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Abstract—The SoftCast video transmission scheme has been
proposed as a promising alternative to traditional video broad-
casting systems in wireless error-prone environments. However,
in its original form, the scheme may introduce annoying ar-
tifacts such as temporal quality variations or the so-called
ghost effect. To eliminate this artifact as well as improving
the received quality, we recently proposed an updated version
of SoftCast: Adaptive GoP-size mechanism based on Content
and Cut detection for SoftCast (AGCC-SoftCast) [1]. In this
paper, we provide additional results and verify the validity of
the algorithm considering different video content and resolution.
We also analyze the behaviors of the scheme considering different
type of cuts: 1) Abrupt cuts i.e., a cut that appear between two
different scenes, 2) Soft cuts that may appear in a same scene
and 3) Intraframe cuts that represents a shot change inside a
limited portion of the frame. The performance of AGCC-SoftCast
are compared to the original SoftCast scheme under different
Channel Signal-to-Noise Ratios (CSNR) and Compression Ratios
(CR). Traditional objective metrics are considered such as: the
Peak Signal-to-Noise Ratio (PSNR), the Structural SIMilarity
(SSIM) and the Multi-Scale SSIM (MS-SSIM). In addition, the
recent Video Multi-method Assessment Fusion (VMAF) metric
proposed by Netflix is also used. Regardless of the CSNR and
CR values, results clearly highlight the importance of the AGCC
algorithm in a SoftCast wireless video transmission scheme.
Depending on the transmitted video content, results show that
improvements up to 11.6dB in terms of PSNR and 67.45 in terms
of VMAF can be obtained, especially at the cut boundaries.

Index Terms—Ghost effect, Cuts, Adaptive GoP-size, SoftCast,
Temporal information index

I. INTRODUCTION

Broadcast video content when considering heterogeneity of
each user’s channel represents a challenge due to the fact
that each user is subject to unreliable and different wireless
channels that vary over time. Current broadcast systems are
based on video codec such as H.264/AVC [2], HEVC [3] or
their scalable extensions H.264/SVC, SHVC [4], [5]. However,
they do not provide sufficient scalability since they require
a permanent adaptation of the source and channel coding
parameters by the transmitter. Indeed, they are adjusted to
match an available bitrate that is given under predicted or
assumed channel state. Due to the heterogeneity of each user’s
channel, receivers whose channel conditions are degraded are
subject to significant visual disturbances (e.g. freeze) while
receivers experiencing a better channel than the estimated one
cannot take full advantage of it.

(a) Original Frame #144 (b) Original Frame #145

(c) Reconstructed Frame #144 (d) Reconstructed Frame #145

Fig. 1: Illustration of the ghost effect. Simulation parameters:
CR = 0.25, GoP-size=32. First row: Original frame #144-145
of the Tennis SD sequence. Second row: Reconstructed frame
after SoftCast compression process (no transmission).

In the last few years, the so-called SoftCast scheme [6] has
emerged to tackle these problems. Indeed, the received video
quality offered by SoftCast scales linearly with the Channel
Signal-to-Noise Ratio (CSNR) [7] providing quality of service
even in the presence of suddenly degraded channel quality.
This property comes from the linear processing applied to
the pixels, avoiding quantization or entropy coding, and the
transmission carried out without channel coding.

However, in its original form, the scheme may introduce
annoying artifacts such as temporal quality variations or the
so-called ghost effect illustrated in Fig. 1. The ghost effect is
characterized by a superposition of the edges (high frequen-
cies) between the frames before and after a cut inside a video.
It is due to the use of a temporal DCT and the compression
applied at the transmitter to match the available bandwidth
for transmission. To represent the bandwidth limitation, the
Compression Ratio [1] defined as: CR=M/N is introduced,
where M represent the amount of data that can be transmitted
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(a) Frame #169 (b) Frame #170 (c) Frame #655 (d) Frame #656

Fig. 2: Illustration of abrupt cuts inside the Mixed HD720p
video sequence from [1].

(a) Frame #144 (b) Frame #145 (c) Frame #161 (d) Frame #162

Fig. 3: Illustration of soft cuts inside the Tennis SD video
sequence from [10].

(a) Frame #90 (b) Frame #91 (c) Frame #150 (d) Frame #151

Fig. 4: Illustration of intra-frame cuts inside the News CIF
video sequence from [10].

and N the total amount of data. These parameters are further
defined in Section II. When CR=1, no compression is applied,
the ghost effect does not appear, however temporal quality
variations are noticed. As the CR decrease, the ghost effect
becomes more and more visible and is spread around the
duration of the GoP. To eliminate this artifact as well as
improving the received quality, we recently proposed an Adap-
tive GoP-size mechanism based on Content and Cut detection
for SoftCast (AGCC-SoftCast) [1]. This extension takes into
account the temporal complexity of the transmitted content,
detects cuts that may appear inside a video and adjusts the
GoP-size according to a classification process further detailed
in Section II.

When considering abrupt cuts as displayed in Fig. 2) (a cut
that appears between two different scenes putted together), we
showed that our algorithm allows improvements up to 16dB in
terms of Peak Signal-to-Noise Ratio (PSNR) and up to 0.55 in
terms of Structural SIMilarity (SSIM) at the cut boundaries.
In this paper, we further investigate the performance of the
scheme. Specifically, we consider:

• Different video content and resolution (HD1080p se-
quences (class B) and WVGA sequences (class C) from
[8]),

• Different types of cuts such as soft cuts, i.e., a cut that
may appear in a same scene (Fig. 3) or intraframe cuts,
i.e., a shot change inside the same scene (Fig. 4),

• Two additional objective metrics: the Multi Scale-SSIM
(MS-SSIM) as well as the Video Multi-method Assess-
ment Fusion (VMAF) metrics due to their high correla-
tion with human judgements in a SoftCast context [9].

The rest of this paper is organized as follows: Section 2
gives an overview of the AGCC-SoftCast scheme. In Section
3, we assess the validity of the classification process proposed

in [1] considering different video content and resolution. The
algorithm is compared to the classical SoftCast scheme in
Section 4 considering different types of cuts. Conclusions are
presented in Section 5.

II. AGCC-SOFTCAST REVIEW

The basic scheme of AGCC-SoftCast [1] is introduced in
Fig. 5. AGCC-SoftCast uses Group of Pictures (GoP) of 8
frames at the input of a content analysis and cut detection
process. The purpose of this step is to avoid to encode a cut
inside a GoP as well as selecting the optimal GoP-size, i.e., the
GoP-size that gives the best trade-off between received quality
and coding complexity cost. In SoftCast, the complexity cost
increases with K the number of frames in a GoP [1] according
to O(Klog(K)). The analysis is performed using a modified
version of the temporal information index proposed by the
ITU-T to evaluate the temporal complexity of a video. It is
defined as follows [1], [11]:

TI = meantime{σFD(k)}, (1)

where σFD(k) represents the instantaneous TI index and equals
stdspace[Fk(i, j) − Fk−1(i, j)]. Fk(i, j) represents the kth

frame and (i, j) the corresponding spatial coordinates.
Precisely, the cut detection process is based on a comparison

between a fixed threshold value (defined by extensive simula-
tions to 10) and the instantaneous TI index σFD(k). However,
to avoid false detection that may arise due to rapid changes
in a single shot (e.g., sports content), we proposed to first
remove the moving average TImov(k)) to the instantaneous TI
index before comparing the resulting value to the threshold.
If a cut is detected inside the frames of the current GoP, they
are separated into two groups: the first one is added to the
previous GoP and the last constitutes the new GoP that will
be created. This version is actually defined by the Adaptive
GoP-size based on Cut detection (AGCut-SoftCast) algorithm.

To fully take advantage of the decorrelation property of
the temporal DCT and if the hardware capacities (such as
buffer or processor) allow to use larger GoP-size (≥16),
the AGCC-SoftCast algorithm can be used. In this case and
independently of the cut detection process, the size of the GoP
is automatically adjusted according to Table I to provide the
best trade off between complexity cost and received quality.
This look-up table was generated in [1] based on extensive
frame by frame empirical analysis on CIF and HD720p video
sequences from [10].

TABLE I: Look-up table from [1] to perform the GoP-size
adaptation based on threshold over the TImean indexes.

TImean threshold Optimal GoP-size

TImean ≤12 32
12< TImean <27 16
TImean ≥27 8

To select the optimal GoP-size we rely on the instantaneous
TI index. Precisely, a local arithmetic mean TImean is defined
and computed over the instantaneous TI index values. The
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Fig. 5: Block diagram of the AGCC-SoftCast scheme.

latter is evaluated each 8 frames and is compared to the
thresholds defined in Table I. According to the resulting
TImean value, the 8 frames are either directly encoded or
stored in a buffer whose size ranges between 8 and 32 frames.

Once the optimal GoP-size has been selected and the
potential frames coming from the cut detection process added,
the classical SoftCast algorithm is performed. First, a pre-
processing is applied on the GoP. Specifically, the spatial
average is subtracted from each image to reduce the energy
of the transmitted data. By using this preprocessing method,
the received quality is improved by up to 2.5 dB. We refer to
[12] for further details.

Then, a 3D full-frame DCT is used as a decorrelation trans-
form. The DCT frames are divided into N small rectangular
blocks of transformed coefficients called chunks.

When the available channel bandwidth for the transmission
is less than the signal bandwidth, i.e., only M < N chunks
may be transmitted, SoftCast discards the N − M chunks
with less energy. This is generally the case especially for the
transmission of High Definition (HD) content as mentioned in
[6]. At the receiver side, these discarded chunks are replaced
by null values [6].

The sixth block at the transmitter consists of a chunk scaling
operation to match the transmission power constraints. The
scaling coefficients are chosen so as to minimize the recon-
struction Mean Square Error (MSE). A Hadamard transform is
applied to the scaled chunks to provide packet loss resilience.
This process transforms the chunks into slices. Each slice is a
linear combination of all scaled-chunks. Finally, the slices are
transmitted in a pseudo-analog manner using Raw-OFDM [6].
Classical channel coding is skipped. In parallel, the SoftCast
transmitter sends an amount of data referred as metadata.
These data consist of the mean and the variance of each
transmitted chunk as well as a bitmap, indicating the positions
of the discarded chunks into the GoP. Metadata are strongly
protected and transmitted in a robust way (e.g., BPSK [6]) to
ensure correct delivery and decoding.

At the receiver side, a Linear Least Square Error (LLSE)
decoder is used to estimate the content of the chunks due
to channel noise. Using the metadata, the decoded chunks
are properly reassembled and undergo an inverse 3D-DCT,
providing the corresponding GoP.
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Fig. 6: Illustration of the SI,TI indexes for the selected video
sequences. Dots correspond to the average values across all
the video sequence. Vertical and horizontal bars represent
respectively the min/max value of the TI index and the SI
index of the video sequences. From left to right: HD1080p
sequences (class B), WVGA sequences (class C) [8].

III. PRELIMINARY ANALYSIS

In this section, we first verify the validity of the look-up
table (Table I) proposed in [1] on different video sequences
and resolution: the class B (HD1080p: 1920×1080 pixels) and
C (WVGA sequences: 832×480 pixels) that were used by the
MPEG committee for the standardization of HEVC [8].

The complexity of the selected videos is represented in
Fig. 6 according to the spatiotemporal information indexes
(SI, TI). The SI index is defined as follows:

SI = meantime{stdspace[Sobel(Fk(i, j))]}, (2)

where Sobel() denotes the Sobel filtering operation.

A. Simulation Setup

Three GoP-sizes of 8, 16 and 32 frames and two CRs of 0.25
(75% of discarded chunks) and 1 (no compression applied)
are considered. Transmissions through AWGN channels are
simulated and represented by the CSNR value varying from
0 to 30dB by 5dB step as in [1]. Each frame is split into 64
chunks as in [1], [7], [12]. As classically done in the literature
[7], [9], [12], only the luminance is considered hereafter.

B. Simulation Results

Simulation results are displayed in Table II and Table III.
In the original paper [1], we used an informal threshold of
0.4 dB, below which the MPEG committee considers that the



TABLE II: Resulting average PSNR and SSIM scores over
the whole sequence for different GoP-sizes and CSNR values
with CR = 1 and CR=0.25. Class C video sequences from the
JCT-VC [8].

Simulation Setup

CSNR(dB)
0 10 20

PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

GoP = 8

CR=1

BQ Mall 28,38 0,756 36,94 0,938 46,40 0,992
Flower Vase 30,86 0,764 39,45 0,941 48,76 0,992
Keiba 27,49 0,710 36,32 0,925 45,84 0,990
PartyScene 26,63 0,741 34,89 0,934 44,42 0,991
Racehorse 27,68 0,713 36,00 0,919 45,50 0,989

CR=0.25

BQ Mall 24,86 0,636 31,63 0,854 35,35 0,938
Flower Vase 27,27 0,654 34,10 0,870 37,99 0,962
Keiba 23,46 0,574 31,11 0,825 36,55 0,945
PartyScene 23,76 0,618 28,98 0,841 31,13 0,918
Racehorse 24,67 0,608 29,97 0,817 32,09 0,902

GoP = 16

CR=1

BQ Mall 28,69 0,765 37,22 0,941 46,67 0,992
Flower Vase 31,57 0,783 40,12 0,948 49,38 0,993
Keiba 27,57 0,711 36,40 0,925 45,92 0,990
PartyScene 27,04 0,754 35,30 0,939 44,81 0,992
Racehorse 27,74 0,714 36,05 0,920 45,55 0,989

CR=0.25

BQ Mall 25,180 0,648 31,912 0,860 35,579 0,939
Flower Vase 28,05 0,679 34,77 0,883 38,56 0,965
Keiba 23,58 0,577 31,19 0,827 36,57 0,945
PartyScene 24,175 0,635 29,418 0,851 31,621 0,924
Racehorse 24,77 0,611 29,99 0,817 32,04 0,900

GoP = 32

CR=1

BQ Mall 28,83 0,769 37,35 0,942 46,79 0,992
Flower Vase 32,02 0,794 40,55 0,951 49,77 0,993
Keiba 27,63 0,710 36,43 0,924 45,95 0,990
PartyScene 27,29 0,760 35,53 0,941 45,04 0,992
Racehorse 27,77 0,714 36,06 0,919 45,56 0,989

CR=0.25

BQ Mall 25,35 0,654 32,02 0,863 35,59 0,939
Flower Vase 28,56 0,694 35,19 0,890 38,86 0,967
Keiba 23,64 0,576 31,23 0,826 36,58 0,945
PartyScene 24,43 0,644 29,67 0,856 31,88 0,926
Racehorse 24,81 0,611 29,99 0,817 32,00 0,899

TABLE III: Resulting average PSNR and SSIM scores over
the whole sequence for different GoP-sizes and CSNR values
with CR = 1 and CR=0.25. Class B video sequences from the
JCT-VC [8].

Simulation Setup

CSNR(dB)
0 10 20

PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

GoP = 8

CR=1

BasketBallDrive 30,40 0,781 38,91 0,949 48,24 0,993
BQ Terrace 27,88 0,723 36,40 0,931 45,88 0,991
Cactus 29,56 0,776 38,09 0,947 47,49 0,993
Kimono 33,98 0,894 42,68 0,979 51,61 0,997

CR=0,25

BasketBallDrive 26,93 0,672 33,77 0,861 37,64 0,930
BQ Terrace 24,40 0,590 31,21 0,823 34,92 0,913
Cactus 25,98 0,654 32,87 0,857 36,59 0,927
Kimono 29,95 0,807 37,69 0,937 42,52 0,969

GoP = 16

CR=1

BasketBallDrive 30,53 0,783 39,01 0,949 48,34 0,993
BQ Terrace 28,48 0,741 36,95 0,937 46,40 0,992
Cactus 30,25 0,794 38,73 0,953 48,07 0,994
Kimono 34,41 0,900 43,06 0,980 51,94 0,997

CR=0,25

BasketBallDrive 27,09 0,676 33,86 0,862 37,62 0,930
BQ Terrace 25,08 0,614 31,73 0,834 35,22 0,916
Cactus 26,81 0,683 33,44 0,868 36,86 0,930
Kimono 30,47 0,819 38,06 0,940 42,66 0,969

GoP = 32

CR=1

BasketBallDrive 30,53 0,781 39,00 0,949 48,33 0,993
BQ Terrace 28,80 0,749 37,23 0,939 46,67 0,992
Cactus 30,78 0,808 39,21 0,956 48,51 0,994
Kimono 34,60 0,902 43,22 0,980 52,07 0,997

CR=0,25

BasketBallDrive 27,14 0,675 33,83 0,860 37,52 0,929
BQ Terrace 25,47 0,628 31,96 0,840 35,26 0,917
Cactus 27,45 0,707 33,87 0,876 37,03 0,932
Kimono 30,72 0,825 38,22 0,941 42,70 0,969

difference is visually unnoticeable [13], to decide the optimal
GoP-size for each sequence. The same criterion is here applied
and the optimal GoP-size for each sequence is indicated in
bold in the tables. The higher the objective metrics are, the
better the quality received.

As observed in Table II and Table III, it can be seen that in
average, increasing the GoP-size for video sequences with low
spatio-temporal complexity increases the reconstructed quality,
whereas for videos with strong spatio-temporal complexity, a
smaller GoP-size is sufficient since the improvement is limited.
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These results are in accordance with the ones provided in
[1]. From Table II and Table III, we can establish a visual
synthesis in Fig. 7. In average, the thresholds proposed in
[1] are still relevant for the considered videos even if the
latter were not used in the original paper to determine and
fix the thresholds. The BasketBallDrive, Cactus and BQMall
sequences may seems to be not well classified however, the
displayed optimal GoP-size corresponds to an average over the
whole sequence. In our solution, a local GoP-size adaptation
is instead performed to reduce improper decisions. Still, we
discuss in the following such wrong/improper decisions.

Two situations exist:
• First: A sequence is classified with a GoP-size of 16

whereas a GoP-size of 8 represents the optimal GoP-size.
In such case, there is no quality loss as shown in the
results (e.g., the BQ Mall sequence in Table II). Never-
theless, the improvement brought by using such GoP-size
is considered meaningless (e.g. 28.38dB to 28.69≈0.3dB
gain for a CSNR=0dB and CR=1) and a GoP-size of 8
could have been chosen with other thresholds. In such
case, improper decision leads to a useless increase of the
complexity cost but does not impact the received quality.

• Second: A sequence is classified with a GoP-size of 16
whereas a GoP-size of 32 represents the optimal GoP-size
(e.g. Cactus in Table III). In such case, the maximal qual-
ity improvement is not reached but is limited (30.25dB
instead of 30.78dB≈0.5dB loss for a CSNR=0dB and
CR=1).

As demonstrated, such improper decisions considering a
whole sequence only have a very limited impact on the global
performance. This impact is further reduced by performing a
local GoP-size adaptation.

IV. PERFORMANCE ANALYSIS OF THE AGCC-SOFTCAST
SCHEME

We now evaluate the performance of the AGCC-SoftCast
scheme considering three different types of cuts as displayed
in Fig. 2, Fig. 3 and Fig. 4. In addition to the previous used
metrics, we add the MS-SSIM [14] and VMAF [15] ones



TABLE IV: Evaluation of the average and maximum gain
brought by the AGCC extension in comparison to the classical
SoftCast scheme considering different GoP-size (8, 16 and 32).

Simulation Setup

Gain
PSNR(dB) SSIM MS-SSIM VMAF

Avg Max Avg Max Avg Max Avg Max

Mixed HD
CSNR=0dB

(# of cuts=8)

CR=1
AGCC-GoP32 0.88 10.31 0.019 0.301 0.019 0.281 3.86 46.05
AGCC-GoP16 0.97 11.60 0.016 0.338 0.016 0.322 4.47 47.5
AGCC-GoP8 1.48 10.44 0.024 0.313 0.023 0.297 7.49 43.97

CR=0,25
AGCC-GoP32 0.77 8.69 0.025 0.355 0.024 0.326 4.12 49.33
AGCC-GoP16 0.96 9.51 0.026 0.380 0.025 0.353 5.56 52.44
AGCC-GoP8 1.58 8.74 0.045 0.360 0.041 0.336 9.82 51.26

News CIF
CSNR=10dB
(# of cuts=3)

CR=1
AGCC-GoP32 0.06 2.63 0.001 0.017 0.001 0.013 0.01 5.03
AGCC-GoP16 0.85 3.19 0.005 0.027 0.004 0.021 1.98 7.86
AGCC-GoP8 2.03 3.67 0.014 0.034 0.011 0.027 5.16 10.08

CR=0,25
AGCC-GoP32 0.06 2.33 0.001 0.037 0.001 0.031 0.04 6.39
AGCC-GoP16 0.89 2.81 0.014 0.060 0.011 0.049 3.57 10.01
AGCC-GoP8 2.07 3.33 0.036 0.073 0.029 0.06 9.14 13.85

Tennis SD
CSNR=20dB
(# of cuts=4)

CR=1
AGCC-GoP32 0.54 6.17 0.001 0.013 0.001 0.013 0.6 7.47
AGCC-GoP16 0.24 6.16 0.001 0.013 0.001 0.013 0.3 7.47
AGCC-GoP8 0.45 6.38 0.001 0.014 0.001 0.014 0.43 7.87

CR=0,25
AGCC-GoP32 0.97 10.96 0.008 0.178 0.008 0.174 3.95 67.45
AGCC-GoP16 0.28 10.49 0.002 0.15 0.002 0.154 1.05 53.57
AGCC-GoP8 0.39 10.14 0.002 0.13 0.003 0.139 1.64 50.67

as suggested in [9] due to their strong correlation with the
subjective scores. The VMAF metric ranges between [0-100]
whereas the (MS)-SSIM metrics range between [0-1]. The
higher the objective metrics are, the better the quality received.

The first considered video sequence in this section is de-
noted by Mixed HD720p and contains eight different 720p
(1280×720) subsequences from [10], resulting in eight abrupt
cuts. It has been generated to cover a large portion of the SI,
TI map and is further detailed in [1]. The second and third
video sequences come from [10]. They represent respectively
a CIF (352×288) video sequence with three intraframe cuts
and a SD (720×576) video sequence with four soft cuts.

For each metric, we show in Table IV, the average and
maximum gain between the AGCC extension and the original
SoftCast scheme considering different simulation setups (video
sequence, CSNR value, CR value). We first note that all the
cuts inside the different video have been perfectly detected by
the AGCC algorithm.

Regardless of the simulation setup and the considered met-
ric, results show that the AGCC extension provides in average
a better quality than the classical SoftCast scheme. When
CR=1 and CSNR=20dB, the average and maximum gains for
the Tennis HD sequence may seems limited, however, it is
due to the fact that at such high CSNR value, the noise during
transmission is limited, therefore the metrics already reach
their maximum values. The maximum gains obtained with
the News CIF sequence are not as high as the other videos,
although still satisfactory. This is probably due to the fact
that the cut only happens in a limited portion of the frame.
Depending on the transmitted video content, results show that
maximum improvements up to 11.6dB in terms of PSNR, 0.35
in terms of (MS)-SSIM and 67.4 in terms of VMAF can be
obtained, especially at the cut boundaries.

Examples of visual comparison are given in Fig. 8 and
Fig. 9. Due to limited space, we only show the visual rep-
resentation of the GoP-size of 32 frames as it usually gives
the best reconstructed quality [7]. Furthermore, the MS-SSIM
index is not indicated since it gives similar trends to the SSIM
one. The ghost effect is perfectly cancelled for both video

with the AGCC algorithm. Huge quality improvement can be
noticed for Tennis SD whereas it is limited for the News CIF
sequence. As mentioned above, it is probably due to the fact
that the cut only happens in a limited portion of the frame.

V. CONCLUSION

In this paper, we review the AGCC-SoftCast scheme and
provide additional results considering different video content
and resolution as well as different types of cuts: abrupt, soft
and intraframe. The validity of the AGCC-SoftCast scheme is
assessed considering four objective metrics including: PSNR,
SSIM, MS-SSIM and VMAF. The performance of AGCC-
SoftCast are compared to the original SoftCast scheme con-
sidering different CSNR, CR and GoP-size values. Results
are in accordance with the original paper and highlight the
importance of the AGCC extension in a SoftCast context. Re-
gardless of the considered types of cuts, we show that they are
perfectly detected by the proposed algorithm. Depending on
the transmitted video content, results show that improvements
up to 11.6dB in terms of PSNR and 67.45 in terms of VMAF
can be obtained, especially at the cut boundaries.
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Fig. 8: Visual quality comparison at a CSNR = 10dB, CR = 0.25 for the News CIF sequence (Frames #90, 91). (a),(b),(c): Frame
#90. (d),(e),(f): Frame #91. (a),(d): Original frames. (b),(e): SoftCast with fixed GoP-size of 32 frames. (c),(f): AGCC-SoftCast.
The PSNR scores are expressed in decibels.
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Fig. 9: Visual quality comparison at a CSNR = 20dB, CR = 0.25 for the Tennis SD sequence (Frames #161, 162). (a),(b),(c):
Frame #161. (d),(e),(f): Frame #162. (a),(d): Original frames. (b),(e): SoftCast with fixed GoP-size of 32 frames. (c),(f):
AGCC-SoftCast. The PSNR scores are expressed in decibels.


