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Abstract

In this paper, we address the problem of approximating and over/under-estimating univariate
functions with piecewise linear (PWL) functions with the minimum number of linear segments
given a bound on the pointwise approximation error allowed. Through a new geometric approach
and building on the work of Ngueveu [Ngu19], we develop new algorithms that can solve the
problem in quasi-logarithmic time on a very broad class of error types. Such algorithms find many
applications, mostly related to solving certain classes of (mixed-integer) nonlinear and nonconvex
programming (MINLP) problems by mixed-integer linear programming (MILP) techniques. An
efficient implementation of our algorithms is available as a Julia package. Benchmarks are also
provided to showcase how our method outperforms the state-of-the-art for this problem. Finally,
we show how our algorithms can be used to efficiently solve certain classes of MINLP problems
by a case study on multicommodity network design problems with congestion.

Keywords: piecewise linear functions, approximation, overestimation, underestimation, guar-
anteed tolerance, piecewise linear regression with bounded error, MINLP, MILP, Julia package

1 Introduction

The simplicity and ease of use of linear functions make them very attractive to many researchers
and practitioners. However, when dealing with non linear behaviors, it is often preferable to use
models that better encompass the reality. As a trade-off between simplicity and precision, piecewise
linear functions (PWL) are used in a variety of fields such as computer graphics, data science and
optimization. Throughout these fields, different criterion are used to judge the quality of a PWL.
Although our results are very general, this paper is motivated by the applications of PWL in Mixed
integer nonlinear programming (MINLP) which guided the exact choices for the specifications of the
problem tackled.

MINLP models are generally hard to solve. In addition to the presence of integer variables, one
often has to handle nonlinear functions that are not necessarily convex. A widely used approach is to
approximate the nonlinear functions with piecewise linear ones in order to derive mixed integer linear
programming (MILP) models, thus benefiting from the large scale, continuous and sustained effort of
the optimization community on MILP for the past thirty years and beyond. [GMMS12] were among
the first to show that, in certain cases, MINLP models can be solved by applying purely techniques
from MILP after approximating nonlinearities by piecewise linear functions. However, they did not
focus on minimizing the number of linear segments. Piecewise linear approximation for solving MINLP
is often performed in a preprocessing step using ad hoc methods. In general, the approximation error
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is not known a priori and the number of linear pieces (translating into binary variables in the MILP
model) is not minimized. In this paper, we address these issues and propose a geometric approach
to compute a piecewise linear (PWL) function that minimizes the number of linear segments needed
to approximate, over-estimate or under-estimate a nonlinear continuous univariate function with a
bounded pointwise approximation error.

The specificities of our problem, which separate it from the large majority of studies in the field
of univariate piecewise linear approximation, are the following:

• Most contributions on piecewise linear approximations of nonlinear univariate functions focus
on the minimization of an approximation error given a predefined number of linear segments
(see for example [AMM13], [CN15]). In contrast, in this paper, we are interested in minimizing
the number of linear segments given a bounded approximation error.

• Because the ultimate goal is to solve MINLP problems using techniques from MILP, we are
interested in pointwise errors, i.e errors that can be expressed as a function of the maximal
difference between the nonlinear function and its approximation. This excludes most of the
metrics classically used for piecewise linear regression in data mining or statistics, such as the
sum of square deviations or the total sum of absolute deviations ([EF76], [Wat98], [YLTP16]).

• Most piecewise linear regression studies, also known as segmented linear regression or curve
fitting or piecewise linear function fitting, consider as an input a discrete set of points, instead
of the continuous function we consider. Even in cases where the continuous function was known,
the function was sampled and the approximation was performed on the set of sample points.
The algorithms proposed in the regression field did not ensure the respect of the predefined
approximation error on the entire continuous domain and are therefore not directly applicable
to our problem, ([DT73], [LABOO01], [TV12], [CN15]).

• Finally, we are interested in exact methods providing optimal solutions or, at least, guarantees
on the quality of the solutions produced, which excludes most heuristics from the literature.

To the best of our knowledge, only five papers address the specific problem we are interested in,
computing piecewise linear functions which minimize the number of linear segments, given a bounded
approximation error expressed in function of the maximal difference with the nonlinear univariate
function.

[RP86] first proposed to build continuous PWL interpolators that verify a specified “tolerance”,
but only for concave quadratic programs and using equidistant breakpoints.

[RK15] introduced two nonconvex optimization models and two heuristics for the computation of
continuous PWL approximations that minimize the number of linear segments. The authors distribute
breakpoints freely and allow shifts from the function at breakpoints, leading to up to an order of
magnitude less breakpoints compared to the classical equidistant interpolation approach.

[RK19] proposed the first convex model for computing a continuous PWL approximation of a finite
set of points that minimizes the number of pieces. The model proposed is then used to develop an
exact algorithm for piecewise linear approximation of continuous univariate functions. The convex
formulation is based on the idea that computing the exact locations of the breakpoints is not needed
during function fitting. Rather, it is sufficient to ensure that adjacent linear segments of the con-
structed function intersect within a certain range. The exact algorithm consists in solving a series of
finite point fitting problems via the proposed convex models. By evaluating the computed continuous
PWL function (also known in the literature as linear or first-order splines) the authors can identify
points where the maximum difference with the original function is larger than desired. These points
are added to the discretization and new finite point fitting problems are solved. Computational results
show that the resulting algorithm outperforms the ones from [RK15].

[KM20] also proposed mixed-integer programs for computing a continuous PWL approximation of a
finite set of points, that is then used to develop an exact algorithm for piecewise linear approximation
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of continuous univariate functions. However, the reported computational results show that this is
more efficient than approaches that utilize nonlinear constraints, but the proposed method may not
be competitive in comparison to [RK15] and [RK19].

[Ngu19] propose approximating a general univariate continuous function with a non necessarily
continuous PWL function, adding an additional degree of freedom to obtain a breakpoint system
of equal or less linear segments. The author presents models and algorithms to compute the PWL
approximator/over-estimator/under-estimator with predefined absolute or relative error tolerance and
with an additive worst case guarantee on the number of linear segments needed. Evaluations on the
instances from [RK15] and [RK19] show a drastic reduction of the computing times in comparison to
the state-of-the-art, and sometimes a reduction of the number of linear segments. For solving MINLPs
with an objective-function that is separable in a sum of positive univariate nonlinear terms, [Ngu19]
proposes a method based on upper and lower bounding the nonlinear terms using non necessarily
continuous PWL functions with a predefined relative tolerance and the solution of a pair of mixed
integer linear programs. Such an approach yields a performance guarantee when the nonlinearity is
restricted to the objective function. To illustrate the efficiency of the method in comparison to state-
of-the-art methods and general-purpose MINLP solvers, computational evaluation was performed on
an energy optimization problem for hybrid electric vehicles.

The main contributions of this paper are the following: (I) the notion of a ”corridor” that general-
izes the classes of errors considered in piecewise linear approximation, (II) through a greedy algorithm,
a reduction of the original problem to the maximal linear piece problem, (III) an algorithm to solve the
problem in the general case, (IV) a logarithmic time algorithm for the special case of convex corridors
through a strong characterisation of the optimal solution, (V) clever speed-ups for a large class of
corridors, (VI) an efficient and flexible Julia package, (VII) benchmarks on nonlinear functions from
the literature that illustrate the major performance speed-ups of our method, and (VIII) benchmark
on the resolution of MINLP through our linearization ` MILP solver approach

Most notably, the practical performance is drastically improved thanks to a new characterization
of optimal solutions with intersections and tangents that are easy to compute. The piecewise linear
functions computing times reported in [Ngu19] varied from dozen to hundreds seconds. Although it
was proven sufficient to outperform general purpose MINLP solvers on problems containing a single
nonlinear function to approximate, it was not fast enough to tackle cases where there might be multiple
nonlinear functions to approximate in a single instance. For example, this is the case of the network
design problem with congestion studied in this paper, where there is a different nonlinear congestion
function for each node of a graph, and graphs can contain up to a hundred nodes.

2 Definitions

Here we define terms that will be used throughout this paper.

Definition 1 (PWL function). A function g : D “ rx´, x`s Ñ R is a piecewise linear (PWL) function
with n linear segments if it can be defined by equations (1) where x1 “ x´ and xn`1 “ x`. The domain
length of g is equal to x` ´ x´.

gpxq “

#

gipxq “ aix` bi, @i P t1..n´ 1u,@x P rxi, xi`1r

gnpxq “ anx` bn if x P rx,xn`1s
(1)

Remark. It is to important to note that the continuity property gi´1pxiq “ gipxiq @ i P t2, . . . , nu is
neither imposed nor forbidden, which implies that a PWL is non necessarily continuous.

Definition 2 (corridor). Let h, l : D “ rx´, x`s Ñ R be two continuous functions verifying hpxq ą
lpxq,@x P D. The surface area C Ă R2 is called the corridor between h and l iff C “ tpx, yq|x P
D, lpxq ď y ď hpxqu.
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The domain length of C is equal to x` ´ x´.

Definition 3 (sub-corridor). Let C1 and C2 be two corridors defined by functions h1, l1 : D1 Ñ R
and h2, l2 : D2 Ñ R, respectively. We call C2 a sub-corridor of C1 iff D2 Ď D1, h1pxq “ h2pxq, and
l1pxq “ l2pxq,@x P D2.

Definition 4 (truncated-corridor). Let C1 and C2 be two corridors defined by some function l and h
respectively on the interval ra, bs and rc, ds. We call C2 a truncated-corridor of C1 iff C2 is a sub-corridor
of C1 and a “ c.

Definition 5 (function within a corridor). A function g : Dg Ñ R is within a corridor C iff px, gpxqq P
C @x P Dg.

Definition 6 (induced sub-corridor). Let g : Dg Ñ R be a function within a corridor C1. A corridor
C2 is called an induced sub-corridor iff C2 “ C1XpDg ˆRq, i.e C2 is the same as C1 but limited to the
region where g is defined. We denote C2 “ C1pgq

Definition 7 (fitting). A function g fits a corridor C iff g is within C and Cpgq “ C, i.e the projected
length of g is the same as the length of C.

Definition 8. (maximal linear segment) A maximal linear segment in a corridor C is a linear segment
within C that induces a truncated-corridor of maximal domain length.

3 Fitting a piecewise linear function through a corridor

We define the notion of corridor and use this notion to present a new geometric approach for the
problem. A corridor is defined as the region between two functions that do not intersect on a compact
interval. We are interested in finding a PWL function g that fits a given corridor C with a minimal
number of linear segments. This problem is named the corridor fitting problem. To compute an
approximation, an overestimation or an underestimation of a function with a predefined pointwise error
tolerance, we define a corridor surrounding the function so that the problem is equivalent to finding
a piecewise linear function fitting the corridor. The corridor fitting problem therefore generalizes the
problem of finding a piecewise linear function that overestimates, underestimates or approximates
an univariate function, such that the number of linear segments is minimized given a bound on a
pointwise error metric. As shown in table 1, this includes corridors induced by absolute and relative
pointwise errors, thus generalizing the work of [Ngu19].

absolute tolerance δ relative tolerance ε
approximation hpxq “ fpxq ` δ hpxq “ fpxq ` ε|fpxq|

lpxq “ fpxq ´ δ lpxq “ fpxq ´ ε|fpxq|
overestimator hpxq “ fpxq ` δ hpxq “ fpxq ` ε|fpxq|

lpxq “ fpxq lpxq “ fpxq
underestimator hpxq “ fpxq hpxq “ fpxq

lpxq “ fpxq ´ δ lpxq “ fpxq ´ ε|fpxq|

Table 1: Equivalence of the piecewise linear approximation, overestimation and underestimation of a
function f with the corridor fitting problem for a corridor C defined by h and l

To visualise this, figure 1 shows the corridors associated to the function fpxq “
?
x sin p´xq´x`5

defined on interval r1, 5s for an absolute error of 0.35 and for a relative error of 23%.
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(a) absolute error tolerance b) relative error tolerance

Figure 1: Corridors induced by an absolute and a relative error

Such error classes finds many applications, mostly related to solving (mixed-integer) nonlinear and
nonconvex programming problems by (mixed-integer) linear programming techniques.

Remark. The absolute error case can be interpreted as a bound on the Chebyshev norm ‖¨‖8 between
the PWL and the original function.

3.1 Overview of the algorithm

Our solution is based on a greedy algorithm that creates the PWL function in an iterative manner by
choosing the linear segment of maximal possible domain length at every step. This reduce the corridor
fitting problem to a simpler problem, namely the maximal linear piece problem. This procedure is
detailed in algorithm 1.

Algorithm 1 Computation of an optimal PWL function fitting a corridor C
Input: Corridor C
Output: PWL function g defined by the set of linear segments P
1: while C ‰ H do
2: p˚ ÐÝ Compute maximum linear piece of C
3: P ÐÝ P Y p˚
4: C ÐÝ CzCpp˚q
5: end while
6: return P

The correctness of the algorithm is proved in subsection 3.2. We postponed the resolution of the
maximal linear piece problem to the section 4. The section 5 mostly tackles clever ways to accelerate
the algorithm 1 for corridors with slightly more structure or when an almost-optimal approximation
of the corridor fitting problem is sufficient. Finally, section 6 is mainly constituted of computational
results to show how our approach outperforms the state of the art.

3.2 Optimality of a piecewise linearization with maximal linear segments

Proposition 1 and Corollary 1 extend the Theorem 3.3 from [Ngu19] to the concept of corridors.

Proposition 1. Given a corridor C, there exists an optimal solution of the corridor fitting problem
on C where the first segment is a maximal linear segment in C.
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Proof. Let C be a corridor. Let g be any optimal PWL function that fits C “ rx´, x`s and let
tx1, x2, . . . xnu be the break points of the linear segment of g. Note that x1 “ x´ and xn “ x`. Let
p : rx´, x

˚s Ñ R be a maximal linear piece in C. Let g˚ be the PWL function defined by 2

g˚pxq “

"

ppxq @x P rx´, x
˚r

gpxq @x P rx˚, x`s
(2)

Note that, by definition, x˚ ě x2. Therefore g˚ has at most as much linear pieces as g which concludes
the proof.

Corollary 1. Given a corridor C, there exists an optimal solution of the corridor fitting problem such
that each linear segment is a maximal linear segment.

Proof. Proposition 1 can be applied iteratively on an optimal PWL function to ensure that each linear
segment induces a truncated-corridor of maximal domain length. This works because this problem
has optimal substructure. In other words, if the optimal function is splitted at the end of a segment,
it will induce optimal solutions for the two sub-corridors.

Corollary 1 proves that the corridor fitting problem can be solved with a greedy algorithm that
computes a succession of maximal linear segment problems. This is a sharp contrast with what can be
done with continous PWL as in this case, the greedy algorithm is not guarantied to give an optimal
solution as shown in figure 2. Here, the blue curve is an optimal continuous PWL with 2 segments
and the red curve is the continous PWL with 3 segments obtained with a greedy algorithm.

0 1 2 3 4 5
0

1

2

x

f
(x
)

Figure 2: Example of the non optimality of the greedy algorithm in the continuous case

4 Maximal linear segment problem

In this section, we first tackle the maximal linear segment problem for the case of convex corridor.
Later, we tackle the general case. Even though the former is a special case of the later, a dedicated
algorithm was conceived for convex corridors because a strong characterization of the solution was
found which results in a major speedup over the general case.

4.1 Case of a convex or concave corridor

We consider a convex corridor qC defined by functions h, l : D “ rx´, x`s Ñ R both continuously
differentiable , i.e. a corridor for which the two bounding functions h, l are C1 and convex. Note that
all differentiable convex functions are C1, so the condition on the continuity of the derivative was only
added for clarity. Notice that solving the maximal linear segment problem on a concave corridor pC
defined by functions l̂, ĥ reduces to the convex case as described above. Indeed, the corridor defined
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Figure 3: Illustration of Lemma 2: case where mintξ, ηu “ ξ and where mintξ, ηu “ η

by the convex functions ´l̂ and ´ĥ is only a sign off and the solution to the original problem can
easily be retrieved from a solution of this new instance by simply again multiplying by ´1. Lemmas
1 and 2 characterize a maximal linear segment in qC.

Lemma 1. For any linear segment within qC there exists a linear segment of equal domain length
within qC that intersects the curve L “ tpx, lpxqqu at its two endpoints.

Proof. Given any linear segment p within corridor qC defined by endpoints px1, y1q and px2, y2q, we can
define a linear piece of equal projected length p˚ with its endpoints px1, lpx1qq and px2, lpx2qq on the

curve L. Because h, l are convex, this linear piece is within qC. Precisely, p˚ must lies above L as it is
a line segment between two points on the graph of a convex function. Moreover, p˚ must lies under
H “ tpx, hpxqqu as p˚pxq ď ppxq ď hpxq for every x. Therefore, p˚ is within qC.

Lemma 2. A maximal linear segment in qC either fits qC or is tangent to the curve H “ tpx, hpxqqu.

Proof. This assertion is proven by contradiction as follows. Let us assume that a segment p, defined by
the points px1, y1q and px2, y2q, is a maximal linear segment in qC that does not fit qC and is not tangent
to H. Since p is not tangent to H and clearly doesn’t cross H there is no x such that ppxq “ hpxq.
Therefore, there exists c P R such that p1 “ p` c doesn’t intersect H i.e it’s possible to do a vertical
translation of p by c while still being within the corridor. For example, c could be taken as half the
minimal vertical distance between p and H. For the sake of simplicity, let us denote y1`c by y11, y2`c
by y12 and the slope of p1 by ∆. By construction, px2, y

1
2q R L. Also, since p and therefore p1 does not

fit qC, there exists ξ ą 0 such that x2` ξ ď x`. Finally, since none of the endpoints of p1 lie on L or H,
there exist η ą 0 such that @z ď η, px2 ` z, y

1
2 `∆zq R LYH (i.e it is possible to extend p1 without

intersecting L or H). We can therefore construct the linear segment within qC defined by px1, y
1
1q

and px2 `mintξ, ηu, y12 `∆ mintξ, ηuq, which has a domain length of x2 `mintξ, ηu ´ x1 ą x2 ´ x1,
contradicting the optimality of p.

Figure 3 illustrates the process in the proof of lemma 2.
Lemma 1 implies we can always choose px´, lpx´qq as the starting endpoint of a maximal linear

segment. Furthermore, Lemma 2 implies that an optimal segment will always be tangent to H if
it is not possible to fit the corridor with a single linear segment. By combining these two lemmas,
we obtain a unique (in the non-degenerate case) characterization of the optimal linear segment (as
illustrated in figure 4) which gives rise to an efficient algorithm. To do so, let us define tpq, xq as the
equation of the tangent to H at q evaluated at point x. Formally:

tpq, xq “ h1pqqpx´ qq ` hpqq
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Figure 4: Maximal linear piece on the convex sub-corridor derived from Figure 1(a)

We are looking for a point q˚ such that tpq˚, x´q “ lpx´q or equivalently, tpq˚, x´q ´ lpx´q “ 0. Let

Γpqq “ tpq, x´q ´ lpx´q

The geometric interpretation of Γpqq is illustrated in Figure 5. Our interest in Γpqq is motivated by
the fact that solving the maximal linear piece problem boils down to finding a zero of the decreasing
function Γpqq which can be solved by dichotomy. We will prove this assertion in the following lemma.

Γ

q

x−

Figure 5: Function Γpqq

Lemma 3. Γ is a decreasing function (strictly decreasing if h is strictly convex)

Proof. Without loss of generality, we’ll assume that x´ “ 0. Since Γpqq is only a constant off tpq, 0q,
it is sufficient to prove that tpq, 0q is decreasing. Let a, b P R such that 0 ą a ą b. We will show that
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tpa, 0q ě tpb, 0q.

tpa, 0q “ h1paqp´aq ` hpaq

ùñ tpa, 0q ` h1paqb “ h1paqpb´ aq ` hpaq

“ tpa, bq

Since the tangent of a convex function is always below the curve, we have that tpa, bq ď hpbq

ď hpbq

ùñ tpa, 0q ď h1paqp´bq ` hpbq

Concavity
ùùùùùùñ ď h1pbqp´bq ` hpbq

“ tpb, 0q

Once the optimal tangent point is found by finding the zero of Γ, we only need to find the second
endpoint. This is done by computing where the line supporting the linear segment crosses L again
using dichotomy since there will be only one other crosspoint and since the difference between a linear
function and a convex function is still convex.

The full procedure is summarized in Algorithm 2. As the only costly step of this algorithm is the
dichotomic search, this give rise to asymptotic logarithmic run time. The logarithmic time complexity
of this approach is to be stressed as it is the main reason behind the efficiency of the implementation.

Algorithm 2 Solve the maximal linear piece problem on a convex corridor

Input: Convex corridor Cv defined by convex functions h, l : D “ rx´, x`s Ñ R
Output: Optimal linear piece defined by breakpoints px1, y1q and px2, y2q

1: px1, y1q ÐÝ px´, lpx´qq
2: if Γpx`q ě 0 then
3: px2, y2q ÐÝ px`, hpx`qq
4: else
5: q˚ ÐÝ Solve Γpqq “ 0 using dichotomy
6: pÐÝ linear segment defined by px1, y1q and q˚

7: if ppx`q ą lpx`q then
8: px2, y2q ÐÝ px`, hpx`qq
9: else

10: x˚ ÐÝ Solve ppxq ´ lpxq “ 0 for x ą x´ using dichotomy
11: px2, y2q ÐÝ px

˚, lpx˚qq
12: end if
13: end if
14: return px1, y1q, px2, y2q

As previously mentioned, Algorithm 2 applies to both the convex and the concave cases if we
pre-process and post-process concave instances. Adding these processing steps gives us Algorithm 2’.

4.2 General case based on converting corridors into data ranges

An iterative procedure solves the maximal linear segment problem in the general case. The procedure
builds a discretized variant of the problem, solves it using a state-of-the-art algorithm on the discretized
version of the problem and then retrieves a solution candidate for our continuous problem. Finally,
it updates the discretization and repeats the last two steps until the solution obtained is feasible and
optimal for the initial problem.
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Figure 6: Example from [O’R81] with n “ 8 data ranges and the polyhedron in the m-b space
corresponding to the first five data ranges

To obtain the discrete variant of the problem the interval is discretized into a finite set of points
X . Any valid linear segment within a corridor C has to at least verify equations (3) on a consecutive
subset of X . The discrete variant of the maximal linear segment problem consists in finding a linear
segment that verifies equation (3) for a maximal number of consecutive point xi P X including the
first one x1.

lpxiq ď mxi ` b ď hpxiq (3)

This problem is known in the literature as data fitting or fitting a straight line between data ranges.
For such discrete inputs, there exists publications on piecewise linear approximation with a minimum
number of segments given a predefined bound on the absolute error in the fields of data reduction,
pattern recognition or classification, and ECG waveform preprocessing ([Tom74b], [Tom74a], [GP83]).

A state-of-the-art algorithm for this problem is the one of O’Rourke [O’R81]. It works by consid-
ering each equation (3) as a pair of constraints (4.1), (4.2) in the m-b parameter space as illustrated in
Figure 6. These constraints define a polyhedron denoted Pk for the k first consecutive points of X . If
the resulting polyhedron Pk is empty, then no single line can verify equation (3) for the k first points
of X . Otherwise, any point inside or on the boundary of Pk represents a valid line. The resulting
algorithm computes Pn with an Opnq complexity (for n input points). The algorithm stops if either
k “ n if all points have been covered or Pk`1 “ H if k is the maximal number of consecutive points
of X that can be covered and therefore pm, bq P Pk´1.

#

b ď p´xiqm` hpxiq p4.1q

b ě p´xiqm` lpxiq p4.2q
(4)

Let pm, bq and k be the straight line parameters and the number of intersected data ranges for
the optimal solution of the discretized maximal linear segment problem. Verifying if the solution is
feasible for the original non-discretized maximal linear segment problem consists in verifying if the
linear segment f defined by px1,mx1` bq and pxk,mxk` bq fits within the truncated-corridor Ck with
domain Dk “ rx´, xks. If the solution is not feasible, then at least one of the points which is on the
linear segment but out of the truncated-corridor should be added to X before the discretized problem
is solved again. In our implementation, we compute all intersections between L and f , i.e we solve
lpxq´mx´ b “ 0 with x1 ď x ď xk. Then for any two consecutive intersection points pxA, lpxAqq and
pxB , lpxBqq, we check if spxA, lpxAqq, pxB , lpxBqqr is out of the corridor. If it is the case,the middlepoint
of the interval xA`xB

2 is added to X before the discretized problem can be solved again. The same
procedure is repeated for possible intersections with H. If no point was added during this process,
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(a) corridor considered (b) discretization and resulting linear piece (c) linear piece exits corridor

(d) new discretization and resulting linear piece (e) linear piece stays within corridor (f) final solution

Figure 7: Maximal linear piece on a corridor neither convex nor concave

then the solution of the discretized problem is feasible for the non-discretized problem. With such an
implementation, no optimization solver is needed and a drastic reduction of the computing times can
be achieved in comparison to the state-of-the-art.

When the solution of the discretized problem is feasible for the non-discretized problem, it is
optimal with a precision level of xk`1 ´ xk. Let ε be a target precision level. If xk`1 ´ xk ą ε, then
the point

xk`xk`1

2 is added to X , before re-solving the discretized problem. Note that in the later
case, as a speed-up, O’Rourke’s algorithm for solving the discretized problem at step k ` 1 can be
warmstarted with the polyhedron Pk avoiding the unnecessary overhead of recomputing Pk.

The resulting iterative procedure solving the maximal linear segment problem in the general case
is described in Algorithm 3 and illustrated on Figure 7. In an attempt to not obfuscate Algorithm 3
the warmstart discussed above is not included but is straightforward to implement.

The initial discretization of the corridor has non negligible impact in the run time of the algorithm.
We could therefore try to estimate where the function varies the most to help the algorithm converge
faster. However, we are not assuming differentiability in this section but rather looking for a general
solution, therefore we simply use equidistant points to initialize our algorithm.
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Algorithm 3 Solve the general maximal linear segment problem

Input: Corridor C defined by functions h, l : D “ rx´, x`s Ñ R
Output: Optimal linear segment defined by endpoints pxS , ySq and pxT , yT q
1: X ÐÝ discretize corridor C
2: Feasible ÐÝ true
3: tm, b, ku ÐÝ O’Rourke’s algorithm applied on X
4: I ÐÝ Solve lpxq ´mx´ b “ 0
5: I ÐÝ I Y Solve hpxq ´mx´ b “ 0
6: for all pxA, xBq a set of consecutive values in I do
7: if pxA`xB

2 ,mxA`xB

2 ` bq R C then
8: X ÐÝ X Y txA`xB

2 u

9: Feasible ÐÝ false
10: end if
11: end for
12: if Feasible then
13: if xk`1 ´ xk ą ε then
14: X ÐÝ X Y t

xk`1`xk

2 u

15: go to step 2
16: else
17: return Segment induced by x´, xk,m, b
18: end if
19: end if

5 Speed-ups for uniform corridors

In this section, we look at how the previous algorithms for the maximal linear segment problem can
be combined to obtain faster convergence on the corridor fitting problem in the special case of uniform
corridor. A corridor is said to be uniform if it is defined by C1 functions having the same concavity
on D, i.e at every x P D the functions h and l are either both convex or both concave.

Remark. In the case of C2 functions, the concavity condition can simply be stated as l2pxqh2pxq ě
0@x P D

As this class of corridors includes approximations from relative and absolute pointwise errors, it
covers most of the instances seen in practice.

5.1 A faster exact method

The corridor fitting problem can be solved on a uniform corridor using Algorithm 1 with the algorithm
3 as a subroutine, but a significant speed-up can be obtained by making use of the specific structure
of uniform corridors. To do so, Algorithm 2 can be used on the convex and concave sub-corridors of C,
while Algorithm 3 is only used on sub-corridors that contain a change of concavity. The idea is to apply
Algorithm 2 on C until a change of concavity is reached. Then remove the last segment computed and
use Algorithm 3 to compute the maximal linear piece that crosses the change of concavity. Algorithm
2 is then called again, until the next change of concavity. This is summarized in Algorithm 4. The
main advantage of this approach is that it utilizes the logarithmic time complexity of algorithm 2 for
most of the domain while only using the slower but more general algorithm 3 when it’s really needed.

In our implementation, the positions of the changes of concavity can be either provided by the
user at the same time as the corridor, or be left to be computed by a dedicated algorithm. We have
implemented a dedicated algorithm that requires the bounding functions of the corridor to both be C2

12



Algorithm 4 Faster exact computation of an optimal PWL function fitting corridor C
Input: Uniform corridor C
Output: PWL function g defined by the set of linear segments P
1: while C ‰ H do
2: tC1, ..., Cku ÐÝ Partition into convex or concave subcorridors of C
3: while Cc ‰ H do
4: p˚ ÐÝ Algorithm 21(Cc)
5: if Ccpp˚q ‰ Cc OR Ccpp˚q “ C then
6: P ÐÝ P Y p˚
7: C ÐÝ CzCcpp˚q
8: end if
9: Cc ÐÝ CczCcpp˚q

10: end while
11: if C ‰ H then
12: p˚ ÐÝ Algorithm 3(C)
13: P ÐÝ P Y p˚
14: C ÐÝ CzCpp˚q
15: end if
16: end while

instead of C1. It finds the positions of changes of concavity by computing where the second derivative
of a bounding function varnishes.

5.2 A heuristic introducing a very limited number of additional segments

In practice, it’s often the case that a good solution to the corridor fitting problem is sufficient for our
needs. Here we describe an algorithm that add at most as much additional segments as the number
of change of concavities in the corridor but, as a trade-off, converges faster.

Let C be a uniform corridor we are looking to fit. C can be partitioned into k sub-corridors
C1, ..., Ck such that each sub-corridor Ci,@i P t1...ku is either convex or concave. A feasible solution
of the corridor fitting problem on C is obtained by concatenating optimal solutions of the corridor
fitting problem of all the sub-corridors. On each sub-corridor, we can use algorithm 2 to compute the
maximal linear segments. This is summarized in Algorithm 5.

Algorithm 5 Heuristic computation of a PWL function fitting a uniform corridor C
Input: Uniform corridor C
Output: PWL function g defined by the set of linear pieces P
1: tC1, ..., Cku ÐÝ Partition into convex or concave subcorridors of(C)
2: for i P t1...ku do
3: while Cv ‰ H do
4: p˚ ÐÝ Algorithm 21 (Cv)
5: P ÐÝ P Y p˚
6: Cv ÐÝ CvzCpp˚q
7: end while
8: end for

The advantage of this approach is that it is possible to compute the linearizarion in each sub-
corridor in parallel. Also, the implementation is simpler and quicker as it only relies on Algorithm
2 which has a logarithmic time complexity for every segment. The drawback is that the number
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of segments might not be optimal as there are segments that are not maximal at the junction of
sub-corridors. However, the number of additional segment is tightly bounded as stated in Lemma 4.

Lemma 4. Let n be the number of linear segments from Algorithm 5 and let n˚ be the optimal number
of linear segments, then n˚ ď n ď n˚ ` k ´ 1.

Proof. Let C be a uniform corridor over D “ rx´, x`s. Let B1, B2, . . . Bk´1 represent the changes of

concavity of C, B0 “ x´ and Bk “ x`. D can be partitioned as
Ťk´1
i“0 rBi´1, Bir

Ť

rBk´1, Bks such
that the corridor is either convex or concave on each interval. Let g˚ be the optimal PWL function
fitting corridor C and having as breakpoints x0, . . . , xn˚ and f be the PWL function obtained by
Algorithm 5. Let Si be the minimal xj such that xj ě Bi. Finally, let n be the counting function
for the number of segments in a piecewise linear function (so that we have νpg˚q “ n˚). To make the
notation less cumbersome, νpg˚q will not count a segment made of a single point so that we can work
with closed intervals. Since rBi´1, Bis is either convex or concave, νpf

ˇ

ˇ

rBi´1,Bis
q is optimal over this

restricted domain and we therefore have

νpf
ˇ

ˇ

rBi´1,Bis
q ď νpg˚

ˇ

ˇ

rBi´1,Bis
q, @i P t1, ..., ku

Since f and g˚ share the same number of segments before the first change in concavity, we have
equality for i “ 1. Let us analyze the case where i ‰ 1. The minimality of Si´1 implies that the
interval rBi´1, Si´1s is covered by a single segment in g˚. Therefore,

νpf
ˇ

ˇ

rBi´1,Bis
q ď νpg˚

ˇ

ˇ

rBi´1,Bis
q ď νpg˚

ˇ

ˇ

rSi´1,Bis
q ` 1, @i P t1, . . . , ku

Noting that νpf
ˇ

ˇ

rBi´1,Bis
q`νpf

ˇ

ˇ

rBi,Bi`1s
q “ νpf

ˇ

ˇ

rBi´1,Bi`1s
q as there is no segment overlapping between

two sub-corridors by the definition of the algorithm, we have that

νpfq “
k
ÿ

i“1

νpf
ˇ

ˇ

rBi´1,Bis
q

“ νpf
ˇ

ˇ

rB0,B1s
q `

k
ÿ

i“2

νpf
ˇ

ˇ

rBi´1,Bis
q

“ νpf
ˇ

ˇ

rx´,B1s
q `

k
ÿ

i“2

νpf
ˇ

ˇ

rBi´1,Bis
q

ď νpf
ˇ

ˇ

rx´,B1s
q `

k
ÿ

i“2

νpg˚
ˇ

ˇ

rSi´1,Bis
q ` 1

Since the segment off g˚ fitting rBi, Si`1s is also contributing to g˚
ˇ

ˇ

rSi,Bis

“ νpf
ˇ

ˇ

rx´,S1s
q `

k
ÿ

i“2

νpg˚
ˇ

ˇ

rSi,Si`1s
q ` 1

“ k ´ 1` νpf
ˇ

ˇ

rx´,S1s
q `

k
ÿ

i“2

νpg˚
ˇ

ˇ

rSi,Si`1s
q

“ k ´ 1`
k
ÿ

i“1

νpg˚
ˇ

ˇ

rSi,Si`1s
q

“ k ´ 1` n˚
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Heuristic Exact method

Figure 8: Comparison between both approaches

In addition of providing a guarantee on the quality of PWL obtained, Lemma 4 gives an easy
way to compute lower bounds for the number of linear segments needed to solves the corridor fitting
problem optimally.

To illustrate the differences between both algorithms presented in this section, Figure 8 compares
the solution obtained by the algorithm 5 and 4 on the corridor derived from an absolute tolerance of
0.3 of

?
x sinx ` x on interval r1, 5s. Here, a change in concavity happens at x « 3.42 as marked by

the vertical doted line.

Remark. As a consequence of Lemma 1, the PWL computed on uniform corridors happens to be
continuous on each convex or concave sub-corridor and the only possible discontinuities occur in the
junctions of sub-corridors. It also happens to be a convex (resp. concave) function on these convex
(resp. concave) sub-corridors.

6 Computational evaluation

6.1 Implementation

The package proposed is named LinA and is compatible with Julia 1.0.1 and onward. It is avail-
able at the following address: http://homepages.laas.fr/sungueve/LinA.html. It accepts as input the
expression of a function, the type of error requested (relative or absolute) and optionally the type
of over-/under-/approximation expected (by default approximation) and the algorithm desired (by
default it uses the heuristic). It is also possible to provide directly the two functions defining the
corridor to fit or even to define custom pointwise error types.

One of the key feature of the implementation is the use of symbolic differentiation which proved
to be faster than other methods in our benchmarks for large instances. This is explained by the fact
that the tangent functions are called so often that the higher initial cost of symbolic differentiation
is overshadowed by the lower cost of each evaluation done in the different dichotomy searches. In
some cases, where symbolic expressions are hard to obtain, the user can replace the expression by a
native Julia function. In this case, the package will seamlessly use numerical differentiation through
the package FowardDiff.jl [RLP16]. This is achieved through the extensive use of multiple dispatching
which gives a very modular code and, in addition, allows to add custom error types easily (for the
exact procedure, see the documentation). Another perk is the use of functors1 to make the syntax as

1see https://docs.julialang.org/en/v1/manual/methods/
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natural as possible as shown in Figure 9.

Figure 9: Simple example of the LinA syntax

The current implementation of LinA relies on the root finding functions available in the package
Roots.jl (https://github.com/JuliaMath/Roots.jl). In particular, it uses the dichotomy search-based
function. The function find zeros is used to identify the location of changes of concavity for C2

uniform corridor by computing the points where the second derivative of the input function vanishes
but also in variety of contexts such as finding the intersection between a line and the corridor in
Algorithm 3 (used in the exact method). Also, the Polyhedra.jl package [LDE`19] is used to
compute the intersections of polyhedrons for Algorithm 3.

6.2 Benchmarks in approximation of nonlinear continuous functions

To assess the computational efficiency of LinA we perform a computational study on twelve nonlinear
continuous functions from the literature and provided in Table 3, then compare the results obtained
by LinA with the ones reported by [RK15], [RK19], [Ngu19] and [KM20]. Table 3 shows the charac-
teristics of the machines used by the different authors. Table 4 and Table 5 report the number of linear
pieces and the computing times for the piecewise linear approximation with four different absolute
tolerance values, as in the literature : δ “ 0.1, 0.05, 0.01 and 0.005. Table 6 reports the computing
times for the piecewise linear overestimation or underestimation of the three nonlinear functions that
represent energy conversion functions in [Ngu19], with three different relative tolerance values : ε “
0.01, 0.001, and 0.0001.
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ref function D error tol.* [RK15] [RK19] [KM20] [Ngu19] LinA

(A-I) x2 r´3.5; 3.5s absolute a X 3 3 X
(A-II) lnpxq r1; 32s absolute a X X 3 3 X
(A-III) sinpxq r0; 2πs absolute a X 3 X
(A-IV) tanhpxq r´5; 5s absolute a X 3 X
(A-V) sinpxq

x
r1; 12s absolute a X X 3 X

(A-VI) 2x2 ` x3 r´2.5; 2.5s absolute a X X X X
(A-VII) e´x sinpxq r´4; 4s absolute a X X X X

(A-VIII) e´100px´2q2
r0; 3s absolute a X X X X

(A-IX) 1.03e´100px´1.2q2
`

e´100px´2q2
r0; 3s absolute a X X X X

(R-I) 0.001x3 ´ 0.024x2 ` 1.92x`
5.91

r1; 60s relative o, u X X

(R-II) ´0.005x3 ` 0.5x2 ´ 0.8x `
10.0

r1; 60s relative o, u X X

(R-III) 0.0000002x5
´ 0.0000274x4

`

0.00151450x3
´ 0.02453270x2

`

1.92434870x` 5.90568630

r1; 60s relative o, u X X

*tolerance: (a)pproximation, (o)vertimation, (u)nderestimation

Table 2: Benchmark : univariate nonlinear functions and tolerance types used

[RK15] Computer Intel(R) i7 single core 2.93 GHz, 12.0 GB RAM 64-bit Windows 7
single node ? yes
Passmark cpu score 5366
Software GAMS 23.6, LindoGlobal 23.6.5
Accuracy 10´5

Time limit 1800s per iteration

[RK19] Computer Intel 3.5 GHz, 32 GB of RAM
single node ? not specified
Passmark cpu score between 8687 and 28594
Software GAMS 24.8, LindoGlobal (for GO), CPLEX (for MILP)
Accuracy 10´3

Time limit 24 hours per instance

[Ngu19] Computer Intel(R) Xeon(R) single core CPU E3- 1271 v3, 32 GB RAM (heuristic)
Neos server (exact)

single node ? yes
Passmark cpu score 10086 (heuristic); 6878, 7641, 21149 (exact)
Software GAMS 23.6, GAMS 24.9.2 r64480 single core, LindoGlobal (for GO),

CPLEX 12.6 (for MILP)
Accuracy 10´5

Time limit 1800s per iteration

[KM20] Computer not specified
single node ? not specified
Passmark cpu score not specified
Software GAMS (25.0.1), CPLEX (12.8.0.0), ANTIGONE v1.1, BARON

17.10.16, SCIP 4.0
Accuracy not specified
Time limit 1200 s

This paper Computer Intel(R) Core(TM) i7-7700 CPU 3.60GHz, 16 GB of RAM
single node ? yes
Passmark cpu score 8625
Software LinA
Accuracy 10´5

Time limit 1800s per iteration

Table 3: Parameter settings per publication17



Checkmarks X(resp. 3) in Table 3 mean that the corresponding numerical results for all (resp.
some) values of δ were reported by the authors. The first five columns of the table show: the reference
by which the function will be referred to in the subsequent tables of results, the analytic expression of
the function, the domain (D) of the function, if the error considered is absolute or relative, and finally,
if an approximation, overestimation or underestimation was applied. In Tables 4-6 the first column
gives the reference of the continuous input function considered. In these tables, p is the number of
convex or concave subintervals of D, δ is the absolute tolerance value used, ε is the relative tolerance
value used, n˚ is the optimal number of linear pieces, n´ (resp. n`) is the lower (resp. upper) bound
returned when n˚ could not be found. Note that [RK15] reported only the order of magnitude of the
computing time for instances that could be solved to optimality. In their scale frac means “ď 1”, few
means “ě 1 and ď 10”. The instances with t.o.1800s{it (resp. t.o1200s) are the ones for which the 1800
(resp. 1200) seconds time limit was reached during one of the iterations (resp. in total). All papers
did not report results on all instances. The missing cases are denoted “-”.

Results in Table 4 suggest that [KM20] may not be competitive with the other solution methods.
[RK19] improved the results from [RK15], but there still remain instances for which the optimal PWL
approximation could not be found, contrary to [Ngu19] and LinA. We can also observe that our
heuristic provides lower bounds that are higher than the lower bounds from [RK19] for the cases that
they could not solve to optimality.

Results in Table 5 show that a major improvement in the computing times is achieved: the
computation of approximations that required hours of calculations in [RK15], [RK19] or hundred of
seconds in [Ngu19] is done in one-tenth of a second with LinA. Results in Table 6 show that a drastic
reduction of the computational times is also achieved when relative tolerance is used. It is to be noted
that for running times so small, the operating system task scheduling has a non-negligible impact and
therefore adds some randomness to the results which is why some high precision instances required
less time than the lower precision ones in some cases. In any case, such major performance speed-up
in the computation of the piecewise linear functions opens up new possibilities, such as the application
of LinA to help solving with minimal efforts some instances of linearly constrained MINLPs with a
nonlinear but separable objective-function. This is the case of the congested multicommodity network
design problem used as an illustrative case study in the next subsection.

6.3 Application on linearly constrained MINLPs: the case of the multi-
commodity network design problem with congestion

To illustrate how LinA can be used as an effective pre-processing to derive high quality bounds with
minimal effort for linearly constrained MINLPs, we consider the case of the multicommodity network
design problem with congestion where there is a different nonlinear congestion function for each node
of a graph. The problem was introduced by Paraskevopoulos et al [PGB16] to explicitly take into
account the congestion occurring at nodes of networks used to represent a wide range of planning and
operation management problems in transportation, telecommunications, logistics and production. The
resulting MINLP is linearly constrained and its nonlinear objective-function is separable in a sum of
positive univariate nonlinear terms. The state-of-the-art solution method for the problem is a mixed-
integer second-order cone reformulation solved with a dedicated solver.

The LinA+MILP method consists in replacing each nonlinear term of the MINLP with its PWL
underestimation computed with LinA, then solving the resulting MILP with a black box MILP solver.
Details on the resulting MILP reformulation are provided in appendix. The computational evaluation
of the method was done on the 258 instances from the cMCNDlib benchmark generated by [PGB16],
partitioned into 43 groups of 6 instances each. These instances include either 20, 25, 30 or 100
nodes; a number of commodities ranging from 10 to 400 and a number of arcs from 100 to 700. All
experimentations of [PGB16] were performed by using CPLEX 12.1 running on single thread, on a
computing cluster with 2.4 GHz and 64 GB RAM, while our experiment was performed with CPLEX
12.8 using the computer described in Table 3 with an 1% relative underestimation tolerance in the

18



input
δ

continuous approximation nnc approximation

function [RK15] [RK19] [KM20] Exact1 Heuristic1

ref p n˚ n´ n` n˚ n´ n` n˚ n` n˚ n˚ n´ n`

(A-I) 1 0.1 8 - 8 8 8
0.05 12 - 15 12 12
0.01 25 - 25 25

0.005 35 - - 35 35
(A-II) 1 0.1 3 3 3 3 3

0.05 4 4 4 4 4
0.01 9 9 - 9 9

0.005 13 13 - 13 13
(A-III) 2 0.1 5 - - 5 5 6

0.05 5 - - 5 5 6
0.01 13 - - 13 13 14

0.005 17 - - 17 17 18
(A-IV) 2 0.1 3 - - 3 3 4

0.05 5 - - 5 5 6
0.01 9 - - 9 9 10

0.005 13 - - 13 13 14
(A-V) 4 0.1 3 3 - 3 2 5

0.05 5 5 - 4 3 6
0.01 9 9 - 8 7 10

0.005 12 12 - 12 12 15
(A-VI) 2 0.1 11 11 - 11 11 12

0.05 15 15 - 15 15 16
0.01 15 34 31 34 - 34 34 35

0.005 15 47 40 47 - 47 47 48
(A-VII) 3 0.1 4 14 14 - 14 14 16

0.05 4 19 19 - 19 19 21
0.01 4 43 34 43 - 43 43 45

0.005 4 61 35 61 - 61 61 63
(A-VIII) 3 0.1 4 4 - 4 4 6

0.05 4 6 5 - 5 4 6
0.01 4 11 11 - 11 10 12

0.005 4 14 14 - 14 14 16
(A-IX) 5 0.1 7 7 - 7 7 11

0.05 7 11 9 - 9 7 11
0.01 7 21 21 - 21 19 23

0.005 7 28 27 - 27 27 31
1 same results obtained in [Ngu19] and with LinA

Table 4: Number of linear segments obtained by [RK15], [RK19], [KM20] [Ngu19] and LinA for the
piecewise linear approximation of nonlinear functions with absolute tolerance δ
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input
δ

continuous approximation nnc approximation

function
[RK15] [RK19] [KM20]

[Ngu19] LinA

ref p Exact Heuristic Exact Heuristic

(A-I) 1 0.1 Few sec. - 350 s - - 0.003 s 1.5 ms
0.05 Few sec. - t.o.1200s - - 0.003 s 1.7 ms
0.01 Hours - - 19 s 30 s 0.054 s 4.3 ms

0.005 Hours - - 4 s 43 s 0.59 s 4.2 ms
(A-II) 1 0.1 Frac. sec. 0.1 s 26 s - - 0.006 s 1.3 ms

0.05 Few sec. 0.1 s t.o.1200s - - 0.003 s 1.6 ms
0.01 Sec 9.8 s - 221 s 11 s 0.002 s 1.9 ms

0.005 Sec 128.2 s - 172 s 16 s 0.002 s 1.6 ms
(A-III) 2 0.1 Few sec. - - - - 0.12 s 2.0 ms

0.05 Few sec. - - - - 0.056 s 2.1 ms
0.01 Sec - - 57 s 12 s 0.09 s 2.8 ms

0.005 Few min - - 68 s 17 s 0.058 s 2.4 ms
(A-IV) 2 0.1 Frac sec. - - - - 0.10 s 2.6 ms

0.05 Few sec - - - - 0.039 s 2.6 ms
0.01 Few sec - - 161 s 10 s 0.085 s 2.9 ms

0.005 Few min - - 128 s 15 s 0.040 s 2.8 ms
(A-V) 4 0.1 Frac sec. 0.7 s - - - 0.40 s 6.6 ms

0.05 Sec. 6.5 s - - - 0.37 s 2.6 ms
0.01 Sec 49.7 s - 143 s 11 s 0.38 s 5.7 ms

0.005 Few min 35.8 s - 181 s 15 s 0.34 s 5.7 ms
(A-VI) 2 0.1 Min 24.4 s - 115 s 11 s 0.087 s 4.0 ms

0.05 Few days 107.7 s - 88 s 17 s 0.10 s 4.2 ms

0.01 t.o.1800s{it 6819.1 s - 164 s 36 s 0.047 s 4.9 ms

0.005 t.o.1800s{it 35787.4 s - 195 s 59 s 0.052 s 6.5 ms

(A-VII) 3 0.1 t.o.1800s{it 311.5 s - 226 s 17 s 0.10 s 4.1 ms

0.05 t.o.1800s{it 14514.6 s - 287 s 28 s 0.15 s 4.4 ms

0.01 t.o.1800s{it 35411 s - 268 s 52 s 0.17 s 10 ms

0.005 t.o.1800s{it 70313.1 s - 869 s 72 s 0.13 s 5.7 ms
(A-VIII) 3 0.1 Sec 1.7 s - 74 s 4 s 0.16 s 4.0 ms

0.05 t.o.1800s{it 5.3 s - 83 s 6 s 0.096 s 4.3 ms

0.01 t.o.1800s{it 59.6 s - 138 s 11 s 0.066 s 4.4 ms

0.005 t.o.1800s{it 247.2 s - 1466 s 16 s 0.087 s 6.4 ms
(A-IX) 5 0.1 Few days 1.9 s - 77 s 8 s 0.23 s 13 ms

0.05 t.o.1800s{it 12 s - 64 s 12 s 0.18 s 12 ms

0.01 t.o.1800s{it 13873.4 s - 114 s 23 s 0.20 s 11 ms

0.005 t.o.1800s{it 42068.4 s - 784 s 27 s 0.19 s 13 ms

Table 5: Cpu times from [RK15], [RK19], [Ngu19] and LinA for the piecewise linear approximation
of nonlinear functions with absolute tolerance δ
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function
ε

[Ngu19] LinA
ref Overestimation Underestimation Overestimation Underestimation

(R-I) 0.01 8 s 8 s 0.17 µs 0.14 µs
0.001 17 s 19 s 0.45 µs 0.14 µs
0.0001 52 s 50 s 0.21 µs 0.16 µs

(R-II) 0.01 10 s 11 s 7.1 µs 7.5 µs
0.001 25 s 27 s 8.2 µs 0.12 µs
0.0001 73 s 74 s 0.13 µs 0.1 µs

(R-III) 0.01 14 s 16 s 7.4 µs 9.7 µs
0.001 41 s 42 s 8.6 µs 9.6 µs
0.0001 109 s 114 s 0.13 µs 0.13 µs

Table 6: Cpu times from [Ngu19] and LinA for under/overestimation with relative toleranceε

piecewise linearization phase by LinA, i.e ε “ 0.01.
The computational results displayed in Table 7 show that with a minimal of implementation efforts

and without trying to take advantage of the structure of the problem, the straightforward LinA+MILP
approach is competitive with the state-of-the-art method for solving the multicommodity network
design problem with congestion.

7 Conclusion

In conclusion, the proposed algorithm solves the corridor fitting problem, outperforms what already
exists to compute PWL approximations with predefined pointwise maximal error and does not require
any optimization solver in contrast to the recent contributions of [RK15], [RK19] and [Ngu19]. In-
stances from the literature are solved in mere milli-seconds. We also demonstrated how an approach
based on the linearization of MINLPs using this algorithm can be used to obtain state of the art results
in a simple and almost black box manner. Further work could be done on this approach by exploring
other types of errors when approximating a MINLP with a MILP. Another interesting perspective is
to generalize these approaches to higher dimensions by approximating functions with hyper-planes.

For the Julia package, a further improvement would be to utilize the specific structure of the
polyhedrons in the coefficient space while performing Algorithm 3 to obtain a sensible speedup while
calculating the intersection as proposed in [O’R81].

8 Acknowledgements

This research benefited from the support of the FMJH Program PGMO, from the support of EDF-
Thales-Orange. This research also benefited from the support of the program “Soutien à la Mobilité
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Group of instances [PGB16] LinA+MILP
Average Time (sec) Average Gap Average Time (sec) Average Gap

c100 400 10 F L 10 3490.1 1.45% 1713.1 1.45%
c100 400 10 F T 10 3602.1 2.81% 2196.0 2.46%
c100 400 10 V L 10 111.3 0.01% 11.5 0.01%
c100 400 30 F L 10 3615.9 1.08% 1640.4 1.04%
c100 400 30 F T 10 3612.1 2.98% 3600.0 2.78%
c100 400 30 V T 10 3600.9 0.14% 242.3 0.18%

c25 100 10 F L 5 1.5 0.00% 5.9 0.00%
c25 100 10 F T 5 3.0 0.00% 5.2 0.00%
c25 100 10 V L 5 0.5 0.00% 0.4 0.01%
c25 100 30 F L 5 21.5 0.01% 22.0 0.03%
c25 100 30 F T 5 127.1 0.01% 21.6 0.02%
c25 100 30 V T 5 4.7 0.01% 4.1 0.05%

c33 2.8 0.00% 3.4 0.01%
c35 6.5 0.01% 7.0 0.04%
c36 13.3 0.01% 11.3 0.03%
c37 3600.6 0.24% 3600.0 0.29%
c38 3600.8 1.69% 3600.0 1.70%
c39 1935.8 0.03% 2480.3 0.08%
c40 3601.0 1.24% 3600.1 1.28%
c41 2.4 0.01% 3.6 0.01%
c42 4.5 0.01% 12.0 0.01%
c43 5.2 0.01% 7.1 0.02%
c44 5.4 0.01% 10.8 0.02%
c45 1538.5 0.05% 1990.4 0.15%
c46 3600.9 1.74% 3600.0 1.79%
c47 961.6 0.01% 955.9 0.07%
c48 3600.8 0.86% 3600.0 0.91%
c49 73.4 0.01% 98.9 0.01%
c50 884.6 0.01% 1901.7 0.02%
c51 266.9 0.01% 125.2 0.03%
c52 3600.9 0.33% 3600.0 0.38%
c53 3467.1 0.15% 3304.9 0.20%
c54 3603.8 0.74% 3600.1 0.74%
c55 3126.5 0.20% 3098.7 0.25%
c56 3602.8 0.84% 3600.1 0.85%
c57 41.6 0.01% 130.5 0.02%
c58 26.5 0.00% 62.2 0.00%
c59 219.3 0.01% 424.2 0.01%
c60 101.1 0.01% 157.0 0.02%
c61 3617.4 0.36% 3600.1 0.45%
c62 3603.3 2.49% 3600.1 2.67%
c63 3603.5 0.30% 3600.2 0.35%
c64 3612.8 1.61% 3600.1 1.10%

Table 7: Results on instances from the congested multicommodity network design problem
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9 Appendix: solving the multicommodity network design prob-
lem with congestion using LinA+MILP

9.1 Methodology

The solution method consists in identifying, for a given value ε, a PWL underestimator f εpxq that
verifies equation (5).

fpxq ´ ε|fpxq| ď f εpxq ď fpxq, @x P D (5)

Let pPεq be the MILP resulting from the replacement of all functions f with f ε. Let c˚ be the
optimal cost of the initial MINLP and let cpPεq denote the optimal costs of Pε. Solving pPεq yields
a lower bound for the MINLP at most 100ε% lower than its optimal cost. Then an upper bound is
obtained by recomputing the cost of the solution of Pε using the original cost function f . Let cr be
this recomputed cost. An upper and lower bound for the initial MINLP can therefore be obtained
using equation (6).

cpPεq ď c˚ ď mintcr, p1` εqcpPεqu (6)

9.2 Problem definition

Let A be the set of arcs, P be the set of commodities, N be the set of nodes. Each node i P N has a
fixed cost Ei, an initial capacity C0

i , an upgrade capacity Cδi , a delay cost Di, a free flow classification
delay Fi and a demand of commodity p denoted Dp

i . Each arc pi, jq P A has a fixed opening cost
Oij and a capacity Uij . Each commodity p P P has a quantity to be shipped Wp and a unit routing
cost over arc pi, jq denoted Dp

ij . The mathematical formulation of the cMND requires the following
decision variables :

• continuous variables xpij ě 0 that specify the amount of flow of commodity p P P on arc pi, jq P A

• binary variable yij equal to 1 if arc pi, jq P A is used and 0 otherwise

• binary variable zi equal to 1 if node i P N is upgraded and 0 otherwise

The resulting mathematical formulation proposed by [PGB16] is:
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min
ÿ

pi,jqPA

Oijyij `
ÿ

pi,jqPA

ÿ

pPP

Dp
ijx

p
ij `

ÿ

iPN

Eizi `
ÿ

iPN

gipx, zq p7.1q

s.t.
ÿ

jPN`
i

xpij ´
ÿ

jPN´
i

xpji “ Dp
i , i P N, p P P p7.2q

xpij ďW pyij , pi, jq P A, p P P p7.3q
ÿ

pPP

xpij ď Uijyij , pi, jq P A p7.4q

ÿ

jPN´

ÿ

pPP

xpji ď C0
i ` C

δ
i zi, i P N p7.5q

xpij ě 0, pi, jq P A, p P P p7.6q

yij P t0, 1u, pi, jq P A p7.7q

zi P t0, 1u, i P N p7.8q

(7)

The objective-function (7.1) minimizes the total cost of design, routing and capacity augmentation
and cost congestion. The function gipx, zq that appears in the last term of the objective function
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Figure 10: Example of congestion function fipviq

models congestion and is expressed with equation (8) where α and β are calibration parameters. Flow
conservation constraints (7.2) ensure that the demands are satisfied for each node. Constraints (7.3)
make sure that no flow of any commodity exists on an arc that is not selected. Constraints (7.4) limit
the amount of flow on an arc to the capacity of the arc. Finally constraints (7.5) limit the total inflow
of node i by its initial or extended capacity. Domain definition of variables are given by (7.6)-(7.8).

gipx, zq “ Di

¨

˚

˝

Fi
ÿ

jPN´

ÿ

pPP

xpji ` β

´

ř

jPN´

ř

pPP x
p
ji

¯α`1

`

C0
i ` C

δ
i zi

˘α

˛

‹

‚

(8)

Formulation (7) is not suitable for a direct application of the LinA+MILP methodology because
it contains bivariate nonlinear terms gipx, zq. Hereafter we propose a reformulation containing only
univariate nonlinear terms.

Let us introduce a new variable vi defined as follows: vi “
ř

jPN´

ř

pPP x
p
ji,@i P N . Under the

new variable definition the congestion functions can be expressed with equations (9). Let us define
|N | functions hipvi, ziq as hipvi, ziq “ gipvi, ziq ` Eizi with i P N . These multivariate functions can
be reduced to univariate functions as defined in Lemma 5.

gipvi, ziq “ Di

˜

Fivi ` β
pviq

α`1

p
`

C0
i ` C

`
i zi

˘α

¸

, i P N (9)

Lemma 5. For any i P N , there exists a scalar V `i Ps0, C0
i ` C

`
i s such that hipvi, ziq can be reduced

to a univariate function fipviq that verifies equation (10).

fipviq “

$
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&

’
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’

’

%

făi pviq “ Di

ˆ

Fivi ` β
pviq

α`1

pC0
i q
α

˙

if vi ď V `i p10.1q

fąi pviq “ Ei `Di

˜

Fivi ` β
pviq

α`1

`

C0
i ` C

`
i

˘α

¸

otherwise p10.2q

(10)

Proof. From (10) we derive equation (11).

pfăi pviq ´ f
ą
i pviqq

1
“ pα` 1qvαi Diβ

˜

1

pC0
i q
α ´

1
`

C0
i ` C

`
i

˘α

¸

(11)
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Since α ą 0, β ą 0, Di ą 0, C0
i ą 0, C`i ą 0 and vi ě 0, then pfăi pviq ´ f

ą
i pviqq

1
ě 0, meaning that

the difference făi pviq ´ f
ą
i pviq is non decreasing as illustrated on figure 10. Let V `i be the value that

verifies făi pV
`
i q “ fąi pV

`
i q and can be computed with equation (12).

V `i “ exp

$

&

%

¨

˝

lnEi ´ lnDi ´ lnβ ´ ln
´

1
C0

i
´ 1

C0
i`C

`
i

¯

α` 1

˛

‚

,

.

-

(12)

Therefore @vi ď V `i , so it is cost effective not to upgrade the capacity at node i, which leads to
function hipvi, ziq “ făi pviq. On the other hand, @vi ě V `i , so it is cost effective to upgrade the node
capacity of i, which leads to the function hipvi, ziq “ fąi pviq. Taking into account both cases leads to
function hipvi, ziq “ fipviq from equation (10).

The resulting linearly constrained non-convex MINLP formulation of the cMND with a sum of
univariate nonlinear terms in the objective-function, is the following:

pcMNDq
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min
ÿ

pi,jqPA

Oijyij `
ÿ

pi,jqPA

ÿ

pPP

Dp
ijx

p
ij `

ÿ

iPN

fipviq p13.1q

s.t.p7.2q ´ p7.4q p13.2q
ÿ

jPN´

ÿ

pPP

xpji “ vi i P N p13.3q

p7.6q ´ p7.8q p13.4q

vi P r0, C
0
i ` C

δ
i s i P N p13.5q

(13)

Solving formulation p13q with the LinA+MILP methodology from Section 9.1 requires to replace each
nonlinear function fi with the piecewise linear functions f ε

i
verifying equations (5).

9.3 Phase 1: Computation of the piecewise linear functions

We describe hereafter the procedure to obtain f ε
i

using Algorithm 5. Each nonlinear function fipviq

is not differentiable at vi “ V `i , therefore it is not C1 on the domain D “ r0, C0
i ` C`i s, but it is C1

and convex on each of the subdomains D1 “ r0, V
`
i s and D2 “ rV

`
i , C

0
i ` C`i s. Let us consider four

functions h1, h2, l1, l2 defined by equation (14). We therefore consider two convex corridors C1 and C2

defined by functions h1, l1 : D1 Ñ R and h2, l2 : D2 Ñ R respectively. The piecewise linear function f ε
i

is obtained by concatenating an optimal piecewise linear function fitting corridor C1 with an optimal
piecewise linear function fitting corridor C2.
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h1pxq “ fipxq “ făi pxq x P r0, V `i s p14.1q

h2pxq “ fipxq “ fąi pxq x P rV `i , C
0
i ` C

`
i s p14.2q

l1pxq “ p1´ εqfipxq “ p1´ εqf
ă
i pxq x P r0, V `i s p14.3q

l2pxq “ p1´ εqfipxq “ p1´ εqf
ą
i pxq x P rV `i , C

0
i ` C

`
i s p14.4q

(14)

Let K0
i and K`i be the number of linear pieces of the optimal piecewise linear functions fitting corridors

C1 and C2 respectively. Let Ki be the number of linear pieces of function f ε
i
. Therefore Ki “ K0

i `K
`
i .

In the remainder of the section, the kth linear piece of f ε
i

is defined by its endpoints [V min
i and V max

i ],

its slope Aki and its y-intercept Bki .
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9.4 Phase 2: MILP formulation

We derive the MILP by replacing all functions fi with f ε
i

and introducing one binary variable ski per
linear segment, which will be equal to 1 if the segment is chosen in the solution and 0 otherwise.
We also introduce one continuous variable vki per linear segment, equal to the flow entering node i
if the value of the flow belongs to the interval rV min

i , V max
i s and 0 otherwise. The resulting MILP

formulation of pcMNDqε is the following:

pcMNDqε
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min
ÿ

pi,jqPA

Oijyij `
ÿ

pi,jqPA

ÿ

pPP

Dp
ijx

p
ij `

ÿ

iPN

ÿ

kPK

Aki v
k
i `

ÿ

iPN

ÿ

kPK

Bki s
k
i p15.1q

s.t.p7.2q ´ p7.4q p15.2q

ÿ

jPN´

ÿ

pPP

xpji “
Ki
ÿ

k“1

vki i P N p15.3q

V min
i ski ď vki ď V max

i ski i P N, k P t1, ...,Kiu p15.4q

Ki
ÿ

k“1

ski “ 1 i P N p15.5q

p7.6q ´ p7.8q p15.6q

0 ď vki ď C0
i ` C

`
i i P N, k P t1, ...,Kiu p15.7q

ski P t0, 1u i P N p15.8q
(15)

The objective-function (15.1) minimizes the total design, routing, capacity and congestion costs.
Constraints (15.2) link variables x and y. Constraints (15.3) link variables x and v. Constraints
(15.4) link variables v and s. Constraints (15.5) ensure that only one linear segment is chosen per
node. Constraints (15.6)-(15.8) are the domain definition constraints of all variables.

Formulation (15) can be solved with any blackbox MILP solver to obtain a lower bound of the
cMND. Then an upper bound can be obtained by computing the value of the expression (13.1) given
the values assigned to variables x, y in the optimal solution of (15), and the values of variables Z
obtained using equation (16).

zi “

$

’

&

’

%

0, if
Ki
ÿ

k“1

vki ď C0
i p16.1q

1 otherwise p16.2q

(16)

In this case, the number of additional binary variables increases linearly with the number of
segments. Various other piecewise linear representations have been studied for example by [VN11],
[HV19], [HH21] including one where the number of binary variables increases only logarithmically
with the number of linear pieces. More efficient MILP solution methods could certainly be obtained
by investigating more advanced MILP formulations, or decomposition-based solution methods such
as branch-and-price, but this was not the focus of this paper. Also, it is well known that binary
variables can be avoided when representing the piecewise linear underestimator of a convex objective-
function in a minimization problem. In the case of the cMCND the nonlinear functions result from
the concatenation of two convex functions. This could be taken advantage of to limit the number of
binary variables to one per nonlinear function.
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