
HAL Id: hal-03336022
https://hal.science/hal-03336022v1

Preprint submitted on 6 Sep 2021 (v1), last revised 8 Sep 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the approximation of separable non-convex
optimization programs to an arbitrary numerical

precision
Claudio Contardo, Sandra Ulrich Ngueveu

To cite this version:
Claudio Contardo, Sandra Ulrich Ngueveu. On the approximation of separable non-convex optimiza-
tion programs to an arbitrary numerical precision. 2021. �hal-03336022v1�

https://hal.science/hal-03336022v1
https://hal.archives-ouvertes.fr


On the approximation of separable non-convex optimization

programs to an arbitrary numerical precision

Claudio Contardo1 Sandra Ulrich Ngueveu2

1IBM, Toronto, Canada
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Abstract

We consider the problem of minimizing the sum of a series of univariate (possibly non-convex)
functions on a polyhedral domain. We introduce an iterative method with optimality guarantees
to approximate this problem to an arbitrary numerical precision. At every iteration, our method
replaces the objective by a lower bounding piecewise linear approximation to compute a dual
bound. A primal bound is computed by evaluating the cost function on the solution provided
by the approximation. If the difference between these two values is deemed as not satisfactory,
the approximation is locally tightened and the process repeated. By keeping the scope of the
update local, the computational burden is only slightly increased from iteration to iteration. The
convergence of the method is assured under very mild assumptions, and no NLP nor MINLP
solver/oracle is required to ever be invoked to do so. As a consequence, our method presents very
nice scalability properties and is little sensitive to the desired precision. We provide a formal proof
of the convergence of our method, and assess its efficiency in approximating the non-linear variants
of three problems: the transportation problem, the capacitated facility location problem, and the
multi-commodity network design problem. Our results indicate that the overall performance of
our method is superior to five state-of-the-art mixed-integer nonlinear solvers by a significant
margin, and scales better than a naive variant of the method that avoids performing successive
iterations in exchange of solving a much larger mixed-integer linear program.

1 Introduction

We consider the problem of solving the following mixed-integer non-linear program (MINLP) with a
separable objective:

x ∈ arg min

{
n∑
i=1

fi(xi) : Ax = b, x ∈ X ⊆ Rn−p × Np

}
, (1)

where the functions fi : R −→ R+, i = 1 . . . n are piecewise differentiable and the set X is used to
represent the possibility of restricting some variables to be integer-valued. For the sake of simplicity,
we also assume that the problem is well defined and that admits an optimal solution (although perhaps
not an unique one). If (fi)i=1...n are all affine linear functions, the problem is a conventional mixed-
integer linear problem for which state-of-the-art algorithms and commercial software can scale and
solve problems with millions of variables and constraints IBM (2020). This is no longer true when
some of the functions fi are not linear. While it is possible to efficiently handle problems for some
specific forms of fi —namely when they are quadratic and/or convex (IBM, 2020; Stellato et al.,
2020)—, general forms of the functions fis make the optimization problems much less tractable.
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One possible way to approximate problem (1) is by replacing functions fis by piecewise linear
functions. This procedure results in a mixed-integer problem (MIP) with additional binary variables,
and can be tackled using state-of-the-art machinery from the integer programming literature. This is
perhaps the most efficient way known to handle problems with this structure. By properly choosing the
piecewise linear approximations, this approach can provide guarantees on the quality of the solutions
achieved. These guarantees, however, come at the extent of potentially very large piecewise linear
approximations, and remain only practical for very rough numerical precisions.

This article addresses the issue of solving problem (1) to an arbitrary numerical precision by
solving a series of piecewise linear approximations of the problem in a way that the tractability of
the resulting MIPs is not compromised along the process. Our method relies on the existence of
a tractable piecewise linear approximation for a reasonably good (but probably not good enough)
precision to derive primal and dual bounds, and on a refinement method used to achieve a better
numerical precision by tightening the approximation. The key in the success of our method lies in
the fact that the refinement procedure has very local scope, and the successive approximations, while
becoming tighter, do not lose their tractability, allowing for the primal and dual bounds to converge
quickly.

The remainder of this manuscript is organized as follows. In Section 2 we present a literature review
that focuses on the numerical approximation of mixed integer non-linear programs using piecewise
linear approximations. In Section 3 we present our method and provide the formal background to
justify its convergence. In Section 4 we describe the application of our method to approximating the
non-linear variants of three optimization problems relevant in practice: the transportation problem
(TP), the uncapacitated facility location problem (UFLP), and the multi-commodity network design
problem (MCNDP). We also provide computational evidence of the efficiency of our method. Section
5 feeds upon the computational campaign and some preliminary experiments to provide a discussion
about the overall performance and limits of the proposed method. Section 6 concludes this manuscript.

2 Literature review / Related works

Two problems need to be addressed when building MILP-based approximations or relaxations of
nonconvex MINLPs with a predefined accuracy : 1) that of obtaining good piecewise linear approx-
imations of the nonlinear functions; and 2) that of efficiently constructing and solving the resulting
MILP.

The quality of piecewise linear approximations is typically evaluated using two conflicting criteria:
the approximation error evaluated with a relevant metric, and the size of the approximation, measured
as the number of linear pieces necessary to achieve the desired precision (Ertel and Fowlkes, 1976). To
ensure that the desired MINLP accuracy will be achieved, a bound is set on pointwise approximation
errors, i.e that can be expressed in function of the maximal difference between each nonlinear function
and its approximation (Geißler et al., 2012). The fewer the number of pieces the smaller and easier to
solve the resulting MILP. Therefore, it is of interest to obtain (near-)optimal piecewise linearizations
with respect to the objective of minimizing the number of linear pieces given a predefined pointwise
error bound. Among the few publications that tackle this version of the piecewise linearization problem
with formal models and exact algorithms to ensure optimality of its solutions, Rebennack and Kallrath
(2015) and Rebennack and Krasko (2019) showed that distributing breakpoints freely and allowing
shifts from the nonlinear function at breakpoints leads to an order of magnitude less linear pieces
compared to equidistant breakpoints that interpolate the nonlinear univariate function. Ngueveu
(2019) authorizes discontinuity in the piecewise linear function even if the original nonlinear function
is continuous, yielding an additional degree of freedom to obtain a breakpoint system or equal or
less linear segments. Codsi et al. (2021) propose a geometric approach that can solve the problem in
quasi-logarithmic time on a very broad class of pointwise error metrics.

Simply replacing each nonlinear function with its piecewise linear approximation may lead to a
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MILP approximation whose solution is not guaranteed to be feasible for the MINLP. The objective
value of that MILP approximation is also not guaranteed to provide an upper bound or a lower bound
for the optimal MINLP solution value. In the case of linearly constrained MINLP, such guarantee
may be ensured by computing a piecewise linear underestimation or overestimation of the nonlinear
objective-function, as in Ngueveu (2019).

For general nonconvex MINLP with a linear objective-function and nonlinear constraints, which
can be obtained after reformulation of any nonconvex MINLP with a nonlinear objective-function,
Geißler et al. (2012) present a general methodology to construct a mixed integer piecewise polyhedral
(MIP) relaxation of a MINLP, instead of a mixed integer piecewise linear approximation, provided
that the piecewise linear functions interpolate the nonlinear functions at the breakpoints and if the
maximum linearization error has been calculated beforehand for each linear piece. The MIP relaxation
produces lower bounds for the MINLP. Then the authors use an NLP solver to produce feasible
solutions for the MINLP once its integer variables have been fixed to their values in the MIP relaxation
solution. As a consequence, it is straightforward to implement a branch-and-bound algorithm to solve
the MINLP, which can prove optimality and prune infeasible or suboptimal parts of the search tree
by using MILP techniques.

The drawback of any MINLP solution method based on piecewise linear approximations is that
small approximation errors lead to large MILPs, which become difficult to solve. Burlacu et al. (2020)
build on the work of Geißler et al. (2012) and develop an iterative algorithm to find a global optimal
solution of the MINLP by solving a series of MIP relaxations with gradually increasing accuracy,
based on piecewise linear functions that are adaptively refined from one iteration to another. A
critical component concerns the way the piecewise linear functions are defined and their refinement
procedure. The authors need piecewise linear functions that interpolate the nonlinear function at
the breakpoints and that completely contain the graph of the function. They provide rather general
convergence conditions for MINLP solution algorithms that rely on the adaptive refinement of their
piecewise linear relaxations. They show that the refinement strategy adding solely points with maximal
approximation error on a simplex does not fulfill these conditions and thus may not converge in certain
cases. In contrast, the refinement strategy adding linearization breakpoints on the longest edge of a
simplex, such as the classical longest-edge bisection, fulfills these convergence conditions and therefore
is suitable for the solution framework proposed.

Burlacu (2021) extends the iterative algorithm of Burlacu et al. (2020) with another refinement
strategy for n-dimensional simplices: the generalized red refinement introduced by Freudenthal (1942).
Their procedure is to some extent an n-dimensional generalization of the well-known red-green refine-
ment, which is used for two-dimensional simplices. However, for the one-dimensional domains we
focus on in this paper, i.e univariate functions, the red refinement and the longest edge refinement
are identical and simply split the domain of the active linear pieces in two equal halves by adding,
midway through the domain, a breakpoint that interpolates the function. Burlacu (2021) and Burlacu
et al. (2020) do not compute any upper bounds, and thus do not require NLP solvers for such task.
However, the authors assume that there is an oracle that optimizes the difference between a nonlinear
and linear function over a simplex, in order to compute the linearization errors resulting from the
piecewise linear function refinements. Such an oracle may be an NLP solver if the solution analytical
formula is not available.

Exact solution methods that solve an instance of an NP-hard problem as a series of smaller
instances of the same NP-hard problem have been investigated recently in relation to decremental
and sampling mechanisms, to increase the size of instances solved to proven optimality for various
MiniMax or MaxiMin combinatorial optimization problems. Chen and Chen (2009) and Contardo
et al. (2019) propose decremental relaxation mechanisms to ignore some node allocation constraints of
the vertex p-center problem (VPCP), which are only added as needed. The relaxed problems can thus
be modeled as smaller VPCPs in an iterative manner, allowing the solution to proven optimality of
problems containing up to 1M nodes. Aloise and Contardo (2018) consider the problem of clustering
a set of points so as to minimize the maximum intra-cluster dissimilarity. They introduced a sampling
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mechanism to solve the problem denoted MMDCP as a series of smaller MMDCPs in a dynamic
fashion, allowing the solution to proven optimality of problems containing up to 600k observations.
Contardo (2020) present a decremental clustering method to reduce a p-dispersion problem (pDP) to
the solution of a series of smaller pDPs. Instances with of up 100k nodes could be solved to optimality.
Sinnl (2021) proposed an iterative algorithm for the solution of a sequencing problem. Their method
iterates throughout all possible values of sequence lengths, in an iterative way that exploits the model
outputs from previous iterations. The authors report reductions of up to two orders of magnitude in
the computing times as compared to the state-of-the-art method for the same problem.

3 The proposed method

In this section we present our iterative method to solve problem (1) to a given predefined tolerance. To
fix ideas, let us assume that we are given, in addition to problem (1), a target tolerance ε > 0, an initial
tolerance ε0 ≥ ε, and a minimum interval size δ > 0. We assume that the tolerances are in relative
terms, this is we aim at obtaining a feasible solution x of (1) whose objective value z(x) =

∑n
i=1 fi(xi)

is such that z(x)− z∗ ≤ ε|z(x)|, where z∗ is the optimal value of problem (1).
We define a linear piece as a tuple l = (g, α, β, x0, xf , r) with x0 ≤ xf representing the linear

function αx + β that approximates function g within a tolerance of r in the interval [x0, xf ]. The
linear piece is said to be a lower bounding approximation of g if αx+ β ≤ g(x) for every x ∈ [x0, xf ].
A piecewise linear approximation of a function g in an interval [u0, uf ] is a set {(g, αk, βk, xk0 , xkf , rk) :

k = 1 . . . κ} of linear pieces such that x10 = u, xκf = v, xi0 = xi−1f for every i = 2 . . . κ.
Our method starts by finding an initial piecewise lower bounding approximation for each function

fi covering the domain of variable xi (that we assume to be bounded) for the initial tolerance ε0. To
that end, we use the method described in Codsi et al. (2021) that provides an optimal (in terms of its
size) linear bounding approximation for any given tolerance. Please note that their method constructs
discontinuous lower bounding linear approximations that do not necessarily interpolate the nonlinear
functions (indeed, they almost never do). For a given linear piece l, we denote ε(l) the tolerance
associated with that piece, that initially takes the value ε0 uniformly.

We then modify problem (1) by replacing the functions fi, i = 1 . . . n in the objective by their
respective linear approximations. This results in a modified MIP that approximates problem (1) by
providing a solution that is feasible w.r.t. the set of constraints {Ax = b, x ∈ X ⊆ R+

n } and whose
value (a lower bound) is off the optimal by at most ε0. Note that there is not an unique way of
writing the modified MIP. In Vielma et al. (2010) the authors review the literature in piecewise linear
approximations. In particular, we use the so-called logarithmic representation that bounds the number
of binary variables of the modified MIP to a maximum of

∑n
i=1dlog(κi)e. Note however that this is

not a condition for our method to work, as it will work as with other MIP representations as well.
The above method sets up a starting point for our iterative mechanism and the solution of the

resulting modified MIP will provide a solution x∗ that is feasible w.r.t. the set of constraints of the
problem. Please recall that our objective is to approximate problem (1) within a tolerance of ε < ε0.
Moreover, because the point found x∗ is feasible w.r.t. the set of constraints, evaluating x∗ on the
functions fi, i = 1 . . . n provides a valid upper bound for the problem. If we are lucky enough, the
optimal value of the modified MIP (that provides a lower bound of the problem) will be off by at most
ε from the upper bound. In that case, the method ends and returns x∗.

In the case where the lower and upper bounds are off by more than ε in relative terms, a repair
procedure is invoked with the objective of tightening the current linear lower bounding approximation.
Let κ ≥ 1 denote the number of times that the modified MIP has been solved. Let x∗i be the i-th
component of the solution x∗ to the modified MIP. Let ∆x∗

i be the set of indices to the linear pieces
containing the point x∗i . Let ∆i ⊇ ∆x∗

i be a set of indices to contiguous linear pieces and covering an
interval [l(∆i), u(∆i)] of size at least δ. If fi(x

∗
i )− αki x∗i − βki ≤ ε|fi(x∗i )| for every k ∈ ∆x∗

i , then the
approximation of fi at the point x∗i is sufficiently tight. If not, however, it needs to be tightened. We
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propose two methods to tighten the linear pieces in ∆i of the approximation of fi. They are referred
to as the conservative and the aggressive tightening, and differ in the speed at which convergence
is achieved. In each case, the new tolerance for the pieces in ∆i is set according to one of the two
equations below:

Conservative tightening

ε′ ← 1

2
min

{
ε(lk) : k ∈ ∆i

}
. (2)

Aggressive tightening

ε′ ← ε0
2κ
. (3)

By finding a lower bounding linear approximation for fi using ε′ as a tolerance within the interval
[l(∆i), u(∆i)] we are indeed tightening the approximation of problem (1). This procedure will result
in replacing a few linear pieces by potentially multiple other pieces. However, the linear pieces sur-
rounding those indexed by ∆i will remain unchanged, and the scope of the update procedure will
remain local.

Once the repair procedure has been applied to every function fi, the resulting MIP is solved again
and the procedure repeated. The process ends when the lower and upper bounds are within a tolerance
of ε. The following proposition provides a worst-case guarantee of convergence of the method to the
desired precision.

Proposition 1. If the domain of each variable xi is bounded within the interval [li, ui] with li ≤ ui,
the algorithm ends in at most

N =
⌈
log2

(ε0
ε

)⌉ n∑
i=1

⌈
ui − li
δ

⌉
(4)

iterations and provides a solution x∗ that if far from the optimal by at most ε.

Proof. At every iteration, the method either finds a solution x∗ that is at most ε off the optimal, or
detects one set ∆i of contiguous linear pieces of size ≥ δ including all pieces containing x∗i to apply the
refinement. When applying equation (2) or (3), the tolerance associated with the pieces in ∆i in the
new lower linear approximation will be cut of at least half. The number of times that this can happen
before a linear piece within a given region is tightened two consecutive times is bounded above by
d(ui − li)/δe, and the number of times that this can happen before reaching the desired tolerance is
bounded above by dlog2(ε0/ε)e. Because at each iteration there is at least one tightening for at least
one variable x∗i , the sum of these quantities along the n dimensions of the domain is an upper bound
for the total number of iterations before reaching global convergence.

It is easy to see that the ε′ values constructed by applying the aggressive tightening rule are smaller
than or equal to those that can be achieved if one applies instead the conservative tightening rule. One
can expect that albeit being equally fast in the worst case, the former shall provide quicker convergence
in practice. We finally provide a high-level description of our algorithm in the pseudo-code described
in Algorithm 1.

We will now illustrate our method by means of a very simple example. Let us consider the
univariate function f(x) = 300 + x2 − 30x + 25 sin(x) depicted in Figure 1a whose minimum in the
interval [3π, 7π] is the point x = 17.11 of value f(x) = 54.81. In Figure 1b we depict a piecewise
linear lower bounding approximation of f in the same interval for a relative tolerance of 20%. When
optimizing this approximation instead of f , we obtain as a solution the point x′ = 17.89. The
approximation when evaluated in this point provides a lower bound of value 50.3. Let us assume
that this difference of more than 4 units is unacceptable. Thus, the refinement procedure needs to be
put in place. Note that the point x′ is located at the edge of two pieces. Therefore, the two pieces
containing it need to be considered for the refinement process. The refinement is then executed but
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Algorithm 1: Iterative piecewise linear bounding

Input: Problem (1), tolerances ε, ε0, δ
Output: Feasible solution x∗, dual bound zl(x∗), primal bound z(x∗) s.t. z(x∗)− zl(x∗) ≤ ε|z(x∗)|
1: {f l

i : i = 1 . . . n} ← initial piecewise lower bounding approximation with tolerance ε0
2: while true do
3: Solve minx{

∑
i f

l
i (xi) : Ax = b, x ∈ X ⊆ R+

n }, let x∗ be the optimal solution
4: Let zl(x∗)←

∑
i f

l
i (x

∗
i ), and z(x∗)←

∑
i fi(x

∗
i )

5: if z(x∗)− zl(x∗) < ε|z(x∗)| then
6: return

(
x∗, zl(x∗), z(x∗)

)
7: else
8: Refine {f l

i : i = 1 . . . n}
9: end if

10: end while

subject to the interval [15.63, 18.93]. Figure 1c depicts the resulting tightening when the tolerance in
this restricted interval is decreased to 10%. The optimal solution of the resulting MIP in this new
approximation provides as solution x′′ = 17.3 and a dual bound of 49.77, lower than for the previous
iteration, but associated to a solution now much closer from the actual optimum. If we perform a
second tightening of this approximation, we see that the approximation needs to be tightened for the
same interval, but now for a tolerance of 5%. This results in the approximation depicted in Figure
1d. The optimal solution associated with the resulting MIP will be the point x′′′ = 16.92 with a dual
bound associated of 52.49. This is now a much better approximation to the actual optimum value.
In the process to reaching this dual bound, two tightenings from the original approximation were
necessary, and only one additional linear piece was added along the process.

Several remarks are in order. First, as observed, the dual bounds are not necessarily monotone.
This is due to the fact that a linear approximation may not be tighter in the whole interval after a
refinement. Second, our algorithm works by detecting the promising zones for successive refinements,
while ignoring the parts that obviously may never be part of an optimal solution. This is what
contributes at keeping the MIPs tractable along the whole solution process. The irrelevant zones of
the domain, which can be seen as noise, should be approximated as roughly as possible, to focus
one’s efforts into refining the zones that are most likely to contain an optimal solution of the problem.
Third, our method does not require the solution of a NLP oracle to ensure convergence, as it relies
purely on the solution of mixed-integer linear programs. Fourth, our method computes lower and
upper bounds at each iteration. Fifth, the refinement procedure is based on the computation of the
best piecewise linear underestimation on a given interval, instead of arbitrary split of the interval into
two. Sixth, our method can handle relative or absolute tolerances. As shown by Ngueveu (2019),
the latter may produce smaller MILPs for the same value of ε. Seventh, we do not require the
piecewise linearizations to be continuous nor to interpolate the nonlinear functions, which can be
efficiently exploited for instance by using the method of Codsi et al. (2021) to compute and tighten
the approximations.

4 Applications

In this section we describe the application of our method to three classes of non-linear optimiza-
tion problems, namely: the transportation problem (TP), the capacitated facility location problem
(CFLP), and the multi-commodity network design problem (MCNDP). First we present examples of
three nonlinear functions that we will use to assess the performance of our method. Next, we describe
the experimental setup used throughout our campaign. Then, we present nonlinear variants of these
optimization problems and provide computational evidence of the performance of our approach to
reach near-optimal solutions with very tight numerical guarantees.
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(a) f(x) = 300 + x2 − 30x + 25 sin(x) in the interval
[3π, 7π]
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(b) piecewise linear lower bounding approximation of f
in the interval [3π, 7π] for ε0 = 20%
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(c) First tightening of the piecewise linear lower bound-
ing approximation of f
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(d) Second tightening of the piecewise linear lower
bounding approximation of f

Figure 1: Approximating min{f(x) = 300 + x2 − 30x+ 25sin(x) : 3π ≤ x ≤ 7π}
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4.1 Nonlinear cost functions

Figure 2 depicts three classes of nonlinear functions that we consider across the three classes of
optimization problems studied in this manuscript. Figure 2a represents a situation in which economies
of scale are observed from the beginning until a certain capacity is attained, moment at which the cost
starts increasing at a much faster pace. Figure 2b, on the other hand, depicts a situation in which an
exponential growth in the cost is observed at the beginning, until reaching a point where economies of
scale start playing a role to keep the costs bounded. Figure 2c depicts a situation in which congestion
is observed since the beginning, but where the activation of some additional resources helps mitigate
the congestion effect past a certain threshold. Note the three isolated dots in the cost functions,
representing a cost of 0 when the associated variable takes a value of zero, and a strictly positive
and increasing cost as soon as this variable starts taking a positive value. For real-valued parameters
ai, i = 1 . . . 8 the three cost functions can be written as follows:

f1(x) =

{
a1x

3 + a2x
2 + a3x+ a4 x > 0

0 x = 0
(concave then convex)

f2(x) =

a1 +
a2

1 + a3ea4(x−a5)
x > 0

0 x = 0
(convex then concave)

f3(x) =

{
min

{
a1 + a2

(
x+ xa3

a4

)
, a5 + a6

(
x+ xa7

a8

)}
x > 0

0 x = 0
(min of two convex)

To calibrate the parameters ai, i = 1 . . . 8 for each of the cost functions we proceed as follows. Let
ymaxi be the maximum nominal value for a variable xi, and let [0, xmaxi ] be its domain. For a function
of the type f1, the parameters a1, a2, a3, a4 are chosen so the function passes through the coordinates
(x, y): (0, 12y

max
i ), ( 1

3x
max
i , 34y

max
i ), ( 2

3x
max
i , 78y

max
i ), (xmaxi , 2ymaxi ). For a function of the type f2, the

parameters ai, i = 1 . . . 5 are as follows: a1 = 1
2y
max
i , a2 = 3

2y
max
i , a3 = 1

2x
max
i , a4 = 10

xmax
i

, a5 = −x
max
i

10

4.2 Experimental setup

To approximate the cost functions, we consider the piecewise linear lower bounding approximation
introduced in Codsi et al. (2021) that, given a relative tolerance ε, computes a set of contiguous —not
necessarily continuous at the breakpoints— linear pieces approximating each function fi(·). Their
procedure possesses several characteristics that makes it a good choice for our purpose: 1) it relies
on a greedy mechanism that runs extremely quick; 2) it can handle absolute and relative tolerances;
and 3) it generates a number of linear pieces whose size is provably minimum provided that the linear
pieces are not required to meet at the breakpoints. We then use the MIP representation of Vielma
et al. (2010) to model the approximated problem using a logarithmic number (in terms of the number
of linear pieces of the approximation) of additional binary variables.

We consider varying values of ε, namely ε ∈ {10−2, 10−3, 10−4} and a fixed initial tolerance ε0 =
10−1. We consider three variants of our method, namely one using the conservative tightening rule,
another using the aggressive tightening rule, and a third one where we set ε0 = ε. We refer to the first
two as the iterative variants and the latter as the NAIVE variant. In addition, we consider five other
mixed-integer nonlinear solvers for benchmarking purposes. A summary description of the algorithms
used in our benchmarking can be found in Table 1.

Our method has been coded in Julia v1.5 using the JuMP 0.21 interface, and uses CPLEX v20.1
as general-purpose solver for the three variants of our method (CN2021-ct, CN2021-at and NAIVE).
These three variants have been executed on an Intel(R) Xeon(R) CPU E5-2637 v2 @ 3.50GHz with
128 GB of RAM. While the machine is capable of running code in parallel, for reproducibility purposes
we limit the number of threads to one on all settings. For the five other solvers, we have submitted
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(a) Cost function of the type f1
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(b) Cost function of the type f2
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(c) Cost function of the type f3

Figure 2: Examples of three types of cost functions

Algorithm Description Reference
CN2021-at Our method with the aggressive tightening rule This paper
CN2021-ct Our method with the conservative tightening rule This paper
NAIVE Our method with ε0 = ε This paper
SCIP Direct solution of the MINLP using SCIP Gamrath et al. (2020)
BARON Direct solution of the MINLP using BARON Sahinidis (2017)
ANTIGONE Direct solution of the MINLP using ANTIGONE Misener and Floudas (2014)
COUENNE Direct solution of the MINLP using COUENNE Belotti et al. (2009)
LINDOGL Direct solution of the MINLP using LINDO Global Lin and Schrage (2009)

Table 1: Eight solvers for benchmarking purposes
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them to the NEOS Server (Czyzyk et al., 1998; Dolan, 2001; Gropp and Moré, 1997), which runs on
multiple (different) machines powered with Intel CPUs of frequencies ranging between 2.2 and 2.8
GHz in a multicore, hyper-threading environment. In Table 2 we provide the PassMark scores of each
of the machines involved in our experiments as well as their physical locations. We give a maximum
time of 3,600 seconds (one hour) before a problem times out and is deemed as unsolved.

CPU PassMark score Location
Intel Xeon E5-2637 v2 @ 3.50G 6666 GERAD
Intel Xeon E5-2430 @ 2.20G 5867 NEOS Server
Intel Xeon X5660 @ 2.80GHz 6254 NEOS Server
Intel Xeon E5-2698 v3 @ 2.30GHz 19552 NEOS Server

Table 2: Description of the machines

4.3 Transportation problem

In the transportation problem (TP, Ford Jr and Fulkerson (1956)), we are given a set U of n origins,
and a set V of m destinations. With each origin u ∈ U we associate an offer ou > 0 of a given
commodity, and with each destination v ∈ V a demand dv > 0 of the same commodity and such
that

∑
u∈U ou =

∑
v∈V dv. For the sake of simplicity, we assume that the offers and demands are

all integer-valued. For each pair (u, v) ∈ U × V we are given a cost function fuv : R → R such that
fuv(x) represents the cost of transporting x units of flow from u to v. The objective is to select the
amounts (xuv)u∈U,v∈V to transport along the arcs (u, v) ∈ U × V such that: 1) each origin u ∈ U
sends exactly ou units of flow; 2) each destination v ∈ V receives exactly dv units of flow; and 3) the
total cost z =

∑
(u,v)∈U×V fuv(xuv) is minimized.

If the cost functions are all linear, the TP described above resorts to a classical linear TP, which
can be solved in polynomial time using a network flow algorithm (Kleinschmidt and Schannath, 1995).
In this article, we are interested in the scenario where the cost functions are separable but otherwise
might take arbitrary forms (for instance non-convex). Assuming that the cost functions are non-
decreasing, the problem can be modeled as a non-linear optimization problem using the notation
already introduced as follows:

min
x

z =
∑

u∈U,v∈V
fuv(xuv) (5)

subject to ∑
v∈V

xuv ≤ ou u ∈ U (6)∑
u∈U

xuv ≥ dv v ∈ V (7)

xuv ≥ 0 u ∈ U, v ∈ V. (8)

To assess the effectiveness of our approach to approximate the nonlinear TP, we have generated
a set of random instances, as follows. We consider squared problems with n = m ∈ {5, 10} origins
and destinations in an Euclidean space on a square of dimensions 100 × 100. A nominal unit cost
cuv for an arc (u, v) is computed as the Euclidean distance between the points plus a random noise
added from an uniform distribution in the interval [−3, 3]. The domain of variable xuv is the interval
[0,min{ou, dv}]. We consider the non-convex cost functions f1, f2 as described in Section 4.1. Ten
instances are generated for each value of n = m ∈ {5, 10} for a total of 20 problems.

We present summarized results in Figure 3. In this figure, we plot CPU time profiles for each
of the eight solvers considered in our study, restricted to the finest value of ε, namely for ε = 10−4.
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The plots represent the number of problems solved to optimality (x-axis) within a certain time in
seconds (y-axis). As these results show, the iterative variants of our method outperform all other
solvers considered in this study. As a matter of fact, of the five general-purpose MINLP solvers
considered in this study, only BARON was successful at solving a few problems. All other solvers timed
out systematically. We can also note that the shape of the objective seems to play a role in the
difficulty of a problem. In the specific case of the TP, only half of the problems were solved within
the desired precision for functions of the type f1, but 80% of them were solved for cost functions of
the type f2. When comparing CN2021-at and CN2021-ct, we see that the former performs slightly
better for the cost functions of type f1, and the opposite happens for the cost functions of the type
f2.
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Figure 3: CPU time profiles (in seconds) for the TP

4.4 Capacitated facility location

The capacitated facility location problem (CFLP, Sridharan (1995)) deals with the problem of deciding
the location of one or more facilities among an universe U of n total facilities, and to assignm customers
in a set V to the selected facilities. We associate an opening cost fu > 0 and a capacity κu to each
facility u ∈ U , and an assignment cost cuv > 0 to each assignment of a customer v to a facility u.
Each customer v ∈ V has a demand of dv > 0 units. We seek to determine: 1) what facilities to
open; 2) what fraction of the demand of a customer must be assigned to every open facility; 3) while
respecting the facilities’ capacities; 4) at minimum total cost.

The non-linearities in this problem may come from two sources:

Nonlinear warehousing costs by replacing the opening cost fu of the facilities by a nonlinear term
gu(·) representing the warehousing cost associated with the service of the demand fulfilled by
facility u.

Nonlinear assignment costs by replacing each assignment cost cuv by a nonlinear assignment func-
tion huv(·) such that huv(s) represents the cost associated with servicing a fraction s ∈ [0, 1] of
the demand of customer v by facility u.

Let us introduce a model that includes both settings at once. Let us consider binary variables yu
for every u ∈ U , to model the choice of opening or not a given facility. Let su be a continuous variable
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representing the amount of demand serviced by facility u. For each possible assignment (u, v) of a
customer v to a facility u, let xuv be the fraction of the demand of v that is serviced by facility u. Using
the notation already introduced —and by assuming that the cost functions g, h are non-decreasing—
the following model solves the CFLP while minimizing the total nonlinear costs:

min
x,y

z =
∑
u∈U

gu(su) +
∑

u∈U,v∈V
huv(xuv) (9)

subject to ∑
u∈U

xuv ≥ 1 v ∈ V (10)∑
v∈V

dvxuv ≤ su u ∈ U (11)

su ≤ κuyu u ∈ U (12)

0 ≤ xuv ≤ yu u ∈ U, v ∈ V (13)

yu ∈ {0, 1} u ∈ U. (14)

We consider the two possible scenarios for the source of the non-linearities separately: a first
scenario with nonlinear warehousing costs, but with linear assignment costs; and a second scenario
with nonlinear assignment costs, but with constant fixed costs. In both cases, we consider two classes
of nonlinear cost functions: functions of the type f1, and functions of the type f2 as described in
Section 4.1.

We consider the ORLib instances from the CFLP literature introduced by Beasley (1990). This
benchmark dataset contains 40 problems with a number of faclities and customers ranging between
[16, 100] and [50, 1000], respectively. We restrict our analysis to the 37 smaller instances, thus we
ignore the three largest problems that are too difficult for all the algorithms considered in this study
and from which no relevant conclusions can be derived. Note also that we have slightly modified
the instances, as follows. The nominal fixed costs of some of the facilities are equal to zero. Our
implementation assumes that the nonlinear cost functions only take the value zero at the origin, and
a value ≥ ∆ > 0 in the rest of the domain, with ∆ being a certain real parameter. Therefore we set
the nominal fixed costs to be equal to 1 for those facilities. We then construct nonlinear variants of
the cost functions on the modified costs following the recipes described in Section 4.1. Although this
is only relevant in the context of nonlinear warehousing costs, we perform the same modification for
the problem variant with nonlinear assignment costs.

4.4.1 Nonlinear warehousing costs

In this section we present summary results of the performance of the different solvers for approximating
the CFLP with nonlinear warehousing costs, this is when every fixed cot fu is replaced by a nonlinear
cost function gu(·).

In Figure 4 we plot the time profiles for the solvers that succeeded at solving at least one problem
before timing up. The graphics plot the number of instances successfully approximated to the desired
tolerance (x-axis) within a certain time (y-axis). We restrict our analysis here to a precision of
ε = 10−4. The results show a high sensitivity to the shape of the cost function. For the cost functions
of the form f1, the iterative variants outperform all other solvers. In fact, from the five general-purpose
MINLP solvers considered in this study, only BARON provided meaningful results, but still far from
being competitive against the iterative variants of our method, which scaled to solve more problems,
and faster. The opposite behavior can be observed when one looks at the results for the cost functions
of the form f2. In this case, BARON takes the lead by a significant margin, with ANTIGONE being the
only other solver that seems competitive against it, but only on the easy problems.
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Figure 4: CPU time profiles (in seconds) for the CFLP with nonlinear warehousing costs

4.4.2 Nonlinear assignment costs

We now consider the problem of replacing every assignment cost cuv by a nonlinear function huv(·)
using functions of the type f2 as described in Section 4.1. Please note that given the much larger
number of linear pieces required to achieve reasonable approximations, none of the solvers were suc-
cessful at handling this problem for the functions of the type f1. All of them timed out. For that
reason, we restrict our analysis for the cost functions of the type f2.

In Figure 5 we plot the time profiles of all meaningful solvers (meaning that we omit those for which
all problems timed out). As before, we plot the number of instances successfully approximated to the
desired tolerance (x-axis) within a certain time (y-axis). We restrict our analysis here to a tolerance
of ε = 10−4. Of the five general purpose MINLP solvers, four of them time out systematically on all
problems. The other, BARON, is competitive against the iterative variants of our solver on the easier
problems but scales worse on the harder problems. We also see that the iterative variants of our
method solve the same number of problems as the NAIVE variant, only much faster. No significant
differences are perceived between CN2021-at and CN2021-ct.

4.5 Multi-commodity network design

The congested multicommodity network design problem (cMCNDP, Parakevopoulos et al (2016)) deals
with the problem of dispatching multiple commodities throughout a configurable network taking into
account explicitly the congestion occurring at transportation nodes. We are given a set of nodes N , a
set of arcs A and a set of commodities P . Each node i ∈ N has a maximal capacity Qi, a demand of
commodity p denoted Dp

i , and a nonlinear cost function fi. Each arc (i, j) ∈ A has a fixed opening cost
Oij and a capacity Uij . Each commodity p ∈ P has a quantity to be shipped Wp and a unit routing
cost over arc (i, j) denoted Rpij . Our method is applied on the formulation proposed by Codsi et al.
(2021). Let us consider a binary variable yij for every (i, j) ∈ A to represent the choice of using the arc
or not. Let continuous variables xpij ≥ 0 for every p ∈ P and (i, j) ∈ A be the flow of every commodity
on every arc. Let us consider a variable vi defined as follows: vi =

∑
j∈N−

∑
p∈P x

p
ij ,∀i ∈ N . Using

these notations, the multicommodity network design with congestion problem can be formulated as
follows, minimizing the total design cost, usage costs and a nonlinear function modeling the sum of
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Figure 5: CPU time profiles (in seconds) for the CFLP with nonlinear assignment costs

the congestion cost and capacity upgrade cost.

min
∑

(i,j)∈A

Oijyij +
∑

(i,j)∈A

∑
p∈P

Rpijx
p
ij +

∑
i∈N

fi(vi) (15)

subject to ∑
j∈N+

i

xpij −
∑
j∈N−

i

xpji = Dp
i , i ∈ N, p ∈ P (16)

xpij ≤W
pyij , (i, j) ∈ A, p ∈ P (17)∑

p∈P
xpij ≤ Uijyij , (i, j) ∈ A (18)

∑
j∈N−

∑
p∈P

xpji = vi, i ∈ N (19)

xpij ≥ 0, (i, j) ∈ A, p ∈ P (20)

yij ∈ {0, 1}, (i, j) ∈ A (21)

vi ∈ [0, Qi], i ∈ N. (22)

We consider the three types of possible cost functions as described in Section 4.1. Our experimental
campaign considers some classical datasets from the MCND literature, namely the so-called C and
C+ instances Crainic et al. (2001). These instances contain between 10 and 30 nodes and between
10 and 200 commodities. A preliminary computational campaign has revealed that the number of
commodities plays a key role in the performance of our method. To highlight this behavior, we also
consider modified versions of some instances. Namely, for every instance containing strictly more than
10 commodites, we consider an additional modified version of it restricted to the first 10 commodities,
hence discarding the others.

4.5.1 Results on the original instances

We first present our results for the original —unmodified— instances, but separately for the problems
with 10, and ≥ 30 commodities, to help visualize the effect of the number of commodities in the
performance of our method. We restrict our analysis to a tolerance of ε = 10−4. We report aggregate
results in the plots of Figures 6-8 separately for each type of cost function.
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Results for functions of the type f1 We observe that for problems with a low number of com-
modities (10), only BARON is competitive against our method, being often faster and solves a larger
number of problems. The iterative variants of our method seem to perform slightly better than the
NAIVE variant in this case. For the problems with ≥ 30 commodities, BARON stops being competitive
and in this case it is the NAIVE solver that takes the lead.
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Figure 6: CPU time profiles (in seconds) for the MCND for functions of te type f1

Results for functions of the type f2 We observe now that for the instances containing 10
commodities, the iterative variants of our method perform best. For the problems with 30 or more
commodities, we observe no significant differences between SCIP and the three variants of our method.
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Results for functions of the type f3 Given the larger number of problems solved for this cost
function, we disaggregate our analysis for the problems with: a) 10 commodities; b) 30 commodities;
and c) ≥ 40 commodities. We observe that for the problems with 10 commodities, it is the iterative
variants of our method that succeed at solving a larger number of problems, being always faster for
the problems that require 30 seconds to solve or more. For the problems with 30 commodities, it is
ANTIGONE that seems fastest on the easier problems, but is dominated by the iterative variants of our
method on the more difficult problems. When looking at the problems with 40 or more commodities,
it is the NAIVE variant that takes the lead, being faster and more scalable than all other seven solvers.
We remark, however, that none of the five general-purpose MINLP solvers seem useful at all at
handling these problems, contrarily to the behavior observed for the iterative variants of our method
that succeed at solving a non trivial number of problems.
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4.5.2 Results on the modified instances with ≤ 10 commodities

In Figure 9 we plot CPU profiles for the three variants of our method, restricted to a tolerance of
ε = 10−4 for the modified instances with ≤ 10 commodities, and for all three classes of cost functions.
It appears that the shape of the cost functions plays an important role in the performance of our
method. We see that, for cost functions of the form f1, BARON seems the only one among the general-
purpose MINLP solvers to be competitive against the three variants of our method. For the cost
functions of the type f2, it is now SCIP that takes the lead, with BARON and the two iterative variants
of our method completing the podium. When one looks at the problems with cost functions of the
type f3, we observe that the iterative variants of our method take a significant edge over all other
six solvers, being able to solve four times as many problems in the allocated time when compared to
the general-purpose solvers (surprisingly, not as many more problems when compared to the NAIVE

variant of the method, albeit generally much faster), and being orders of magnitude faster on the
easier problems.
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Figure 9: CPU time profiles (in seconds) for the MCND problems with 10 commodities
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5 Overall performance and limitations of the method

The detailed analysis that we provide in the previous section helps at assessing the performance of
our method under a variety of different scenarios. We observe scenarios where the iterative variants of
our method outperform al other six solvers (e.g. MCNDP with 10 commodities and functions of the
type f3), and cases where their performance is rather poor (e.g. CFLP with nonlinear warehousing
costs and functions of type f2). But what about the overall performance of our method?. How do
CN2021-at, CN2021-ct compare against all other six solvers overall? To answer this question, we
present two additional plots in Figure 10 with aggregate data for each of the eight solvers. In the left-
most figure, we consider all classes of problems, with all cost functions, combined. In the right-most
subplot we omit the results for the MCNDP with functions of the type f3 on the modified instances
with 10 commodities (these are the problems in which our method performs best). It is now clear that
the three variants of our method outperform all other five solvers, as they succeed at solving about 3x
more problems, about 100x faster overall, and this is still the case even when the problems on which
our method performs best are ignored. Moreover, the two iterative variants of our method are about
2x faster on average than the NAIVE variant and succeed at solving more problems.
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Figure 10: Overall performance of the eight solvers

In Figure 11 we plot profile curves of the optimality gaps achieved by the different solvers after
timing out. We ignore the results for the NAIVE variant as our logs do not report meaningful results
when the method times out at the first iteration. We also ignore all problems for which a solver
succeeded within the allocated time limit. The y-axis denotes the gap, and the x-axis the number of
problems x for which the solver —after timing out— achieved a final gap of y or less. We observe that
the solvers CN2021-at and CN2021-ct are typically capable of achieving much tighter gaps (about
100x lower) than the general-purpose MINLP solvers, which is also a nice feature of our method, as it
provides tighter optimality guarantees even when unable to achieve the desired precision within the
allocated time limit.

In Figure 12 we plot profile curves of the number of linear pieces required for each solver to achieve
the desired precision. We restrict our analysis to the finest tolerance considered in this study, notably
ε = 10−4. The y-axis denotes the total number of linear pieces required for the last MIP solved, and
the x-axis the number of problems x for which the solver required at most y linear pieces to achieve
the desired precision. We observe that the solvers CN2021-at and CN2021-ct behave almost identical,
at such an extent that it becomes difficult to distinguish them in this plot. They rely on MIPs with
between 100x and 1000x less linear pieces than the NAIVE variant of the method.
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Preliminary experiments have also revealed a key limitation of our method, namely its ineffective-
ness to handle symmetries. When faced to problems with multiple optima in different regions of the
solution space, the method will tend to oscillate between these regions before reaching convergence.
In the presence of a combinatorial number of optima, our method will likely refine the neighboring
region of each such solution in an alternate way. The conservative tightening rule makes things worse
as not only a large number of iterations will be required before landing twice in the same region, but
the piecewise linear approximations will only be tightened by a constant factor each time. Mitigating
this undesired behavior was indeed the main motivation for introducing the aggressive tightening rule.

6 Concluding remarks

We have introduced an iterative method with optimality guarantees for a general class of separable
mixed-integer nonlinear problems. Our method iterates between the solution of a mixed-integer linear
problem to compute primal and dual bounds, and of a repair procedure to tighten the bounds if
deemed necessary. Our method does not rely on NLP nor MINLP oracles to compute those bounds,
hence relying exclusively on the efficiency to model and solve the resulting MILPs. We have proved
that our method converges in a finite number of iterations under some very mild assumptions. We
have assessed the effectiveness of our method on three optimization problems relevant in practice: the
transportation problem, the capacitated facility location problem, and the multicommodity network
design problem.

Our results show that our method is efficient at handling these problems, often outperforming
state-of-the-art solvers by orders of magnitude. When unable to achieve the desired precision, our
solver still shows a robust behavior as it achieves much tighter optimality gaps as when compared to
state-of-the-art solvers. The experiments have also revealed some limitations of our method, that we
properly report and discuss.

Future research shall focus on mitigating the nocive effects of symmetries as discussed in the
previous section. Also, extending our framework to handle objectives separable in functions of two or
more variables (as opposed to objectives separable in univariate functions) would provide a significant
contribution to the scientific literature.
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