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A Comprehensive Theoretical Evaluation of the End-to-End Performances
of SoftCast-based Linear Video Delivery Schemes

Anthony Trioux, Mohamed Gharbi, François-Xavier Coudoux, Senior Member, IEEE, and Patrick Corlay

Abstract—SoftCast-based linear video delivery (LVD) schemes
have been proposed as an alternative to traditional video
transmission schemes in wireless error-prone environments. The
end-to-end performance of SoftCast-based schemes have been
evaluated in [1], where a theoretical model based on the Peak
Signal-to-Noise Ratio (PSNR) metric has been proposed. The
latter is limited to the use of a Zero-Forcing (ZF) estimator at
the receiver side, and does not consider bandwidth restrictions.
Nevertheless, bandwidth restrictions are common and necessary
in practice, especially when considering the transmission of video
content. It is mandatory to take this aspect into consideration
as it may drastically influence the received video quality. In this
paper, we provide valid and significant extensions of the initial
model. In total, three models are introduced taking into account
both 1) bandwidth constraints (i.e., data compression applied), 2)
the use of a Linear Least Square Error (LLSE) estimator instead
of the ZF one as well as 3) the use of the optimal power allocation.
We show that regardless of the bandwidth reduction applied, the
type of estimator as well as the power allocation used, the end-
to-end video quality can be accurately modeled and predicted at
the transmitter according to the video content characteristics, the
type of estimator used at the receiver and the channel conditions.
The validity of these three models is assessed through extensive
end-to-end simulations. These new models give solid theoretical
guidelines for optimizing and studying the performance of linear
video delivery schemes.

Index Terms—Wireless Video Transmission, SoftCast, Uncoded
Transmission, Linear Video Delivery, Distortion Model, Band-
width Constraints

I. INTRODUCTION

V IDEO transmission to and from mobile users is an
increasingly relevant service for current and next genera-

tion wireless networks. According to Cisco Visual Networking
Index report, about 80% of the world’s mobile data traffic
will be video by 2022 [2]. As a consequence, a huge research
effort is devoted to designing video coding and transmission
systems that give the best video quality for a given amount
of wireless resources. This is especially difficult when con-
sidering the following cases: (i) the video has to be sent
to many mobile users, each experiencing different channel
characteristics; (ii) the channel characteristics change quickly
over time. In severely delay-constrained video applications
such as videoconferencing, telepresence, and teleoperation,
ultra-low latency video coding and transmission becomes even
more challenging.

Currently, to perform video transmission, traditional video
coders (e.g., H.264/AVC [3], HEVC [4]) are usually combined
with a transmission scheme over a suitable network protocol
(e.g., 802.11, 4G). Even though this solution works well for

The authors are with the Institute of Electronics, Microelectronics,
and Nanotechnology (UMR CNRS 8520), Department OAE–Hauts-de-France
Polytechnical University, Le Mont Houy, Valenciennes, 59313, France (e-mail:
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stable point-to-point communications, it is not suitable when
considering multiple receivers, broadcast context, and wireless
environments where the channel quality may vary over time.
Indeed, it suffers from some inherent limitations:

• First, the source and channel coding parameters have to
be decided by the transmitter and are the same for all the
receivers. However, due to unreliable wireless channels
that vary over time, receivers can experience cliff effect
[5] or leveling-off effect [6]. The cliff effect refers to the
fact that the video quality drops quickly (due to glitches
or freeze of the video) when the channel quality is below
a presumed value. The leveling-off effect refers to the
fact that the received video quality remains constant even
when the channel quality keeps increasing;

• Second, to accommodate channel quality fluctuations,
traditional techniques use rate control mechanisms com-
bined with adaptive modulation and coding (AMC) [7]
mechanisms, which require a permanent adaptation of the
coding parameters by the transmitter. These techniques
rely on the estimation of the rate-distortion characteristic
of the source and the channel characteristics [7], implying
additional delay to perform this adaptation. Furthermore,
such mechanisms are often designed for unicast appli-
cations but become difficult to apply when considering
multiple receivers;

• Third, delay is also caused by various buffers present
at the encoder, within the network, and at the receiver
[8], [9]. Buffers are used to smooth out variations of the
channel characteristics and video coder rate. They are
also necessary due to the shared network infrastructure;

• Finally, when the errors in a received packet cannot be
recovered by the Forward Error Correction (FEC) codes,
the entire packet is usually discarded and retransmitted if
possible using Automatic Repeat reQuest (ARQ) mecha-
nism [6]. Retransmissions induce again significant addi-
tional delays [10], which is incompatible with low-latency
use-cases. However, if the retransmission mechanism is
not used, the video quality drops quickly.

To address some of these issues, one may use instead
scalable video coders (e.g., H.264/SVC [11], SHVC [12])
combined with hierarchical modulation (HM) [13], which
deliver multiple signals: first, a base layer with low bitrate
strongly protected and then, one or multiple enhancement
layer(s) to increase the reconstructed quality. The aim of
this mechanism is to maximize the number of users that can
decode the video. Since several layers are available, this could
mitigate the channel variation adaptation problem. However, it
is well known that scalable coding suffers from compression
inefficiency (roughly +15% to +25% additional rate per layer
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Fig. 1. Illustration of the performance of the traditional video coders in
wireless transmission vs. LVD schemes [14], [21]–[23].

[12]), additional complexity and additional delay (an encoder
instance must be run per layer, often in a sequential fashion).
Furthermore, the cliff-effect obtained with the single-layer
solution is just divided into a few smaller cliffs [14] without
eliminating it completely as shown in Fig. 1.

In the last few years, the so-called SoftCast scheme [15] has
emerged and demonstrated a high potential to address some
of the aforementioned issues. SoftCast represents the pioneer
work of linear video delivery (LVD) schemes [16] also known
as soft video delivery [17] or uncoded video transmission
[1]. All of these designations stand for the fact that video
pixels are processed by successive linear operations and are
directly transmitted in a pseudo-analog way, i.e., without either
quantization or entropy and channel coding. This allows to:
• Deliver to each receiver a video quality that is a linear

function of the user’s channel quality1 [1], [18];
• Achieve graceful degradation and avoid cliff effect [19]

caused by traditional approaches as shown in Fig. 1;
• Work without any feedback from receivers [15];
• Send only a single data stream, which is decodable by any

receiver, even those experiencing bad channel conditions
[20]. Therefore, rate control and AMC are no longer
needed [7]. Furthermore, since all the packets corrupted
by noise can be decoded, retransmission procedures are
also avoided. The channel noise simply corrupts the
amplitude of the transmitted (DCT) coefficients. Visually,
it corresponds to a snow-effect, which is illustrated in
Fig. 2b. The more the noise, the more visible the snow-
effect [18]. However, the video remains clearly viewable
in contrast to traditional approaches that suffer from
glitches as shown in Fig. 2c.

Moreover, LVD systems offer a relatively low and controlled
latency [8] that can be adjusted through the size of the

1As shown in this paper, the linear relationship is no longer valid over
the entire channel quality range when considering bandwidth restrictions.

(a) Original Image

(b) PSNR=34.97dB

(c) PSNR=15.04dB

Fig. 2. Visual quality comparison at a channel quality = 7dB for the Intotree
video sequence (#1 frame), no compression applied. (a) Original image,
(b) SoftCast, (c) HEVC-compressed video content transmitted with BPSK
modulation.

temporal transform. They have the potential of dramatically
improving the quality of experience in wireless and latency-
constrained scenarios, which represent a paradigm break with
respect to traditional video transmission systems.

For all these reasons, LVD schemes have recently gathered
a significant interest from the research community [1], [6]–
[8], [14]–[40]. Works concern for instance the use of differ-
ent decorrelation transforms e.g., Discrete Wavelet Transform
(DWT) [24], the human visual system properties [20], [25] and
the bandwidth-constrained environments [6], [26]. Further-
more, their comparisons with state-of-the-art traditional video
coding schemes, as well as guidelines for real implementations
can be found in the literature, showing the potential and
applicability of the LVD schemes. For instance, Garuffa et
al. [29] provided a detailed comparison between the HEVC
video coding scheme and SoftCast using SDR modules. They
showed that SoftCast offers better quality than HEVC when
considering multicast applications as well as when the channel
quality is very low, since HEVC cannot be correctly decoded.
In a more recent paper, Tang et al. [30] proposed guidelines
to implement the SoftCast scheme on Software Defined Radio
(SDR) modules using the GNU Radio software. They found
that the difference between PSNR scores obtained in simu-
lations and those obtained in real experiments is only about
0.25dB, which is visually unnoticeable [41].
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Among the existing works, Xiong et al. [1] proposed a
theoretical analysis of the LVD schemes. The authors showed
that the Peak Signal-to-Noise Ratio (PSNR) metric, used as a
measure of the video quality, is a linear function of the channel
quality, hereafter measured through the Channel Signal-to-
Noise Ratio (CSNR). Nevertheless, their model only considers
the case where the video signal can be fully transmitted,
i.e., without applying any compression. Furthermore, only the
Zero-Forcing (ZF) estimator is taken into account. This model
is unusable when considering practical bandwidth-constrained
applications since the linear relationship between video quality
and channel quality is broken, as shown in this paper.

The purpose of this paper is to generalize and to provide
valid and significant extensions of the model proposed by
Xiong et al. [1] by taking into account both bandwidth
constraints and different types of estimator used at the receiver.
In addition, an original model considering the optimal power
allocation [16], [31], [32] in a SoftCast-based scheme is also
investigated. This study leads to three theoretical models,
which perfectly match all the simulation configurations (differ-
ent available bandwidths, GoP-sizes, channel qualities, etc.).
Hence, the proposed research gives solid theoretical guidelines
for studying and optimizing LVD schemes. Specifically, the
proposed models are useful to:

1) Provide a better understanding of SoftCast-based video
delivery and a faster evaluation/comparison with future
LVD methods developed by the research community;

2) Study the performance of the LVD schemes and quickly
optimize their parameters (e.g., GoP-size, chunk-size,
etc.) without having to perform extensive end-to-end
simulations;

3) Estimate, in real conditions at the receiver side, the
PSNR score of the reconstructed video without having
the original video. Indeed, the original video is usually
necessary to compute the PSNR metric, but in practice,
it is not available at the receiver side. Since our models
rely on the power distribution characteristics, which is
sent by the LVD schemes to the receiver, it is possible
to compute the PSNR score without having the original
video.

The rest of this paper is organized as follows: Section II
provides background on the SoftCast scheme. Section III
introduces the theoretical analysis of the end-to-end perfor-
mance for SoftCast-based schemes using the ZF estimator.
Section IV gives the theoretical models of SoftCast-based
schemes considering the LLSE estimator. Section V presents
the theoretical model of SoftCast-based schemes using optimal
power allocation. In section VI, the proposed models are
compared together to study the performance of the different
schemes. Furthermore, the usefulness of the models is demon-
strated by studying the performance of the schemes according
to different GoP-sizes. Conclusions are given in section VII.

II. SOFTCAST OVERVIEW

The basic scheme of SoftCast [15] is illustrated in Fig. 3.
SoftCast first takes a Group of Pictures (GoP) and uses a full-
frame 3D-DCT as a decorrelation transform. The DCT-frames

Receiver
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Fig. 3. Block diagram of the SoftCast video transmission scheme.

are then divided into N small rectangular blocks of trans-
formed coefficients called chunks. These chunks are rearranged
by decreasing order according to their energy denoted by
λi = E[x2

i ], i = 1, 2, . . . , N . In the SoftCast scheme, the data
compression can be done after the decorrelation transform.
Specifically, when B, the available channel bandwidth for the
transmission is less than the signal bandwidth, i.e., only the
K ≤ N chunks may be transmitted, SoftCast discards the
N − K chunks with less energy. This is generally the case
especially for the transmission of High Definition (HD) con-
tent as mentioned in [6], [25], [33]. At the receiver side, these
discarded chunks are replaced by null values [15]. To represent
the bandwidth limitation, we introduce the compression ratio
[33] (CR) defined as:

CR =
K

N
(1)

When CR=1, no compression is applied. Likewise, when
CR=0.25, only 25% of the chunks are transmitted [33].

In parallel, the SoftCast transmitter also sends side infor-
mation referred to as metadata. Metadata consist of the mean
and the variance of each transmitted chunk as well as a binary
map, which indicates the positions of the discarded chunks
into the GoP. They are strongly protected and transmitted in
a robust way (e.g., BPSK [17]) to ensure error-free decoding.
Therefore, B is split into two parts B1 and B2 [17]: the band-
width for metadata transmission and the bandwidth to transmit
the video. In practice, the transmission of the metadata may
require to discard more chunks at the transmitter.

The third block at the transmitter level called Power Allo-
cation or Scaling is used to provide error resilience. SoftCast
scales the magnitude of the DCT coefficients to offer a
better protection against transmission noise. Since the total
transmission power available P is limited and fixed, it is
distributed to all the chunks in a way that minimizes the Mean
Square reconstruction Error (MSE) between transmitted and
decoded chunks. This is a typical Lagrangian problem which
offers two solutions depending on whether or not the channel
noise power is known by the transmitter. In the first case, i.e.,
when the channel noise power is unknown by the transmitter,
it leads to the following near-optimal solution [15], [17] given
by:

gi = λ
−1/4
i ·

√
P∑
i

√
λi
, (2)

where gi, i = 1, 2, . . . , N is the scaling factor for the ith

chunk.
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In the second case, i.e., when the channel noise power is
known by the transmitter, the optimal power allocation can be
performed. In this case, only the ` ≤ N chunks with power
level above the noise power level (σ2

n) are transmitted. This
scheme is known as SoftCast+ [34] and the corresponding
solution [16], [31], [32] is given by:

gm =

(√
λmσ2

n

γ − σ2
n

)1/2

√
λm

, (3)

where gm,m = 1, . . . , ` is the optimal scaling factor for the
mth chunk, and:

√
γ =

σn
∑`
m=1

√
λm

P + `σn2
. (4)

Note that only one scaling factor per chunk is computed
in SoftCast, which results from a trade-off among amount of
metadata, received quality and computation cost. Readers may
refer to [15] for further details.

After the power allocation, the Hadamard transform is
applied to the scaled coefficients to provide packet loss re-
silience. This process transforms the chunks into slices. Each
slice is a linear combination of all scaled-chunks. Finally, these
packets are transmitted in a pseudo-analog manner using Raw-
OFDM [35], i.e., classical coding (e.g., FEC code) and digital
modulation stages are skipped [15].

At the receiver side, if the channel noise power is unknown,
the ZF estimator is used to recover the transmitted symbols as
in [1]. Otherwise and as commonly used in the original works
of Jakubczak et al. [15] or in [16]–[20], [24]–[28], [30]–[37],
the LLSE estimator is preferred to minimize the impact of the
noise on the received symbols.

Using the metadata, the decoded values are then reassem-
bled to form DCT-frames, which are then passed through an
inverse 3D-DCT process.

To make the paper easier to understand, we introduce in
the following the general SoftCast-based transmission chain
in Fig. 4, where αi is the decoding factor at the receiver
and represents either the use of the ZF or LLSE estimator.
Likewise, βi is the scaling factor at the transmitter and
represents either the use of the near-optimal power allocation
as classically used in SoftCast [15], [17], [33] or the optimal
power allocation [16], [31], [32]. The index i indicates that
the process is done chunk by chunk.

!

!

 

!

Decorrelation

Transform

!

 

!

 

!

Transmitter Channel

!

"

 

Receiver

Fig. 4. General SoftCast-based transmission chain.

All the herein proposed models are based on the assumption
that the channel is an Additive White Gaussian Noise (AWGN)
one. Although this type of channel does not fully represent
what can happen in wireless environments (fading, burst

errors, etc.), this assumption is often used in a SoftCast context
[1], [14], [17], [18], [20], [21], [24]–[27], [29]–[33], [37]–[40].
The main reason is given below [38]. First, we remind that
SoftCast transforms chunks into slices using the Hadamard
transform. The latter acts as a whitening data process by
ensuring that each slice carries approximately the same energy.
In reality, when these slices are transmitted over the channel,
they can experience different fading. At the receiver level, they
are divided by their respective fading coefficient which implies
that the noise power distribution is not homogeneous over the
data. However, after applying the inverse Hadamard transform,
the noise power is redistributed and whitened over all the
chunks, which can be approximated by an AWGN channel.

Note that the Hadamard transform is not considered in the
following analysis as it does not change either the transmission
power or channel noise characteristics. Indeed, the Hadamard
transform is an orthogonal transform. Furthermore, if n rep-
resents an Additive White Gaussian Noise, then n′ = H−1 ·n
is also AWGN. Proofs can be found in [1].

Furthermore, recall that uncoded video transmission uses a
linear decorrelation transform step such as DCT [15] or DWT
[24]. All the developments below, including the proposed
theoretical models are valid regardless of the used linear
transform (e.g., 2D-DCT for images, 3D-DCT or 3D-DWT
for videos, etc.).

In the rest of this paper and for clarity, we denote:
• the SoftCast-based scheme with ZF decoder and near-

optimal power allocation by SoftCast(ZF);
• the SoftCast-based scheme with LLSE decoder and near-

optimal power allocation by SoftCast(LLSE);
• the SoftCast-based scheme with optimal power allocation

and LLSE estimator by SoftCast+;
• the case where all the coefficients can be transmitted

by the FB acronym (Full Bandwidth, i.e., no bandwidth
restriction), corresponding to CR=1;

• the Constrained-Bandwidth applications by the CB
acronym, corresponding to CR<1.

In the next section, we first recall Xiong’s model [1]
and then introduce the new model that takes into account
bandwidth constraints environments.

III. DESCRIPTION OF THE THEORETICAL MODELS
CONSIDERING ZF ESTIMATOR

A. Background (Xiong’s Model)

Xiong et al. considered a full bandwidth (FB) application
case where an arbitrary vector x = (x1, x2, . . . , xN ) ∈ RN is
transmitted over an AWGN channel. The N elements {xi},
i = 1, 2, . . . , N represent either pixels or coefficient values
after orthogonal transform. The corresponding received vector
is denoted by x̂.

As explained in Section II, the sender scales the xi before
transmitting them:

yi = βi · xi, (5)

where βi = gi, with gi given by (2).
The channel type considered by Xiong et al. as well as

the one in this paper is AWGN, i.e., the transmitted signal is
contaminated by additive white Gaussian noise:
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ŷi = yi + ni, (6)
= gi · xi + ni.

where ni is the channel noise.
Assuming the use of the ZF estimator, the estimated ele-

ments of x̂ at the receiver side are given by [1]:

x̂i = ŷi · αi (7)

=
ŷi
gi

= xi +
ni
gi
.

The expected distortion in x̂i is:

Di = E
[
(x̂i − xi)2]

, (8)

=
E
[
n2
i

]
g2
i

,

=
σ2
n

g2
i

.

Here σ2
n is the power of the channel noise. The expected

transmission power for sending xi is:

Pi = E
[
yi

2
]
, (9)

= g2
i · E

[
xi

2
]
.

Combining (8) and (9), we get the power-distortion function
of uncoded transmission:

Di · Pi = σ2
n · λi,

or

Di =
σ2
n

Pi
· λi. (10)

To achieve optimal performance considering the ZF estima-
tor, the total transmission power available at the transmitter
P , should be allocated among all the elements xi by:

(P1) : min

N∑
i=1

Di, s.t.
N∑
i=1

Pi ≤ P (11)

This is a Lagrangian problem:

L =

N∑
i=1

Di +
1

C2
ZF

N∑
i=1

Pi, (12)

where C2
ZF is the Lagrange multiplier.

Differentiating (13) with respect to Pi and setting the result
to zero, we get:

C2
ZF =

P 2
i

λiσ2
n

. (13)

This determines the optimal power for sending xi:

Pi = C2
ZFσn

√
λi. (14)

Since there exists a constraint on the total power transmission:∑
Pi = P, (15)

CZF can be obtained as:

CZF =
P

σn
∑√

λi
. (16)

Recall the equations (10) and (14), we easily get:

Di =
σ2
n

Pi
λi =

σn
CZF

√
λi. (17)

Therefore, recalling that the sender transmits all the N ele-
ments of x (i.e., full bandwidth is available at the transmitter)
and that the ZF estimator is used at the receiver side, the total
expected distortion denoted by D[ZF/FB] under optimal power
allocation for uncoded transmission is given by:

D[ZF/FB] =

N∑
i=1

Di =
σ2
n

P

(
N∑
i=1

√
λi

)2

, (18)

recalling that σ2
n is the noise power and λi the energy of the

ith transmitted element of x [15].
Based on the following definition of the CSNR and PSNR

expressed in decibels:

CSNR =10log10(P̄ /σ2
n), P̄ = P/N, (19)

PSNR = 10log10(2552/D̄), D̄ = D/N. (20)

They showed that the expected reconstructed video quality
without data compression can be finally obtained from:

PSNR[ZF/FB] = c+ CSNR− 20 log10

(
H
)
, (21)

where c = 20 log10(255) and

H =
1

N

N∑
i=1

√
λi, (22)

represents the data activity [1]. The higher the data activity
H , the lower the reconstructed PSNR, showing the importance
of taking into account the characteristics of the transmitted
video content in a SoftCast context [1], [33]. Note the linear
characteristic of the PSNR[ZF/FB] that depends on the channel
transmission conditions.

B. The proposed model for constrained-bandwidth (CB) ap-
plications

We propose to extend the study by considering the more
realistic and general case i.e., only the K ≤ N largest energy
elements are transmitted due to bandwidth constraints. Thus,
the total distortion D[ZF/CB] now consists of two parts:
• The distortion Di due to transmission, which now affects
K transmitted elements (xi) instead of N . For ease
of reading, let us denote the overall distortion due to

transmission Ds =
K∑
i=1

Di, where Di = E
[
(x̂i − xi)2].

• The distortion Dj due to compression, coming from
each of the N − K discarded elements (xj). Indeed,
since these elements are not sent at all, the information
that they carry cannot be recovered at the receiver side.
Mathematically, the corresponding distortion is given by:
Dj = E

[
(0− xj)2], as if these elements were received
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with a null value. Likewise, we denote the overall distor-
tion due to compression Dd =

∑N
j=K+1Dj .

Therefore, in this case, the total distortion (18) observed at the
receiver is rewritten as the sum of these two terms:

D[ZF/CB] = Ds +Dd, (23)

=
σ2
n

P

(
K∑
i=1

√
λi

)2

+

N∑
j=K+1

λj .

We note that the average transmission power in (19) becomes
P̄ = P/K as the total transmission power is here distributed
over the K transmitted elements of x.

By inserting (23) into (20), we get:

PSNR[ZF/CB] =10 log10

(
2552 ·N
Ds +Dd

)
, (24)

= c− 10 log10

(
1 +

Dd

Ds

)
+ 10 log10

(
P̄

σ2
n

)

− 10 log10

 1

NK

(
K∑
i=1

√
λi

)2
 .

By analogy with (21), we identify the new data activity of
the transmitted elements as:

Ht =
1√
NK

K∑
i=1

√
λi. (25)

For ease of reading, we also define Ed, the overall energy
of all discarded elements:

Ed =
1

N

N∑
j=K+1

λj . (26)

According to these new definitions, the end-to-end video
quality considering bandwidth constraints for the ZF estimator
is finally given by:

PSNR[ZF/CB] = c+ CSNR− 20 log10

(
Ht

)
(27)

− 10 log10

(
1 +

CSNRlin · Ed
Ht

2

)
.

where CSNRlin = P̄
σ2
n

.
The above equation includes a new term in comparison to

(21) that reflects the effect of the data compression applied.
The PSNR now depends on three parameters: the CSNR, Ht

and Ed. The CSNR depends on the transmission conditions,
whereas the two other terms depend on the energy of the
transmitted and discarded elements. In practical applications,
it is therefore possible to estimate the PSNR score of the
reconstructed video at the receiver side without needing the
original video. Indeed, the value of the CSNR can be estimated
through the pilot symbols and the value of Ht can be computed
through the transmitted metadata. For Ed, since the elements
are discarded, the value of each λj is normally unknown at
the receiver but it can be transmitted as a unique additional
metadata with a low cost (e.g., 32 bits per GoP).

For a given bandwidth, the higher Ed, the greater degra-
dation. However, as Ed is multiplied by the CSNRlin, the

(a) Original Image (b) Compr. image, PSNR=38.63dB

(c) PSNR=21.79dB, CSNR = 0dB (d) PSNR=38.41dB, CSNR = 30dB

(e) PSNR=21.79dB, CSNR = 0dB (f) PSNR=38.41dB, CSNR = 30dB

Fig. 5. Visual quality comparison at a CR=0.25 for Mixed CIF sequence (#225
frame), GoP-size=16 frames. (a) Original image, (b) Compressed image, (c)
SoftCast(ZF) with a CSNR = 0dB, (d) SoftCast(ZF) with a CSNR = 30dB.
(e), (f) Resulting error images for CSNR=0dB and CSNR=30dB, respectively.
Please enlarge the figure to observe details.

degradation coming from the compression becomes less no-
ticeable at low CSNR environments. We give in the following
an intuitive explanation and illustrate this effect in Fig. 5. We
first fix the compression level to CR = 0.25 (75% of the
elements/chunks are discarded). Then we consider two cases:

• First, the channel quality is bad (e.g., CSNR=0dB). In
such cases, SoftCast images suffer from high distortion
(snow effect) coming from the transmission errors as
shown in Fig. 5c and Fig. 5e. This distortion due to
transmission is predominant and acts as a masking effect
letting the distortion due to compression almost unnotice-
able;

• In contrast, when the channel quality is good (e.g.,
CSNR=30dB), the distortion due to the transmission
tends to null value (the snow effect disappears) as shown
in Fig. 5d and Fig. 5f. Therefore, the degradation due
to the compression now becomes clearly visible (e.g.,
ringing artifacts on the ballerina in the foreground as well
as on the female presenter).

When K = N , i.e., CR=1, (27) and (21) are identical. In
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other words, the video quality scales linearly with the CSNR
as stated in [1].

The effectiveness of the proposed model is compared to the
original SoftCast scheme. Therefore, without loss of generality
for (27), the elements of x now represent chunks and all
the linear operations (3D-DCT, scaling, etc.) are implemented
in compliance with [15]. However, for this section the ZF
estimator is used instead of the LLSE one. The model for
such an estimator is given in the next section.

The model is evaluated through extensive simulations using
MATLAB R© by considering several video contents: User Gen-
erated Content (UGC) with 360p, 480p and 1080p resolutions
from the recent YouTube UGC database [42] as well as
traditional HD720p sequences (class E, 1280 × 720 pixels,
30fps) and CIF sequences (352 × 288 pixels, 30fps) from
the Xiph collection [43] or from the JCT-VC database [44].
To summarize the results, we create two different Mixed
sequences by slicing the first 128 frames of ten sequences from
[43] or [44]. First, the Mixed HD720p sequence, composed
of Ducks, Four People, In to tree, Johnny, Kristen and Sara,
Old town, Parkjoy, Parkrun, Shields and Stockholm, Then, the
Mixed CIF sequence, composed of Akiyo, News, Coastguard,
Foreman, Tennis, Soccer, Football, Stefan, Mobile and Husky.

The process is performed GoP by GoP with GoP-size of
4, 8, 16, 32 frames as in [15]. Each frame is classically split
into 64 chunks [15], [17], [19], [33] or 256 chunks as in [25],
[35]. Transmissions through AWGN channels in the CSNR
range of [0∼30dB] are considered as in [15], [17], [25], [33].
Four CR=1, 0.75, 0.5 and 0.25 are considered.

Due to limited space, among the different configurations
(video content, GoP-sizes, etc.), only the results for the
HD720p sequences are shown in this paper. The results
for the other sequences are similar and can be found in
the following link: https://drive.google.com/drive/folders/
1nHqEkz8uwjs9-Sw7BHRHtXTx2URbOmYx?usp=sharing.
The GoP-size and the number of chunks per frame are
respectively set to 16 frames and 64 chunks per frame as it
represents the original and mostly used configuration [15].
We verified similar results for the other video sequences,
GoP-sizes, and chunk-sizes.

Fig. 6 presents the comparison between our model and the
full end-to-end transmission simulations of the SoftCast(ZF)
scheme for different CR and CSNR values.

Results show that:
• When CR=1 (red color), we logically obtain the same

linear characteristic as in [1];
• However, the model proposed in [1] is no longer valid

when the available channel bandwidth decreases (cyan,
green and blue curves) as the data compression is not
considered. In practice, it is mandatory to consider such
loss since it drastically degrades the received video qual-
ity and implies non-linear characteristics at high CSNR.
This is the well-known leveling-off effect [6] that appears
and implies huge decibel losses (e.g., ∆PSNR1=21.5dB
for the considered case). This phenomenon is perfectly
described by our model. In terms of video quality, the
PSNR difference between two curves denoted by ∆PSNR
becomes lower as the CSNR decreases. For instance, the

0 5 10 15 20 25 30

CSNR(dB)

20

25

30

35

40

45

50

55

60

A
v
e
ra

g
e
 P

S
N

R
 (

d
B

)

Line/Marker type:

SoftCast(ZF) simulation
The proposed ZF model

Color type:

CR=1 (Xiong's case)
CR=0.75 
CR=0.5
CR=0.25

PSNR
2

PSNR
1

Fig. 6. Average PSNR results for the proposed theoretical model (solid lines)
and SoftCast simulations with ZF estimator: (dots markers) for the Mixed
HD720p sequence. Configuration: GoP-size=16 frames, 64 chunks/frame.
Colors red, cyan, green and blue represent CR=1, 0.75, 0.5 and 0.25,
respectively.

∆PSNR between the CR=1 (red curves) and CR=0.25
(blue curves) cases decreases from 21.5dB to 3.5dB when
the CSNR goes from 30dB to 0dB. This is perfectly
explained with the proposed model where for low CSNR
values (< 10dB), losses due to noise takes precedence
over losses due to compression.

• The reconstructed PSNR goes below 35dB when con-
sidering very low CSNR values. Note that for such low
CSNR values, classical standards such as H.264/AVC or
HEVC offer worse quality and suffer glitches due to
severe decoding errors [45] as illustrated in Fig. 2b in
the Introduction. On the contrary, SoftCast can deal with
any channel quality by delivering, at low CSNR, a video
signal with low but acceptable quality [15] (see Fig. 2c);

• Since there is no approximation in the derivation process
of (27), our model perfectly matches the simulations
for all the considered bandwidths and CSNR values.
However, as mentioned in Section II, the LLSE estimator
is more commonly used, as in the original works of
Jakubczak et al. [15] or as reported in [16]–[20], [24]–
[28], [30]–[37]. Therefore, we propose in the next section
a new model that incorporates the benefits of using the
LLSE estimator.

IV. DESCRIPTION OF THE PROPOSED MODELS
CONSIDERING LLSE ESTIMATOR AND NEAR-OPTIMAL

POWER ALLOCATION

Recall Fig. 4 and considering the LLSE estimator [15], [17]
instead of the ZF one, (7) becomes:

x̂i = ŷi · αi, (28)

= ŷi ·
giλi

g2
i λi + σ2

n

.
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Likewise, (8) is changed to:

Di[LLSE/FB] = E
[
(x̂i − xi)2]

, (29)

=
σ2
nαi
gi

,

=
σ2
nλi

g2
i λi + σ2

n

,

=
σ2
nλi

Pi + σ2
n

.

(6) and (9) remain valid for this case.
As above, we want to express Pi as a function of Di[LLSE/FB].

For this purpose, let us recall the near-optimal power allocation
defined by the following scaling factor equation (2) from [15]
(see Section II): g2

i = P√
λi

∑
i

√
λi

. Inserting this into (9), we
get:

Pi = g2
i λi, (30)

=
P
√
λi∑

i

√
λi
.

Therefore, the distortion per element can be expressed as:

Di[LLSE/FB] =
σ2
nλi

P
√
λi∑

i

√
λi

+ σ2
n

, (31)

=
λi

√
λi∑
i

√
λi
· Pσ2

n
+ 1

,

=
λi

√
λi∑
i

√
λi
· (CSNRlin ·N) + 1

.

By combining (17) and (30), the LLSE distortion equation
can be also given according to the ZF one as follows:

Di[LLSE/FB] = Di[ZF/FB] ·
1

1 +
σ2
n

Pi

. (32)

Assuming that the sender transmits all the N elements
of x (i.e., no channel bandwidth restriction) and that the
LLSE estimator is used at the receiver side, the total expected
distortion under near-optimal power allocation for the LLSE
case, denoted by D[LLSE/FB] is given by:

D[LLSE/FB] =

N∑
i=1

Di[LLSE/FB]. (33)

Recall (19), (20), (31) and (32), the expected reconstructed
video quality considering the LLSE estimator without data
compression can be obtained from:

PSNR[LLSE/FB] = c− 10 log10

(
1
N

N∑
i=1

λi√
λi∑

i
√
λi
·(CSNRlin·N)+1

)
. (34)

(34) has a straightforward expression by considering the
approximation Pi ' P/N , i.e., a flat power allocation. In
the following, equations resulting from this approximation
are marked by an asterisk. Recall (32) and (33), D[LLSE/FB]
becomes:

D[LLSE/FB]* =

N∑
i=1

Di[ZF/FB] ·
1

1 +
Nσ2

n

P

. (35)

Recall (19) and (20), the expected reconstructed video qual-
ity considering the LLSE estimator without data compression
is given by:

PSNR[LLSE/FB]* =c− 10 log10

(
D[LLSE/FB]*

N

)
, (36)

= c− 10 log10 (D[ZF/FB])

+ 10 log10

(
1 +

1

CSNRlin

)
,

= c+ CSNR− 20 log10

(
H
)

+10 log10

(
1 +

1

CSNRlin

)
.

When the transmitted signal follows a flat power distri-
bution, and only in this case, the theoretical model of the
SoftCast-based scheme assuming near-optimal power alloca-
tion and LLSE estimator is given by:

PSNR[LLSE/FB]* = PSNR[ZF/FB] +GLLSE, (37)

where GLLSE = 10 log10

(
1 + 1

CSNRlin

)
.

As seen in section III-B, this model can be extended to
the CB case by adding an additional term that represents the
discarded elements:

PSNR[LLSE/CB]* = c+ CSNR− 20 log10

(
Ht

)
(38)

+GLLSE

− 10 log10

(
1 +

(CSNRlin + 1) · Ed
Ht

2

)
,

' PSNR[ZF/CB] +GLLSE.

Proof is available in Appendix A.
In a similar way, the expected reconstructed video quality

considering the general case (Pi 6≈ P/N ), the LLSE estimator
and CB applications can be obtained from:

PSNR[LLSE/CB] = c− 10 log10

(
Ds/N +Dd/N

)
, (39)

where Ds and Dd are obtained in a similar way to (23).
Note that (38) is similar to (27), except that the fifth and

last term includes (CSNRlin + 1) instead of (CSNRlin), due
to the use of the LLSE estimator. From (37) and (38), it can
be seen that the maximum difference between the ZF model
and LLSE∗ model corresponds to the GLLSE term. We give
in Table I the corresponding numerical values of GLLSE for
several CSNR values.

TABLE I
EVALUATION OF THE PSNR IMPROVEMENT BROUGHT BY THE LLSE

ESTIMATOR IN COMPARISON TO THE ZF ESTIMATOR

CSNR(dB) 0 5 10 15 20 25
GLLSE(dB) 3.01 1.19 0.41 0.13 0.04 0.01

We can conclude from Table I that above 10dB, the im-
provements brought by the LLSE estimator in terms of PSNR
scores are insignificant. This is consistent with [1], [15] and
it is confirmed below.
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Fig. 7. Average PSNR results for the proposed LLSE theoretical model (dashed lines), the LLSE simplified model (dotted lines with cross markers), the
SoftCast(LLSE) simulations: (big circle markers) and SoftCast(ZF) simulations: (solid lines with dot markers) for randomly generated power allocations.
Configuration: GoP-size=8 frames, 64 chunks/frame, CR=1. First row, illustration of randomly generated power allocations. Second row: Corresponding
Average PSNR results. (a), (d) Amplitude=[1000*randn(1,512)], (b), (e) Amplitude=[5000 100*randn(1,511)], (c), (f) Amplitude=[5000 100*randn(1,311)
randn(1,200)]. Please enlarge the figure to observe details. The small figures in (b), (c), (d), (e), (f) correspond to a zoom of the main figures.

In the following, we verify the validity of the simplified
model through simulations. We recall that the simplified
model is based on the following assumption Pi ' P/N (or
Pi ' P/K in case of bandwidth constraints), i.e., the signal
follows a flat power distribution. In practice, this distribution
is unlikely to happen, it would require a video sequence
with uncorrelated data, or in other words a video with very
high spatio-temporal activity/complexity. One way to obtain
such distribution is to create images/video based on randomly
generated uncorrelated (DCT) coefficients. First, we generate
a Random Power Distribution (RPD) representing a quasi-flat
power distribution. Then, in order to evaluate the PSNR gap
between the simplified model and simulations we create two
others RPD representing more realistic power distributions
that may be observed with real video. Finally, the PSNR
gap is also evaluated using real power distributions from still
images/video content.

To create the RPD, we use normally distributed random
numbers, playing the role of chunks, as the input of the
scheme. Precisely, a matrix of 512 chunks composed each of
36× 44 random coefficients is generated as typically done in
a SoftCast-based scheme, assuming CIF sequences and GoP-
size of 8 frames. Each chunk is then multiplied by a gain
defined hereafter to modify the shape of the power distribution.
We assume without loss of generality that all the chunks are
transmitted (i.e., CR=1).

Transmissions through AWGN channels in the range of
[0∼20dB] are considered as the effect of the LLSE estimator
is limited for higher CSNR.

The first RPD representing the quasi-flat power distribution
(no major difference of power between each chunk) is illus-
trated in Fig. 7a. Simulation results are given in Fig. 7d. Since
the approximation of a flat power distribution is respected, the
limit represented by (36) in dotted lines with cross markers
can be reached by the SoftCast(LLSE) scheme. This is verified
both by simulations (big circle markers) and theory through
(34) represented by dashed lines.

Then, we consider the second and third RPD that simulate
typical power distribution observed with real video. They both
contain one high value (that represents the chunk containing
the low frequencies including the DC component, thus of high
energy) and 511 others. The second RPD contains relative
high energy for these 511 values as illustrated in Fig. 7b. It
represents a high spatiotemporal complexity video signal (e.g.,
such as the Husky video sequence). The third RPD shown in
Fig. 7c represents a low complexity video signal (e.g., such
as the Akiyo video sequence) where 200 values are left almost
nulls. Results for these two power distributions are available
in Fig. 7e and Fig. 7f, respectively. We observe that:
• The SoftCast(LLSE) simulations and model are delimited

by the simplified LLSE model (LLSE*) and by the
SoftCast(ZF) simulations/model;
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Fig. 8. Illustration of the average spatiotemporal indexes for the selected HD
and CIF video sequences.

• As the power distribution becomes heterogeneous, the
gain brought by the LLSE estimator decreases and thus,
the PSNR gap between the two proposed models (i.e.,
LLSE and LLSE*) becomes larger.

We finally examine the impact of real video content on the
existing PSNR gap between the ZF estimator and LLSE esti-
mator. To characterize the video content, we use the amount of
Spatial and Temporal information in a video sequence, defined
by the (SI) and (TI) indexes proposed by the ITU-T [46]. They
are defined as follows

SI = maxtime{stdspace[Sobel(I(i, j, k))]}, (40)
TI = maxtime{stdspace[I(i, j, k)− I(i, j, k − 1)]}, (41)

where I(i, j, k) represents the kth frame, (i, j) the corre-
sponding spatial coordinates and Sobel() the Sobel filtering
operation, respectively.

However, as mentioned in [47] due to the current definition
of these indexes that select the highest value along the time
axis, performing the TI computation for a video with slow
motions that contains cuts results in a high TI value. In order to
have more representative (SI, TI) values, we choose to average
the results over the entire sequence. The new definitions are

SI = meantime{stdspace[Sobel(I(i, j, k))]}, (42)
TI = meantime{stdspace[I(i, j, k)− I(i, j, k − 1)]}. (43)

These definitions are considered in the rest of this paper
instead of eq. (40) and eq. (41). Fig. 8 shows the resulting
average (SI, TI) values for each sequence.

The PSNR gap between the LLSE estimator and ZF esti-
mator has been quantified for all the HD and CIF sequences
in Fig. 8. A representative summary of the results with five
selected sequences is shown in Fig. 9. We verified similar
behaviors for the other video content. Results show that:
• As mentioned above, the PSNR gap between the ZF and

LLSE estimator varies according to the video character-
istics or more precisely, the power distribution of the
transmitted chunks/elements;
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Fig. 9. Illustration of the PSNR gap between the LLSE estimator and ZF
estimator. Configuration: GoP-size = 16 frames, full available bandwidth.
Colors: black = LLSE model*, red = Akiyo, blue = Husky, green = ParkJoy,
cyan = In to tree and magenta = Shields video sequences.

• This gap is always under the LLSE* model that seems
to define a maximum limit that can be reached when the
signal is uncorrelated and spread over the chunks, i.e.,
when the power is equally distributed;

• As the spatiotemporal indexes increase, the performance
of the LLSE estimator increases as observed with the
Husky or ParkJoy sequences, i.e., when the video signal
is difficult to decorrelate due to high motions and strong
edges. On the contrary, the performance of the LLSE
estimator decreases when the spatiotemporal indexes are
small. Indeed, in such cases, the correlation is high and
thus, after the decorrelation transform, most of the energy
is located on the low frequency chunks leaving only
fragments of energy for the others chunks, as similarly
observed in Fig. 7c and Fig. 7f with the RPD signals.

Based on these observations and for a quick evaluation
of the LLSE’s performance, we suggest to use the LLSE
simplified model, i.e., (38) for high spatiotemporal content or
(27) for low spatiotemporal content as the bias is limited. For
a precise evaluation, and specifically at low CSNR values, we
recommend using the un-simplified theoretical model (34) for
FB case and (39) for CB cases as they do not introduce bias
between them and the end-to-end simulations, in contrast to
the simplified ones.

As before, we also give the comparison between our
models and the full end-to-end transmission simulations for
SoftCast(LLSE) considering the Mixed HD720p sequence in
Fig. 10. As observed, the simulation results lie in between
the ZF and LLSE* model since the composite sequence
contains 10 different sequences. As the LLSE model is not
approximated, the predicted values offered by the latter and
the values obtained by simulations are equal.

We have seen in this section the theoretical model of
the SoftCast-based scheme assuming LLSE estimator at the
receiver side and near-optimal power allocation at the receiver,
i.e., power allocation considering no channel feedback at the
transmitter. This constitutes the main scheme in the literature,
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as it is suitable for broadcast context, where only one data
stream is sent and can be decodable by any receiver. However,
one may also find, SoftCast+ scheme [31], [32]. We give in
the next section the corresponding theoretical model.

V. DESCRIPTION OF THE PROPOSED MODEL CONSIDERING
LLSE ESTIMATOR AND OPTIMAL POWER ALLOCATION

In this section, we evaluate the performance of SoftCast+
[32] i.e., where the optimal power allocation is performed and
the LLSE estimator is used at the receiver side. In this case,
the N − ` chunks/elements with power level below the noise
power level (σ2

n) are discarded, and the total available power
P is reassigned to the ` transmitted chunks/elements.

Therefore, as for the ZF/CB case, the total distortion con-
sists of two terms: D[OPA-LLSE] = Ds + Dd, where Ds and
Dd correspond respectively to the total distortion due to the
` transmitted elements and the distortion due to the N − `
discarded elements with energy below noise power level. The
way to compute `, the optimal number of transmitted elements
taking into account the CSNR value is detailed later on.

The expected distortion for each of the transmitted element
x̂i is the same since LLSE estimator is used at the receiver
side (see section IV):

Di = E
[
(x̂i − xi)2]

=
σ2
nλi

Pi + σ2
n

. (44)

The new optimization problem is defined as follows:

(P2) : min
∑̀
i=1

Di +

N∑
i=`+1

Dj , s.t.
∑̀
i=1

Pi ≤ P (45)

This is a Lagrangian problem:

L =

N∑
i=1

Di +
1

C2
OPA-LLSE

N∑
i=1

Pi, (46)

where C2
OPA-LLSE is the Lagrange multiplier.

Differentiating (46) with respect to Pi and setting the result
to zero, we get:

σ2
n

λi
(Pi + σ2

n)2
=

1

C2
OPA-LLSE

. (47)

This determines the optimal power for sending xi:

Pi = COPA-LLSEσn
√
λi − σ2

n. (48)

Note that only the elements with Pi>0 are transmitted.
From (48) we get the following condition:

λi>
σ2
n

C2
OPA-LLSE

. (49)

Since there exists a constraint on the total power transmis-
sion, C2

OPA-LLSE can be further defined. Indeed, without loss
of generality, let us assume that the Pi (i = 1, 2, . . . , N ) are
ordered in descending order and that only the ` elements verify
the preceding inequality, then:∑̀

i=1

Pi = P, (50)

∑̀
i=1

COPA-LLSEσn
√
λi − σ2

n = P,

COPA-LLSEσn
∑̀
i=1

√
λi − `σ2

n = P,

COPA-LLSEσn
∑̀
i=1

√
λi = P + `σ2

n.

Finally,

COPA-LLSE =
P + `σ2

n

σn
∑̀
i=1

√
λi

. (51)

Recall the equations (44) and (48), we easily get:

Di =
σ2
n

Pi + σ2
n

λi, (52)

=
σ2
n

COPA-LLSEσn
√
λi
λi,

=
σn

COPA-LLSE

√
λi.

Finally, the total distortion for the LLSE case with optimal
power allocation is given by [31], [32]:

D[OPA-LLSE] =
∑̀
i=1

Di +

N∑
j=`+1

Dj , (53)

=
σ2
n

(∑`
i=1

√
λi

)2

P + `σ2
n

+

N∑
j=`+1

λj .

We note that the definition of D[OPA-LLSE] (53) is close to
D[ZF/CB] (23) except that:

1) the number of discarded chunks is ` and it varies
according to the channel noise power,
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PSNR[OPA-LLSE] = c+ CSNR +GLLSE − 20 log10

(
Ht2

)
− 10 log10

(
1 +

(CSNRlin + 1) · Ed2

Ht2
2

)
. (57)

2) there is an additional term (`σ2
n) at the denominator that

represents the effect of the LLSE estimator.
Therefore, the development is similar to section III-B, and

we get:

PSNR[OPA-LLSE] =10 log10

(
2552

Ds/N +Dd/N

)
, (54)

= c− 10 log10

(
1 +

Dd

Ds

)
+ 10 log10

(
P̄ + σ2

n

σ2
n

)

− 10 log10

 1

N`

(∑̀
i=1

√
λi

)2
 .

Please note that the average transmission power in (20)
becomes P̄ = P/` as the total transmission power is here
distributed over the ` transmitted elements of x.

By analogy with (24), we identify the new data activity of
the remaining transmitted elements as:

Ht2 =
1√
N`

∑̀
i=1

√
λi. (55)

For the ease of reading we also define Ed2, the overall
energy of all discarded elements:

Ed2 =
1

N

N∑
j=`+1

λj . (56)

According to these new definitions, the end-to-end video
quality for the LLSE estimator with optimal power allocation
is finally given by (57) at the top of the page. Proof can be
found in Appendix B.

The equation (57) has a similar form as (27). Except that:
• Like (38), it includes the GLLSE term that reflects the

benefits of the LLSE estimator. However, unlike (38), this
new model is valid regardless of the power distribution;

• The fifth and last term includes (CSNRlin + 1) like (38),
instead of (CSNRlin) for (27);

• The definition of Ht2 and Ed2 depends on ` instead of
K.

Whereas in (38), the elements/chunks are only discarded
due to bandwidth constraints, in (57), in order to optimize the
received quality, SoftCast+ may discard some elements/chunks
even if the bandwidth available at the transmitter allows
transmitting all of them. As a consequence, the above model
already includes both FB and CB cases. For the constrained-
bandwidth applications, ` actually represents the minimum
value between the number of discarded elements Nb1 due
to optimal power allocation and the number of discarded
elements Nb2 that match the available bandwidth (` =
min(Nb1, Nb2)). We note that the number of discarded el-
ements for optimal power allocation is not fixed and depends
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Fig. 11. Average PSNR results for the proposed theoretical model (dotted
lines) and SoftCast+ simulations (optimal power allocation with LLSE estima-
tor): (cross markers) for the Mixed HD720p sequence. Configurations: GoP-
size=16 frames, 64 chunks/frame. Colors red, cyan, green and blue represent
CR=1, 0.75, 0.5 and 0.25, respectively.

on the channel characteristics. It is updated for each received
CSNR estimate at the transmitter.

Like the other models, assuming that the value of Ed2 is
transmitted as a unique additional metadata, it is possible for
the receiver to compute and estimate the PSNR score of the
reconstructed video even without having the original one.

The effectiveness of the proposed model is compared to the
SoftCast+ scheme (using optimal power allocation and LLSE
estimator). We use the same simulation configurations given
in Section III-B. Results given in Fig. 11 show that:
• In contrast to previous models, where bandwidth con-

straints directly imply a loss of quality even at low
CSNR values, SoftCast+ gives almost the same received
quality for both cases at low CSNR (e.g., CSNR≤ 5dB
for this video sequence). This is because for such low
CSNR values, the number of transmitted chunks with
SoftCast+ is usually really small (e.g., only 206

1024 and 276
1024

chunks per GoP in average respectively for a CR=0.25
and a CR=1 for the Mixed HD720p sequence under
a CSNR=0dB, meaning that only ∼ 20% of the total
bandwidth is used).

• In all cases, our model perfectly matches the simula-
tions over the entire CSNR range, independently of the
bandwidth case considered. This is predictable since no
approximation is made in the derivation process of (57).

VI. GLOBAL PERFORMANCE EVALUATION OF THE MODELS

In this section, we compare the performance of the three
SoftCast schemes through our models. In addition, we give an
example of the possible use of these models. Specifically, by
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Fig. 12. Average PSNR results for the proposed theoretical models: ZF (solid
lines), LLSE (dashed lines) and OPA-LLSE (dotted line); and SoftCast sim-
ulations: SoftCast ZF (dots), SoftCast LLSE (circle markers) and SoftCast+
OPA-LLSE (cross markers) for the Johnny sequence. Configuration: GoP-
size=16 frames, 64 chunks/frame. Colors: red, green and blue represent CR=1,
0.5 and 0.25, respectively.

using them, we theoretically validate the experimental results
from our previous work [33].

A. Comparison of the three schemes

We first compare the end-to-end performance of the pro-
posed models and their corresponding SoftCast schemes: Soft-
Cast(ZF), SoftCast(LLSE) and SoftCast+.

The parameters used in the simulations are the same as
described in Section III-B. Among all the video sequences,
we choose to show the results for the Johnny and ParkJoy
video sequences because of their spatiotemporal information
disparities as observed in Fig. 8. For clarity, we only show the
results for CR=1, 0.5 and 0.25 represented by red, green and
blue colors, respectively. Results for the other CR values are
similar.

Results in Fig. 12 and Fig. 13 show that:
• For low CSNR values ≤ 10dB, as already known and

regardless of the transmitted video content, the LLSE
estimator (dashed lines and circle markers) outperforms
the ZF one (solid lines and dots markers). However, the
PSNR improvement is limited and at a maximum still
low as shown in Table I in Section IV;

• Regardless of the configuration (GoP-size, available
bandwidth, transmitted video content), SoftCast(ZF) of-
fers the worst PSNR, followed by SoftCast(LLSE) which
performs worse than SoftCast+. Note that SoftCast+ em-
ploys both LLSE estimator and optimal power allocation;

• When comparing the SoftCast(LLSE) (dashed lines and
circle markers) to the SoftCast+ (dotted lines and cross
markers), we can observe that SoftCast+ offers a marginal
performance improvement as stated in [34]. However, this
is only true when considering no bandwidth restriction
(CR=1). For instance, let us consider a CR=0.25 and a
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Fig. 13. Average PSNR results for the proposed theoretical models: ZF (solid
lines), LLSE (dashed lines) and OPA-LLSE (dotted lines); and SoftCast sim-
ulations: SoftCast ZF (dots), SoftCast LLSE (circle markers) and SoftCast+
OPA-LLSE (cross markers) for the ParkJoy sequence. Configuration: GoP-
size=16 frames, 64 chunks/frame. Colors: red, green and blue represent CR=1,
0.5 and 0.25, respectively.

CSNR=0dB, the PSNR gap between these two versions
is about 5.76dB and 3.43dB, respectively for the Johnny
and ParkJoy video sequences. This gap decreases as
the CSNR increases and becomes almost null after a
CSNR≥30dB (resp. CSNR≥15dB), for the Johnny (resp.
ParkJoy) video sequence. This is perfectly explained by
the proposed models, where for the ParkJoy sequence,
most of the chunks should be transmitted but cannot due
to the bandwidth constraints. In contrast, for the Johnny
video sequence, the improvement over the classical Soft-
Cast(LLSE) is still important even above CSNR=15dB,
due to the fact that most of the chunks are energy-limited
and can be discarded to smartly reallocate the total power
available at the transmitter.

Based on the power distribution (λi) directly obtained at the
transmitter after the decorrelation transform, one can quickly
evaluate the performance of the considered scheme without
having to perform full extensive end-to-end simulations.

In addition, we use our models to show that the performance
and behaviors of SoftCast-based schemes are highly dependent
on the transmitted content. In [33], we demonstrated that the
GoP-size is of paramount importance in a SoftCast context.
Specifically, depending on the spatiotemporal characteristics
of the video and the intended application, we showed that
an optimal GoP-size could be defined either to improve the
received quality or to decrease the complexity while offering
similar PSNR scores. In the following, the proposed models
are used to predict the optimal GoP-size for the three SoftCast-
based schemes considering different video content.

B. Example of application

We take into account different GoP-size=4, 8, 16 and 32
frames. Due to limited spaces, we only show the results
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for CR=1 (first row), and CR=0.25 (second row). When
compression is needed due to bandwidth constraints, we ensure
to keep the same symbol rate for all the methods. For instance,
for a CR=0.25, we keep the equivalent of 2 frames (resp. 4) for
the GoP-size=8 (resp. 16). We verified that the results for other
CR have similar behaviors. In this paper, the selected maximal
GoP-size is set to 32 frames. Indeed, the complexity increases
according to O(Llog(L)) with L the number of frames in
a GoP [15], [48]. Choosing L > 32 implies high hardware
capacities as well as an increase of the decoding time since
the receiver needs to wait the L frames before processing
the inverse temporal DCT. These two constraints may not be
compatible with several practical applications.

The first selected video sequence is Johnny, which contains
low spatiotemporal information. Regardless of the considered
scheme and available channel bandwidth, results given in
Fig. 14 show that increasing the GoP-size leads to a better
received quality over the entire CSNR range. The PSNR
gain between a GoP-size of 4 and 32 frames is about 6dB,
regardless of the SoftCast scheme considered. This huge gain
is due to the better use of the temporal DCT. Indeed, due to
high temporal correlation (slow motions), using a larger GoP
allows to better compact the information and hence reduces
the data activity. However, and as explained before, when
considering CB applications and high CSNR values (≥25dB),
the leveling-off effect appears. Therefore, the gain goes down
and increasing the GoP-size does not bring large improvement.

Simulation results considering a high spatiotemporal content
such as the ParkJoy video sequence are given in Fig. 15. In
contrast to the Johnny sequence, the improvement is limited
and increasing the GoP-size from 4 to 32 frames only brings
about 1.2dB gain. Regardless of the studied scheme, the
improvement is only about 0.2dB from a GoP-size equals
16 to 32 frames. Such improvement is insignificant as the
MPEG committee considers that above 0.5dB, a difference is
visually noticeable [41]. Therefore, we recommend using an
intermediate GoP-size (8∼16 frames) for such content. This
is even more true as the gain between these two GoP-sizes
quickly decreases and becomes null or slightly negative when
considering CB applications and CSNR ≥15dB.

We verified that the two statements above are valid in
average for all video content in Fig. 8. However, giving an
optimal GoP-size considering only the characteristics of the
video content itself is not easy since several other parameters
such as the channel quality or the available bandwidth im-
pact the received quality. In the following, we give general
trends but recommend for a specific application, the use of
the proposed models to quickly find the optimal GoP-size
according to the available channel bandwidth and if known
at the transmitter, the channel quality. If the delay induced
by the decoding is not an important criterion, we suggest to
use larger GoP-size (e.g., 32 frames) for low spatiotemporal
information such as the Johnny or the Akiyo since under the
same considered channel it brings larger gain in received video
quality. On the other hand, using intermediate to small GoP-
size (e.g., 8∼16 frames) for high spatiotemporal content (sport
events, etc.) such as the ParkJoy or the Stefan video sequences
is sufficient since the gain between them and a larger GoP-size

is insignificant or even negative. This is especially true for the
Husky video sequence (high SI, very high TI) where increasing
the GoP-size from 8 to 32 frames only brings less than
0.4dB improvement in average, which is unnoticeable [41].
Regardless of the video content, we note that the GoP-size of 4
frames is never preferred as it does not take enough advantage
of the temporal correlation between frames. However, GoP-
size of 4 frames or even smaller may be used for low-latency
applications. In this case, our models can be used to quickly
evaluate the PSNR loss induced by such GoP-size reduction.

We showed in this paper three models that can be used to
predict the end-to-end performance of SoftCast-based schemes
including:
• bandwidth-constrained applications
• LLSE estimator at the receiver side
• optimal power allocation

Depending on the targeted applications, we recommend using
either (27) for broadcast context where one data stream is sent
for all the receivers, or (57) for unicast context with CSNR
channel quality feedback where optimal power allocation can
be performed to improve the received quality. Indeed, (34)
only brings a small improvement over (27) only at low CSNR
values (≤ 10dB). This improvement is limited as shown in
Table I.

VII. CONCLUSION

In this paper, we provide a complete and comprehen-
sive theoretical evaluation of the end-to-end performance of
SoftCast-based linear video delivery schemes. Three theoret-
ical PSNR-based models, which extend the model initially
proposed in [1], are proposed by considering several realistic
transmission scenarii. These models include 1) bandwidth-
constrained applications 2) LLSE estimator 3) optimal power
allocation. Predictions based on the models perfectly match
the simulation results, hence accurately represent the full
end-to-end SoftCast performance. These models can be used
by the research community to evaluate their own algorithms
against the SoftCast scheme without requiring full end-to-
end extensive simulations. In contrast to the model proposed
in [1], ours can help for parameter optimization in practical
constrained-bandwidth applications where the linear relation-
ship between video quality and CSNR is no longer valid over
the entire CSNR range due to the appearance of the leveling-
off [6] effect. Our models help to clearly characterize the
origin of this phenomenon as well as to quantify the quality
improvement brought by the LLSE estimator. Furthermore,
to underline the utility of these models, we show that they
can also be used to tune the parameters in a LVD context.
For instance, we give general trends regarding an optimal
GoP-size that can be selected according to the transmitted
video content, i.e., using a large GoP-size when transmitting
low spatiotemporal complexity video content helps to increase
the received quality. In contrast, increasing the GoP-size for
high spatiotemporal complexity video content does not bring
significant improvements. Finally, the models can also be used
in real conditions to directly estimate the PSNR scores at the
receiver side even without having the original video.
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Fig. 14. Average PSNR results for theoretical models and SoftCast-based schemes for the Johnny sequence. (a), (b), (c): CR = 1. (d), (e), (f): CR=0.25. (a),
(d): SoftCast(ZF) and theoretical ZF model. (b), (e): SoftCast(LLSE) and theoretical LLSE model. (c), (f): SoftCast+ and theoretical OPA-LLSE model.
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Fig. 15. Average PSNR results for theoretical models and SoftCast-based schemes for the ParkJoy sequence. (a), (b), (c): CR = 1. (d), (e), (f): CR=0.25. (a),
(d): SoftCast(ZF) and theoretical ZF model. (b), (e): SoftCast(LLSE) and theoretical LLSE model. (c), (f): SoftCast+ and theoretical OPA-LLSE model.
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APPENDIX A
PROOF OF THE EQUATION OF THE SIMPLIFIED LLSE

MODEL FOR CB CASES

Proof. Considering the constrained-bandwidth cases, the total
distortion for the simplified SoftCast(LLSE) model, denoted
by LLSE* is defined by:

D[LLSE/CB]* =

K∑
i=1

Di[ZF/CB] ·
1

1 +
Kσ2

n

P

(A.1)

+

N∑
j=K+1

λj .

Recalling the equation of the CSNR (19) and PSNR (20),
one gets:

D[LLSE/CB]* =

K∑
i=1

Di[ZF/CB] ·
1

1 + 1
CSNRlin

(A.2)

+

N∑
j=K+1

λj .

Using the property: log10(a + b) = log10(a) + log10(1 + b
a ),

where a =
K∑
i=1

Di[ZF/CB] · 1
1+ 1

CSNRlin

and b =
∑N
j=K+1 λj , and

recalling that Di[ZF/CB] =
σ2
n

P

(
K∑
i=1

√
λi

)2

one gets:

PSNR =10 log10

(
2552 ·N
D[LLSE/CB]

)
, (A.3)

= 20 log10(255)

− 10 log10

( 1

CSNRlin + 1

)
· 1

NK

(
K∑
i=1

√
λi

)2


− 10 log10

(
1 +

(CSNRlin + 1) · Ed
Ht

2

)
,

Therefore, the equation can be rewritten as:

PSNR = c+ 10 log10 (CSNRlin + 1) (A.4)
− 20 log10(Ht)

− 10 log10

(
1 +

(CSNRlin + 1) · Ed
Ht

2

)
,

= c+ CSNR + 10 log10

(
1 +

1

CSNRlin

)
− 20 log10

(
Ht

)
− 10 log10

(
1 +

(CSNRlin + 1) · Ed
Ht

2

)
,

= PSNR[LLSE/CB]*,

where 10 log10

(
1 + 1

CSNRlin

)
can be denoted by GLLSE for

ease of reading.

APPENDIX B
PROOF OF THE EQUATION OF THE SOFTCAST+ SCHEME

Proof. The proof of (57) is trivial when considering the fact
that P̄+σ2

n

σ2
n

can be seen as ˜CSNRlin = CSNRlin + 1. Indeed,
by inserting ˜CSNRlin in (24), replacing K by ` and using the
property: log10(a+ b) = log10(a) + log10(1 + b

a ), one easily
gets:

PSNR =10 log10

(
2552 ·N
Ds +Dd

)
, (B.1)

= c− 10 log10

(
1 +

Dd

Ds

)
+ 10 log10

(
˜CSNRlin

)
− 10 log10

 1

N`

(∑̀
i=1

√
λi

)2
 ,

= c+ CSNR + 10 log10

(
1 +

1

CSNRlin

)

− 20 log10

(
Ht2

)
− 10 log10

(
1 +

˜CSNRlin · Ed2

Ht2
2

)
,

= c+ CSNR +GLLSE − 20 log10

(
Ht2

)
− 10 log10

(
1 +

(CSNRlin + 1) · Ed2

Ht2
2

)
,

= PSNR[OPA-LLSE].
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