 10−6 was chosen and it was checked to be small enough to
capture precisely the onset of failure. The parameters given in Table 1 have been chosen.

The evolution of the shear stress σ 13/µ is represented in Fig. 16. As in mode-I tensile, the overall behavior shows
three domains: (i) a linear regime without evolution of the crack field (before the snapshot 1⃝), (ii) a quasi-linear
evolution with stable crack propagation (between the snapshots 1⃝ and 2⃝) and (iii) an unstable crack propagation
(after the snapshot 2⃝).

The distribution of the crack field (in the plane x3 = 0) and the shear stress σ13/µ (in the plane x2 = 0) at
several instants is represented in Fig. 17. This permits to highlight the effect of heterogeneity on the stress that
is induced by the presence of the crack. An important stress concentration is observed at the crack tip while the
domain inside the crack is at zero stress. Furthermore, it is worth noting that the stress concentration (at the crack
tip) increases when the crack propagates which likely results in an acceleration of the crack propagation.

4.6. Crack evolution in (multi)axial compressive loadings

We consider crack propagation in compressive loadings. There is ample experimental evidence of brittle
crack propagation and ‘axial splitting’ under compressive, uniaxial and longitudinal [53,54], biaxial [55–58], and
triaxial [57] loadings; also see [59] and [26]. On the other hand, it is natural to expect that under transverse uniaxial
compressive loading a crack should not propagate. Apart from this latter case and the case of longitudinal, uniaxial,
compressive loading where transverse tensile strain on the crack may be expected to be generated, an intuitive
explanation for crack propagation does not seem to be apparent. In fact, even in the case of longitudinal, uniaxial
(or ‘polyaxial’ (cf. [60]) compressive loading, say in a cuboidal domain, longitudinal crack propagation resulting

in axial splitting does not fit within the tenets of classical fracture mechanics, even though seen to occur in nature,
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Fig. 16. Evolution of the normalized macroscopic shear stress σ 13/µ in pure shear loading.

Fig. 17. Numerical results in shear loadings. (a) Distribution of the crack field in the plane x3 = 0 at snapshot 3⃝. The vertical crack edges
in the plot) are in Mode II and the horizontal edges are in mode III. (b–c) Distributions of the normalized shear stress σ13/µ in the plane

x2 = 0 at snapshots 2⃝ and 3⃝.

s explained in [61]. This is because for such loading all of the Modes I, II, III stress intensity factors vanish
either because of the absence of far-field stresses or due to them being compressive). Furthermore, in laboratory

experiments on brittle solids, single wing cracks, progressing from a single notch like flaw oriented slightly away
from the direction of major compressive stress, stop propagating after becoming parallel to the direction of major
compressive stress and traveling distances of ∼ 10−15 times the size of the initial crack [55,56,58]. Notwithstanding
this, axial splitting under compressive load is an observed phenomenon even if its exact cause is still not understood
clearly (to our knowledge), being attributed to collective effects of many microscopic cracks (e.g. [58]) as one
example, or composite material effects [26]. In the following results in this section, we demonstrate stable crack
propagation leading to axial splitting with increasing longitudinal compressive load in our simple model, without
commitment to microscopic details of whether our crack is a single ‘Griffith’ crack or a notch of finite width

incorporating, in a gross fashion, the interaction of many axial microcracks.

20



L. Morin and A. Acharya Computer Methods in Applied Mechanics and Engineering 386 (2021) 114061

o
c

t
d
n

v
s
c
c

‘
s
d
a
o
P
a

o
s

S
F

We begin with providing some approximate reasoning of why it may be within the realm of possibility in
ur model to predict such observed behavior for cracks under compressive loadings, based purely on energetic
onsiderations. We then treat each case in turn, and qualitatively correlate our results with experimental observations.

From the definition of the elastic energy (21), it appears that crack propagation could be triggered with a local
riaxial compressive loading. If we exclude, for simplicity, the contribution of the local crack and crack-tip energy
ensities on crack propagation, one has to study the local change of elastic energy at the crack tip. Let us consider
ear the crack tip a local strain tensor of the form

ε = ε11 (e1 ⊗ e1 + e2 ⊗ e2)+ ε33e3 ⊗ e3, (50)

where we assume that the crack flanks are in compression or unstrained in the transverse direction (i.e., ε33 ≤ 0).
For this loading, the strain energy reduces to

2ϕE = 2(C1111 + C1122)ε2
11 + 4C1122ε11ε33 + C3333ε

2
33. (51)

Assuming that (i) elastic properties are totally degraded within the crack and (ii) λ = 2µ, the change in elastic
energy between cracked and non-cracked region is solely driven by the quantity

3ε2
11 + 2ε11ε33. (52)

Thus a crude first estimate of energetic advantage for the crack to grow (corresponding to a greater elastic energy
density in intact material next to crack tip to be rendered vanishing by crack propagation) is 3ε2

11 + 2ε11ε33 > 0 so
that an approximate necessary propagation condition would reduce to

ε11 < 0 and ε11 < −2ε33/3. (53)

Therefore it may be expected that a fully compressive loading (ε11 < 0 and ε33 ≤ 0) can promote crack propagation.
It is also easy to see by essentially the same argument that crack propagation may be expected in the compressive
uniaxial and longitudinal, and biaxial loading cases as well.

Uniaxial, transverse compressive loading (mode I compression). We consider a circular crack under a uniaxial
compressive macroscopic strain ε = ε33(t)e3 ⊗ e3 (with ε33(t) < 0), no crack propagation is observed, even for
ery high values of ε33. In that case, the normal stress σ33 is uniform in the whole domain (including the crack)
ince the crack compressive behavior reduces to the intact material due to the non-linearity of the elastic behavior
onsidered. Indeed for this loading, there is no crack propagation because there is no energetic advantage for the
rack to grow since there is the same elastic energy in the crack and outside of the crack.

(FFT) Brazilian test’ with a confined crack. The Brazilian test is a widely used testing method to obtain the tensile
trength of rocks and concrete (see the review by Li and Wong [54], Haeri et al. [53]). It consists in the uniaxial,
iametral compression of a circular disk. Failure in these specimens inevitably results from the splitting of the disk
bout the diametral loading plane, most likely by the propagation of an interior extensional crack in the direction
f the (compressive) loading; this is related to tensile strains which develop in the Brazilian specimen due to the
oisson effect. While our employed FFT based methodology is not suited to model this test exactly, we consider
n analogous loading protocol of the form

ε = ε11(t)
(

e1 ⊗ e1 −
1
2

e3 ⊗ e3

)
, (54)

f a cuboidal domain with a pre-existing interior crack in the x3 = 0 plane. The macroscopic transverse, normal
tress σ 33 is close to zero; this also implies that there cannot be a Mode I stress intensity at the crack tips in this

problem. The evolution of the macroscopic stresses, which are represented in Fig. 18, confirm that σ 33 is zero.
table crack propagation occurs between the instants 1⃝ and 2⃝. The line plot of the local stress σ33 is shown in
ig. 18b at the beginning of the stable crack propagation (instant 1⃝) in the line x2 = 0 of the plane x3 = 0. Small

oscillations are observed which are due to the continuous Green operator but it was checked that the maximal and
minimal values were correctly predicted (using a finer spatial discretization). Near the crack tip, the local normal
stress σ33 is positive which means that locally the specimen is subjected to a tensile loading. This confirms that
local tension is the mechanism promoting crack propagation in the Brazilian test [54].
21



L. Morin and A. Acharya Computer Methods in Applied Mechanics and Engineering 386 (2021) 114061

b

s
(

Fig. 18. Results in the case of a ‘Brazilian’ test. (a) Evolution of the macroscopic stresses and (b) Distribution of the local normal stress
at the snapshot 1⃝ (in the line x2 = 0 of the plane x3 = 0).

Through crack under longitudinal compression. Next we consider the case of a through crack subjected to the
same loading as in the previous case. This numerical experiment is motivated by an experimental results of [62,
Fig. 5(a)]. The specific experiment of interest to us involves a through-notch in the plane spanned by a diameter
and a generator of a cylindrical specimen of Portland Pozzolana cement; the cylinder is compressed in the axial
direction and crack propagation from the notch is observed to progress in the plane of the notch.

In our calculation, the crack is supposed to be infinite in the direction x2 and its width in the direction x1 is
equal to 0.5.

The evolution of the longitudinal stress σ 11/µ is represented in Fig. 19. In addition, the distribution of the crack
field is represented in Fig. 20. As in the previous Brazilian case, crack expands due to the presence of tensile stress
within the crack layer.

Triaxial compressive loading. This numerical experiment is motivated by experimental results on fracture under
biaxial and triaxial compressive loadings [55–57,61]. Restricting crack motion to a plane, in-plane crack propagation
under all-round, average, compressive stressing is demonstrated. Such crack propagation has been observed for
specimens with pre-existing through cracks under biaxial loading (see e.g., [55], [56], and failure, of externally intact
rock cylinders/disks (presumably containing pre-existing cracks in their interior), in the triaxial loading experiments
of Jaeger and Hoskins [57]. Such behavior apparently also abounds in nature [61].

We consider an initially circular crack subjected to a triaxial compressive loading of the form

ε = ε11(t)e1 ⊗ e1 + ε22e2 ⊗ e2 + ε33e3 ⊗ e3, (55)

where ε11(t) < 0 is the loading parameter and both ε22 < 0 and ε33 < 0 will be constant. For the simulation we
consider the values ε33 = −2 × 10−3 and ε22 = −1 × 10−3.

The evolution of the longitudinal and normal stresses (σ 11/µ and σ 33/µ) are represented in Fig. 21. It should
e noted that for ε11(t) = 0 the macroscopic stresses are not null due to the axial strains ε22 and ε33. In that case

the evolution of the macroscopic normal stress σ 33/µ does not show any softening.
It is interesting to note that in this case, the crack propagates (see Fig. 22) but this does not lead to a brutal

oftening in the macroscopic stress–strain curves. In the direction normal to the crack, the loading is compressive
ε33 < 0), which implies that the stress σ33 is almost uniform in the whole domain including the crack area. The

distribution of the longitudinal stress, which is represented in Fig. 23, is heterogeneous. In this case, the crack has
22
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Fig. 19. Evolution of the macroscopic longitudinal stress σ 11/µ in a compressive loading of a through crack.

Fig. 20. Distribution of the crack field c3 (in the plane x3 = 0) in the case of a compressive loading of a through crack. (a) Snapshot 1⃝,
(b) Snapshot 2⃝ and (c) Snapshot 3⃝.

an energetic advantage to propagate due to the elastic energy produced by the longitudinal strain. However this
crack evolution is not associated with a softening because the compressive loading is parallel to the crack surface
resulting in very small loss in load carrying capacity, even for a through crack. Of course, in the transverse direction,
even the through crack responds in an ‘intact’ manner under a compressive strain field.

4.7. Crack irreversibility

We investigate crack propagation and its (possible) irreversibility without using the irreversibility condition (3).
When (3) is dropped, crack healing is not a priori prevented in the evolution equation (1)4. Indeed, consider a
situation where there is no external loading in a body and it has a crack specified by the initial condition. If the
local crack energy density function is η1, endowing the cracked region with ‘Griffith’ type surface energy, then,
purely on energetic grounds, the evolution should heal the crack to rid the body of its energy content unless prevented
from doing so by the ad-hoc imposition of the irreversibility condition (we ignore the effects of the crack-tip energy
density for the essential argument here which only regularizes the crack-tip). On the other hand, for a local crack
23



L. Morin and A. Acharya Computer Methods in Applied Mechanics and Engineering 386 (2021) 114061

⃝

⃝

Fig. 21. Evolution of the macroscopic stresses in a triaxial compressive loading. (a) Longitudinal stress σ 11/µ and (b) Normal stress σ 33/µ.

Fig. 22. Distribution of the crack field c3 (in the plane x3 = 0) in the case of a triaxial compressive loading. (a) Snapshot 1⃝, (b) Snapshot
2 and (c) Snapshot 3⃝.

Fig. 23. Distribution of the longitudinal stress field σ11/µ (in the plane x2 = 0) in the case of a triaxial compressive loading. (a) Snapshot
1 , (b) Snapshot 2⃝ and (c) Snapshot 3⃝.
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Fig. 24. Healing of the crack field (on the line x2 of the plane x3 = 0) using ‘Griffith’-type local crack energy density η1 in the case t = 0.
The arrows show the process of annihilation of the crack field.

energy density described by η2 a completely damaged crack region incurs no energetic cost and there is no energetic
impetus to heal. We illustrate these features in the following numerical experiments.

Equilibrium solution for η1. We begin with the ‘Griffith’ type local crack energy density η1 (with ω1 = 0.5). In that
case no equilibrium position can be reached for all ratios t/a. When the latter ratio is non-vanishing, the crack-tips
end to smear out while the local energy density tries to cover as little area of the layer by a crack. The overall result
s the diminution of the magnitude of the crack field with time in the layer. When t/a = 0, the process is governed
ntirely by the energetic healing discussed above; the evolution of the crack field (of the initially penny-shaped
ircular crack considered in Section 4.3) during this process of equilibration is represented in Fig. 24, at several
nstants before its complete healing/annihilation.

nloaded crack equilibria with η2. Next we study the local crack energy density function η2, again for an initially
enny-shaped circular crack. In the absence of the irreversibility condition, equilibrium positions can be obtained
n contrast with the Griffith energy. As expected, the equilibrium profiles are sensitive to the ratio t/a: spatially
ocalized, crack-like equilibria are attained for (t/a)/L2 < 10−4. For values (t/a)/L2 > 10−4 the regularizing
diffusion’ from the crack-tip energy density overwhelms the localizing influence of the non-convex local crack
nergy density, leading to a complete spreading of the crack field in the layer. For illustrative purposes, the
quilibrium position in the case (t/a)/L2

= 10−5 is represented in Fig. 26a.

quilibrium after loading–unloading. A loading–unloading cycle is now considered in order to investigate crack
rreversibility. Thus, we consider a Mode-I tensile loading without the irreversibility condition (3). The function η2

s chosen because it allows to define an initial equilibrium position as shown previously; the parameters considered
or the simulation are given in Table 2. In order to study the possible irreversibility of crack propagation, we consider
progressive loading until the crack slightly propagates inside the stable domain, and then an unloading is applied

ntil the macroscopic stress reaches zero (see Fig. 25).
The distribution of the crack field is represented at several instants in Fig. 26. As expected the crack has slightly

rowth after the loading (Fig. 26b). Interestingly, the crack does not close up during unloading (Fig. 26c) which

uggests that with this model the evolution of the crack is irreversible (up to some local fluctuations).
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Table 2
Parameters considered for the mode-I tensile loading.

Elastic degradation
functions

Local crack
energy density

Crack-tip
energy density

fm dc a/µ ω2 (t/a)/L2

0.01 1 10−4 1 10−5

Fig. 25. Evolution of the normalized macroscopic tensile stress σ 33/µ in mode-I tensile loading without irreversibility condition.

. Crack evolution in dynamic loadings

We demonstrate the dynamic FFT algorithm for elastodynamics of Section 3.3 by undertaking a preliminary
xploration of the interaction of rate of loading, the effect of material inertia, and the crack mobility in FCM. The
hysical problem that most closely resembles our simulations is that of a region containing a fault in its interior
ith a pre-existing rupture zone, with the whole system being ‘slowly’ loaded by a spatially uniform strain-rate, as
ay be envisaged in the loading of tectonic plates (admittedly, our Mode I loading is not entirely realistic for this

pecific physical setting). Here, the rupture zone and its possible propagation is treated as a crack with an emergent
lip-weakening response not put in ‘by hand.’, without getting into a discussion of the appropriateness of such a
upture-as-a-crack assumption (cf. [37, Sec. 8]). Depending on the nondimensional parameter B◦ characterizing
he mobility of the crack tip, interesting crack propagation behavior in the fault spanning sonic thresholds of the
djoining elastic material are observed. Unlike crack propagation driven by dynamic loading applied to the boundary
f the domain, the present situation provides a large reservoir of stored elastic energy almost everywhere in the
omain which lends itself to dissipative release by crack propagation. Due to this available supply of energy in
ront and behind the crack-tips (as opposed to energy supply arising from a stress pulse brought to the crack-tip
ia loading from a boundary), crack motion beyond sonic speeds in our results is perhaps not so surprising.

.1. Description of the simulations

Simulations with dynamic loadings can be performed by combining the fully dynamic explicit solver for the
quilibrium equations and the Godunov-type solver for the crack propagation equation. In this work, we will consider

ε̇ (so that the macroscopic acceleration ε̈ is null). In practice,
nly loadings with uniform macroscopic strain rates
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Fig. 26. Distributions of the crack field c3 in the plane x3 = 0 without irreversibility condition, (a) At initial equilibrium (snapshot 0⃝), (b)
After loading (snapshot 1⃝), (c) After unloading (snapshot 2⃝), (d) Zoom at snapshot 1⃝, (e) Zoom at snapshot 2⃝. The dotted red line
represents the initial crack tip.

we just apply successive macroscopic strain increments ∆ε which are given by

∆ε = ∆t ε̇, (56)

where ∆t is the time step used in central scheme for solving the crack evolution problem. It is chosen in order to
check the following stability constraint

∆t ≤
∆x

max(vl , vd )
, (57)

here vl is the speed of propagation given by Eq. (43) and vd is the dilatational wave speed given by

vd =

√
λ+ 2µ
ρ

. (58)

n practice we take the following value:

∆t = 0.5
∆x

max(vl , vd )
, (59)

The procedure used to evolve the crack field during quasi-static calculations (see Fig. 3) is not needed in the
ynamic case because, in the dynamic setting, the crack field is updated for each strain increment. Crack propagation
s expected to be slowed down when inertia effects are present.

In the following, we consider the same conditions than previously. A [−1, 1] × [−1, 1] × [−1, 1] unit-cell
iscretized with 128 × 128 × 128 pixels so the spatial step is ∆x = 0.015625. The planar layer is again supposed
o be centered in the plane x3 = 0 and a constant thickness h = 0.046875 is considered for the layer, which

orresponds to a number of 3 pixels. An initial small square-shaped crack is considered in all the simulations in
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Fig. 27. Distribution of the crack density field c3 for an initial square-shaped crack. (a) Plane x2 = 0 and (b) Plane x3 = 0.

rder to investigate crack propagation in a large domain (see Fig. 27). The following value is taken for the elastic
roperties: λ/µ = 2.

.2. Overall response in mode-I dynamic loadings

We focus on a mode-I dynamic loading so that the macroscopic imposed strain is of the form ε = ε33(t)e3 ⊗ e3
with ε33 > 0). The parameters related to the non-convex local crack energy and crack-tip energy densities are

given in Table 1.
In these dynamic simulations, different behaviors are expected to manifest according to the value of the

drag parameter B. Indeed, (and explicitly resorting to circled and uncircled quantities representing corresponding
non-dimensional and dimensional ones, respectively) the order of magnitude of the crack velocity vc is about

vc ∼
a

B
√
t/a

, (60)

o that the ratio between the crack velocity and the elastic shear wave velocity vs is

vc

vs
∼

a
B

√
t/a

√
ρ

µ
=

1
B◦

a
µ

L
√
t/a

. (61)

e will consider two values for the nondimensional drag parameter B◦
= (BL)/

√
µρ = [10−4, 10−1], which

approximately lead to a ratio vc/vs ∼ [31.6, 0.0316]. Thus the value B◦
= 10−4 is expected to correspond to

supersonic crack behavior (noting λ/µ = 2), while the value B◦
= 10−1 would correspond to subsonic crack

behavior.
In order to investigate the effect of dynamics, we will consider several values for the macroscopic strain rate.

The evolution of the (normalized) overall tensile stress σ 33/µ (where σ 33 = ⟨σ33⟩, ⟨·⟩ being the spatial average
ver the unit-cell Ω ) is represented in Fig. 28.

The effect of inertia is, as expected, a retardation of the softening occurrence. When the strain rate is high, the
rack propagation is limited by ‘viscous’ effects emerging from the reciprocal crack mobility, B. If the intrinsic
ime scale set by B is large compared to that set by the loading rate and elastic wave propagation, then there is
ot sufficient time available for stress/energy relaxation by crack propagation to occur. Computationally, for a given
train increment, the crack is not evolved until it reaches some equilibrium position as in the quasi-static case; it is
imply evolved at each strain increment (without internal iterations to achieve equilibrium of the crack). Thus the
rack ‘takes more time’ to propagate in contrast to the strain. This implies that the evolution of the macroscopic
tress follows only two regimes:

• A linear evolution with no evolution of the crack field. In both cases, this corresponds to the evolution before
the snapshot 1⃝;

• A non-linear evolution with the propagation of the crack. This can lead to an apparent quasi-linear behavior

when the loading increases more rapidly than the crack, but softening eventually takes place due to a build-up
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Fig. 28. Evolution of the normalized macroscopic tensile stress σ 33/µ in mode-I dynamic loadings. (a) Case B◦
= 10−4 and (b) Case

B◦
= 10−1.

Fig. 29. Distributions of the crack field c3 in the plane x3 = 0 during dynamic stable propagation (case B◦
= 10−1). (a) Snapshot 2⃝, (b)

Snapshot 4⃝ and (c) Snapshot 6⃝.

of elastic energy that results in a large driving force which overcomes the relatively larger drag, at which point
the crack rapidly propagates through the entire domain.

5.2.1. Subsonic behavior: B◦
= 10−1

In order to understand the effect of strain rate on the crack propagation, we study at several snapshots the
distributions of the crack field c3, the evolution rates, the hydrostatic stress σh/µ (where σh = Tr(σ )/3) and the
shear stress σ13/µ for the strain rate ε̇33 = 2 × 10−4, which are respectively represented in Figs. 29, 30, 31 and 32.
t must be noted that the distributions of the crack field c3, the hydrostatic stress σh/µ and the shear stress σ13/µ

ave not been represented after the snapshot 6⃝ because of the periodic boundary conditions.
During propagation, the initial square-shape crack becomes a circular crack. As in the quasi-static case, the

istribution of FCM crack evolution rate
⏐⏐Ĥ

⏐⏐ /max(
⏐⏐Ĥ

⏐⏐) is highly localized at the crack tip (Fig. 30), in contrast
o the energetic evolution rate |e0|/max(|e0|) which is significantly spread out — the latter would result in crack
volution behind the tip in dynamic and out-of-equilibrium situations, in a model where this was the ‘driving force’.
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Fig. 30. Distributions of the crack evolution rate in the plane x3 = 0 at snapshot 4⃝. (a) ‘Purely energetic’ crack evolution rate |e0|/max(|e0|)
nd (b) FCM crack evolution rate

⏐⏐Ĥ
⏐⏐ /max(

⏐⏐Ĥ
⏐⏐).

Fig. 31. Distributions of the hydrostatic stress σh/µ in the plane x2 = 0 during dynamic stable propagation (case B◦
= 10−1). (a)–(f)

Snapshots 1⃝ to 6⃝. The crack front is represented by a blue rectangle.

Both elastic shear and pressure stress waves propagate ahead of, and behind, the moving crack-tip. The stress level
inside the crack tip is lower than in the bulk, but it is not nil, this being an artifact of the value of the parameter
fm = 0.01. It is expected that the stress level inside the crack can be systematically reduced with a decrease of fm

(bounded away from 0).

5.2.2. Supersonic behavior: B◦
= 10−4

Next we study the distributions of the crack field c3, the hydrostatic stress σh/µ and the shear stress σ13/µ for
the strain rate ε̇33 = 2 × 10−4 and a significantly lower value of the nondimensional drag, which are respectively
epresented in Figs. 33–35.
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Fig. 32. Distributions of the shear stress σ13/µ in the plane x2 = 0 during dynamic stable propagation (case B◦
= 10−1). (a)–(f) Snapshots

1 to 6⃝. The crack front is represented by a blue rectangle.

Fig. 33. Distributions of the crack field c3 in the plane x3 = 0 during dynamic stable propagation (case B◦
= 10−4). (a) Snapshot 1⃝, (b)

Snapshot 3⃝ and (c) Snapshot 6⃝.

Before crack propagation, the distributions of the normal and shear stress (at the snapshot 1⃝) have the same
features as those of the quasi-static case. At the very beginning of the crack propagation (snapshots 2⃝ and 3⃝),
spherical stress waves are produced at the crack tip and propagate in front and behind the crack tip. This suggests
that, during the early crack propagation, the crack velocity is in a subsonic regime. As the overall strain increases,
the stress waves ahead of the crack-tip gradually disappear and totally vanish. Mach cones of hydrostatic stress,
including ‘stress-release’ waves in the bulk arising from propagating damage in the fault, can be seen corresponding
to snapshots 5⃝ and 6⃝ in Fig. 34, characterizing supersonic behavior. Mach cones in shear stress are also observed
in the field plots corresponding to snapshots 5⃝ and 6⃝ in Fig. 35, with the shear stress within the propagating crack
31
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Fig. 34. Distributions of the hydrostatic stress σh/µ in the plane x2 = 0 during dynamic stable propagation (case B◦
= 10−4). (a)–(f)

Snapshots 1⃝ to 6⃝.

layer small/vanishing because of the damage due to tensile loading. The shear stress Mach ‘wings’ are of opposite
sign across the crack, as dictated by symmetry.

6. Towards the fracture of materials with random microstructures

As a final example, we study the possibilities of the FFT–FCM framework to handle more general situations
with complex distribution of the crack field. Such capability is of practical interest because the fracture properties
of real materials are expected to depend significantly on the microstructure. Indeed, in brittle materials the fracture
properties are usually dominated by the size and spatial distributions of flaws or microcracks.

We begin with the generation of a microstructure with random pixels (comprising ∼ 2.2% of the crack plane
surface) having c3 = 1, which is represented in Fig. 36a. We investigate the response of this crack field under a

ode-I loading with simulation parameters given in Table 1.
First the equilibrium crack field starting from the above initial microstructure is computed without applied load

nd is represented in Fig. 36b.
Several micro-cracks have been created in this process due to the coalescence of several initially close ‘voxels’.

he surface fraction of damage is ∼ 7.7% after equilibration.
Then the equilibrated, no-load crack microstructure is subjected to an increasing macroscopic strain ε =

ε33(t)e3 ⊗ e3 (with ε33(t) > 0). The macroscopic stress–strain curve is represented in Fig. 37. Overall it has,
or this specific realization, the same features as that of the case of a body with a single crack, that is (i) a linear
egime with no crack evolution (before snapshot 1⃝), (ii) a stable crack propagation regime (between snapshots 1⃝

and 2⃝) and (iii) an unstable crack propagation regime (after snapshot 2⃝). It must be noted that the stable crack
ropagation regime, although it has less influence on the macroscopic curve, comes quite early compared to the
nstable regime.

The distribution of the crack field and normal stress are represented, at the snapshots 2⃝ to 4⃝, in Figs. 38 and

39, respectively.
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⃝

r
A

Fig. 35. Distributions of the shear stress σ13/µ in the plane x2 = 0 during dynamic stable propagation (case B◦
= 10−4). (a)–(f) Snapshots

1 to 6⃝.

Fig. 36. Equilibrium position of a random crack distribution. (a) Before equilibrium and (b) After equilibrium.

At the end of the stable regime (see Fig. 38a), new clusters have been formed which suggests that the stable
egime corresponds to local organization of the micro-cracks similar to that observed during no-load equilibration.
s shown in Fig. 39a, the (normalized) local stress level during this regime is close to 8 × 10−3 which is of the

same order of magnitude as the results of Section 4.4. The unstable crack propagation is characterized by a growth
and coalescence of the biggest micro-cracks (see Fig. 38b-c) which is associated with a decrease of the local stress

(see Fig. 39b-c).
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Fig. 37. Evolution of the normalized macroscopic tensile stress σ 33/µ of a random initial microstructure.

Fig. 38. Distributions of the crack field c3 in the plane x3 = 0 in the case of a random microstructure. (a)–(c) Snapshots 2⃝ to 4⃝.

Fig. 39. Distributions of the stress field σ33 in the plane x3 = 0 in the case of a random microstructure. (a)–(c) Snapshots 2⃝ to 4⃝.
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7. Concluding remarks

We have developed and demonstrated a pde-based tool for the modeling and analysis of (dynamic) brittle fracture,
estricted here to crack propagation in a single fault layer. Crack-path selection within the fault as well as strength
nd toughness criteria are primary emergent features of the model. Various other features of brittle fracture have
een demonstrated, indicating preliminary promise as a general-purpose tool for analysis, and hopefully design, in
racture mechanics. The tool has the flexibility of accommodating experimental input from observed crack velocities
nd shear and normal contact stiffnesses within cracked regions, if so desired. We have intentionally focused on
ero-surface energy cracks where all elastic energy released on crack propagation is dissipated (except for what is
tored at crack-tips), but the capability allows for situations where substantially larger amounts of released elastic
nergy can be stored in cracked regions behind the crack-tip (as in a ‘Griffith crack’).

Beyond this first analysis, much remains to be done in realizing the full potential of our theoretical model.
his includes, first and foremost, demonstrating a computational capability without the planar fault restriction,
llowing for general crack pattern evolution in 3-d. This is a challenging endeavor, because of the novel,3 multi-

dimensional, essentially first-order Hamilton–Jacobi transport system for crack evolution, singularly perturbed by
a degenerate, quasilinear, second-order, parabolic ‘regularizing’ term, all entirely dictated by the mechanics and
physics of the model. Other comparatively straightforward extensions correspond to incorporating ductile fracture
and the mechanics of finite deformation. Finally, we mention the recent work of Kumar et al. [63] related to crack
nucleation in phase field models. This is essentially achieved in the said model by incorporating a phenomenological
yield-like criterion reflecting the ‘strength’ of the material. Our work, restricted to small deformations is silent on
the matter of nucleation; however, as observed in [1], based on the results of Garg et al. [64] and the similarities
of the FCM model to FDM, especially in the nature of its evolution equation for the crack-tip field to that of the
dislocation density field, it appears to be a reasonable hypothesis that crack nucleation may be a natural instability
in the finite deformation version of FCM, involving the limits to elastic strength as encoded in the material velocity
field through the solution of the relevant nonlinear elastic (i)bvp. We leave such questions for future work.
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Appendix. Conditions guaranteeing uniqueness in heterogeneous, periodic, elastodynamics

Let Ω be a domain and [0, T ] an interval of time and consider the problem

ρ(x, t)ü(x, t) = div (Cε) (x, t) + b(x, t) ∀(x, t) ∈ Ω × [0, T ]. (62)

Here, b is the prescribed body force field, and for each (x, t) ∈ Ω × [0, T ],

(1) ρ(x, t) > 0 is the (spatially heterogeneous) mass density, and
(2) it is assumed that the elastic modulus C(x, t) has major and minor symmetries and is positive semi-definite.

The goal is to determine a set of conditions that guarantee uniqueness of solutions within a class of functions
of the form

u(x, t) = u∗(x, t) + H(t)(x − x0) ∀(x, t) ∈ Ω × [0, T ], (63)

where H is a specified second-order-tensor-valued function of time alone, x0 ∈ Ω is an arbitrarily chosen fixed
point, and u∗ belongs to a class of functions on Ω × [0, T ] whose properties will be subsequently specified as part
of our analysis.

3 Including a search of the mathematical literature on nonlinear pde as well as numerical analysis.
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Consider two solutions u1 and u2 of (62) in the class (63) and denote the difference u1 − u2 =: u and similarly
the difference strain ε := (∇u1)sym − (∇u2)sym . We then have that∫

Ω

u̇ · ρ ü dx =

∫
Ω

u̇ · div (Cε) dx

E(t) :=
1
2

∫
Ω

ρ u̇ · u̇ dx +
1
2

∫
Ω

ε : Cε dx (64)

H⇒
d E
dt

=

∫
∂Ω

t · u̇ dx +
1
2

∫
Ω

ρ̇ u̇ · u̇ dx +
1
2

∫
Ω

ε : Ċε dx, (65)

where

t := t1 − t2 =
(
C

(
ε∗

1 − ε∗

2

))
n,

u̇ := u̇1 − u̇2 = u̇∗

1 − u̇∗

2

are the difference of the tractions produced by the two solutions u1 and u2 on ∂Ω and the difference of the
corresponding velocities, respectively. If it can be ensured

(3) that for any two solutions in the class defined by (63), the first term on the right-hand-side of (65) vanishes;
(4)

∫
Ω (·) : Ċ(··) dx , viewed as a bilinear operator on symmetric second-order tensor fields on Ω is negative

semi-definite;
(5)

∫
Ω ρ̇(·) · (··) dx , viewed as a bilinear operator on vector fields on Ω is negative semi-definite; and

(6) u̇(x, 0) = u(x, 0) = 0,

then E(t) ≤ E(0) = 0 for all t ∈ [0, T ].4 But by the positive semi-definiteness of C(x, t) and the positiveness of
ρ(x, t) in Ω×[0, T ], 0 ≤ E(t) for all t . Thus we have E(t) = 0 for all t ∈ [0, T ]. Due to the positiveness properties
of the mass density and elastic modulus fields, the kinetic energy and the strain energy terms in the definition of
E(t) in (64) have to individually vanish. Then, assuming that the kinetic energy density 1

2ρ u̇ · u̇ is a continuous
unction, we have that u̇(x, t) = 0 for all (x, t) ∈ Ω × [0, T ]. But then the initial condition u(x, 0) = 0 implies

that u1 = u2 for all (x, t) ∈ Ω × [0, t], and we have uniqueness.
With reference to Fig. 40, we now consider Ω to be a domain whose external boundary can be decomposed into

pair-wise opposing surfaces which are parallel-translates of each other (a rectangle or a cuboid fits this definition).
We now think of the functions u̇∗, C, and ∇u∗

sym = ε∗ being constrained to attain equal values at points that are
parallel translates of each other on these pairwise-parallel surfaces comprising ∂Ω for all times (a cuboidal domain
with u∗ represented by a Fourier series on it satisfies such conditions). These requirements ensure that the stress
field on Ω

σ (x, t) = C(x, t)
(
ε∗(x, t) + H sym(t)

)
also satisfies such ‘periodic boundary conditions’ on ∂Ω and therefore the traction field on ∂Ω satisfies ‘anti-periodic
boundary conditions’ (because of the parallel but oppositely pointing normals at each pair of parallel-translated
points on each pair of parallel surfaces of ∂Ω ). It is clear then that under these stipulations, condition (3) is
satisfied. This is so because the tractions arising from two solutions are individually ‘antiperiodic’ and therefore
their difference is as well, and while the individual velocities (given by u̇i (x, t) = u̇∗

i (x, t)+ Ḣ(t)(x − x0), i = 1, 2)
re not ‘periodic’, their difference is. Furthermore, requiring any solution to satisfy a specified displacement initial
ondition that can be represented in the form u∗

0(x) + H(0)(x − x0) and specified velocity initial condition of
he form v∗

0(x) + Ḣ(0)(x − x0) where u∗

0 and v∗

0 satisfy ‘periodic boundary conditions,’ ensures the satisfaction
f condition (6). Thus for problems defined by a given function of time H and the structural conditions (1), (2),
5), and (4) defined on a domain of the type just discussed, solutions belonging to the class (63) satisfying initial
onditions of the type just discussed, are unique.

Corollaries: When H = 0, we have purely periodic solutions, driven solely by the initial conditions.
lastodynamics allows infinitesimally rigid unique solutions; thus, skew symmetric H are allowed. ‘Periodic’
lastostatics is recovered for ρ ≡ 0.

4 Conditions (4) and (5) are natural for a progressively damaging material.
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Fig. 40. The general ‘periodic’ domain Ω . ∂Ω = A ∪ B ∪ C ∪ D. Surfaces A and B are a pair of parallel-translate parts of ∂Ω , as is the
pair C and D. Points a and b are a typical pair of parallel-translated points on the surface-pair AB; they support anti-parallel outward unit
normal vectors on the surfaces to which they belong.

Remark 1. As shown in this paper in Sections 5 and 3.3, at least for the finite dimensional approximation defined
by (62) and (63) with u∗ represented by a Fourier series with a finite number of terms, solutions can be constructed
whose values at the final time T are consistent with (63), provided Ḧ = 0 in (0, T ). This suggests that a simulation
spanning the intervals [0, T1] and [T1, T2] with two different ‘forcing’ functions H1 (defined on [0, T1]) and H2
(defined on [0, T2 − T1]) can be conducted with our technique provided H1(T1) = H2(0) with Ḣ1 and Ḣ2 taking
rbitrary constant values in the intervals [0, T1] and [T1, T2], respectively. The final values of the displacement
eld and the velocity field from the interval [0, T1] serve as the initial conditions for the next interval; there are
elocity discontinuities at the ‘joins.’ Such ideas can be used to approximate ‘arbitrary’ loading histories within this
eriodic-in-space framework.

emark 2. In reality, the space–time dependence of the elastic moduli C arises from a dependence on the
volving displacement field through the coupling to the crack evolution. This suggests the study of conditions
f well-posedness for the fully coupled problem, which is beyond the scope of the present paper.
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