
HAL Id: hal-03336022
https://hal.science/hal-03336022v3

Preprint submitted on 21 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the approximation of separable non-convex
optimization programs to an arbitrary numerical

precision
Claudio Contardo, Sandra Ulrich Ngueveu

To cite this version:
Claudio Contardo, Sandra Ulrich Ngueveu. On the approximation of separable non-convex optimiza-
tion programs to an arbitrary numerical precision. 2025. �hal-03336022v3�

https://hal.science/hal-03336022v3
https://hal.archives-ouvertes.fr

On the approximation of separable non-convex optimization

programs to an arbitrary numerical tolerance

Claudio Contardo1 Sandra Ulrich Ngueveu2

1Concordia University, Montreal, Canada
2Université de Toulouse, CNRS, INP, LAAS, Toulouse, France

January 21, 2025

Abstract

We consider the problem of minimizing the sum of a series of univariate (possibly non-convex)

functions on a polyhedral domain. We introduce an iterative method with optimality guarantees

to approximate this problem to an arbitrary numerical tolerance. At every iteration, our method

replaces the objective by a piecewise linear relaxation to compute a dual bound. Since the

polyhedral domain in our method remains unchanged, a primal bound is computed by evaluating

the cost function on the solution provided by the relaxation. If the di↵erence between these

two values is deemed as not satisfactory, the relaxation is locally tightened with an objective-

driven refinement procedure, that computes an optimal domain partitioning and the process

repeated. By keeping the scope of the update local, the computational burden is only slightly

increased from iteration to iteration. The convergence of the method is assured under very

mild assumptions, and no NLP nor MINLP solver/oracle is required to ever be invoked to do

so. As a consequence, our method presents very nice scalability properties and is little sensitive

to the desired tolerance. We provide a formal proof of the convergence of our method, and

assess its e�ciency in approximating the non-linear variants of five problems: the transportation

problem, the uncapacitated facility location problem, the multicommodity flow problem, the

multi-commodity network design problem, and the continuous knapsack problem. Our results

indicate that the overall performance of our method is competitive to three state-of-the-art mixed-

integer nonlinear solvers, often performing better. It also scales better than a naive variant of

the method that avoids performing successive iterations in exchange of solving a much larger

mixed-integer linear program.

1 Introduction

We consider the problem of solving the following mixed-integer non-linear program (MINLP) with a
separable objective:

x 2 argmin

(
nX

i=1

fi(xi) : Ax = b, x 2 Rn�p
+ ⇥ Zp

+

)
, (1)

where the functions fi : R �! R, i = 1 . . . n are piecewise di↵erentiable. For the sake of simplicity,
we also assume that the problem is well defined and that it admits an optimal solution (although
perhaps not an unique one). If (fi)i=1...n are all a�ne linear functions, the problem is a conventional
mixed-integer linear problem (MILP) for which state-of-the-art algorithms and commercial software
can scale and solve problems with millions of variables and constraints (IBM, 2020). This is no longer
true when some of the functions fi are not linear. While it is possible to e�ciently handle problems
for some specific forms of fi —namely when they are quadratic and/or convex (IBM, 2020; Stellato
et al., 2020)—, general forms of the functions fi make the optimization problems much less tractable.

1

One possible way to approximate problem (1) is by replacing functions fi by piecewise linear
functions. This procedure results in a MILP with additional binary variables, and can be tackled
using state-of-the-art machinery from the integer programming literature. This is perhaps the most
e�cient way known to handle problems with this structure. By properly choosing the piecewise linear
approximations, this approach can provide guarantees on the quality of the solutions achieved. These
guarantees, however, come at the extent of potentially very large piecewise linear approximations, and
remain only practical for very rough numerical tolerances.

This article addresses the issue of solving problem (1) to an arbitrary numerical tolerance by
solving a series of piecewise linear relaxations of the problem in a way such that the tractability of
the resulting MILP is not compromised along the process. Our method relies on the existence of a
tractable piecewise linear relaxation for a reasonably good (but probably not good enough) tolerance
to derive primal and dual bounds, and on an objective-driven refinement method used to achieve a
better numerical precision by tightening the relaxation. By objective-driven we mean that our method
maintains primal feasibility at all times, but tightens the approximations from one iteration to the
next by reducing the maximum error at the objective level. The key in the success of our method lies
in the fact that the refinement procedure focuses on the improvement of the approximation precision
by design, has very local scope, and the successive relaxations, while becoming tighter, do not lose
their tractability, allowing for the primal and dual bounds to converge quickly.

The remainder of this manuscript is organized as follows. In Section 2 we present a literature review
that focuses on the numerical approximation of mixed integer non-linear programs using piecewise
linear approximations. In Section 3 we make a brief description of LinA.jl, a Julia package that
finds minimal piecewise linear approximations to functions with error guarantees. In Section 4 we
present our method and provide the formal background to justify its convergence. In Section 5 we
describe the application of our method to approximating the non-linear variants of five optimization
problems relevant in practice: the transportation problem (TP), the uncapacitated facility location
problem (UFLP), the multi-commodity flow problem (MCFP), the multicommodity network design
problem (MCNDP), and the continuous knapsack problem (CKP). We also provide computational
evidence of the e�ciency of our method. In Section 6 we provide a brief discussion about additional
computational experiments. In Section 7 we discuss some limitations of our method as they become
apparent in our computational campaign. Section 8 concludes this manuscript.

2 Related works

Two problems need to be addressed when building MILP-based approximations or relaxations of
nonconvex MINLPs with a predefined accuracy : 1) that of obtaining good piecewise linear approx-
imations of the nonlinear functions; and 2) that of e�ciently constructing and solving the resulting
MILP.

The quality of piecewise linear approximations is typically evaluated using two conflicting criteria:
the approximation error evaluated with a relevant metric, and the size of the approximation measured
as the number of linear pieces (Ertel and Fowlkes, 1976). To ensure that the desired MINLP accuracy
will be achieved, a bound is set on pointwise approximation errors, i.e., that can be expressed in
function of the maximal di↵erence between each nonlinear function and its approximation (Geißler
et al., 2012). In many cases, compact MILP models with a low number of binary/integer variables
lead to faster computing times thanks to the reduced combinatorial explosion of an enumeration
tree. Therefore, it is of interest to obtain (near-)optimal piecewise linearizations with respect to
the objective of minimizing the number of linear pieces given a predefined pointwise error bound.
Among the few publications that tackle this version of the piecewise linearization problem with formal
models and exact algorithms to ensure optimality of its solutions, Rebennack and Kallrath (2015) and
Rebennack and Krasko (2019) showed that distributing breakpoints freely and allowing shifts from
the nonlinear function at breakpoints leads to an order of magnitude less linear pieces compared to

2

equidistant breakpoints that interpolate the nonlinear univariate function. Ngueveu (2019) authorizes
discontinuity in the piecewise linear function even if the original nonlinear function is continuous,
yielding an additional degree of freedom to obtain a breakpoint system of equal or less linear segments.
Codsi et al. (2021) propose a geometric approach that can solve the problem in quasi-logarithmic time
on a very broad class of pointwise error metrics.

Modeling piecewise linear functions in MILP requires additional binary variables and constraints.
Various representations have been studied for example by Vielma and Nemhauser (2011), Huchette and
Vielma (2019), Hwang and Huang (2021) including ones where the number of binary variables increases
only logarithmically with the number of linear pieces. In Vielma et al. (2010) the authors review
the literature on modeling piecewise linear functions in MILPs, perform a computational analysis
between the di↵erent techniques and provide an unifying view of them, including the use of lower
semi-continuous piecewise functions.

For general nonconvex MINLP with a linear objective-function and nonlinear constraints —which
can be obtained after reformulation of any nonconvex MINLP with a nonlinear objective-function—
Geißler et al. (2012) present a general methodology to construct a mixed integer piecewise polyhedral
(MIP) relaxation of a MINLP, instead of a mixed integer piecewise linear approximation. It requires
piecewise linear segments that interpolate the nonlinear functions at the breakpoints and the calcu-
lation of the maximum linearization error for each linear piece. The MIP relaxation produces lower
bounds for the MINLP. Then, the authors use an NLP solver to produce feasible solutions for the
MINLP once its integer variables have been fixed to their values in the MIP relaxation solution. As a
consequence, it is straightforward to implement a branch-and-bound algorithm to solve the MINLP,
which can prove optimality and prune infeasible or suboptimal parts of the search tree by using MILP
techniques.

The drawback of any MINLP solution method based on piecewise linear approximations is that
small approximation errors lead to large MILPs, which become di�cult to solve. Burlacu et al. (2020)
build on the work of Geißler et al. (2012) and develop an iterative algorithm to find a global optimal
solution of the MINLP by solving a series of MILP relaxations with gradually increasing accuracy,
based on piecewise linear functions that are adaptively refined from one iteration to another. A
critical component concerns the way the piecewise linear functions are defined and their refinement
procedure. The authors need piecewise linear functions that interpolate the nonlinear function at
the breakpoints and that completely contain the graph of the function. They provide rather general
convergence conditions for MINLP solution algorithms that rely on the adaptive refinement of their
piecewise linear relaxations. They show that the refinement strategy adding solely points with maximal
approximation error on a simplex does not fulfill these conditions and may not converge in certain
cases. In contrast, the refinement strategy adding linearization breakpoints on the longest edge of a
simplex, such as the classical longest-edge bisection, fulfills these convergence conditions and therefore
is suitable for the solution framework proposed which then converges in a finite number of iterations.

Burlacu (2021) extends the iterative algorithm of Burlacu et al. (2020) with another refinement
strategy for n-dimensional simplices: the generalized red refinement introduced by Freudenthal (1942).
Their procedure is to some extent an n-dimensional generalization of the well-known red-green re-
finement (Bank et al., 1983), which is used for two-dimensional simplices. However, for the one-
dimensional domains we focus on in this paper, i.e., univariate functions, the red refinement and the
longest edge refinement are identical and simply split the domain of the active linear pieces in two
equal halves by adding, midway through the domain, a breakpoint that interpolates the function. For
a more comprehensive survey of refinements of simplicial meshes the reader is referred to Bey (2000).
Burlacu (2021) and Burlacu et al. (2020) do not compute any upper bounds, and do not require NLP
solvers for such task. However, the authors assume that there is an oracle that optimizes the di↵erence
between a nonlinear and linear function over a simplex, in order to compute the linearization errors
resulting from the piecewise linear function refinements. Such an oracle may be an NLP solver if the
solution of an analytical formula is not available.

The sequential convex MINLP (SC-MINLP, D’Ambrosio et al., 2009, 2012) method approximates

3

nonlinear problems with separable non-convexities by relaxing the concave parts of the objective
by piecewise linear relaxations. The convex parts of the objective are left as is, and dealt with
convex optimization solvers. Then, in D’Ambrosio et al. (2019) the authors consider a perspective
reformulation of the MINLPs that the authors then strengthen via perspective cuts. Finally, in
Trindade et al. (2023) the authors perform a theoretical and computational study of several perspective
reformulations for MINLPs with separable nonconvexities. Their results show that the so-called
multiple-choice model proves stronger than the original incremental model when strengthened by
perspective cuts on problems with nonlinear convexities.

For MINLP with polynomial functions, Nagarajan et al. (2019) propose an adaptive non-uniform
partitioning of the domain of variables instead of uniform refinements such as Burlacu (2021)’s. To
that end, instead of simply splitting each active partition of the domain of a variable into two equal
halves, Nagarajan et al. (2019) split it into three, the size of the middle partition being defined by a
user parameter denoted �. A � value of 8 for instance (default value used by the authors), imposes
the size of the new middle partition to be one quarter of the size of the active partition. The authors
provide a lemma stating that the value of the lower bound monotonically increases with successive
partition refinements. However, there is no proof that the algorithm converges in a finite number of
iterations. For solving MINLPs to global optimality the complete MILP-based method proposed by
Nagarajan et al. (2019) also integrates domain reduction techniques based on sequential optimization-
based bound-tightening (OBBT), construction of piecewise convex relaxations using the partitioned
domain, their solution via outer-approximation to obtain updated lower bounds, and the solution of
NLPs to obtain new local optimal solutions. The computational evaluation showed that the approach
could help solving instances not solvable by previous state-of-the-art solvers. Best known optimality
gaps could also be reduced on unsolved instances. The resulting algorithm is available as a global
solver for nonconvex MINLPs in a Julia package named Alpine.jl (Nagarajan et al., 2016, 2019).

Exact solution methods that solve an instance of an NP-hard problem as a series of smaller in-
stances of the same NP-hard problem have been investigated recently in relation to decremental
relaxations and sampling mechanisms. Remarkable examples include the family of methods referred
to as dynamic discretization discovery (DDD) for service network design problems. DDD methods
are applied on time-indexed models for routing and scheduling problems (Boland et al., 2017, 2019;
Marshall et al., 2021), and rely on reducing the sizes of the time-expanded networks by aggregating
nodes and arcs. Column generation methods for vehicle routing have also leveraged the use of similar
approaches to alleviate the computational burden of solving elementary shortest path problems for
pricing new columns. The works of Righini and Salani (2008); Martinelli et al. (2014) show that it
is possible to achieve elementary paths by considering partial elementarity in an escalated way. All
these works share similarities with our method and with those described in the previous paragraphs:
the reformulation of a problem onto an easier/smaller problem capable of providing dual bounds but
potentially infeasible solutions, and a refinement mechanism that will find and repair these infeasibil-
ities.

3 LinA.jl in a nutshell

In this section we provide a brief description of LinA.jl, a Julia implementation of the greedy al-
gorithm of Codsi et al. (2021) for building minimal piecewise linear approximations of nonlinear
functions with approximation guarantees. Although LinA.jl can handle piecewise linear approxima-
tions that are upper bounding, lower bounding, or successive combinations of both, we will describe
its application to the case of lower bounding approximations, which is what our algorithm needs.

Let us consider a nonlinear function f : [x0, xf] �! R. Let us consider another function g :
[x0, xf] �! R such that g(x)  f(x) for every x 2 [x0, xf]. Function g is said to be a lower

bounding approximation of f in the interval [x0, xf]. The area between the two functions in the
said interval is said to be a corridor. Take for instance the example illustrated in Figure 1, with

4

f(x) = sin(⇡x/2) � 0.05x + (0.3x)2 + 5 in the interval [0, 8] depicted in a solid red line, the lower
bounding approximation g(x) = 0.8f(x) (meaning using a relative tolerance of 20%) depicted in a
dashed red line, and the corridor between the two depicted in light blue.

0 2 4 6 8

4

6

8

10

Figure 1: Example of function f , lower bounding approximation g and corridor

The method proposed by Codsi et al. (2021) will proceed as follows. The authors design a method
L(f, g, x0, xf) that constructs the longest line segment starting at x = x0 that fits into the corridor
between f and g. Suppose that the resulting line segment ends at x1 2]x0, xf [. Next, the method
proceeds to execute L(f, g, x1, xf) to construct the longest line segment starting now from x1. This
process is applied iteratively until reaching the point where xk = xf for a certain iteration k. The
authors prove (see Codsi et al., 2021, Section 3.2) that this greedy procedure constructs —for a given
corridor— the minimal piecewise approximation fitting the corridor, where minimality is defined with
respect to the number of line segments.

To further illustrate the method, let us consider the same example using f(x) = sin(⇡x/2)�0.05x+
(0.3x)2 + 5, g(x) = 0.8f(x) in the interval [0, 8]. The solution to L(f, g, 0, 8) will return the longest
line segment starting at x = 0, namely the line line l1(x) = �0.13x+4.977 extending until x1 = 3.71.
Then, the solution to L(f, g, 3.71, 8) will return the longest line segment starting at x1 = 3.71 and
will be given by the equation l2(x) = 0.708x + 2.917 that extends until x2 = xf = 8. The resulting
piecewise linear approximation is given in Figure 2. The two solid blue line segments correspond
to the minimal piecewise linear approximation fitting the corridor. Sometimes we will refer to this
approximation as a piecewise linear relaxation to highlight the fact that it approximates function f

by below (in a minimization setting). It is worth mentioning that, since g = 0.8f , LinA.jl provides
in this case a piecewise linear relaxation that is at most 20% lower than f .

One can think of function g as the allowed deviation of the piecewise linear approximation from
function f . Assuming that f(x) � 0 for every x 2 [x0, xf], LinA.jl can be seen as taking ✏ 2]0, 100[
as an input parameter and return a minimal piecewise linear approximation that is at most ✏% lower
than f . Unfortunately, the number of linear pieces, while minimum, can grow quite quickly. For
instance, using the same example as before, if one uses ✏ = 10%, 1.0%, 0.1%, 0.01%, 0.001, 0.0001% the
number of linear pieces constructed by LinA.jl are of 5, 14, 43, 133, 418, and 1303, respectively.

The method is not only shown by the authors to be e�cient in terms of the number of line segments,
but also in terms of computational e�ciency: it performs a dichotomy search on the interval for
functions f, g that do not present changes in concavity (i.e. that are either convex or concave). For
general functions with changes in concavity, the authors show that the problem can be posed as a
data fitting problem (Tomek, 1974a,b) and solved using an ad-hoc method like the one of O’Rourke

5

0 2 4 6 8

4

6

8

10

Figure 2: Example of minimal piecewise linear approximation obtained using LinA.jl

(1981). In practice, the authors show that one can benefit from the dichotomy search for most of the
procedure, and execute the more expensive data fitting method only around the inflection points.

4 The proposed method

In this section we present our iterative method to solve problem (1) to a given relative tolerance ✏ > 0,
this is we aim at obtaining a feasible solution x of (1) whose objective value z(x) =

Pn
i=1 fi(xi) is

such that z(x)� z
⇤  ✏|z(x)|, where z

⇤ is the optimal value of problem (1).
To fix ideas, let us assume that we are given, in addition to problem (1) and ✏, an initial tolerance

✏0 � ✏, and a minimum interval size � > 0. The exact meaning of these two additional parameters
will become apparent in the description of our method.

4.1 High-level description of the algorithm

At every iteration, our method replaces the objective by a piecewise linear relaxation of the functions fi
to compute a dual bound. Given that the constraint set remains the same for the original problem and
the relaxation, a primal bound is readily available by simply evaluating the nonlinear cost function
on the solution provided by the relaxation. If the di↵erence between these two values is deemed
as not satisfactory, the relaxation is locally tightened with an objective-driven refinement procedure,
that computes an optimal domain partitioning and the process repeated. By keeping the scope of
the update local, the computational burden is only slightly increased from iteration to iteration.
The convergence of the method is assured under very mild assumptions, and no NLP nor MINLP
solver/oracle is required to ever be invoked to do so. As a consequence, our method presents very nice
scalability properties and is little sensitive to the desired tolerance.

We provide a high-level description of our algorithm in the pseudo-code Algorithm 1. In the
remainder of this section we describe the distinctive components that di↵erentiate it from the state-
of-the-art, in particular the objective-driven tightening mechanism key in the success of our method.

4.2 Objective-driven initialization

We define a linear piece as a tuple l = (g,↵,�, x0, xf , r) with x0  xf , representing the linear function
↵x+ � that approximates function g within a tolerance of r in the interval [x0, xf]. The linear piece

6

Algorithm 1 Iterative piecewise linear bounding

Input: Problem (1), tolerances ✏, ✏0, �
Output: Feasible solution x⇤

, dual bound zl(x⇤
), primal bound z(x⇤

) s.t. z(x⇤
)� zl(x⇤

)  ✏|z(x⇤
)|

1: {f l
i : i = 1 . . . n} initial piecewise linear relaxation with tolerance ✏0 . Section 4.2

2: while true do

3: Solve minx{
P

i f
l
i (xi) : Ax = b, x 2 Rn�p

+ ⇥ Zp
+}, let x⇤

be an optimal solution . Section 4.3

4: Let zl(x⇤
)

P
i f

l
i (x

⇤
i), and z(x⇤

)
P

i fi(x
⇤
i)

5: if z(x⇤
)� zl(x⇤

)  ✏|z(x⇤
)| then . The desired convergence has been reached

6: return
�
x⇤, zl(x⇤

), z(x⇤
)
�

7: else

8: Refine {f l
i : i = 1 . . . n} . Section 4.4

9: end if

10: end while

is said to be a linear relaxation of g in the interval [x0, xf] if ↵x+ �  g(x) for every x 2 [x0, xf]. A
piecewise linear relaxation of g in an interval [x0, xf] is a set {(g,↵k

,�
k
, x

k
0 , x

k
f , r

k) : k = 1 . . .} of

linear relaxation pieces such that x1
0 = x0, x


f = xf , x

i
0 = x

i�1
f for every i = 2 . . ..

Our method starts by finding an initial piecewise linear relaxation for each function fi covering
the domain of variable xi (that we assume to be bounded) for the initial tolerance ✏0. To that end, we
make use of the greedy algorithm described in Section 3, introduced in Codsi et al. (2021), to compute
in a negligible computing time (mere milliseconds), optimal (in terms of size) piecewise linear relax-
ations for continuous univariate nonlinear functions given a bound on the pointwise approximation
error allowed. A Julia implementation of the algorithm is available via a package named LinA.jl,
publicly available at https://github.com/LICO-labs/LinA.jl. Note that LinA.jl constructs piece-
wise linear relaxations that are not necessarily continuous and that do not necessarily interpolate the
nonlinear functions (indeed, they almost never do). For a given linear piece l, we denote ✏(l) the
relative tolerance associated with that piece, that initially takes the value ✏0 uniformly.

4.3 MILP modeling and solution

We modify problem (1) by replacing the functions fi, i = 1 . . . n in the objective by their respective
piecewise linear relaxations. This results in a modified MILP that approximates problem (1) by
providing a solution that is feasible w.r.t. the set of constraints {Ax = b, x 2 Rn�p

+ ⇥ Zp
+} and that

provides a dual bound for (1). Note that there is not an unique way of writing the modified MILP. In
Vielma et al. (2010) the authors review the literature in piecewise linear approximations and propose
novel small-sized (in terms of the number of linear pieces) models. In Huchette and Vielma (2019),
the authors introduce a refined representation of the piecewise linear functions. The most e�cient
representations are those adhering to the logarithmic principle in which the number of binary variables
required to represent a piecewise linear function is bounded by above by O(log(n)), where n is the
number of pieces. Recent general-purpose solvers like CPLEX and Gurobi can now handle piecewise
linear functions. In our nonlinear solver we make use of Gurobi’s implementation of piecewise linear
functions to solve MILPs with piecewise linear objectives.

The initialization method from Section 4.2 sets up a starting point for our iterative mechanism and
the solution of the resulting modified MILP described in the paragraph above will provide a solution
x
⇤ that is feasible w.r.t. the set of constraints of the problem and that lies within a relative tolerance

smaller than ✏0. Please recall that our objective is to approximate problem (1) within a tolerance of
✏  ✏0. Moreover, because the point found x

⇤ is feasible w.r.t. the set of constraints, evaluating x
⇤ on

the functions fi, i = 1 . . . n provides a valid upper bound for the problem. If the optimal value of the
modified MILP (that provides a lower bound of the problem) happens to be o↵ by at most ✏ from the
upper bound, the method ends and returns x⇤. Otherwise we apply the objective-driven refinement

7

described next.

4.4 Objective-driven refinement

In the case where the lower and upper bounds are o↵ by more than ✏ in relative terms, a repair
procedure is invoked with the objective of tightening the current piecewise linear relaxation. The
proposed tightening mechanism possesses a very distinctive feature when compared to similar —
iterative refinement— methods. It explicitly aims at increasing the precision of the piecewise linear
relaxation in the intervals of interest. This feature is what makes our method converge in a finite
number of steps (see the Proposition 1), and to require in practice a low number of iterations to
converge. This feature —which lies at the core of the proposed algorithm— is not present in previous
iterative solvers such as those of Burlacu et al. (2020); Burlacu (2021); Nagarajan et al. (2019), where
the intervals are divided according to their size, and the increased precision achieved only as a result
of making the intervals smaller each time.

Let  � 1 denote the number of times that the modified MILP has been solved. Let x⇤i be the i-th
component of the solution x

⇤ to the modified MILP. Let �x⇤

i be the set of indices to the linear pieces
containing the point x

⇤
i . Let �i ◆ �x⇤

i be a set of indices to contiguous linear pieces and covering
an interval [l(�i), u(�i)]. If fi(x⇤i) � ↵

k
i x

⇤
i � �

k
i  ✏|fi(x⇤i)| for every k 2 �x⇤

i , then the relaxation of
fi at the point x

⇤
i is su�ciently tight. If not, it needs to be tightened. We propose two objective-

driven methods to tighten the linear pieces in �i of the relaxation of fi. They are referred to as the
conservative and the aggressive tightening, and di↵er in the speed at which convergence is achieved.
In each case, the new tolerance for the pieces in �i is set according to one of the two equations below:

Conservative tightening

✏
0 1

2
min

�
✏(lk) : k 2 �i

. (2)

Aggressive tightening

✏
0 ✏0

2
. (3)

By finding a piecewise linear relaxation for fi using ✏0 as a tolerance within the interval [l(�i), u(�i)]
we are indeed tightening the relaxation of problem (1). This procedure will result in replacing one or
a few linear pieces by multiple other pieces computed optimally using LinA.jl. However, the linear
pieces surrounding those indexed by �i will remain unchanged, and the scope of the update procedure
will remain local. Moreover, in our method we make sure that LinA.jl is applied only on intervals
[l(�i), u(�i)] that verify u(�i) � l(�i) � �. If a �i with u(�i) � l(�i) < � needs to be tightened,
then �i is augmented with neighboring contiguous linear pieces until the interval size of at least � is
reached, before LinA.jl is applied. Parameter � is therefore not a stopping criterion of our method,
but a parameter that prevents our method from having to refine intervals that may be arbitrarily
small.

It is easy to see that the ✏0 values constructed by applying the aggressive tightening rule are smaller
than or equal to those that can be achieved if one applies instead the conservative tightening rule. One
can expect that albeit being equally fast in the worst case, the latter shall provide quicker convergence
in practice.

Once the repair procedure has been applied to every function fi, the resulting MILP is solved
again and the procedure repeated. The process ends when the lower and upper bounds are within a
tolerance of ✏. The following proposition provides a worst-case guarantee of convergence of the method
to the desired tolerance.

4.5 Convergence of the method

We now provide two theoretical results that set the foundations of our method’s e�ciency. We
must assume that the number of times that the functions fi change in concavity is finite. This is a

8

requirement for LinA.jl to work and converge. In practice, this is a mild requirement as most cost
functions interesting in practice satisfy it.

We will now prove that our method ends within a finite number of iterations of the main loop at
Algorithm 1, and provides a feasible solution x

⇤ whose associated objective is at most ✏ o↵ the optimal
solution.

Proposition 1. If the domain of each variable xi is bounded within the interval [li, ui] with li  ui,

the algorithm ends in at most

N(✏) =
l
log2

⇣
✏0

✏

⌘m nX

i=1

⇠
ui � li

�

⇡
(4)

iterations of the main loop at Algorithm 1 and provides a solution x
⇤
that is far from the optimum by

at most ✏.

Proof. At every iteration, the method either finds a solution x
⇤ that is at most ✏ o↵ the optimal,

or detects one set �i of contiguous linear pieces of size � � (possibly after having to augment �x⇤

i

with neighboring pieces) including all pieces containing x
⇤
i to apply the refinement. When applying

equation (2) or (3), the tolerance associated with the pieces in �i in the new relaxation will be cut of
at least half. The number of times that this can happen before a linear piece within a given region is
tightened two consecutive times is bounded above by d(ui� li)/�e, and the number of times that this
can happen before reaching the desired tolerance is bounded above by dlog2(✏0/✏)e. Because at each
iteration there is at least one tightening for at least one variable x⇤i , the sum of these quantities along
the n dimensions of the domain is an upper bound for the total number of iterations before reaching
global convergence.

We now provide a comparative worst-case analysis between the proposed method and that of
Burlacu et al. (2020); Burlacu (2021), which is also an adaptive-partitioning-based iterative method
with finite convergence as proven by the authors. We will show that for Lipschitz-continuous functions
fi (i.e. such that 9Li > 0, 8x, y 2 [li, ui], |fi(x) � fi(y)|  Li|x � y|) the maximum number of main
loops of Algorithm 1 required by our method to converge within a relative tolerance of ✏ is bounded
above by O(log(NB(✏))), where NB(✏) is the number of iterations in the worst-case required by Burlacu
(2021)’s method to achieve the same precision.

Proposition 2. Let us assume that the functions fi are Lipschitz-continuous with constants Li, i =
1 . . . n. Then, for every ✏ > 0, Burlacu’s converges within a relative tolerance of ✏ in at most

NB(✏) = 2q (5)

iterations, with q =
l
log

⇣
⇢L
✏

⌘m
, ⇢ = max{ui � li : i = 1 . . . n}, L = max{Li : i = 1 . . . n}.

Proof. See Burlacu et al. (2020).

Proposition 3. Let us assume that the functions fi are Lipschitz-continuous with constants Li, i =
1 . . . n and that ✏0 > 0 is fixed. Then for every ✏ > 0, N(✏)  O(log(NB(✏))).

9

Proof. Let us denote ↵ =
P

{d(ui � li)/�e : i = 1 . . . n}. Starting from equation (5) we have that

log(NB(✏)) = q =

⇠
log

✓
⇢L

✏

◆⇡
=

⇠
log

✓
⇢L

✏
· ✏0
✏0

◆⇡
=

⇠
log

✓
⇢L

✏0
· ✏0
✏

◆⇡

�
⇠
log

✓
⇢L

✏0

◆⇡
+

⇠
log

✓
✏0

✏

◆⇡
� 1

� 1

2

⇠
log

✓
✏0

✏

◆⇡

=
1

2

⇠
log

✓
✏0

✏

◆⇡
· ↵
↵

=
N(✏)

2↵
,

which implies that N(✏)  2↵ log(NB(✏)) = O(log(NB(✏))).

4.6 Illustrative example

We will now illustrate our method by means of a very simple example. Let us consider the following
fixed-charge nonlinear problem on two continuous variables:

min f1(x1) + f2(x2) (6)

subject to

2x1 + x2 � 1 (7)

2x1 + 5x2  4 (8)

5x2 � 2 (9)

0  x1, x2  1, (10)

where

f1(x) = sin(4⇡x)� 0.4x+ (2.4x)2 + 5

f2(x) = sin(4⇡x)� 0.4x+ (2.9x)2 + 4.

In Figure 3 we depict the progression of our method for three iterations. We assume that the
parameters ✏0, � are defined as ✏0 = 0.2, � = 0.001, although our method in these three iterations
would be indi↵erent to any value of � < 0.01. Figures (3a)-(3b) depict the relaxation of the functions
f1, f2 to an 80% of precision (i.e. by making ✏0 = 0.2). This relaxation consists of two linear pieces
for f1, and of three for f2. The optimal values taken by both variables in the resulting MILP are
also depicted in these figures, and the quality of the relaxation given by the di↵erence between the
point evaluated in the red line (the original function fi) and the blue line (the relaxation). For the
second iteration, only function f1 needs to be tightened, in the interval [0, 1] as the optimal point x⇤

1

in this case lies at the intersection of the two linear pieces. We use a decreased tolerance of ✏ = 10.
The refinement leads to five linear pieces for the relaxation of f1. We see that the variable x

⇤
1 only

slightly moves to a di↵erent region in the optimal solution of the resulting MILP as we observe in
Figures (3c)-(3d). For the third iteration —depicted in Figures (3e)-(3f)—, we have again to tighten
the relaxation of f1 in the interval [0.2, 0.7]. Again, this tightening results in an increase in the number
of linear pieces for the relaxation of f1 to a total of seven. The optimal solution of the relaxation
is attained at the point (0.36, 0.4). Across these three iterations, the lower bound has changed from
8.713 in the first iteration to 8.577 in the second to 8.615 in the third. Meanwhile, the upper bound is
of 8.862, which gives a 1.78% of optimality gap. For comparison, Codsi et al. (2021)’s method would

10

construct 10 linear pieces for each function, to achieve the same solution quality, a net increase of
ten linear pieces with respect to the largest piecewise linear relaxation constructed using our iterative
approach. As we will show later in Section 5, this di↵erence increases significantly as we go to finer
tolerances, with the linear relaxations constructed using our iterative method being often smaller by
orders of magnitude.

Several remarks are in order. First, we observe that the dual bounds are not necessarily monotone
across the method. This is due to the fact that a linear relaxation may not be tighter in the whole
interval after a refinement. Second, our algorithm works by detecting the promising zones for successive
refinements, while ignoring the parts that obviously may never be part of an optimal solution. This
is what contributes at keeping the MILPs tractable along the whole solution process. The irrelevant
zones of the domain, which can be seen as noise, should be approximated as roughly as possible, to
focus one’s e↵orts into refining the zones that are most likely to contain an optimal solution of the
problem. Third, our method does not require the solution of a NLP oracle to ensure convergence
—at the expense of being restricted to a polyhedral domain—, as it relies purely on the solution
of mixed-integer linear programs. Fourth, our method computes lower and upper bounds at each
iteration. Fifth, the refinement procedure is based on the computation of the best piecewise linear
underestimation on a given interval for univariate functions for a predefined tolerance, instead of an
arbitrary split of the interval into two or three. Sixth, our method can handle relative or absolute
tolerances. As shown by Ngueveu (2019), the former may produce smaller MILPs for the same value
of ✏. Seventh, we do not require the piecewise linearizations to be continuous nor to interpolate the
nonlinear functions, which can be e�ciently exploited for instance by using the method of Codsi et al.
(2021) to compute and tighten the relaxations.

5 Applications

In this section we describe the application of our method to five classes of mixed-integer nonlinear
optimization problems, namely: the transportation problem (TP), the uncapacitated facility location
problem (UFLP), the multi-commodity flow problem (MCF), the multi-commodity network design
problem (MCNDP), and the continuous knapsack problem (CKP). These problems di↵er structurally
in the types and number of decision variables and constraints that are required to address them, and
also at the level at which non-linearities are expressed. In knapsack or transportation problems the
non-linearities are usually associated with all the structural decision variables. Flow or network design
problems are often faced to non-linearities at one set of variables out of several. When that happens,
non-linearities may or may not be dominant with respect to the linear terms in the objective, which
in turn results in problems with varying degrees of di�culty. Our selection of problems, and of levels
at which non-linearities are expressed, intend to provide a comprehensive sample of problem variants
with varying degrees of di�culty.

First, we introduce 10 classes of nonlinear functions that we will use to assess the performance
of our method. Next, we describe the experimental setup used throughout our campaign. Then, we
present nonlinear variants of the five optimization problems considered in our computational study and
provide computational evidence of the performance of our approach to reach near-optimal solutions
with very tight numerical guarantees.

5.1 Nonlinear cost functions

In our tests we consider ten univariate functions defined in the interval [0, 1] and such that f(1) = 1
or 2. We will later explain how we adapt these functions to situations where the domain and values

11

0 0.2 0.4 0.6 0.8 1

4

6

8

10

12

(a) Approximation of f(x1) at iteration 1

0 0.2 0.4 0.6 0.8 1

4

6

8

10

12

(b) Approximation of f(x2) at iteration 1

0 0.2 0.4 0.6 0.8 1

4

6

8

10

12

(c) Approximation of f(x1) at iteration 2

0 0.2 0.4 0.6 0.8 1

4

6

8

10

12

(d) Approximation of f(x2) at iteration 2

0 0.2 0.4 0.6 0.8 1

4

6

8

10

12

(e) Approximation of f(x1) at iteration 3

0 0.2 0.4 0.6 0.8 1

4

6

8

10

12

(f) Approximation of f(x2) at iteration 3

Figure 3: Three iterations of the proposed method on problem (6)-(10)

12

are di↵erent. The functions are as follows:

f1(x) =

8
>><

>>:

0.5 +
1.5

1 +
e
�10(x�0.1)

2

if x > 0

0 otherwise.

f2(x) =

(
2.5312499998168745x3 � 2.812499999708163x2 + 1.0312499999207962x+ 0.25 if x > 0

0 otherwise.

f3(x) = 0.2743170648074066(sin(2x) + x)2

f4(x) = 0.06123588766918159(sin(5x) + 5x)2

f5(x) = 0.039137166375225234(sin(10x) + 5x)2

f6(x) = 0.19399896533885155 sin

✓
⇡
100x� 10

40

◆
� 0.3879979306777031 cos

✓
⇡
100x� 10

80

◆

+ 0.504397309881014

f7(x) =
1
3 log(1 + 19.085536923187668x)

f8(x) = x
2

f9(x) =
p
x

f10(x) =
1.0002776471474824

1 + 44.742557e�15.2216(x�0.21229801)

These functions possess a variety of attributes. Functions f1, f2 contain a fixed-charge term that
is only activated for strictly positive values of x. Functions f7, f9 are pure concave, while function
f8 is pure convex. Functions f3, f10 have one inflection point, where the functions pass from convex
to concave. Function f5 is non-monotonic. Functions f4, f5, f6 have two or more inflection points.
All the functions are Lipschitz-continuous in the interval]0, 1[. Functions f3, f4, f5, f6 and f10 have
been used in the past, for instance in Trindade et al. (2023), with the only modification being the
application of a scaling coe�cient to make sure that fi(1) = 1. In Figure 4 we depict the ten cost
functions in the interval [0, 1].

5.2 Experimental setup

We consider a target tolerance of ✏ = 10�4 because such value is su�ciently small to render the
problems di�cult and yet still large enough to prevent errors due to floating point arithmetic. Smaller
values of ✏ resulted in a somewhat erratic behavior related to floating point errors in LinA.jl and
GUROBI. We consider two variants of our method, namely one using the aggressive tightening rule, and
a second one where we set ✏0 = ✏. The former is denoted CN24 and for this variant, we let ✏0 = 10%.
The latter is denoted as NAIVE. For nonlinear functions valid in a domain [l, u] we let � = (u �
l)⇥ 10�3. Our preliminary experience indicates that the di↵erence between the conservative and the
aggressive tightening rules is not important, with a slight edge for the aggressive over the conservative.
For this reason, we omit in our analysis the variant of our method that considers the conservative
tightening rule. In addition, we consider three other mixed-integer nonlinear solvers for benchmarking
purposes (namely SCIP, COUENNE and GUROBI) at their default settings and using the same optimality
tolerance of ✏ = 10�4. According to their documentation (Gurobi Optimization, LLC, 2024), GUROBI’s
MINLP solver combines spatial branch-and-bound with piecewise linear approximations to handle
the nonlinearities. That makes the comparison against our solver particularly interesting as both
solvers (GUROBI and CN24) rely at least up to some extent in approximating the nonlinearities using
piecewise linear terms. A fourth method (Alpine.jl, Nagarajan et al. (2016)) has been initially given
consideration but finally dropped from our main computational campaign as its performance failed

13

Figure 4: Depictions of ten types of cost functions

0 0.5 1

0

1

2

(a) Functions of the type f1

0 0.5 1

0

0.5

1

(b) Functions of the type f2

0 0.5 1

0

0.5

1

(c) Functions of the type f3

0 0.5 1

0

0.5

1

(d) Functions of the type f4

0 0.5 1

0

0.5

1

(e) Functions of the type f5

0 0.5 1

0

0.5

1

(f) Functions of the type f6

0 0.5 1

0

0.5

1

(g) Functions of the type f7

0 0.5 1

0

0.5

1

(h) Functions of the type f8

0 0.5 1

0

0.5

1

(i) Functions of the type f9

0 0.5 1

0

0.5

1

(j) Functions of the type f10

14

to match that of all the other methods by a large extent. We provide a summary analysis of that
method in Appendix A. A summary description of the algorithms used in our benchmarking can be
found in Table 1.

Solver Description Reference
CN24 Our method with the aggressive tightening rule This paper
NAIVE Our method with ✏0 = ✏ This paper
SCIP Direct solution of the MINLP using SCIP v8.0 Bestuzheva et al. (2023)
COUENNE Direct solution of the MINLP using Couenne v0.5.8 Belotti et al. (2009)
GUROBI Direct solution of the MINLP using Gurobi v12.0 Gurobi Optimization, LLC (2024)

Table 1: Five solvers for benchmarking purposes

Our method has been coded in Julia v1.10 using the JuMP 1.23 solver interface, and uses GUROBI
12.0 as general-purpose solver for the two variants of our method (CN24 and NAIVE). The five solvers
(our two plus COUENNE, GUROBI and SCIP) have been executed on an Intel(R) Xeon(R) Gold 6258R
CPU @ 2.70GHz with 128 GB of RAM. We limit, however, the maximum resource consumption to
5GB of RAM. While the machine is capable of running code in parallel, for reproducibility purposes
we limit the number of threads to one on all settings. In all cases we have set a time limit of 3,600
seconds before deeming a problem as unsolved. Please note that in SCIP, optimality tolerances are
defined di↵erently as for the other solvers. For given lower and upper bounds l, u of a problem, we
consider (and also GUROBI, and COUENNE) a relative gap defined as (u� l)/max{|l|, |u|}⇥ 100. SCIP,
on the other hand, considers the gap defined as (u � l)/min{|l|, |u|} ⇥ 100. Most of the time the
di↵erences will not be noticeable (a gap of say 1% in one definition may be mapped to a gap of say
0.99% with an alternative definition).

Our computational campaign comprises 5,980 di↵erent problem instances, considering the di↵erent
problem variants, and cost functions. For that reason, in the main text we report aggregate results,
and report detailed data in Appendix B. Note that in about 60 problems out of the 5,980 we observed
discrepancies in the results of the di↵erent methods, possibly due to floating-point arithmetic errors in
the di↵erent solvers. The tests for which discrepancies were observed are omitted from the analyses,
and are marked in red in Appendix B.

In our analysis we report the shifted geometric means of the computing times for each algorithm
and the number of problems approximated successfully within a tolerance of ✏ = 10�4. The shifted
geometric mean of a collection of values (vi)Ni=1 and a shift value of � � 0 is computed as

N

vuut
NY

i=1

(vi + �) � �. (11)

The shifted geometric mean has some nice properties that have made it the standard metric
for benchmarking optimization software: it is less sensitive to large outliers than the arithmetic
mean, and also less sensitive to small outliers than the geometric mean. We use a shift value of
� = 10, which is also the value used in Burlacu (2021) and in H. Mittelmann’s benchmarks https:
//plato.asu.edu/bench.html. For the purpose of computing the shifted geometric means, time
limits are given a value of four hours, or equivalently 14,400 seconds. This is four times the time limit
allowed.

5.3 Transportation problem

In the transportation problem (TP, Ford Jr and Fulkerson, 1956), we are given a set U of n origins,
and a set V of m destinations. With each origin u 2 U we associate an o↵er ou > 0 of a given
commodity, and with each destination v 2 V a demand dv > 0 of the same commodity and such

15

that
P

u2U ou =
P

v2V dv. For the sake of simplicity, we assume that the o↵ers and demands are all
integer-valued. For each pair (u, v) 2 U ⇥ V , we are given a cost function guv : R ! R such that
guv(x) represents the cost of transporting x units of flow from u to v. The objective is to select the
amounts (xuv)u2U,v2V to transport along the arcs (u, v) 2 U ⇥ V such that: 1) each origin u 2 U

sends exactly ou units of flow; 2) each destination v 2 V receives exactly dv units of flow; and 3) the
total cost z =

P
(u,v)2U⇥V guv(xuv) is minimized.

If the cost functions are all linear, the TP described above resorts to a classical linear TP, which
can be solved in polynomial time using a network flow algorithm (Kleinschmidt and Schannath, 1995).
In this article, we are interested in the scenario where the cost functions are separable but otherwise
might take arbitrary forms (for instance non-convex). The problem can be modeled as a non-linear
optimization problem using the notation already introduced as follows:

minimize z =
X

u2U,v2V

guv(xuv) (12)

subject to

X

v2V

xuv  ou u 2 U (13)

X

u2U

xuv � dv v 2 V (14)

xuv � 0 u 2 U, v 2 V. (15)

To assess the e↵ectiveness of our approach to approximate the nonlinear TP (NLTP), we have
generated a set of random instances, as follows. We consider squared problems with n = m 2
{5, 10, 15, 20} origins and destinations in an Euclidean space on a square of dimensions 100⇥ 100. We
consider nonlinear cost functions guv(xuv) = cuvfi(xuv/⇠uv) for each possible cost function fi found in
Section 5.1, where cuv is a nominal cost for using an arc (u, v) —computed as the Euclidean distance
between the points plus a random noise added from an uniform distribution in the interval [�3, 3]—
and where ⇠uv = min{ou, dv}.

Next, we compare CN24 against COUENNE, SCIP, GUROBI and NAIVE, and present aggregate compu-
tational results in Table 2. We report, for each solver and for each cost function, the total number
of problems solved (#S), the shifted geometric means of the computing times (CPU) and the shifted
geometric means of the gaps (GAP). The summary row Total serves at reporting the total number of
problems approximated to the desired tolerance.

Gurobi Couenne SCIP Naive CN24

Cost #I #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP

f1 40 4 8114.7 31.2 3 10816.6 50.8 9 5980.9 30.3 11 4852.8 27.4 19 1643.2 1.2

f2 40 28 389.9 0.4 0 14400.0 100.0 0 14400.0 100.0 10 6313.5 30.9 17 3301.9 1.8
f3 40 5 9023.6 12.2 0 14400.0 37.8 1 13570.5 47.1 11 6876.1 27.4 17 3307.3 0.0

f4 40 10 5105.9 17.2 0 14400.0 29.9 7 8474.2 24.9 12 6107.5 24.3 16 3185.9 0.9

f5 40 9 6131.3 18.8 0 14400.0 31.4 0 14400.0 51.7 7 10518.4 44.0 10 5380.0 19.0
f6 40 4 10272.6 47.3 0 14400.0 91.8 1 13872.0 89.0 0 14400.0 100.0 12 4618.0 1.8

f7 40 32 106.2 0.6 11 2543.0 23.1 30 263.4 1.0 0 14400.0 100.0 19 1459.5 2.5
f8 39 39 0.2 0.0 19 592.5 0.3 39 4.7 0.0 39 194.0 0.0 27 487.0 0.0

f9 40 31 137.1 0.7 10 2927.0 9.9 16 1208.2 8.0 0 14400.0 100.0 17 1794.7 3.5
f10 40 0 14400.0 90.1 0 14400.0 97.9 0 14400.0 99.6 19 3939.1 10.3 20 1485.9 0.9

Total 399 162 43 103 109 174

Table 2: Aggregate results for problem NLTP

The results show that our method is competitive against GUROBI, with both methods being able to
solve a comparable number of problems to proven optimality. Both methods, on the other hand, show
a significant edge over SCIP and COUENNE. We also observe that CN24 outperforms the NAIVE variant of
the method, allowing to solve about 50% more problems. We also observe that the proposed method

16

performs best when the objective is non-convex, as it does not exploit convexity in any specific way,
as opposed to the other methods that behave particularly well on the convex objectives f8.

5.4 Uncapacitated facility location

The uncapacitated facility location problem (UFLP, Cornuéjols and Thizy, 1982) deals with the prob-
lem of deciding the location of one or more facilities among an universe U of n total facilities, and to
assign m customers in a set V to the selected facilities. We associate an opening cost �u > 0 to each
facility u 2 U , and an assignment cost cuv > 0 to each assignment of a customer v to a facility u.
Each customer v 2 V has a demand of dv > 0 units. We seek to determine: 1) what facilities to open;
2) what fraction of the demand of a customer must be assigned to each open facility; 3) at minimum
total cost. The non-linearities in this problem may come from two sources:

Nonlinear warehousing costs (NLUFLP-W) obtained by replacing the opening cost �u of the
facilities by a nonlinear term gu(·) representing the warehousing cost associated with the service
of the demand fulfilled by facility u. The NLUFLP-W arises for instance in problems with
congestion (Harkness and ReVelle, 2003) or with economies/diseconomies of scale (Lu et al.,
2014).

Nonlinear assignment costs (NLUFLP-A) obtained by replacing each assignment cost cuv by
a nonlinear assignment function huv(·) such that huv(s) represents the cost associated with
servicing a fraction s 2 [0, 1] of the demand of customer v by facility u. Such nonlinear cost
function models the e↵ects of spatial interaction in facility location models (Holmberg, 1999).

Let us introduce a model that includes both settings at once. Let su be a continuous variable
representing the amount of demand serviced by facility u. For each possible assignment (u, v) of a
customer v to a facility u, let xuv be the fraction of the demand of v that is serviced by facility u.
Using the notation already introduced, the following model solves the UFLP while minimizing the
total nonlinear costs:

minimize z =
X

u2U

gu(su) +
X

u2U,v2V

huv(xuv) (16)

subject to

X

u2U

xuv = 1 v 2 V (17)

X

v2V

dvxuv � su = 0 u 2 U (18)

xuv � 0 u 2 U, v 2 V. (19)

Note that this model does not include binary variables for the opening of the facilities. Indeed,
we assume that the fixed costs, if any, can be included in the cost functions gu(su), for instance in
the form of a fixed-charge cost term like those appearing in the functions f1, f2 considered in our
computational study.

We consider the two possible scenarios for the source of the non-linearities separately: a first
scenario with nonlinear warehousing costs, but with linear assignment costs; and a second scenario
with nonlinear assignment costs, but with constant fixed costs. In both cases, we consider the ten
classes of nonlinear cost functions defined in Section 5.1. For a given class fi, we consider the nonlinear
warehousing cost gu(su) equal to �ufi(su/D), where D =

P
{dv : v 2 V }. The nonlinear assignment

cost, on the other hand, is computed as huv(xuv) = cuvfi(xuv). Note that when considering the
variant with nonlinear assignment costs only, we assume that gu(su) = �u if su > 0, 0 otherwise.

We consider three sets from the facility location literature:

17

• The ORLib dataset introduced by Beasley (1990). This benchmark dataset contains 40 problems
with a number of facilities and customers ranging between [16, 100] and [50, 1000]. The three
largest problems in this dataset (each comprising 100 potential facilities and 1,000 customer
nodes) proved to di�cult for all the methods. Hence, we restrict our analysis to the 37 smaller
instances, with |U | ranging in [16, 50] and |V | = 50.

• The Holmberg dataset introduced in Holmberg et al. (1999). It consists of 71 instances with
the number of facilities ranging between 10 and 30, and the number of customer nodes ranging
between 50 and 200.

• A set of randomly generated instances according to the descriptions provided in Günlük and
Linderoth (2010) (hereafter referred to as the Günlük dataset), with |U | ranging between 10 and
50 and such that |V | = 2|U |.

For the variant with nonlinear warehousing costs, the results reported in Table 3 indicate that our
method shows a slight edge over all the other methods. It is able to successfully approximate all but
two problems to proven optimality, out of 1559 in total, in usually much shorter computing times that
all the other methods. While GUROBI was often faster, it shows a lesser degree of robustness from the
results obtained for the cost functions f2, f7, and f9. It is remarkable that GUROBI, which only very
recently included support for nonconvex MINLPs, shows the best performance among all the other
solvers.

Gurobi Couenne SCIP Naive CN24

Cost #I #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP

f1 157 157 0.5 0.0 157 54.0 0.0 151 41.6 0.2 156 70.2 0.0 157 5.3 0.0

f2 143 103 126.7 1.7 98 592.9 2.1 60 1649.3 6.0 143 575.9 0.0 143 23.8 0.0

f3 157 157 0.6 0.0 99 338.5 0.2 157 6.7 0.0 157 218.2 0.0 157 15.3 0.0

f4 158 158 0.8 0.0 85 627.1 2.3 158 9.9 0.0 158 313.9 0.0 158 52.6 0.0

f5 158 158 4.1 0.0 91 541.2 2.4 155 33.2 0.1 157 876.1 0.0 158 55.1 0.0

f6 158 158 2.4 0.0 117 287.3 0.2 27 5113.4 22.5 50 4159.0 22.4 158 91.2 0.0

f7 158 109 348.8 1.4 25 6230.4 6.0 0 14400.0 58.5 32 9062.7 38.7 156 21.5 0.1

f8 157 157 0.2 0.0 157 11.7 0.0 157 25.6 0.0 157 37.8 0.0 157 3.0 0.0

f9 155 73 1156.4 3.3 10 11397.4 16.5 0 14400.0 48.3 1 14268.6 97.0 155 26.2 0.0

f10 158 158 1.7 0.0 158 37.5 0.0 116 229.6 1.2 158 150.5 0.0 158 14.9 0.0

Total 1559 1388 997 981 1169 1557

Table 3: Aggregate results for problem NLUFLP-W

For the variant with nonlinear assignment costs, the aggregate results reported in Table 4 indicate
that it is now GUROBI which shows a slight edge over all other solvers, with SCIP coming in a close
second place, and CN24 in third place to complete the podium. The NAIVE variant of our method,
which let us recall computes a single approximation of the cost functions to the desired tolerance,
shows the poorest performance among all methods.

Gurobi Couenne SCIP Naive CN24

Cost #I #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP

f1 158 158 3.7 0.0 11 10933.0 18.5 158 59.2 0.0 93 2920.4 5.7 158 604.0 0.0

f2 158 12 9446.0 2.4 0 14400.0 100.0 0 14400.0 100.0 0 14400.0 100.0 9 12146.8 45.8
f3 158 0 14400.0 51.7 0 14400.0 88.3 0 14400.0 60.7 0 14400.0 100.0 0 14400.0 21.7

f4 158 0 14400.0 59.7 0 14400.0 88.1 0 14400.0 64.4 0 14400.0 100.0 10 11793.4 25.0

f5 158 2 13743.9 40.2 0 14400.0 87.5 0 14400.0 58.7 0 14400.0 100.0 3 13701.6 80.4
f6 158 0 14400.0 96.2 0 14400.0 99.8 0 14400.0 97.1 4 13801.3 88.9 11 11862.5 23.1

f7 158 158 0.4 0.0 158 68.3 0.0 158 7.0 0.0 0 14400.0 100.0 149 355.2 0.0
f8 155 146 45.2 0.1 0 14400.0 63.4 140 161.3 0.3 6 13365.2 83.5 14 10703.7 5.1
f9 158 158 1.2 0.0 122 711.9 1.9 156 27.5 0.0 0 14400.0 100.0 142 567.8 0.2
f10 158 0 14400.0 88.8 0 14400.0 97.9 0 14400.0 94.8 0 14400.0 100.0 10 11649.6 3.4

Total 1577 634 291 612 103 506

Table 4: Aggregate results for problem NLUFLP-A

18

5.5 Multi-commodity flow

The multicommodity flow problem (MCFP, Assad, 1978) deals with the dispatching of multiple dis-
tinguishable commodities throughout a network. We are given a set of nodes N , a set of arcs A and
a set of commodities P . Each node i 2 N has a maximal capacity Qi, and a demand of commodity
p denoted D

p
i . Each arc (i, j) 2 A has a capacity Uij for the maximum amount of flow that can

pass through it. With each commodity p 2 P we associate a quantity to be shipped W
p and a unit

routing cost function over arc (i, j) denoted R
p
ij(·). In problems with congestion, we typically observe

a nonlinear cost gi(vi) incurred on each node i 2 N for the amount of flow traversing the node, where
vi denotes that flow.

The problem can be posed as a NLP, as follows. For every arc (i, j) 2 A and commodity p 2 P

we let xp
ij be the amount of flow of commodity p traversing the arc. For every node i 2 N we let vi

be the amount of flow entering node i. We consider the following NLP:

minimize z =
X

(i,j)2A

X

p2P

R
p
ij(x

p
ij) +

X

i2N

gi(vi) (20)

subject to
X

j2N+
i

x
p
ij �

X

j2N�
i

x
p
ji = D

p
i , i 2 N, p 2 P (21)

X

p2P

x
p
ij  Uij , (i, j) 2 A (22)

X

j2N :(j,i)2A

X

p2P

x
p
ji � vi = 0, i 2 N (23)

0  x
p
ij W

p
, (i, j) 2 A, p 2 P (24)

0  vi  Qi, i 2 N. (25)

We consider two variants of this problem for our computational analysis, described as follows:

Nonlinear routing costs, no congestion at the nodes (NLMCFP-A). This variant corresponds
to ignoring the terms gi(vi), i 2 N in the objective. Note that in this case, it is possible to get
rid of the variables vi in the model.

Nonlinear congestion costs, no routing costs (NLMCFP-N). This variant corresponds to ig-
noring the terms Rp

ij(x
p
ij) in the objective.

Our experimental campaign considers some classical datasets from the literature, namely the so-
called C and C+ instances for the multicommodity network design problem (Crainic et al., 2001).
These datasets comprise a total of 43 problem instances and contain between 10 and 30 nodes and
between 10 and 200 commodities. To construct the nonlinear cost functions gi(·), we consider the
fixed costs �i defined in the instance files, and then, for every cost function fl, l = 1 . . . 10 we do
gi(vi) = �ifl(vi/Qi) defined in the interval [0, Qi] for every node. For the routing cost functions
R

p
ij we use the nominal costs C

p
ij and let R

p
ij(x

p
ij) = C

p
ijfl(x

p
ij/W

p), for each nonlinear function
fl, l = 1 . . . , 10 considered in our study.

For the first variant, the results reported in Table 5 show that, it is now the NAIVE method that
provides the best overall performance, with GUROBI and SCIP coming in a close second and third place.
Our method, along with COUENNE, provide the weakest performances.

For the second variant, the results reported in Table 6 show that it is now our method which
performs best, solving significantly more problems than all its competitors. For the unsolved problems,
moreover, the average gaps reported show a robust performance, with average gaps never exceeding
1.2%.

19

Gurobi Couenne SCIP Naive CN24

Cost #I #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP

f1 42 0 14400.0 54.5 0 14400.0 95.4 0 14400.0 63.7 1 13824.5 89.5 4 10918.2 37.9

f2 42 1 13131.9 11.2 0 14400.0 100.0 0 14400.0 93.1 0 14400.0 100.0 1 13766.7 38.9
f3 43 0 14400.0 51.7 0 14400.0 88.0 0 14400.0 39.7 11 6351.3 19.8 0 14400.0 3.4

f4 43 0 14400.0 66.4 0 14400.0 94.6 0 14400.0 59.9 3 12685.4 72.3 0 13943.3 23.8

f5 39 0 14400.0 89.1 0 14400.0 99.3 0 14400.0 76.0 0 14400.0 100.0 0 14400.0 71.4

f6 43 0 14400.0 79.2 0 14400.0 99.4 0 14400.0 84.1 0 14400.0 100.0 0 14400.0 35.1

f7 42 1 13620.9 25.5 0 14400.0 82.8 0 14400.0 28.2 0 14400.0 100.0 0 14400.0 54.8
f8 29 29 5.5 0.0 3 10289.6 61.1 29 251.3 0.0 20 978.0 0.8 2 11743.9 2.7
f9 42 1 13408.1 34.4 0 14400.0 97.8 0 14400.0 41.0 0 14400.0 100.0 1 13663.1 50.5
f10 43 0 14400.0 98.3 0 14400.0 99.8 0 14400.0 97.9 0 14400.0 100.0 3 12060.3 7.1

Total 408 32 3 29 35 11

Table 5: Aggregate results for problem NLMCFP-A

Gurobi Couenne SCIP Naive CN24

Cost #I #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP

f1 43 1 13338.9 2.6 0 14400.0 84.8 3 12296.8 4.4 37 344.6 0.9 36 475.9 0.4

f2 43 9 6427.2 0.3 0 14400.0 100.0 0 14400.0 90.9 36 1410.5 1.1 28 2474.2 0.7
f3 43 12 4394.1 6.9 0 14400.0 72.7 13 5054.7 1.5 38 290.7 0.5 29 1482.1 0.1

f4 43 10 5621.2 10.0 0 14400.0 93.2 1 13550.3 38.3 35 1121.2 1.4 26 2933.8 0.9

f5 43 9 5631.4 9.6 0 14400.0 82.0 11 6809.3 12.1 37 736.3 0.9 32 914.0 0.4

f6 43 3 12641.4 11.1 0 14400.0 93.4 1 13709.2 33.2 36 813.2 1.1 26 3238.8 1.2
f7 43 34 330.1 0.5 0 14400.0 62.2 19 2341.6 3.6 0 14400.0 100.0 16 3534.9 1.1
f8 42 42 4.0 0.0 8 7917.7 30.9 42 43.5 0.0 41 47.8 0.0 37 357.6 0.0
f9 43 34 333.2 0.4 0 14400.0 72.6 18 3924.6 4.2 0 14400.0 100.0 19 2942.2 0.6
f10 43 0 14400.0 22.7 0 14400.0 97.5 0 14400.0 27.3 0 14400.0 100.0 28 1045.6 0.1

Total 429 154 8 108 260 277

Table 6: Aggregate results for problem NLMCFP-N

5.6 Multi-commodity network design

The nonlinear multicommodity network design problem (NLMCND, Paraskevopoulos et al., 2016) is a
generalization of the NLMCFP where a design variable yij for every arc (i, j) 2 A governs the decision
of whether the arc can be used or not, for instance with the purpose of imposing fixed-charge costs
�ij , (i, j) 2 A. Using the same notation as before, in addition to the design variables yij , (i, j) 2 A,
the NLMCNDP can be posed as the following MINLP:

minimize z =
X

(i,j)2A

X

p2P

R
p
ij(x

p
ij) +

X

(i,j)2A

�ijyij +
X

i2N

gi(vi) (26)

subject to
X

j2N+
i

x
p
ij �

X

j2N�
i

x
p
ji = D

p
i , i 2 N, p 2 P (27)

x
p
ij W

p
yij , (i, j) 2 A, p 2 P (28)

X

p2P

x
p
ij  Uijyij , (i, j) 2 A (29)

X

j2N :(j,i)2A

X

p2P

x
p
ji � vi = 0, i 2 N (30)

x
p
ij � 0, (i, j) 2 A, p 2 P (31)

0  vi  Qi, i 2 N. (32)

yij 2 {0, 1}, (i, j) 2 A. (33)

We again consider two variants of this problem, described as follows:

Nonlinear routing costs, no congestion at the nodes (NLMCNDP-A). This is achieved sim-
ply by ignoring the terms gi(vi) in the objective.

20

Nonlinear congestion at the nodes, no routing costs (NLMCNDP-N). This corresponds to
ignoring the terms Rp

ij(x
p
ij) in the objective.

We consider the same 430 problem instances as for the NLMCFP, but now with the explicit
consideration of the design variables yij and fixed charge costs �ij for every arc (i, j) 2 A. The
nonlinear congestion costs gi(·) and the nonlinear routing costs Rp

ij(·) are computed as in Section 5.5.
The NLMCNDP is a more challenging problem than the NLMCFP due to the consideration of the
fixed-charge costs.

From the results reported in Table 7 for the NLMCNDP-A we observe that our method shows
a superior performance compared to all the others methods, being able to solve thrice as many
problems when compared to GUROBI, the closest competitor. SCIP and especially COUENNE exhibit
much weaker performances, being able to solve a small fraction of the entire testbed. Despite the
superior performance of te proposed method when compared to all others, we still observe that the
problem remains challenging, with a 95% of the testbed remaining out of reach for all solvers.

Gurobi Couenne SCIP Naive CN24

Cost #I #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP

f1 43 0 14400.0 54.7 0 14400.0 91.8 0 14400.0 64.5 1 13781.6 89.7 4 11271.9 43.0

f2 41 1 12763.4 20.0 0 14400.0 100.0 0 14400.0 98.8 0 14400.0 100.0 2 13039.2 49.1
f3 42 0 14400.0 58.2 0 14400.0 89.1 0 14400.0 48.4 0 14400.0 100.0 2 12758.6 27.5

f4 43 0 14400.0 70.4 0 14400.0 94.8 0 14400.0 66.9 0 14400.0 100.0 0 13941.9 39.4

f5 43 0 14400.0 58.7 0 14400.0 93.2 0 14400.0 56.8 0 14400.0 100.0 3 12045.8 42.5

f6 43 0 14400.0 62.3 0 14400.0 97.4 0 14400.0 79.3 0 14400.0 100.0 2 12290.7 39.7

f7 41 1 13236.4 24.1 0 14400.0 91.8 0 14400.0 47.3 0 14400.0 100.0 1 12449.4 69.8
f8 39 4 7488.5 26.5 2 13258.3 71.0 4 7657.8 20.9 2 11283.4 70.3 3 11144.2 39.2
f9 38 1 13213.7 22.3 1 11905.1 88.4 0 14400.0 45.4 0 14400.0 100.0 0 12054.6 58.3
f10 43 0 14400.0 76.8 0 14400.0 94.8 0 14400.0 82.4 0 14400.0 100.0 5 10634.6 44.2

Total 416 7 3 4 3 22

Table 7: Aggregate results for problem NLMCNDP-A

The results reported in Table 8 for the NLMCNDP-N show that our method shows a similar
performance to GUROBI, with neither of them dominating the other. Although this problem seems to
be less di�cult than the MCNDNLA, it remains out of reach for about a 90% of the problems tested.

Gurobi Couenne SCIP Naive CN24

Cost #I #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP

f1 43 1 13347.2 27.7 0 14400.0 91.4 0 14400.0 45.5 6 10162.9 52.0 4 9530.3 30.9
f2 43 7 5836.2 13.1 0 14400.0 93.1 0 14400.0 74.9 6 10486.3 52.0 5 9022.7 32.7
f3 42 3 10596.9 28.6 0 14400.0 88.1 2 11482.8 28.6 4 11204.3 64.1 3 11052.3 27.6

f4 43 2 12075.7 31.5 0 14400.0 85.3 4 10742.9 31.2 2 12759.1 80.5 4 10821.1 43.0
f5 36 2 9831.9 41.9 2 12979.3 77.2 2 10785.7 44.0 2 12605.2 77.2 2 10149.8 70.0
f6 43 2 12677.9 20.2 0 14400.0 86.6 2 13419.9 35.4 4 11283.1 64.7 4 9360.6 30.8
f7 43 6 8126.8 11.2 1 13942.4 81.7 4 10111.0 21.9 0 14400.0 100.0 4 10334.1 41.9
f8 43 14 3067.5 11.3 2 12915.1 77.0 9 5715.8 17.1 11 6125.3 30.0 10 6380.9 22.1
f9 43 6 7343.2 9.7 0 14400.0 87.2 2 12249.7 22.2 0 14400.0 100.0 5 9452.3 29.1
f10 43 0 14400.0 36.9 0 14400.0 91.9 0 14400.0 51.5 0 14400.0 100.0 3 11088.7 48.3

Total 422 43 5 25 35 44

Table 8: Aggregate results for problem NLMCNDP-N

5.7 Continuous knapsack

In the nonlinear continuous knapsack problem (NLCKP) we are given a collection of N objects and
a knapsack of capacity K. Each object u = 1 . . . N has a weight function wu(x) and a value function
gu(x) for x 2 [0, 1], representing the weight and reward associated to packing a fraction x of object
u in the knapsack. The value x = 1 is therefore interpreted as packing the object entirely. To model
this problem, we consider continuous variables xu 2 [0, 1] for every object u. The problem can be put

21

as the following NLP:

maximize z =
NX

u=1

gu(xu) (34)

subject to

NX

u=1

wu(xu)  K (35)

x 2 [0, 1]N . (36)

In this paper, we consider the special case where the functions wu are linear, meaning that the
function wu(xu) can be written as !uxu for a certain scalar !u.

Unlike the previous applications, the NLCKP involves maximizing a nonnegative reward function.
Two modeling options arise when trying to accommodate the NLCKP to the proposed framework:
1) modify the objective to minimize �z = �

PN
u=1 gu(xu); or 2) consider upper bounding linear

approximation functions to build the corridors, as opposed to lower bounding approximations. Both
approaches are, however, equivalent. In our computational implementation, we have chosen the first
modeling approach.

To assess the performance of our method, we have generated 70 problem instances following the
recipe described in Trindade et al. (2023) for the same problem. We consider problems with N 2
{10, 20, 50, 100, 200, 500, 1000}. For each N , we generate 10 random instances, hence the total of 70.
Please note that in that paper, the authors also consider nonlinear cost functions similar in form to
f10 but with problem-specific coe�cients generated at random. Let us denote these cost functions
hu, u = 1 . . . N . In our tests we omit the cost functions of the type f10 in favor of the functions of
the type {hu : u = 1 . . . N}, that for nomenclature purposes we denote f11. For all the cost functions
except for f11, the reward functions are defined as gu(xu) = vufi(xu), where vu = hu(1).

Gurobi Couenne SCIP Naive CN24

Cost #I #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP

f1 70 18 3970.0 3.0 10 6423.6 10.6 19 3717.4 3.0 59 591.4 1.1 60 464.4 0.5

f2 70 49 113.6 2.5 11 5807.5 21.4 13 5317.3 19.2 40 2952.7 6.2 70 97.7 0.0

f3 70 22 1862.2 0.4 0 14400.0 22.4 20 2809.4 1.3 60 518.2 0.9 70 22.3 0.0

f4 70 30 878.7 0.9 9 6520.8 30.4 20 2944.6 8.7 53 912.6 2.1 70 22.7 0.0

f5 70 20 2269.8 0.5 0 14400.0 32.9 4 10985.4 10.8 46 1713.4 3.9 70 39.4 0.0

f6 70 20 2393.2 26.0 6 8501.8 14.9 14 4001.6 3.4 50 1158.3 2.7 57 855.3 0.9

f7 70 33 644.3 2.1 38 457.9 0.0 70 3.6 0.0 0 14400.0 100.0 70 13.3 0.0

f8 70 70 1.0 0.0 69 39.8 0.1 70 6.2 0.0 49 756.7 3.0 70 14.0 0.0

f9 70 26 1153.5 3.9 44 308.9 0.0 49 133.0 0.0 0 14400.0 100.0 70 12.0 0.0

f11 68 11 5796.5 6.8 5 8906.8 25.9 18 2766.4 6.3 0 14400.0 100.0 68 285.6 0.0

Total 698 299 192 297 357 675

Table 9: Aggregate results for problem NLCKP

From the results reported in Table 9 we observe a neat superiority of the proposed method, being
able to solve more than twice as many problems as its closest competitors (NAIVE, GUROBI and SCIP,
in that order), in computing times that are significantly lower (often by orders of magnitude) than
for all the others.

6 Additional computational experiments

In this section we discuss two additional experiments. First, we test the scalability of our method for
decreasing values of ✏. Second, we analyze the performance of our method with respect to the types
of the cost functions involved.

22

6.1 Scalability of the method to decreasing values of ✏

We now assess the scalability of our method to decreasing values of ✏ (in %), starting from an initial
tolerance of ✏0 = 10%. We analyze the performance of our method by measuring two indicators: the
computing times required to converge within the desired tolerance and the number of iterations of
the main loop to do so. The profiles curves depicted below are restricted to the problems successfully
approximated to the desired tolerance, this is by omitting time outs.

In Figure 5 we plot profile graphs for two values of ✏ on the entirety of our testbed comprising
several thousand problems. A point (x, y) in one of the profile curves is interpreted as the method
being able to approximate Problem (1) within the desired tolerance for x problem instances in y

seconds of computing time or less. Please note that the plot uses a semilogarithmic scale.

Figure 5: Profile graphs of the proposed methods for varying values of ✏

This plot reveals an interesting feature of our method. It appears that transitioning from a
rough tolerance to a much finer one (as for instance from 10�1% to 10�4%) requires only a slightly
higher computational e↵ort. If this trend can be confirmed by future tests, it would mean that
even much finer approximations could potentially be achieved without a much higher computational
e↵ort. Unfortunately, at this time our method cannot safely scale to finer tolerances as some of the
subroutines (remarkably LinA.jl and GUROBI) start to fail and to show numerical instabilities due to
floating point arithmetic errors.

Let us now look at the profile graph of the number of iterations of the main loop taken by our
method to reach convergence to the desired tolerance, depicted in Figure 6. A point (x, y) in one
of the profile curves is now interpreted as our method being able to approximate x problems to the
desired tolerance within y iterations of the main loop of our method.

We observe an exponential growth of all the curves toward the end (i.e. for the harder problems),
showing that an exponential trend is independent of the target tolerance. When restricted to the
tightest tolerance of ✏ = 10�4 we also observe that the median occurs at 16 iterations (for about
1,800 problems approximated to the desired precision), with a few problems requiring more than 50
iterations and up to 124. If we compare both curves, we also observe that using a rougher precision
of ✏ = 10�1 leads to a substantially lower number of iterations when compared to using the finer
precision of ✏ = 10�4.

23

Figure 6: Number of iterations to reach convergence for varying values of ✏

6.2 Performance on di↵erent cost functions

We now perform an analysis to understand how di↵erent attributes of the cost functions influence
the performance of our method. We consider, aggregate in subgroups, cost functions that are either
fixed-charge (f1, f2, f6), pure concave (f7, f9), pure convex (f8), monotonic with changes in concavity
(f3, f4, f6, f10), or non-monotonic (f5). Since these attributes may have di↵erent impacts depending
on the sense of the optimization (as for instance in minimizing vs. maximizing a convex function), we
restrict this analysis to minimization objectives, this is we omit from our analysis the NLCKP.

6.2.1 Fixed-charge functions

We consider a total of 1,564 problem instances for the three cost functions f1, f2, and f6 with fixed-
charge. The results in Table 10 show that our method solves the largest number of problems.

Gurobi SCIP Couenne Naive CN24

Cost #I #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP

f1 526 321 184.7 2.6 321 488.5 3.2 171 2567.2 13.3 306 1235.3 5.9 386 421.2 1.6

f2 510 161 2191.0 3.0 60 7850.5 45.0 105 5907.8 36.7 195 4397.5 16.3 206 1816.8 8.3
f6 528 167 1653.2 15.6 31 10432.7 51.3 151 4501.3 25.3 94 7612.7 43.4 217 2379.2 6.2

Total 1564 649 412 427 595 809

Table 10: Aggregate results for cost functions of the type fixed-charge

6.2.2 Pure concave functions

We again consider a total of 1,047 problem instances for the two cost functions f7, f9. The results in
Table 11 show that our method solves more problems than GUROBI, although usually in about twice
as much computing time.

24

Gurobi SCIP Couenne Naive CN24

Cost #I #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP

f7 525 341 248.5 1.9 211 1162.4 8.4 203 2028.5 8.4 32 12527.0 75.2 346 533.7 2.1
f9 522 307 354.0 2.4 192 1735.2 9.3 147 4669.9 15.0 4 14226.1 96.5 344 617.8 2.0

Total 1047 648 403 350 36 690

Table 11: Aggregate results for cost functions of the type concave

6.2.3 Pure convex functions

We now consider a total of 506 problem instances for the cost function f8. The results in Table 12
show that our method is overall dominated by GUROBI which is faster and solves significantly more
problems. This also suggests that our method does not fully exploit convexities, and that further
research should focus on better handling convexities.

Gurobi SCIP Couenne Naive CN24

Cost #I #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP

f8 506 433 38.6 0.6 422 136.8 0.7 192 1370.1 11.7 286 836.9 6.5 251 758.2 2.3

Table 12: Aggregate results for cost functions of the type convex

6.2.4 Monotonic functions with changes in concavity

We now report our analysis for cost functions that are monotonic and that present changes in concavity,
this is functions of the type f3, f4, f6, and f10. Our analysis considers a total of 2,110 problem
instances. The results reported in Table 13 show that our solver is the one that performs best in
terms of the number of problems solved, and of the final gaps.

Gurobi SCIP Couenne Naive CN24

Cost #I #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP

f3 526 177 1418.5 10.9 173 1710.7 11.1 99 4734.3 21.6 227 2615.8 12.8 208 1552.0 4.0

f4 528 180 1401.2 12.7 170 1865.2 14.8 85 5657.0 30.1 210 3445.3 15.1 221 2021.1 6.0

f6 528 167 1653.2 15.6 31 10432.7 51.3 151 4501.3 25.3 94 7612.7 43.4 217 2379.2 6.2

f10 528 158 1702.8 18.5 116 4219.3 25.4 158 2595.7 23.8 177 3391.1 20.5 227 1282.2 2.7

Total 2110 682 490 493 708 873

Table 13: Aggregate results for cost functions of the type monotonic

6.2.5 Non-monotonic functions

We now consider a total of 517 problem instances for the cost function f5. The results in Table 14
show that our method solves more problems than all the other methods, although GUROBI proves
slightly faster.

Gurobi SCIP Couenne Naive CN24

Cost #I #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP #S CPU GAP

f5 517 180 1431.1 11.3 168 2237.5 14.3 93 5266.6 29.3 203 4635.2 15.5 209 1922.4 11.7

Table 14: Aggregate results for cost functions of the type non-monotonic

7 Some limitations of our method

Our computational campaign has revealed some limitations of our method that we now discuss.
First, the number of separable nonlinear functions seems to play a key role in the scalability of

our method. We observe that on problems with a very large number of separable nonlinear functions

25

like the NLUFLP-A, the NLTP, the NLMCFP-A, or the NLMCNDP-A —all of which including a
quadratic number of nonlinear functions—, the performance of our method is often inferior than on
those with a constant or linear number of nonlinear functions.

Second, we have noticed that symmetries play a nocive e↵ect on the performance of our method.
Because our method does not address symmetries, in the case where multiple optimal solutions exist in
the domains of the nonlinear functions, our solver will oscillate by refining these zones in an alternate
way. Hence, it may end up refining a significant portion of the entire domain before reaching the
desired convergence.

Third, the results in Section 6.2 reveal that our method does not exploit convexities fully, being
dominated by the other three solvers considered in our campaign when the functions fi are convex
(in a minimization setting).

8 Concluding remarks

We have introduced an iterative method with optimality guarantees for a general class of separable
mixed-integer nonlinear problems. Our method iterates between the solution of a mixed-integer linear
problem to compute primal and dual bounds, and a objective-driven repair procedure to tighten the
bounds if deemed necessary. Our method does not rely on NLP nor MINLP oracles to compute those
bounds —at the cost of being restricted to handle nonlinearities in the objective only—, hence relying
exclusively on the e�ciency to model and solve the resulting MILPs. We have proved that our method
converges in a finite number of iterations under some very mild assumptions. We have assessed the
e↵ectiveness of our method on five optimization problems relevant in practice: the transportation
problem, the uncapacitated facility location problem, the multicommodity flow problem, the multi-
commodity network design problem, and the continuous knapsack problem. Our results show that
our method is e�cient at handling these problems, often outperforming state-of-the-art solvers.

Future research shall focus on mitigating the nocive e↵ects of symmetries as discussed in Section
7. Also, extending our framework to handle objectives that include functions of two or more variables
that are not linearly separable in univariate functions would provide a significant contribution to
the scientific literature. In addition, we believe that there is potential for applying some of the
techniques introduced in this manuscript to nonlinear constraints, to make the method more generally
applicable. The challenge is to maintain the guarantees of optimality, convergence and e�ciency, while
the polyhedral domain is modified at each iteration. Finally, we believe that the proposed method
could benefit from specialized routines aiming at exploiting convexities.

Acknowledgments

We thank the Associate Editor and two anonymous reviewers for their constructive feedback that
contributed in improving our presentation. C. Contardo thanks the Natural Sciences and Engineering
Research Council (NSERC) of Canada for its financial support, under Grant no 2020-06311. S. U.
Ngueveu thanks the FMJH Program PGMO for the financial support also provided by EDF-Thales-
Orange.

References

A. A. Assad. Multicommodity network flows—a survey. Networks, 8(1):37–91, 1978.

R. E. Bank, A. H. Sherman, and A. Weiser. Some refinement algorithms and data structures for
regular local mesh refinement. Scientific Computing, Applications of Mathematics and Computing

to the Physical Sciences, 1:3–17, 1983.

26

J. E. Beasley. Or-library: distributing test problems by electronic mail. Journal of the Operational

Research Society, 41(11):1069–1072, 1990.

P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds tightening techniques
for non-convex MINLP. Optimization Methods and Software, 24(4–5):597–634, 2009.

K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doornmalen, L. Eifler,
O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Halbig, A. Hoen, C. Hojny,
R. van der Hulst, T. Koch, M. Lübbecke, S. J. Maher, F. Matter, E. Mühmer, B. Müller, M. E.
Pfetsch, D. Rehfeldt, S. Schlein, F. Schlösser, F. Serrano, Y. Shinano, B. Sofranac, M. Turner,
S. Vigerske, F. Wegscheider, P. Wellner, D. Weninger, and J. Witzig. Enabling research through
the SCIP Optimization Suite 8.0. ACM Trans. Math. Softw., 49(2), jun 2023. ISSN 0098-3500. doi:
10.1145/3585516. URL https://doi.org/10.1145/3585516.

J. Bey. Simplicial grid refinement: On freudenthal’s algorithm and the optimal number of congruence
classes. Numerische Mathematik, 85(1):1–29, 2000.

N. Boland, M. Hewitt, L. Marshall, and M. Savelsbergh. The continuous-time service network design
problem. Operations Research, 65(5):1303–1321, 2017. doi: 10.1287/opre.2017.1624. URL https:

//doi.org/10.1287/opre.2017.1624.

N. Boland, M. Hewitt, L. Marshall, and M. Savelsbergh. The price of discretizing time: a study in
service network design. EURO Journal on Transportation and Logistics, 8(2):195–216, 2019. doi:
10.1007/s13676-018-0119-x. URL https://doi.org/10.1007/s13676-018-0119-x.

R. Burlacu. On refinement strategies for solving MINLPs by piecewise linear relaxations: a generalized
red refinement. Optimization Letters, 2021. doi: 10.1007/s11590-021-01740-1. URL https://doi.

org/10.1007/s11590-021-01740-1.

R. Burlacu, B. Geißler, and L. Schewe. Solving mixed-integer nonlinear programmes using adaptively
refined mixed-integer linear programmes. Optimization Methods and Software, 35(1):37–64, 2020.
doi: 10.1080/10556788.2018.1556661. URL https://doi.org/10.1080/10556788.2018.1556661.

J. Codsi, B. Gendron, and S. U. Ngueveu. Lina: A faster approach to piecewise linear approximations
using corridors and it’s application to mixed integer optimization. Technical report, LAAS-ROC,
2021. URL https://hal.archives-ouvertes.fr/hal-03336003.

G. Cornuéjols and J.-M. Thizy. Some facets of the simple plant location polytope. Mathematical

programming, 23(1):50–74, 1982.

T. G. Crainic, A. Frangioni, and B. Gendron. Bundle-based relaxation methods for multicommodity
capacitated fixed charge network design. Discrete Applied Mathematics, 112(1-3):73–99, 2001.

C. D’Ambrosio, J. Lee, and A. Wächter. A global-optimization algorithm for mixed-integer nonlinear
programs having separable non-convexity. In European Symposium on Algorithms, pages 107–118.
Springer, 2009.

C. D’Ambrosio, J. Lee, and A. Wächter. An algorithmic framework for MINLP with separable non-
convexity. In Mixed Integer Nonlinear Programming, pages 315–347. Springer, 2012.

C. D’Ambrosio, A. Frangioni, and C. Gentile. Strengthening the sequential convex MINLP technique
by perspective reformulations. Optimization Letters, 13(4):673–684, 2019.

J. E. Ertel and E. B. Fowlkes. Some algorithms for linear spline and piecewise multiple linear regression.
Journal of the American Statistical Association, 71(355):640–648, 1976.

27

L. R. Ford Jr and D. R. Fulkerson. Solving the transportation problem. Management Science, 3(1):
24–32, 1956.

H. Freudenthal. Simplizialzerlegungen von beschrankter flachheit. Annals of Mathematics, 43(3):
580–582, 1942. ISSN 0003486X. URL http://www.jstor.org/stable/1968813.

B. Geißler, A. Martin, A. Morsi, and L. Schewe. Using piecewise linear functions for solving MINLPs.
In J. Lee and S. Ley↵er, editors, Mixed Integer Nonlinear Programming, pages 287–314, New York,
NY, 2012. Springer New York. ISBN 978-1-4614-1927-3.

O. Günlük and J. Linderoth. Perspective reformulations of mixed integer nonlinear programs with
indicator variables. Mathematical programming, 124:183–205, 2010.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.gurobi.

com.

J. Harkness and C. ReVelle. Facility location with increasing production costs. European Jour-

nal of Operational Research, 145(1):1–13, 2003. ISSN 0377-2217. doi: https://doi.org/10.
1016/S0377-2217(02)00176-5. URL https://www.sciencedirect.com/science/article/pii/

S0377221702001765.

K. Holmberg. Exact solution methods for uncapacitated location problems with convex transportation
costs. European Journal of Operational Research, 114(1):127–140, 1999. ISSN 0377-2217.

K. Holmberg, M. Rönnqvist, and D. Yuan. An exact algorithm for the capacitated facility location
problems with single sourcing. European Journal of Operational Research, 113(3):544–559, 1999.

J. Huchette and J. P. Vielma. Nonconvex piecewise linear functions: Advanced formulations and
simple modeling tools, 2019.

F. Hwang and Y. Huang. An e↵ective logarithmic formulation for piecewise linearization requiring no
inequality constraint. Computational Optimization and Applications, 79:601 – 631, 2021.

IBM. CPLEX Optimization Studio 20.1, 2020.

P. Kleinschmidt and H. Schannath. A strongly polynomial algorithm for the transportation problem.
Mathematical Programming, 68(1-3):1–13, 1995.

D. Lu, F. Gzara, and S. Elhedhli. Facility location with economies and diseconomies of scale: models
and column generation heuristics. IIE Transactions, 46(6):585–600, 2014. doi: 10.1080/0740817X.
2013.860508. URL https://doi.org/10.1080/0740817X.2013.860508.

L. Marshall, N. Boland, M. Savelsbergh, and M. Hewitt. Interval-based dynamic discretization dis-
covery for solving the continuous-time service network design problem. Transportation science, 55
(1):29–51, 2021.

R. Martinelli, D. Pecin, and M. Poggi. E�cient elementary and restricted non-elementary route
pricing. European Journal of Operational Research, 239(1):102–111, 2014.

H. Nagarajan, M. Lu, E. Yamangil, and R. Bent. Tightening McCormick relaxations for nonlinear pro-
grams via dynamic multivariate partitioning. In International Conference on Principles and Practice

of Constraint Programming, pages 369–387. Springer, 2016. doi: 10.1007/978-3-319-44953-1\ 24.

H. Nagarajan, M. Lu, S. Wang, R. Bent, and K. Sundar. An adaptive, multivariate partitioning
algorithm for global optimization of nonconvex programs. Journal of Global Optimization, 2019.
ISSN 1573-2916. doi: 10.1007/s10898-018-00734-1.

28

S. U. Ngueveu. Piecewise linear bounding of univariate nonlinear functions and resulting mixed integer
linear programming-based solution methods. Euopean Journal of Operational Research, 275:1058–
1071, 2019.

J. O’Rourke. An on-line algorithm for fitting straight lines between data ranges. Communications of

the ACM, 24(9):574–578, 1981.

D. C. Paraskevopoulos, S. Gürel, and T. Bektaş. The congested multicommodity network design
problem. Transportation Research Part E: Logistics and Transportation Review, 85:166–187, 2016.

S. Rebennack and J. Kallrath. Continuous piecewise linear delta-approximations for univariate func-
tions: Computing minimal breakpoint systems. Journal of Optimization Theory and Applications,
167(2):617–643, 2015.

S. Rebennack and V. Krasko. Piecewise linear function fitting via mixed-integer linear programming.
INFORMS Journal on Computing, to appear, 2019.

G. Righini and M. Salani. New dynamic programming algorithms for the resource constrained ele-
mentary shortest path problem. Networks: An International Journal, 51(3):155–170, 2008.

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an operator splitting solver
for quadratic programs. Mathematical Programming Computation, 12(4):637–672, 2020. doi: 10.
1007/s12532-020-00179-2. URL https://doi.org/10.1007/s12532-020-00179-2.

I. Tomek. Piecewise-linear approximation with a bound on absolute error. Computers and Biomedical

Research, 7(1):64–70, 1974a.

I. Tomek. Two algorithms for piecewise-linear continuous approximation of functions of one variable.
IEEE Transactions on Computers, 100(4):445–448, 1974b.

R. S. Trindade, C. d’Ambrosio, A. Frangioni, and C. Gentile. Comparing perspective reformulations
for piecewise-convex optimization. Operations Research Letters, 51(6):702–708, 2023.

J. P. Vielma and G. L. Nemhauser. Modeling disjunctive constraints with a logarithmic number of
binary variables and constraints. Mathematical Programming, 128(1):49–72, 2011.

J. P. Vielma, S. Ahmed, and G. Nemhauser. Mixed-integer models for nonseparable piecewise-linear
optimization: unifying framework and extensions. Operations Research, 58(2):303–315, 2010.

A Relative performance against Alpine.jl

In this appendix we perform a comparative analysis of the di↵erent methods considered in our main
computational campaign against the iterative method of Nagarajan et al. (2019) and its open-source
implementation for the Julia language named Alpine.jl. We detail these results because Nagarajan
et al. also apply an adaptive partitioning and decompose the domain into non-uniform subdomains.
This comparison illustrates to which extent the choices made for our method are appropriate for
solving problem (1).

Note that, given that both methods are natively implemented in Julia, the comparisons are not
influenced by external attributes such as the choice of the computing architecture, programming
language, operating system, etc. Instead, it is safe to assume that any significant di↵erence between
the methods reflects their relative algorithmic performance for the problems tested. Also, please note
that currently Alpine.jl can only handle polynomial expressions in the objectives or constraints,
and as such we restrict or analysis to the objectives f2, f8 as described in Section 5.1. The tests have

29

been executed on the same machine and architecture as for our previous tests, with a time limit of
one hour per run. The di↵erences in performance as you will see below are so remarkable that we
restrict this analysis to the NLCKP.

Baron SCIP Gurobi Naive CN24 Alpine

N #I #S CPU #S CPU #S CPU #S CPU #S CPU #S CPU

10 10 6 203.2 10 8.7 10 0.2 10 198.0 10 8.8 4 2995.7
20 10 7 132.1 3 8802.0 10 0.2 10 421.1 10 17.5 5 2745.8
50 10 4 1789.2 0 14400.0 10 0.5 10 1059.6 10 41.7 3 7437.0

100 10 0 14400.0 0 14400.0 10 6.3 10 2109.7 10 84.6 0 14400.0
200 10 0 14400.0 0 14400.0 9 110.7 0 14400.0 10 164.9 0 14400.0
500 10 0 14400.0 0 14400.0 0 14400.0 0 14400.0 10 425.2 0 14400.0
1000 10 0 14400.0 0 14400.0 0 14400.0 0 14400.0 10 860.7 0 14400.0
Total 70 17 13 49 40 70 12

Table 15: Comparison against Alpine.jl on problem NLCKP and cost functions f2

Baron SCIP Gurobi Naive CN24 Alpine

N #I #S CPU #S CPU #S CPU #S CPU #S CPU #S CPU

10 10 10 2.8 10 0.1 10 0.1 10 89.3 10 1.1 10 105.5
20 10 10 2.8 10 0.2 10 0.1 10 92.0 10 1.7 10 46.6
50 10 10 3.0 10 0.4 10 0.2 10 376.1 10 4.1 7 585.9

100 10 10 3.1 10 0.8 10 0.2 9 1995.9 10 7.3 8 360.1
200 10 10 4.1 10 1.3 10 0.4 0 14400.0 10 12.8 6 1033.1
500 10 10 12.4 10 4.8 10 1.0 0 14400.0 10 35.2 5 3972.3
1000 10 10 74.5 10 21.3 10 5.8 0 14400.0 10 129.9 5 3753.1
Total 70 70 70 70 39 70 51

Table 16: Comparison against Alpine.jl on problem NLCKP and cost functions f8

As we can observe, Alpine.jl’s performance is often the worst, being capable of solving only a
few problems within the desired precision, and in very high computing times.

B Detailed computational results

In this section we present detailed computational results. In Tables 17-136 we report, for every problem
instance considered in our campaign, the dual bound (under column DB), primal bound (under column
PB), relative gap (under column GAP), and CPU time in seconds (under column CPU). For the solvers
CN24 and NAIVE in addition we report the total number of linear pieces (under column NP). For our
solver, in addition we report the number of iterations of the main loop of our method (under column
NIT). We also report the total number of problems solved and the shifted geometric means of the
computing times, and the gaps, in each table.

30

