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Partition function for quantum gravity in 4 dimensions as a 1/N expansion

Quantum gravity is the solution ascribed to rendering the geometric description of classical gravity, in any dimensions, completely consistent with principles of quantum theory. The serendipitous theoretical discovery that black holes are thermodynamical objects that must participate in the second law has led to these purely gravitational objects to be dubbed, 'the hydrogen atom for quantum gravity', analogous to the atomic spectrum of hydrogen, effectively used by Neils Bohr and his contemporaries to successfully formulate quantum mechanics in the early 20th century. Here, we employ the temperature and entropy formulae describing Schwarzschild black holes to consider the emergence of Einstein Field Equations from a complex-Hermitian structure, [Ricci tensor ± √ -1 Yang-Mills field strength], where the gravitational degrees of freedom are the SU(N ) colors with N ∈ Z ≥ 0 and a condensate comprising color pairs, k = N/2, appropriately coupled to the Yang-Mills gauge field. The foundations of our approach reveal the complex-Hermitian structure is analogous to Cayley-Dickson algebras, which aids in formulating the appropriate action principle for our formalism. The SU(N ) gauge group is broken into an effective SU(4) → SO(4) ↔ SO(1, 3) field theory on the tangent space with two terms: the Einstein-Hilbert action and a Gauss-Bonnet topological term. Moreover, since topologically classifying all n = 4 (dimensional) Riemannian manifolds is not a clear-cut endeavor, we only consider the Euclidean path integral as the sum over manifolds with distinct topologies, h ∈ Z ≥ 0 homeomorphic to connected sums of an arbitrary number of n = 4-spheres and h number of n = 4-tori. Consequently, the partition function adopts a reminiscent form of the sum of the vacuum Feynman diagrams for a large N = exp(βM/2) theory, provided S = βM/2 = πN is the Schwarzschild black hole entropy, β = 8πGM is the inverse temperature, G is gravitational constant, M is the black hole mass and horizon area, A = 2GβM = 4πGN is pixelated in units of 4πG. This leads us to conclude that the partition function for quantum gravity is equivalent to the vacuum Feynman diagrams of a yet unidentified large N theory in n = 4 dimensions. Our approach also sheds new light on the asymptotic behavior of dark matter-dominated galaxy rotation curves (the empirical baryonic Tully-Fisher relation) and emergent gravity in condensed matter systems with defects such as layered materials with cationic vacancies as topological defects. CONTENTS I. Introduction 2 II. Notation and Nomenclature 4 A. Group scalars and vectors (tensors) 4 B. Introduction to p forms 7 C. Group scalars and vectors (p forms) 10 III. Theory 11 A. Motivation 11 B. Equations of motion 12 1.

I. INTRODUCTION

The gravitational field in general relativity has a geometric description that, on one hand avails a myriad of visual cues which aid to build physicists' intuitions on the nature of space-time [START_REF] Thorne | Gravitation[END_REF], but on the other hand, notoriously does not lend itself to renormalization. [START_REF] Doboszewski | How not to establish the non-renormalizability of gravity[END_REF][START_REF] Feynman | Feynman lectures on gravitation[END_REF][START_REF] Hamber | Quantum gravitation: The Feynman path integral approach[END_REF][START_REF] Shomer | A pedagogical explanation for the non-renormalizability of gravity[END_REF][START_REF] Thorne | Gravitation[END_REF][START_REF] Zee | Quantum field theory in a nutshell[END_REF] This has led to theoretic descriptions of gravity as an emergent phenomenon garnering some traction [START_REF] Jacobson | Thermodynamics of spacetime: the Einstein equation of state[END_REF][START_REF] Kleinert | Gravity as a theory of defects in a crystal with only second gradient elasticity[END_REF][START_REF] Konopka | Quantum graphity: a model of emergent locality[END_REF][START_REF] Lee | Gravity from quantum information[END_REF][START_REF] Markopoulou | Quantum theory from quantum gravity[END_REF][START_REF] Oh | Complete Einstein equations from the generalized first law of entanglement[END_REF][START_REF] Padmanabhan | Thermodynamical aspects of gravity: new insights[END_REF][START_REF] Swingle | Universality of gravity from entanglement[END_REF][START_REF] Van Raamsdonk | Building up spacetime with quantum entanglement[END_REF][START_REF] Verlinde | On the origin of gravity and the laws of Newton[END_REF] over quantum field theoretic approaches since emergence appears to by-pass the need for renormalization. [START_REF] Burgess | Quantum gravity in everyday life: General relativity as an effective field theory[END_REF][START_REF] Linnemann | Hints towards the emergent nature of gravity[END_REF] Arguments for a successful quantum theory of gravity range from the need to understand the nature of cosmic inflation [START_REF] Hartle | Wave function of the universe[END_REF] and black holes (Hawking, 1976a(Hawking, ,b, 2005)), to aesthetic considerations in favor of the unification of gravity with gauge symmetries in the Standard Model of particle physics. [START_REF] Ross | Grand Unified Theories[END_REF] Employing a semi-classical approach, Bekenstein and his contemporaries showed that black holes are thermodynamical objects that must participate in the second law. [START_REF] Bardeen | The four laws of black hole mechanics[END_REF][START_REF] Bekenstein | Black holes and entropy[END_REF][START_REF] Hawking | Black hole explosions?[END_REF][START_REF] Hawking | Particle creation by black holes[END_REF] As a consequence, some proponents of emergent gravity have argued that gravity in general relativity may not be as fundamental as the other gauge theories after all, since Boltzmann's investigations demonstrated that the second law is statistical, as it emerges from underlying microscopic physics. [START_REF] Jacobson | Thermodynamics of spacetime: the Einstein equation of state[END_REF][START_REF] Padmanabhan | Thermodynamical aspects of gravity: new insights[END_REF][START_REF] Verlinde | On the origin of gravity and the laws of Newton[END_REF] Nonetheless, these considerations have led to black holes being dubbed, 'the hydrogen atom for quantum gravity' [START_REF] Corda | The quantum black hole as a gravitational hydrogen atom[END_REF][START_REF] Hooft | The quantum black hole as a hydrogen atom: microstates without strings attached[END_REF], setting up black hole thermodynamics as an indispensable tool, analogous to the atomic spectrum of hydrogen, effectively used by Neils Bohr and his contemporaries to successfully formulate quantum mechanics in the early 20th century. However, unlike the atomic spectrum of hydrogen that was well-grounded in observations prior to Bohr's insights, most effects of black hole thermodynamics are not only presently beyond experimental reach (Hossenfelder, 2010), but also are not entirely guaranteed to be more than an analogy. [START_REF] Dougherty | Black hole thermodynamics: More than an analogy?[END_REF] Nonetheless, consistency with well-tested thermodynamical behavior [START_REF] Isi | Testing the blackhole area law with GW150914[END_REF], coupled with experiments using analogue gravitational systems [START_REF] Jacquet | The next generation of analogue gravity experiments[END_REF][START_REF] Steinhauer | Observation of self-amplifying Hawking radiation in an analogue black-hole laser[END_REF] offer a robust test for the correctness of the results, albeit with major unresolved problems such as the black hole information paradox [START_REF] Almheiri | The entropy of Hawking radiation[END_REF]Hawking, 1976b) related to the apparent violation of information conservation in such systems [START_REF] Hawking | Information loss in black holes[END_REF], and the nature of the black hole microstates. [START_REF] Bekenstein | Bekenstein-Hawking entropy[END_REF] In particular, according to the no-hair theorem [START_REF] Thorne | Gravitation[END_REF], a charged-rotating (Kerr-Newman) black hole is completely characterized by its mass (M ), charge (Q) and angular momentum (L), implying that black holes are the 'simplest' objects in the universe, with no other internal degrees of freedom. Moreover, Birkhoff's theorem [START_REF] Israel | Event horizons in static vacuum space-times[END_REF][START_REF] Jebsen | On the general spherically symmetric solutions of Einstein's gravitational equations in vacuo[END_REF] guarantees that the simplest such black holes are static, uncharged and nonrotating (Schwarszchild) black holes. While these theorems are consistent with classical general relativity, semiclassical approaches to black hole thermodynamics pioneered by Hawking [START_REF] Hawking | Black hole explosions?[END_REF](Hawking, , 1976a[START_REF] Hawking | Particle creation by black holes[END_REF] introduce a quantum field theory in a fixed space-time background, leading to the serendipitous conclusion that black holes not only are black bodies with a temperature, T = κ/2πk B proportional to their surface gravity, κ, and entropy, S = A/4G proportional to their surface area, A, where G is the gravitational constant and k B is Boltzmann's constant, but also pack the maximum amount of information possible within a given space, often referred to as the Bekenstein bound. [START_REF] Bekenstein | How does the entropy/information bound work?[END_REF][START_REF] Bousso | A covariant entropy conjecture[END_REF] The Bekenstein bound, coupled with the no-hair theorem, already implies an apparent contradiction, namely that the 'simplest' objects in the universe simultaneously harbor the most amount of information.

However, the black hole information paradox is a far more insidious problem than the aforementioned apparent contradiction, since black hole entropy and temperature require the black hole to eventually evaporate by Unruh-Hawking radiation. [START_REF] Hawking | Black hole explosions?[END_REF][START_REF] Unruh | Origin of the particles in blackhole evaporation[END_REF] In particular, the radiation is essentially a black body spectrum in a mixed quantum state. Whence, according to the semi-classical approach, quantum objects in a pure quantum state which fall into a black hole will eventually escape as Unruh-Hawking radiation in a mixed state via mechanisms such as particle-pair production at the event horizon. [START_REF] Braunstein | Black hole evaporation rates without spacetime[END_REF][START_REF] Giddings | Models for unitary black hole disintegration[END_REF][START_REF] Mathur | The information paradox: a pedagogical introduction[END_REF] This appears to violate conservation of information since unitarity in quantum theory precludes pure states evolving into mixed states and vice versa. In essence, the black hole evaporation process in the semi-classical approach is not timereversible [START_REF] Hawking | Information loss in black holes[END_REF], since black hole entropy appears not to follow, e.g. the Page curve. [START_REF] Almheiri | The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole[END_REF][START_REF] Almheiri | The entropy of Hawking radiation[END_REF][START_REF] Almheiri | The page curve of Hawking radiation from semiclassical geometry[END_REF][START_REF] Hashimoto | Islands in Schwarzschild black holes[END_REF][START_REF] Page | Is black-hole evaporation predictable?[END_REF][START_REF] Page | Information in black hole radiation[END_REF] Attempts to conclusively address the black hole information paradox range from proposing black hole remnants [START_REF] Chamseddine | Black hole remnants[END_REF], entangled black holes via an Einstein-Rosen bridge [START_REF] Maldacena | Cool horizons for entangled black holes[END_REF] to introducing mechanisms for encoding black hole information in Unruh-Hawking radiation by circumventing the challenges posed by monogamy of quantum entanglement [START_REF] Grudka | Do black holes create polyamory?[END_REF], with no clear consensus.

A related problem is the nature of black hole microstates. [START_REF] Bekenstein | Bekenstein-Hawking entropy[END_REF] In statistical mechanics, entropy is a measure of the number of microstates, N in a thermodynamical system, namely S = k B ln N . A myriad of approaches conjecture that black hole microstates ought to correspond to the degrees of freedom associated with quantum gravity. [START_REF] Becker | String theory and M-theory: A modern introduction[END_REF][START_REF] Bousso | The holographic principle[END_REF]Einstein et al., 1935;Einstein and Rosen, 1935;[START_REF] Hawking | Nut charge, anti-de sitter space, and entropy[END_REF][START_REF] Maldacena | The large-N limit of superconformal field theories and supergravity[END_REF][START_REF] Maldacena | Cool horizons for entangled black holes[END_REF]Polchinski, 1998a,b;[START_REF] Susskind | The world as a hologram[END_REF][START_REF] Swingle | Universality of gravity from entanglement[END_REF]) For instance, it has been conjectured that black hole information is entanglement entropy [START_REF] Braunstein | Better late than never: information retrieval from black holes[END_REF][START_REF] Swingle | Universality of gravity from entanglement[END_REF], with ideas such as the Einstein-Rosen (ER) bridge = Einstein-Podolski-Rosen (EPR) (Einstein et al., 1935;Einstein and Rosen, 1935;[START_REF] Maldacena | Cool horizons for entangled black holes[END_REF] playing a major role in such approaches, with the most promising proposals centered around the holographic principle [START_REF] Bousso | The holographic principle[END_REF][START_REF] Susskind | The world as a hologram[END_REF] and the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence [START_REF] Hawking | Nut charge, anti-de sitter space, and entropy[END_REF][START_REF] Hubeny | A covariant holographic entanglement entropy proposal[END_REF][START_REF] Maldacena | The large-N limit of superconformal field theories and supergravity[END_REF][START_REF] Nishioka | Holographic entanglement entropy: an overview[END_REF]Ryu and Takayanagi, 2006a,b) and the reliance of extra dimensions in the context of string theory [START_REF] Becker | String theory and M-theory: A modern introduction[END_REF]Polchinski, 1998a,b), amongst others. [START_REF] Braunstein | Information recovery from evaporating black holes[END_REF][START_REF] Braunstein | Black hole evaporation rates without spacetime[END_REF][START_REF] Braunstein | Better late than never: information retrieval from black holes[END_REF] Fairly recent developments have highlighted random tensor models/group field theories of rank n as prime candidates for quantum gravity. [START_REF] Freidel | Group field theory: An overview[END_REF][START_REF] Gielen | Cosmology from group field theory formalism for quantum gravity[END_REF][START_REF] Gurau | The 1/N expansion of colored tensor models[END_REF][START_REF] Gurau | The complete 1/N expansion of colored tensor models in arbitrary dimension[END_REF][START_REF] Gurau | The 1/N expansion of colored tensor models in arbitrary dimension[END_REF][START_REF] Maldacena | The large-N limit of superconformal field theories and supergravity[END_REF][START_REF] Oriti | The group field theory approach to quantum gravity[END_REF][START_REF] Thorn | Reformulating string theory with the 1/N expansion[END_REF] This follows from the observation that their partition functions constructed from the vacuum Feynman diagrams can be Taylor expanded using 1/N as a small parameter, where N is the size of the group (e.g. U(N ) or SU(N )) and χ n (M) is the order of the expansion, which also corresponds to the Euler characteristic of an emergent compact (e.g. orientable) manifold, M of dimensions n. [START_REF] Aharony | Large N field theories, string theory and gravity[END_REF][START_REF] Hooft | A planar diagram theory for strong interactions[END_REF] For instance, for random matrix models/group field theories (tensors of rank n = 2), the emergent manifold is n = 2 dimensional, with χ 2 (M) = 2 -2h, where h ∈ Z ≥ 0 is a positive integer counting the number of holes and handles (genus) in the manifold. Such matrix theories have been argued to be dual to 2 dimensional quantum gravity. [START_REF] Gross | Tensor models and simplicial quantum gravity in > 2-D[END_REF]) Thus, it is conjectured that the partition function of n = 4 dimensional quantum gravity, corresponding to a quantum theory of Einstein's general relativity, is a 1/N expansion for a rank n = 4 random tensor model/group field theory. [START_REF] Gurau | The 1/N expansion of colored tensor models[END_REF][START_REF] Gurau | The complete 1/N expansion of colored tensor models in arbitrary dimension[END_REF][START_REF] Gurau | The 1/N expansion of colored tensor models in arbitrary dimension[END_REF] Motivated by questions pertaining to the nature of the black hole microstates [START_REF] Bekenstein | Bekenstein-Hawking entropy[END_REF], as well as an overall pursuit for a suitable partition function for quantum gravity in n = 4 dimensions, in this work, we employ the temperature and entropy formulae describing Schwarzschild black holes in order to consider the emergence of Einstein Field Equations (EFE) from a complex-Hermitian structure, [Ricci tensor ± √ -1 Yang-Mills field strength], where the gravitational degrees of freedom are the SU(N ) colors with N ∈ Z ≥ 0 and a condensate comprising color pairs, k = N/2, appropriately coupled to the Yang-Mills gauge field. The foundations of our approach reveal the complex-Hermitian structure is analogous to Cayley-Dickson algebras [START_REF] Schafer | On the algebras formed by the Cayley-Dickson process[END_REF], which aids in formulating the appropriate action principle for our formalism. A similar construction, [metric tensor ± √ -1 U(1) field strength] was considered by Einstein as an attempt to geometrize Maxwell's theory using a complex-Hermitian metric tensor, albeit with limited success. [START_REF] Einstein | A generalization of the relativistic theory of gravitation[END_REF][START_REF] Einstein | A generalized theory of gravitation[END_REF] Within the formalism, the complex-Hermitian structure avails the constraints, D µ K µ ν = Ψ(D ν Ψ) † and D ν D µ K µν = 0, where Ψ plays the role of wave function and K µν = R µν -iF µν is a complex-Hermitian tensor constructed using the Ricci tensor, R µν and a Yang-Mills/SU(N ) field strength, F µν . The SU(N ) gauge group is broken into an effective SU(4) → SO(4) ↔ SO(1, 3) field theory on the tangent space resulting in two terms in the effective cation: the Einstein-Hilbert action and a Gauss-Bonnet topological term. [START_REF] Lovelock | The Einstein tensor and its generalizations[END_REF] The Euclidean path integral is considered as the sum over manifolds with distinct topologies, h ∈ Z ≥ 0 topologically equivalent (homeomorphic) to connected sums of any number of n = 4-spheres and h number of n = 4tori. Consequently, the partition function for quantum gravity in n = 4 dimensions takes the form,

Z E QG = M E ∈h exp(∓I E M E (λ))N ±χ4(M E ) , (1a) 
I E M E (λ) = λ π M E d 4 x E det(g E µν )R, (1b) 
where N = exp(πN ) is the number of microstates,

I E M E (λ)
is the Einstein-Hilbert action, with g E µν the metric tensor in Euclidean signature, λ = 1/16G = m 2 P /16, m P = 1/ √ G the Planck mass and χ 4 (M E ) the Euler characteristic of a 4 dimensional Riemannian manifold, M E , related to the 1, 3 pseudo-Riemannian space-time manifold in Einstein's general relativity by a Wick rotation, t = ±it E . This result requires that the horizon area, A = 2GβM = 4πGN be pixelated in units of 4πG. (Bekenstein andMukhanov, 1998, 1995;[START_REF] Mukhanov | Are black holes quantized?[END_REF][START_REF] Vaz | Mass quantization of the Schwarzschild black hole[END_REF] Moreover, since it is not straightforward to topologically classify all n = 4 dimensional Riemannian manifolds, [START_REF] Freedman | The topology of fourdimensional manifolds[END_REF] the Euclidean path integral is considered as the sum over manifolds with distinct topologies, h ∈ Z ≥ 0 homeomorphic to connected sums of an arbitrary number of n = 4-spheres and h number of n = 4-tori, thus obtaining the Euler characteristic, χ 4 = 2 -2h. Consequently, eq. ( 1a) coincidentally corresponds to the generic form of the 1/N expansion of the free energy of a large N theory. [START_REF] Aharony | Large N field theories, string theory and gravity[END_REF][START_REF] Gurau | The complete 1/N expansion of colored tensor models in arbitrary dimension[END_REF][START_REF] Hooft | A planar diagram theory for strong interactions[END_REF] This leads to the conclusion that the quantum gravity partition function in n = 4 dimensions is equivalent to the sum of vacuum Feynman diagrams of a yet unidentified large N theory taking the form,

Z = exp(Z E QG ), (2a) 
Z = D[ϕ] exp - N ± λ ± Tr(γ(ϕ)) , (2b) 
where

S(ϕ) = N λ ± Tr(γ(ϕ))
is the action for unidentified field tensors, ϕ of rank n = 4, transforming appropriately under some unidentified group, and γ is the unidentified function of ϕ defining the large N theory. Thus, the vacuum Feynman diagrams pave n = 4 (dimensional) manifolds [START_REF] Gurau | The complete 1/N expansion of colored tensor models in arbitrary dimension[END_REF], contrary to random matrix large N theories where ϕ would be a tensor of rank 2 (matrix), with Feynman diagrams defining n = 2 dimensional Riemannian manifolds, A E with a boundary, with Euler characteristic given by χ 2 (A E ∈ h) = 2 -2h, where h = g + b/2 with g ∈ Z ≥ 0 the genus, Z a positive integer and b the boundary contribution. [START_REF] Aharony | Large N field theories, string theory and gravity[END_REF][START_REF] Gurau | The complete 1/N expansion of colored tensor models in arbitrary dimension[END_REF][START_REF] Hooft | A planar diagram theory for strong interactions[END_REF] Finally, we consider the possibility of defining χ 4 (M E ) in terms of χ 2 (A E ), where the matrix large N gauge theories taking the form of eq. ( 2), can be identified with quantum gravity in n = 4 dimensions. Our approach also sheds new light on the asymptotic behavior of dark matter-dominated galaxy rotation curves (the empirical baryonic Tully-Fisher relation) [START_REF] Eisenstein | Can the Tully-Fisher relation be the result of initial conditions?[END_REF][START_REF] Famaey | Modified newtonian dynamics (MOND): observational phenomenology and relativistic extensions[END_REF]Kanyolo and Masese, 2021;[START_REF] Keeton | A catalog of mass models for gravitational lensing[END_REF][START_REF] Martel | Gravitational lensing by cdm halos: singular versus nonsingular profiles[END_REF][START_REF] Mcgaugh | The baryonic Tully-Fisher relation of gas-rich galaxies as a test of ΛCDM and MOND[END_REF][START_REF] Mcgaugh | The baryonic Tully-Fisher relation[END_REF][START_REF] Persic | The universal rotation curve of spiral galaxies-I. The dark matter connection[END_REF] and emergent gravity in condensed matter systems with defects [START_REF] Holz | Geometry and action of arrays of disclinations in crystals and relation to (2 + 1)-dimensional gravitation[END_REF][START_REF] Kleinert | Gravity as a theory of defects in a crystal with only second gradient elasticity[END_REF][START_REF] Kleinert | Nematic world crystal model of gravity explaining absence of torsion in spacetime[END_REF][START_REF] Verçin | Metric-torsion gauge theory of continuum line defects[END_REF][START_REF] Zaanen | Duality in 2+1 D quantum elasticity: superconductivity and quantum nematic order[END_REF]) such as layered materials (Kanyolo et al., 2021;Masese et al., 2021b[START_REF] Masese | Rechargeable potassium-ion batteries with honeycomb-layered tellurates as high voltage cathodes and fast potassium-ion conductors[END_REF] with cationic vacancies as topological defects. [START_REF] Kanyolo | An idealised approach of geometry and topology to the diffusion of cations in honeycomb layered oxide frameworks[END_REF] 

II. NOTATION AND NOMENCLATURE

Throughout this paper, we use Einstein's summation convention [START_REF] Thorne | Gravitation[END_REF] for all repeated Greek and Roman indices, and natural units where Planck's constant, speed of light in vacuum and Boltzmann constant, respectively are set to unity ( = c = k B = 1). We also assume a torsion-free 1 + 3 dimensional space-time manifold [START_REF] Hehl | General relativity with spin and torsion: Foundations and prospects[END_REF], where ∇ µ is the metric compatible covariant derivative, ∇ σ g µν = 0 and g µν = g νµ is the metric tensor in Lorenzian signature. We shall indicate reduced quantities with an overhead bar. For instance β = β/2π is the reduced inverse temperature and mP = m P / √ 8π is the reduced Planck mass. Moreover, in the tetrad formalism, (ω µ

) āb = -(ω µ ) ā b = e āα ∇ µ e α b = e āα ∂ µ e α b + e āα Γ α µβ e β b is the spin connection, Γ α µν = Γ α νµ = 1 2 g αβ (∂g µβ /∂x ν +∂g βν /∂x µ - ∂g µν /∂x β )
are the torsion-free Christoffel symbols/affine connection, e ā µ are the tetrad fields, γ µ are the gamma matrices in curved space-time satisfying

γ µ γ ν + γ ν γ µ = 2g µν , ψ = (ψ) * T (γ 0 ) -1 = ψ † (γ 0 ) -1 is the Dirac ad- joint spinor, γ µ = e µ
āγ ā with γ ā the Dirac matrices in the tangent Minkowski space-time manifold satisfying γ āγb + γbγ ā = 2η āb, and e āµ , e µ ā are tetrad fields satisfying e ā µ e āν = g µν and e µ āe µ b = η āb with η āb the Minkowski metric tensor i.e. diag(η āb) = (1, -1, -1, -1). [START_REF] De Felice | Relativity on curved manifolds[END_REF] The overhead bar in ā, b, c is used to distinguish the Minkowski tangent manifold indices from the curved space-time indices and group field theory indices, e.g. in the tetrad fields, e 00 = e 0 0 and (ω µ ) āb = ω µa (λ a ) āb , where (λ a ) āb = -(λ a ) ā b are n(n -1)/2 = 6 (with n = 4) anti-symmetric matrices corresponding to SO(4) generators [START_REF] Başkal | Physics of the Lorentz Group[END_REF] in the tangent Euclidean spacetime manifold and related to generators of SO(1, 3) after Wick rotation.

A. Group scalars and vectors (tensors)

Since we will be interested in Yang-Mills theory, where t a ≡ t are the SU(N ) Hermitian matrices, we shall adopt the following notation for objects which transform as scalars and vectors respectively under SU(N ),

T γ•••δ 0α•••β ≡ T γ•••δ α•••β I N , (3a) 
T γ•••δ aα•••β ≡ T γ•••δ α•••β , ( 3b 
)
f abc A aµ T γ•••δ bα•••β ≡ A µ × T γ•••δ α•••β , ( 3c 
)
where I N is the N × N identity matrix and,

T γ•••δ kα•••β ≡ T γ•••δ α•••β = T γ•••δ α•••β I N + iT γ•••δ α•••β , (3d)
is the most general object of any space-time tensor that transforms as a scalar (k = 0) or a vector (k = a) under SU(N ) with the boldface indicating the vectors corresponding to,

A µ = A µ • t ≡ A aµ t a , (3e) 
T γ•••δ α•••β ≡ T γ•••δ α•••β • t, (3f) 
in order for I N and i t in eq. ( 3d) to be interpreted as N × N basis matrices. This also implies that T

γ•••δ α•••β and T γ•••δ α•••β
must have the same rank in space-time indices.

Since the identity matrix is already implied for the scalars, we shall refrain from explicitly writing it unless for clarity. In this notation, the Yang-Mills field strength can be written as,

F µν = ∂ µ A ν -∂ ν A µ -i[A µ , A ν ] = (∂ µ A ν -∂ ν A µ + A µ × A ν ) • t, (4)
where we choose the normalization of the SU(N ) matrices, t a as,

Tr(t a t b ) = N 4 δ ab , ( 5a 
) [t a , t b ] = if abc t c , (5b) 
with Tr the trace, f abc the structure constants and δ ab the Kronecker delta. This normalization is chosen for later convenience, and it corresponds to a re-scaling, t a = N/2 T a and f abc = N/2 F abc of the customary SU(N ) matrices, T a and the structure constants, F abc of particle physics. [START_REF] Zee | Quantum field theory in a nutshell[END_REF] The bold-face and the overhead arrow (→) unambiguously serve as the disambiguation of group vectors from scalars. Generically, since scalars commute with the SU(N ) gauge field, A µ but vectors do not, the SU(N ) gauge covariant derivative, D µ will act differently on scalars and vectors to respectively yield scalars and vectors, as follows,

D µ T γ•••δ α•••β = ∇ µ T γ•••δ α•••β , (6a) D µ T γ•••δ α•••β = ∇ µ T γ•••δ α•••β + 1 2 A µ × T γ•••δ α•••β . (6b)
Here, we shall always have the factor of 1/2 in the crossproduct, which guarantees the Yang-Mills field strength can be defined as,

F µν ≡ D µ A ν -D ν A µ , (6c) 
in order for D µ to act as a proper covariant derivative, by observing that the SU(N ) ⇔ U(1) exchange corresponds to F µν ⇔ F µν and A µ ⇔ A µ , where A µ and F µν are scalars under SU(N ). This is consistent with D µ ⇔ ∇ µ . Thus, the gauge covariant derivative transforms scalars to scalars and vectors to vectors. Consequently, a dotproduct of a vector with the SU(N ) matrix vector, t is not a scalar, but must transform as a vector,

D µ (T γ•••δ α•••β ) = D µ ( T γ•••δ α•••β • t) = (∇ µ T γ•••δ α•••β + 1 2 A µ × T γ•••δ α•••β ) • t = ∇ µ T γ•••δ α•••β - 1 2 i[A µ , T γ•••δ α•••β ], (6d)
where we ought to have D µ t = 0. Moreover, the product of a scalar and a vector,

T σ•••ρ µ•••ν T γ•••δ α•••β = J γ•••ρ α•••ν , (6e) 
must be vector. This can be verified e.g. by noting that differentiating by parts behaves as desired,

D η J γ•••ρ α•••ν = D η (T σ•••ρ µ•••ν T γ•••δ α•••β ) = T γ•••δ α•••β D η T σ•••ρ µ•••ν + T σ•••ρ µ•••ν D η T γ•••δ α•••β = T γ•••δ α•••β ∇ η T σ•••ρ µ•••ν + T σ•••ρ µ•••ν ∇ η T γ•••δ α•••β -T σ•••ρ µ•••ν 1 2 i[A η , T γ•••δ α•••β ] = ∇ η J γ•••ρ α•••ν - 1 2 i[A η , J γ•••ρ α•••ν ]. (6f)
Since there exist complex objects like

T γ•••δ α•••β
that are neither scalars nor vectors but a combination of both, we note that the derivative,

D µ = ∇ µ -iA µ , (7a) 
D † µ = ∇ µ + iA µ , (7b) 
acting on a scalar forms such a complex object, where necessarily D µ = D µ . Proceeding, we can construct a complex-valued curvature tensor, K µν using commutation with the derivative in eq. ( 7) and a space-time vector, V µ , which is such an object,

K µν V µ ≡ [D µ , D ν ]V µ = D µ (∇ ν -iA ν )V µ -D ν (∇ µ -iA µ )V µ = ∇ µ (∇ ν -iA ν )V µ -iA µ (∇ ν -iA ν )V µ -∇ ν (∇ µ -iA µ )V µ + iA ν (∇ µ -iA µ )V µ = [∇ µ , ∇ ν ]V µ -iV µ ∇ µ A ν + iV µ ∇ ν A µ -[A µ , A ν ]V µ = R ρ µρν V µ -i (∂ µ A ν -∂ ν A µ -i[A µ , A ν ]) V µ = (R µν -i(D µ A µ -D ν A µ )) V µ = (R µν -iF µν )V µ , (8a)
where F µν is the Yang-Mills field strength defined in eq. (6c) and,

[∇ µ , ∇ ν ]V σ = R ρσµν V ρ , (8b) 
with R ρσµν and R µν = R ρ µρν the Riemann and Ricci tensors. Thus, we find,

K µν = R µν -iF µν , (8c) 
is the object in question. In our notation, since K µν ≡ K kµν , we discover that, K 0µν = R µν and K aµν = F νµ . Consequently, K µν has the property that

K µν = (K µν ) T * = (K µν ) * T = (K νµ ) * = (K µν ) † , i.e it is
Hermitian with respect to both the space-time and group indices.

An intriguing observation is that, when the gauge group is SU(2), these objects are space-time dependent quaternion tensors. In particular, a typical quaternion, Q corresponds to a space-time scalar represented as,

Q = Q + iQ = Q + i Q • t = Q + iQ a t a = Q + e 1 Q 1 /2 + e 2 Q 2 /2 + e 3 Q 3 /2, (9a)
where,

e 1 e 2 = -e 2 e 1 = e 3 = iσ 3 , (9b) e 2 e 3 = -e 3 e 2 = e 1 = iσ 1 , (9c)

e 3 e 1 = -e 1 e 3 = e 2 = iσ 2 , ( 9d 
)
defines the quaternion algebra, Q, Q a are real numbers and Q = Q • t = Q a t a with t a = σ a /2 and σ a the Pauli matrices. [START_REF] Meglicki | Quaternions and Pauli Matrices[END_REF] Thus, a dot-product of a vector with the SU(2) matrices can be treated as the imaginary part of a quaternion, whose real part transforms as a scalar under SU(2). Evidently, our notation in eq. ( 3) merely exploits the fact that in SU(2), the expressions with f abc reduce to actual cross-products since the structure constants, f abc = ε abc are proportional to the Levi-Civita symbol, ε abc . In SU(3), the objects are analogous to octonions/Cayley numbers. [START_REF] Dixon | Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics[END_REF] In particular, SU(2) objects can be related to the U(1) objects by a Cayley-Dickson construction [START_REF] Schafer | On the algebras formed by the Cayley-Dickson process[END_REF], where the number of generators (including the identity matrix) is doubled in the construction. We shall refer to all such objects, T

γ•••δ α•••β
with their analogous Cayley-Dickson algebra names, namely complex, quaternion, octonion, sedenion etc., corresponding to complex-valued tensor objects with their imaginary parts transforming as vectors under SU(N ), i.e. U(1), SU(2), SU(3), SU(4) etc. respectively. For instance, the Cayley-Dickson construction allows one to factorize a quaternion curvature tensor (eq. (8c)) into two complex tensors,

K µν = R µν -iF µν = R µν -iF µν • t = R µν + e 1 F µν1 /2 + e 2 F µν2 /2 + e 3 F µν3 /2, = R µν + e 1 F µν1 /2 + e 2 (F µν2 -e 1 F µν3 )/2, ( 10a 
)
where e 1 , e 2 , e 3 are given in eq. ( 9b) and the factor of 1/2 arises from the normalization choice of the SU(N ) matrices given in eq. ( 5). However, the Cayley-Dickson construction is obfuscated as the number of colors, N becomes large. For instance, SU(3) objects contain 3 2 = 9 real-valued tensors, whereas octonion tensors would only have 2 × 4 = 8 real-valued tensors. Nonetheless, this discrepancy arises from the fact that t 8 and t 3 SU(3) matrices are both proportional to the single octonion element, e 8 hence reducing the octonion components by one. [START_REF] Shrestha | Quaternion-octonion SU(3) flavor symmetry[END_REF] On the other hand, the SU(4) object has 4 2 = 16 independent tensors (including the identity) which exactly corresponds to 2 × 8 = 16, the number of components of a sedenion. Since we can write, 16 = (2 × {2 × [2 × 2]}), we are always able to construct the SU(4) object from four quaternion sub-algebras,

K µν = R µν e 0 + e 1 f µν1 + e 2 [f µν2 -e 1 f µν3 ] + e 4 {f µν4 -e 1 f µν5 -e 2 [f µν6 -e 1 f µν7 ]} + √ 2e 8 (f µν8 -e 1 f µν9 -e 2 [f µν10 -e 1 f µν11 ] -e 4 {f µν12 -e 1 f µν13 -e 2 [f µν14 -e 1 f µν15 ]}) = R µν + e a f µνa = R µν -iF µν , (10b) 
as long as e 2 e 1 = -e 3 , e 4 e 1 = -e 5 , e 4 e 2 = -e 6 , e 4 e 3 = -e 7 , e 2 e 1 = -e 3 , e 8 e 1 = -e 9 , e 8 e 2 = -e 10 , e 8 e 3 = -e 11 , e 8 e 4 = -e 12 , e 8 e 5 = -e 13 , e 8 e 6 = -e 14 and e 8 e 7 = -e 15 is satisfied. In the last line, e a f µνa = F µν follows from setting e 0 = I 4 and K µν assumed Hermitian, since any 4 × 4 Hermitian matrix can always be decomposed into components with SU(4) basis matrices.

Finally, introducing Ψ = |Ψ|U, we note that U = exp(iS) and its inverse U -1 = exp(-iS) are N × N matrices, while |Ψ| is a scalar under SU(N ), where,

UU -1 = U -1 U = I N , (11a) 
is the N ×N identity matrix which satisfies

D µ (U -1 U) = U -1 D µ U + UD µ U -1 = 0.
Consequently, it is straightforward to show, e.g. in SU(2), that Ψ, U and U -1 are quaternions by recognizing the product property given in eq. ( 6e) and calculating,

exp(iS) = exp(iS 1 σ 1 /2) exp(iS 2 σ 2 /2) exp(iS 3 σ 3 /2) = j,k,l 1 j!k!l! (iS 1 σ 1 /2) j (iS 2 σ 1 /2) k (iS 3 σ 3 /2) l = f (S 1 , S 2 , S 3 )I 2 + if (S 1 , S 2 , S 3 ), ( 11b 
)
where we have used, σ a σ b = δ ab + iε abc σ c and the Taylor expansion, exp(x) = k x k /k!. Thus, eq. (11a) implies that

f 2 + f 2 1 + f 2 2 + f 2 3 = 1, where f = (f 1 , f 2 , f 3
). This property can be generalized for the other SU(N ) algebras, with f ≡ f a and S ≡ θ a continuous infinitesimal variable, where θ 2 = 0 vanishes in order for,

U = exp(iθ) = I N + θ • t, (11c) 
U -1 = exp(iθ) = I N -θ • t. (11d) 
Thus, using det(U) = det(U -1 ) = 1 and U -1 U = UU -1 = I N , it follows that U, U -1 are unitary.

In this formalism, a gauge transformation corresponds to,

A µ = U -1 A µ U + U -1 D µ U. ( 12a 
)
This requires that the field strength transforms in a gauge invariant manner as,

F µν = U -1 F µν U. (12b) 
B. Introduction to p forms A notation usually preferred for its compactness is differential forms. [START_REF] Demailly | Complex analytic and differential geometry[END_REF][START_REF] Tu | Differential geometry: connections, curvature, and characteristic classes[END_REF] We introduce several straightforward guidelines on differential forms particularly helpful to follow the discussion in the manuscript:

(i) Any p form can be locally written as the contracted form of a space-time tensor of rank p with an equal number of space-time basis vectors, dx µp such that,

A = 1 p! A µ1•••µp dx µ1 ∧ • • • dx µp , (13a) 
where, we can device a useful short-hand to write,

dx µ1 ∧ • • • dx µp = ε µ1•••µp dx 1 • • • dx p , (13b) 
with ε µ1•••µp the totally anti-symmetric Levi-Civita symbol normalized as ε 1,2,3,•••p = 1 and the factorial, p! introduced for later convenience. This makes the p form the complete anti-symmetrization of

A µ1•••µp . (ii) The wedge product, ∧ is associative (i.e. (A ∧ B) ∧ C = A ∧ (B ∧ C))
, and corresponds to the multiplication operation for p forms, The wedge product of a p and a q form yields a p + q form,

A ∧ B = 1 p!q! A [µ1••• B •••µp+q] dx µ1 ∧ • • • dx µp+q , (14) 
where [• • • ] indicates anti-symmetrization of the indices. Thus, using this, one can show that,

A ∧ B = (-1) pq B ∧ A. ( 15 
)
This means that A ∧ B = 0 when A = A = B = B are group scalars and p = q is odd. However, when A = A = B = B are group vectors (i.e. can be decomposed into components multiplied by group basis matrices which do not commute), eq. ( 15) need not vanish, even for odd p = q. Finally, we can determine the wedge product,

A 1 ∧ A 2 • • • A n
for n number of p forms in a similar manner.

(iii) Since space-time indices are always hidden in the notation, only p forms with equal rank can be added or subtracted.

(iv) The Levi-Civita symbol does not transform appropriately as a tensor. To see this, on a manifold, M of n dimensions with a metric tensor, g µν , we can attempt to lower its indices by,

ε µν•••σρ g µα g νβ • • • g σγ g ρδ = -det(g µν )ε αβ•••γδ , ( 16a 
)
where the right-hand side follows from the definition of determinant of an n × n matrix and the minus (-) sign originates from the Lorenzian signature of the space-time manifold (For a Euclidean signature metric, g E µν , we would have the determinant multiplied by a plus (+) sign instead). Thus, one divides both sides by the measure -det(g µν ) to yield the tensors,

v αβ•••σρ = -det(g µν )ε αβ•••σρ , (16b) 
and,

v αβ•••σρ = 1 -det(g µν ) ε αβ•••σρ , (16c) 
whose raising and lowering operations by the metric tensor are appropriately given by eq. (16a). We can explicitly check each transforms as a tensor using,

det (g σρ (x)) = det g µν (x ) ∂x µ ∂x σ ∂x ν ∂x ρ = det g µν (x ) ∂x ∂x 2 , (16d) 
and,

dx σ1 ∧ • • • dx σp = ∂x σ1 ∂x µ1 dx µ1 ∧ • • • ∂x σp ∂x µp dx µp = ∂x σ1 ∂x µ1 • • • ∂x σp ∂x µp ε µ1•••µp dx 1 • • • dx p = ∂x ∂x ε µ1•••µp dx 1 • • • dx p = ∂x ∂x dx σ1 ∧ • • • dx σp , ( 16e 
)
where we recognize,

∂x ∂x = ∂x ∂x -1 . ( 16f 
)
is the determinant of the Jacobian matrix.

(v) For an n manifold, M the volume element is a p = n form built from eq. (16b) as,

dV = 1 (p = n)! v α1•••αp=n dx α1 ∧ • • • dx αp=n , ( 17a 
)
where dV is the volume element. Using eq. ( 13), and the property of the Levi-Civita symbol,

ε α1•••αn ε α1•••αn = n!, (17b) 
the volume of the n = p manifold, M becomes,

M dV = M dx 1 • • • dx p=n -det(g µν ) = M d n x -det(g µν ). ( 17c 
)
We now recognize the need for the factorial, p! introduced in (i). For our purposes, all manifolds shall be Riemannian or pseudo-Riemannian, and hence orientable (meaning det(g µν ) does not change sign anywhere on the manifold, to prevent the squareroot from turning imaginary).

(vi) The condition p = n, is referred to, in literature, as the condition that the p form is a top form. We note that the volume element requires this condition. This condition is vital, since the Lagrangian density of any field theory must be a top form. Also, due to eq. ( 13), the relevant Levi-Civita symbol strictly must have p = n indices in order for eq. ( 17a) to be a top form.

(vii) Any p ≤ n form, A, has a dual (n -p) form, A known as the Hodge dual such that,

A = 1 p!(n -p)! v α1•••αn A α1•••αp dx αp+1 ∧• • •dx αn . (18a)
The appearance of v α1•••αn , defined in eq. ( 16b), guarantees the component of the Hodge dual,

( A) αp+1•••αn = 1 p! v α1•••αn A α1•••αp , (18b) 
and its raised counterpart,

( A) αp+1•••αn = 1 p! v α1•••αn A α1•••αp , (18c) 
appropriately transform as tensors. Consequently, the Hodge operation done twice yields back the p form,

A = (-1) p(n-p) A α1•••αp dx α1 ∧ • • •dx αp , (18d) 
where we have used,

v µ1•••µpαp+1•••αn v α1•••αpαp+1•••αn = (-1) n-p (n -p)!δ µ1•••µp α1•••αp , with δ µ1•••µp α1•••αp a generalized Kronecker delta with the property, δ µ1•••µp α1•••αp A α1•••αp = (-1) p p!A µ1•••µp .
(viii) The exterior derivative operation, d on any p form is given by,

dA = 1 (p + 1)! ∂ µp+1 A µ1•••µp dx µ1 ∧ • • • dx µp+1 . (19a)
Applying the exterior derivative operation twice annihilates the p form,

d 2 A = 1 (p + 2)! ∂ µp+2 ∂ µp+1 A µ1•••µp dx µ1 ∧ • • • dx µp+2 = 0,
where we have used the fact that partial derivatives commute, [∂ µp+2 , ∂ µp+1 ] = 0.

The expression translates into the Bianchi identities in gauge and gravity theories, and can be familiarized as the differential form version of the identities, ∇ • ( ∇ × A) = 0 and ∇ × ∇φ = 0 for spatial vector and scalar fields in n = 3 dimensions. This is instructive, since the proof of these identities in vector calculus also utilizes the fact that partial derivatives commute.

For the wedge product of a p and a q form, A and B respectively, the Leibniz rule is given by,

d(A ∧ B) = dA ∧ B + (-1) p A ∧ dB. (19b) 
For any p = n -1 form, A, on a non-compact manifold (i.e. a manifold with a boundary, ∂M), we can elegantly write Stokes' theorem as,

∂M A = M dA. (19c) 
(ix) Since the wedge product of an (n -p) form with a p form is a top form, one can exploit this property to define an inner product for two p forms, A and B, as the integral of their wedge product over the manifold, M,

A, B = M A ∧ B. (20a) 
There is a sense in which the exterior derivative is a raising operator acting on forms since it takes a p form to a p + 1 form. One can define a lowering operator, d † by introducing a p -1 form C related to A in eq. ( 20a) by dC = A, and differentiate by parts and drop the boundary term (eq. ( 19c)),

M d(C ∧ B) = ∂M C ∧ B = 0, to yield, dC, B = M dC ∧ B = - M C ∧ d B = - M C ∧ (-1) p(n-p) d B = M C ∧ d † B = C, d † B , (20b)
where the lowering operator is given by d † = (-1) p(n-p)+1 d .

(x) For any p + 1 = n form, B on the manifold, B is said to be closed if dB = 0. Employing eq. ( 19), one could suspect that we can always write, B = dA, with A defined the same way everywhere on ∂M.

It turns out that the statement is false for topologically relevant manifolds. This stems from de Rham cohomology [START_REF] Demailly | Complex analytic and differential geometry[END_REF], a tool exposing the extent to which the fundamental theorem of calculus fails on topological manifolds.

In particular, if dA = B, where A is defined the same way everywhere on ∂M, then B is said to be exact. Thus, every exact form is closed, but the converse fails due to the non-trivial topology of M. Thus, the topology of the manifold can be exploited to avail an avenue to apply Stokes' theorem on compact manifolds (i.e. manifolds without a boundary).

In particular, the boundary operation ∂ applied to a compact manifold vanishes, ∂M = 0. However, suppose M can be divided into two patches, M + and M -due to topological reasons (which will become apparent), then we can write the condition that M is compact as,

∂M ± = ±B, (21a) 
M = M + + M -, (21b) 
where B is the boundary shared by M + and M -, albeit with opposite orientation (±), and must be a compact manifold, ∂B = 0. Since B is n -1 dimensional when M is n dimensional, and both manifolds are compact, this procedure can be carried out successively n -1 times, introducing non-trivial topologies at each stage.

For instance, in eq. ( 19c), when A = A is the U(1) gauge field (p = 1 form) and M = S 2 is the n = 2-sphere, a magnetic monopole at the center of the S 2 sphere implies that A cannot be defined the same way on the northern (∂M + = S 2 + ) and southern (∂M -= S 2 -) hemispheres, each bounded at the equator by the n = 2-sphere, B = S 1 with opposite orientation. Nonetheless, the respective gauge fields are related by a gauge transformation, A + = A -+ dθ 1 , where θ 1 is a p = 0 form. Since θ 1 is the azimuthal angle, defined modulo 2πν on S 1 , where ν ∈ Z is an integer, Stokes' theorem requires that,

1 2π S 2 dA = 1 2π S 2 + dA + 1 2π S 2 - dA = 1 2π ∂S 2 + A + + 1 2π ∂S 2 - A - = 1 2π S 1 A + - 1 2π S 1 A - = 1 2π S1 dθ 1 = ν, ( 22 
)
where ν is the monopole number in Maxwell's theory. [START_REF] Dirac | Quantised singularities in the electromagnetic field[END_REF][START_REF] Konishi | The magnetic monopoles seventyfive years later[END_REF][START_REF] Zee | Quantum field theory in a nutshell[END_REF] In mathematics, the monopole number is referred to as the first Chern number. [START_REF] Chern | Characteristic classes of Hermitian manifolds[END_REF] Generally, Stokes' theorem (eq. ( 19c)) directly relates such numbers to a class of non-exact but otherwise closed p forms known as characteristic classes. [START_REF] Milnor | Characteristic Classes[END_REF] Particularly useful for this paper, is the Euler characteristic of an n = 4 dimensional compact Riemannian manifold, M E (with Euclidean signature, denoted by the superscript, E) given by the integral,

χ 4 = 1 8π 2 M E Tr(R ∧ R) = 1 πN j=± ∂M E j CS j , (23a) CS j = N 8π Tr ω j ∧ dω j + 2 3 ω j ∧ ω j ∧ ω j , ( 23b 
)
where

M E = j=± M E j , R = dω + ω ∧ ω is the curvature p = 2 form which transforms as R = ΛRΛ -1 under SO(4) rotations, ω = Λ -1 ωΛ + Λ -1
dΛ, ω is the spin connection and CS j is the Chern-Simons p = 3 form [START_REF] Chern | Characteristic forms and geometric invariants[END_REF] with,

k = N 2 ∈ Z ≥ 0, (23c) 
a positive integer known as the Chern-Simons level. [START_REF] Jackiw | Chern-Simons modification of general relativity[END_REF] This further restricts the number of colors, N to even positive integers.

The integrand in eq. ( 23a) is the second Euler class and is equivalent to [START_REF] Lovelock | The Einstein tensor and its generalizations[END_REF],

1 det(g µν E ) Tr(R ∧ R) = (R µνσρ R µνσρ -4R µν R µν + R 2 ), (24a) 
where R µνσρ is the Riemann tensor, R µν and R are the Ricci tensor and scalar respectively and we have used,

R = dω + ω ∧ ω = R āb = dω ā b + ω āc ∧ ω cb = 1 2 ∂ µ ω ā ν b -∂ ν ω ā µ b + ω ā µ c ∧ ω c ν b dx µ ∧ dx ν = 1 2 R ā µν bdx µ ∧ dx ν , (24b) with R σ ρµν = R ā µν be σ
ā e bρ the Riemann tensor. A Wick rotation, t E → ±it, where t E is the Euclidean time, corresponds to the transformation, SO(4) → SO(1, 3), where the rotations, Λ now correspond to local Lorentz transformations (three boosts and three rotations) on the tangent manifold. Thus, the Chern-Simons p = 3 form transforms such that the wave function,

ψ + CS = exp i B CS + = exp i B CS -exp (iπN χ 4 ) = ψ - CS exp (iπN χ 4 ) , (25) 
is single-valued under SO(1, 3), where we have used ∂M j = jB with j = ± from eq. ( 21). In fact, since the bold-face indicates that ω is a group vector, we can borrow a leaf out of eq. ( 22), and take the two Chern-Simons p = 3 forms to be related to each other by local Lorentz transformations/Euclidean rotations,

ω ± = Λ -1 ω ∓ Λ + Λ -1 dΛ, (26) 
which corresponds to,

CS ± = CS ∓ + N dθ, (27a) 
dθ = 1 24π Tr(Λ -1 dΛ) 3 , ( 27b 
)
where θ is a p = 2 form, defined modulo 2πν on B E corresponding to the second Chern (winding) number and,

χ 4 = 1 24π 2 B E Tr(Λ -1 dΛ) 3 = 2 B E dθ = ±2ν. (28)
However, eq. ( 28) is an atypical result since it somewhat purports the equivalence between the second Euler and Chern classes. This is only valid if one can treat ω as a gauge field, A, which shall have great utility in the work herein.

In particular, eq. ( 28) exploits the fact that SU(4) will be broken into SO(4) (F → R), which would permit the second Chern class integrated over S 4 to be identified as the second Euler class on the fourdimensional compact Riemannian manifold, M E , provided (S 4 , S 3 ) are homeomorphic to (M E , B E ) under a symmetry breaking U → Λ, where the object U under SU(4) transforms as a vector under SO(4), reflecting the apparent replacement of the complex SU(4) tangent manifold with the real SO(4) tangent manifold. This is explored in Section III.A.

C. Group scalars and vectors (p forms)

Any N ×N Hermitian matrix, A = A † can be expanded into basis SU(N ) matrices, t including the identity matrix, I N as,

A = A -A, (29a) 
where

A = AI N , A = A• t, A = (A 1 , • • • , A N 2 -1 ), N 2 -1 is the number of SU(N ) generators and A, A 1 , • • • , A N 2 -1
are real-valued space-time functions. Defining anti-Hermitian basis matrices, λ from the Hermitian ones, t and their commutation relations as follows,

λ = -i t, (29b) 
[λ a , λ b ] = f abc λ c , (29c) 
we recognize that eq. ( 29a) takes the desired object form, albeit with anti-Hermitian basis vectors, λ in place of the Hermitian vectors, t,

A = A + iA. (29d) 
In particular, taking A to be a p = 1 form, the object form of the Yang-Mills p = 2 form can be defined compactly as,

DA = F = dA + iA ∧ A = F + iF, ( 30a 
)
where d is the exterior derivative, F = dA is the U(1) field strength, while F = dA + A ∧ A is the Yang-Mills field strength, which in component form can be written as,

F µν = F µν + iF µν .
For instance, the field equations correspond to,

1 2π D † F = J = J + iJ, (30b) 
which are equivalent to,

1 2π D µ F µ ν = J ν = J ν + iJ ν , (30c) 
where

D † F = d † F and D † F = d † F + (A ∧ F)
, in conformity with eq. ( 6a), and a factor of 2π introduced for later convenience. Moreover, since d 2 = d †2 = 0 vanishes, D 2 = D †2 = 0 is also an identity of the covariant derivatives and likewise vanishes. Thus, we can retain our notation for Yang-Mills objects, namely the complex objects (T), the scalars (T ) and the vectors (T). The bold-face thus indicates that we are dealing with N × N matrices, whose basis matrices are the anti-Hermitian generators of the SU(N ) gauge group. Consequently, gauge transformations correspond to,

A = A + dθ, (31a) 
A = U -1 AU + U -1 dU, (31b) 
which implies the respective components of the field strength object transform as a scalar,

F = dA = F = d(A + dθ) = dA, (31c) 
and a vector,

F = d(U -1 AU + U -1 dU) + (U -1 AU + U -1 dU) ∧ (U -1 AU + U -1 dU) = U -1 (dA + A ∧ A)U = U -1 FU, (31d) 
under SU(N ) gauge group, where we have used

d 2 θ = d 2 U = d 2 U -1 = 0 and U -1 dU = -UdU -1 in eq. (31d).
Finally, it is interesting to check that Maxwell's theory in special relativity takes the form,

∂ j F j = 2πJ 0 , ( 32a 
)
iε jkl ∂ k F l = -2πJ j - ∂ ∂t F j , (32b) 
where E j and B j are the spatial components of the electric and magnetic fields respectively, ε jkl is the n = 3 dimensional totally anti-symmetric Levi-Civita symbol normalized as ε 123 = 1, F j = E j + iB j is a complex vector constructed from the two U(1) group scalars, E j , B j and J µ = J µ e + iJ µ m is the complex current density constructed from two U(1) scalars, J µ e and J µ m , corresponding to the electric and magnetic charge densities. Thus, since Maxwell's theory with monopoles satisfies S-duality, i.e. Maxwell's equations are invariant under the exchange of electric quantities with their magnetic counterparts [START_REF] Zee | Quantum field theory in a nutshell[END_REF], eq. ( 32) can be written in a metric independent manner using the language introduced above as eq. ( 30), where the gauge group is U(1) instead of SU(N ) (A → A ). Consequently,

A = A + iA , (32c) 
ν = 1 2π S 2 dA, ν = 1 2π S 2 dA , (32d) 
where ν and ν respectively are the monopole and electron numbers and S 2 is the n = 2-sphere.

III. THEORY

A. Motivation

To gain insights into the scalar and vector structure we have considered above, we can refrain from suppressing the matrix components, and explicitly write the Yang-Mills vector field strength and gauge transformations as,

F āb = dA āb + A āc ∧ A cb , (33a) 
F ā b = (U -1 ) āc F cd (U) db , (33b) 
A ā b = (U -1 ) āc A cd (U) db + (U -1 ) āc d(U) cb , (33c) 
where

A āb = A * ā b
is a space-time dependent N × N Hermitian matrix. It is evident that, in the tetrad formalism, the curvature p = 2 form takes a similar form,

R āb = dω ā b + ω āc ∧ ω cb , (34a) 
R ā b = (Λ -1 ) āc R cd (Λ) db , (34b) 
ω ā b = (Λ -1 ) āc ω cd (Λ) db + (Λ -1 ) āc d(Λ) cb , (34c) 
where the spin connection, ω ā b = -ω ā b is a 4 × 4 antisymmetric matrix, and the components ā running from 0 to 3, correspond to the four coordinates of the tangent manifold. Thus, one can expand ω into its basis matrices in order to find,

ω = ω a λ a = ω 2 λ 2 + ω 5 λ 5 + ω 10 λ 10 + ω 14 λ 14 + ω 12 λ 12 + ω 7 λ 7 , (35)
where λ a are the anti-Hermitian generators of SU(4) [START_REF] Sbaih | Lie algebra and representation of SU(4)[END_REF] and we require all the SU(4) generators which do not appear in eq. ( 35) to be set to nil. Consequently, this strictly breaks SU(4) gauge symmetry in favor of SO(4), thus capturing the local rotation group of the tangent space in n = 4 dimensions.

To further exploit the formalism, we can always calculate with the full SU(4) symmetry and subsequently break it to SO(4) afterwards, by setting the appropriate values of A to nil, followed by a Wick rotation, SO(4) → SO(1, 3) in order to yield the local Lorentz group on the tangent space replacing the Euclidean rotation group. This corresponds to making the identifications,

R ⇔ F, ω ⇔ A, (36a) Λ ⇔ U, η āb ⇔ δ āb, (36b) 
where

U = exp(iθ) = exp(i θ• t) = exp( θ• λ) = exp(θ E ) =
Λ are local Lorentz transformations on the tangent manifold, and

λ = (K E 2 , K E 5 , K E 10 , L 14 , L 12 , L 7 ) = ( K E , L), (37a) 
corresponds to the local generators of Euclidean boost,

K E = (K E 1 , K E 2 , K E 3
) and angular momentum L = (L1, L2, L3) on the tangent space. In other words, we shall have,

Λ j = exp λ ā bω j b µ ādx µ = exp Tr(λω j ) , (37b) 
where j = ± and λ ā b = λ a ⊗ λ a is expanded as a matrix tensor product into SU(4) according to eq. ( 35). Requiring the trace to act on the λ a basis matrices, but not their matrix coefficients, λ a , the Lorentz transformation of a topologically relevant manifold is defined as,

Λ = Λ + (Λ -) -1 = exp Tr(λω + ) -Tr(λω -) = exp λ a ω + b Tr(λ a λ b ) -λ a ω - b Tr(λ a λ b ) = exp λ a ω + b δ ab -λ a ω - b δ ab = exp ω + -ω -= exp ∓ dθ E = exp ∓θ E = U ∓1 , (37c)
where U +1 ≡U is the unitary object under SU(4), and we have used eq. ( 5) with N = 4, eq. ( 26), eq. ( 29b) and set dθ E = Λ -1 dΛ. Consequently, 6 of the 10 generators of Poincaré symmetry can be implemented by gauge/local Lorentz transformations via the vector component of the object, F in eq. (30a). However, to capture the remaining Poincaré symmetry generators [START_REF] Zee | Quantum field theory in a nutshell[END_REF] (translations), we can simply take a linear combination of the Killing vectors and set it equal to the group scalar gauge field,

A µ = 3 ā=0 c āξ µ ā , (38a) 
where c ā are constants with dimensions of mass and ξ µ ā are the 4 generators of space-time translations on the tangent space. This suggests that the SU(N ) scalar current in eq. ( 30) can be written as,

J µ = 2R µν A ν . ( 38b 
)
This result is motivated by [∇ µ , ∇ ν ]ξ σā = R ρ σµν ξ ρā and ∇ ν ξ āµ = -∇ µ ξ āν , which guarantees that the scalar current is conserved.

Finally, it will be convenient initially to work with SU(N ) instead of SU( 4), which provides a generalized framework for our approach. Comparing K µν from eq. ( 8c) with F µν from eq. (30a), it is evident that, even though F µν is also Hermitian under the SU(N ) matrix indices, unlike K µν , it is not invariant under complex conjugation followed by transpose of the space-time indices. We shall refer to K µν as complex-Hermitian since it exhibits both levels of hermiticity, while F µν does not.

B. Equations of motion

Constraint 1

In the succeeding work, we exploit the complex-Hermiticity of K µν in order to introduce two constraints analogous to eq. ( 30). These constraints are essential to obtaining an effective action for general relativity, with desirable topological features for quantum gravity.

We shall use our notation to introduce the gauge covariant constraint,

D µ K µ ν = Ψ(D ν Ψ) † , (39a) 
Ψ = √ R exp (iS) , Ψ † = √ R exp (-iS) , (39b) 
where R = g µν R µν is the Ricci scalar, K µν and D µ are given in eq. ( 8) and eq. ( 8c) respectively, and,

S = -p µ dx µ + A µ dx µ , (39c) 
is an action that transforms as a vector under SU(N ), where,

p µ = κu µ , (40a) 
u µ = dx µ (x ν ) dτ , (40b) 
with p µ the n = 4-momenta of N particles, tracked by a central space-time coordinate x ν (τ ), τ is the proper time and κ is a mass parameter. We shall also choose the following normalization condition on the n = 4-momenta and n = 4-velocities,

Tr(p µ p µ ) = N 4 p µ • p µ ≡ λ, ( 41 
)
where λ is a parameter with dimensions of (mass) 2 to be determined. The central coordinate defines the center of mass n = 4-velocity,

u µ = dx µ (τ ) dτ , (42a) 
u µ u µ = -1 (42b)
which transforms as a scalar under SU(N ). Using eq. ( 7) and separating the real and imaginary parts of eq. ( 39) yields, respectively, the Bianchi identity,

∇ µ R µ ν = 1 2 ∇ ν R, (43) 
and the equations of motion for the gauge field,

D µ F µ ν = 2πJ ν , (44a) 
where,

J ν = 1 4π i(Ψ * D ν Ψ -ΨD ν Ψ * ) = - R 2π p ν , (44b) 
is the SU(N ) current density. Thus, we arrive at familiar expressions in general relativity and Yang-Mills theory.

For completeness, we can couple the Yang-Mills field strength, F µν to a Dirac spinor, ψ with N components using the semi-classical EFE,

R µν - 1 2 Rg µν = -8πGT µν , (45a) 
T µν = T µν Dirac + T µν SU(N ) , (45b) 
where,

T µν YM = 2 N π Tr F µα F ν α - 1 4 F αβ F αβ g µν , (46a) 
is the Yang-Mills energy-momentum tensor and,

T µν Dirac = 1 4i ψγ µ D ν ψ + ψγ ν D µ ψ - 1 4i (D †µ ψ)γ ν ψ + (D †ν ψ)γ µ ψ , (46b)
is the energy-momentum tensor of the Dirac equations,

iγ µ (D µ ψ) = M ψ, (47a) i(D † µ ψ)γ µ = -M ψ, ( 47b 
)
where M is the Dirac mass,

D µ ψ = (∇ µ -iA µ )ψ, D † µ ψ = ∇ µ ψ + i ψA µ , ∇ µ ψ = (∂ µ -1 4 ω āb µ γ āγb)ψ and ∇ µ ψ = ∂ µ ψ + ψ( 1 4 ω āb µ γ āγb).
The quantum average, • • • is taken only over the Dirac terms in a semi-classical sense, since fermionic field equations do not have a valid classical description due to the Pauli-exclusion principle. By contrast, bosonic field equations represent the equations of motion for a large number of bosons occupying the same quantum state, which avails a valid classical description.

Consequently, we can define the velocities, u ν for the Dirac degrees of freedom in the following manner,

u ν = ψγ ν tψ ψψ , (48) 
and proceed to calculate the trace of eq. ( 45) using eq. ( 47) to yield,

R = -8πGM ψψ . ( 49 
)
Consequently, using eq. ( 43) to ensure that the righthand side of eq. ( 45) is divergence-free, we reproduce eq. ( 44) with,

J ν = ψγ ν tψ . ( 50a 
)
Plugging in the results in eq. ( 49) into eq. ( 44), we find,

J ν = 4GM κ ψψ u ν . (50b) 
Notably, for eq. ( 50a) to correspond to eq. ( 50b), we use eq. ( 48), which requires that,

κ = 1 4GM , (51) 
and thus motivates identifying κ as the surface gravity [START_REF] Wald | General relativity[END_REF], provided the Dirac mass, M doubles as the central mass, M in the Schwarzschild metric (for the the non-rotating black-hole solution of eq. ( 45) with T µν → 0).

Defining the central mass

However, general relativity does not admit a universal definition of mass in arbitrary space-times. [START_REF] Thorne | Gravitation[END_REF] Typically, one can exploit time translation symmetric (stationary) asymptotically flat space-times such as the Schwarzschild metric to define the mass, M at spatial infinity, where the curvature vanishes, since such a space-time admits a time-like Killing vector, ξ µ 0 as a generator of time-translations, ξ µ 0 ∂/∂x µ = ∂/∂t.This introduces the notion of conserved energy, that can appropriately be compared to expected notions in special relativity. Moreover, in addition to ξ µ 0 , stationary axisymmetric asymptotic flat space-times such as the Kerr metric admit an additional unique rotational Killing vector, ξ µ 4 as a generator of rotations ξ µ 4 ∂/∂x µ = ∂/∂θ, whose orbits comprise closed curves along the azimuthal angle, 0 ≤ θ ≤ 2π on the 2-surface of an oblate spheroid. By definition, the Killing vectors obey the relations [START_REF] Bardeen | The four laws of black hole mechanics[END_REF],

∇ µ ξ ν 0 + ∇ ν ξ µ 0 = 0, (52a) ∇ µ ξ ν 4 + ∇ ν ξ µ 4 = 0, (52b) ∇ µ ∇ ν ξ µ 0 = R µν ξ ν 0 , (52c) 
∇ µ ∇ ν ξ µ 4 = R µν ξ ν 4 , (52d) 
where,

ξ µ 0 ∇ µ ξ ν 4 = ξ µ 4 ∇ µ ξ ν 0 . (53) 
Thus, a linear combination of the Killing vectors, ξ µ = ξ µ 0 + Ω h ξ µ 4 , corresponding to the null vector tangent to the generators at the horizon defined by ξ µ ξ µ = 0, also satisfies eq. ( 52),

∇ µ ξ ν + ∇ ν ξ µ = 0, ( 54a 
)
∇ µ ∇ ν ξ µ = R µν ξ µ , (54b) 
and the parameter, Ω h is the angular frequency constant on the horizon and satisfies,

ξ µ ∇ µ ξ ν = κξ µ , ( 55 
)
where κ is the surface gravity we seek to define in terms of the mass M , in a accordance to eq. ( 51). Since ∇ µ ξ ν 0 = -∇ µ ξ ν 0 is anti-symmetric, we can use Stokes' theorem to transfer the integral of the asymptotically flat space-like hypersurface, S = V (tangent to the rotation Killing vector, ξ µ 4 and intersecting the horizon at a 2surface ∂B = A), to the boundary, ∂S of S (consisting of ∂B and a 2-surface, ∂S ∞ at spatial infinity),

∂S∞ dΣ µν ∇ µ ξ ν 0 + ∂B dΣ µν ∇ µ ξ ν 0 = ∂S dΣ µν ∇ µ ξ ν 0 = - S dΣ ν ξ µ 0R µν , ( 56 
)
where dΣ µν = 1 2 (n µ ξ ν -n ν ξ µ )dA and dΣ µ = n µ dV are the surface elements of ∂S and S respectively, while dA is the area element of the horizon, dV = d 3 x -det(g µν ) is the volume element of S and n ν is the other null vector orthogonal to ∂B, normalized as n µ ξ µ = 1. Thus, we define the total mass as measured from infinity (corresponding to the central mass) as,

M = 1 4πG ∂S∞ dΣ µν ∇ µ ξ ν 0 . (57a) 
In addition, the integral over ∂B yields,

∂B dΣ µν ∇ µ ξ ν = - ∂B ξ µ ∇ µ ξ ν n ν dA = - ∂B ξ ν n ν κdA = - ∂B=A κdA = -κA, (57b) 
where we have used eq. ( 55) and the fact that κ is constant over the horizon. [START_REF] Bardeen | The four laws of black hole mechanics[END_REF] Likewise, the total angular momentum as measured from infinity and the angular momentum at the horizon defined in a similar manner as the mass,

L = 1 8πG ∂S∞ dΣ µν ∇ µ ξ ν 4 , (58a) 
L h = 1 8πG ∂B dΣ µν ∇ µ ξ ν 4 , (58b) 
where Stokes' theorem, using eq. ( 54), yields,

∂S∞ dΣ µν ∇ µ ξ ν 4 + ∂B dΣ µν ∇ µ ξ ν 4 = ∂S dΣ µν ∇ µ ξ ν 4 = - S dΣ ν ξ µ 4R µν . (59)
Thus, since the EFE in eq. ( 45) can be transformed in n = 4 dimensions into,

R µν = -8πG T µν - 1 2 g αβ T αβ g µν , (60) 
we can plug in the results from eq. ( 57) and eq. ( 58) into eq. ( 56) to yield,

M = κA 4πG + 2Ω h L h + 2E, (61a) 
where the energy, E is given by,

E = S=V dΣ µ ξ ν 0(T µν - 1 2 g αβ T αβ g µν ), ( 61b 
)
where V is an n = 3 dimensional space-like hyper-surface.

For instance, it follows that, for the Kerr-Newmann solution (T µν = F µα F ν α -1 4 F αβ F αβ g µν , where F µν = ∂ µ A ν -∂ ν A ν is the U(1) field strength with an appropriate choice of gauge for A µ ), the energy becomes

E = i∈e,m q i Φ i , (62a) 
where Φ e and Φ m are the electric and magnetic potentials associated with the electric q e and q m monopole charges respectively. Consequently, the exact solutions for the quantities in eq. ( 61) are given by (Hawking, 1976a),

κ = 4π A (r + -r S /2) , Φ i = 4π A q i r + , Ω h = 4π A a, ( 62b 
)
where r ± = r S /2 ± (r S /2) 2 -a 2 -G i q 2 i is the radius of the inner(-) or outer(+) horizon, r S = 2GM is the Schwarzschild radius, A = 4πr + r S and a = L h /M . Evidently, the surface gravity, κ is an elaborate function of M and L h as well as q i , and hence does not correspond to eq. ( 51) unless the solution is Schwarzschild (L → 0 and Q → 0). This implies that our approach will be a good approximation to real systems as the limits, r + → r S and q i → 0 are satisfied, which correspond to the limits ξ µ → ξ µ 0 and T µν → 0, where the energymomentum tensor is given by eq. ( 45).

Constraint 2

We shall consider a second constraint,

D ν D µ K µν = 0, (63) 
whose imaginary and real parts respectively correspond to,

D µ J µ = 0, (64a) 
∇ µ ∇ µ R = 0. ( 64b 
)
The first expression in eq. ( 64a) is guaranteed by the SU(N ) symmetry. However, the second expression is novel, since complex-Hermitian objects such as K µν do not traditionally appear in the formulation of Einstein's general relativity.

It is prudent to define a conserved current density,

J ν = 1 2π ∇ ν R, (65) 
which transforms as a scalar under SU(N ) gauge group.

For the purposes herein, we shall obtain the scalar current density using,

R = R c exp(-Φ), (66a) 
Φ = p µ dx µ , (66b) 
p µ = β-1 u µ , (66c) 
where R c is a constant and β = β/2π is a reduced inverse temperature to be defined. Using the Killing vector ξ µ , we can exploit the Killing relations in eq. ( 54) by taking the trace to find, ∇ ν ξ ν = 0 and setting,

J ν = J c ξ ν = - R 2π p ν , (67) 
in order to guarantee that the current is conserved, ∇ ν J ν = 0. When there is more than one space-time isometry, one should take a linear combination of the Killing vectors (such as in eq. ( 38a)), in order to construct a suitable ξ µ . This ensures that the constraint in eq. ( 63) represents a combined space-time and SU(N ) gauge symmetry, where the conserved charge is a complex object given by,

Q = V d 3 x -det (g µν ) Tr(J 0 ), (68) 
related to this combined symmetry. Here, V is the n = 3 (dimensional) space-like hyper-surface corresponding to spatial volume. Thus, J µ = 1 2π Ψ(D µ Ψ) † = J µ + iJ µ is the conserved current. Nonetheless, the trace, Tr in Q ensures that Q = 0 vanishes by virtue of the SU(N ) matrices being trace-less. This reduces the number of finite charges to unity, where Q = Q + i0 is purely a scalar under SU(N ). Since Q is the only finite charge, it is reasonable to identify Q = N with the SU(N ) colors, which corresponds to the scalar charge associated with the Killing vectors, ξ µ . Moreover, when N → 1, we obtain a trivial U(1) gauge symmetry with the identity replacing the trace-less matrices, and hence Q remains finite satisfying Q → 2Q. For U(1), this suggests eq. ( 39) and eq. ( 63) respectively reduce to (Kanyolo and Masese, 2021),

∇ µ K µ ν = Ψ(D ν Ψ) † , (69a) 
Ψ = √ R exp(iS), Ψ † = √ R exp(-iS), (69b) 
∇ µ ∇ ν K µν = 0, (69c) 
where,

D µ = ∇ µ -iA µ , (70a) 
K µν = R µν -iF µν , (70b) 
S = -p µ dx µ + A µ dx µ . ( 70c 
)
Proceeding, we employ the definitions in eq. ( 65) and eq. ( 67) to discover that the n = 4-velocity is related to the Killing vector by,

u ν = -exp(Φ)ξ ν , (71) 
where J c = R c / β defines relates the constants. Applying eq. ( 71), we obtain equations of motion for the center of mass coordinate,

u µ ∇ µ u ν = exp(Φ)ξ µ ∇ µ (exp(Φ)ξ ν ) = exp(2Φ)ξ µ ∇ µ ξ ν + exp(Φ)ξ ν ξ µ ∇ µ exp(Φ) = - 1 2 exp(2Φ)∇ ν (ξ µ ξ µ ) = 1 2 exp(2Φ)∇ ν exp(-2Φ) = -∇ ν Φ,
where we have used eq. ( 71), eq. ( 42) and,

R µν ∇ µ ξ ν = 0, ∇ µ ξ ν = -∇ ν ξ µ , 1 2 ξ µ ∇ µ R = ∇ ν (R µν ξ µ ) = ∇ ν ∇ µ ∇ ν ξ µ = 0,
from eq. ( 54), which guarantee that ξ µ ∇ µ Φ = 0. Thus, we obtain the equation of motion,

u µ ∇ µ u ν = -β-1 u ν + η ν , (72a) 
which takes the form of a Langevin equation [START_REF] Lemons | Paul langevin's 1908 paper "On the theory of Brownian motion[END_REF], where β plays the role of the mean free path between collisions and η ν the random acceleration (which is nil in eq. ( 72a)). Moreover, since,

β-1 exp(-Φ)ξ µ = -β-1 exp(-2Φ)u µ = -exp(-2Φ)∇ µ Φ = 1 2 ∇ µ (exp(-2Φ)) = - 1 2 ∇ µ (ξ ν ξ ν ) = -ξ ν ∇ µ ξ ν = ξ ν ∇ ν ξ µ , (72b) 
we obtain eq. ( 55), where κ = β-1 exp(-Φ) indeed is the surface gravity. When ξ µ → ξ µ 0 = (-1, 0), the Killing vector is time-like. Assuming a diagonalized metric tensor, and using the face that Φ is real-valued, we obtain u 0 = exp(Φ) ≥ 0 and -exp(-2Φ) = exp(-2Φ)u µ u µ = ξ µ ξ µ = ξ µ ξ ν g µν = g 00 ≤ 0, which means that,

β -1 = κ 2π |g 00 | ≥ 0, ( 73a 
)
is the Tolman relation [START_REF] Tolman | On the weight of heat and thermal equilibrium in general relativity[END_REF][START_REF] Tolman | Temperature equilibrium in a static gravitational field[END_REF], where κ is given in eq. ( 51), defined at the Killing horizon, ξ µ ξ µ = 0. In order to treat Φ as the Newtonian potential, we shall assume it is small, Φ 1 such that, g 00 1 -2Φ, implying u µ → ξ µ , which also lead to,

β -1 κ 2π = 1 8πGM , (73b) 
as expected. [START_REF] Bekenstein | Bekenstein-Hawking entropy[END_REF]Hawking, 1976a;[START_REF] Zee | Quantum field theory in a nutshell[END_REF] Consequently, we can introduce the complex object, S = S/2 + iS, where S = κ dτ in order for Ψ = √ ρ c exp(S) and ρ c is a constant.

Finally, using eq. ( 73b), eq. ( 65) and the trace of EFE given in eq. ( 49), we find,

J µ = ψψ u µ I N . (74) 
In the same spirit as eq. ( 48), we can define the n = 4velocity as,

u ν = ψγ ν ψ ψψ I N , (75) 
where, u ν is a scalar under SU(N ) and hence an N × N matrix. Thus, we proceed to choose the normalization,

V d 3 x -det(g µν ) J 0 ( x) = V d 3 x -det(g µν ) ψ( x)ψ( x) u 0 ( x)I N = V d 3 x -det(g µν ) ψ( x)γ 0 ( x)ψ( x) I N = V d 3 x -det(g µν ) ψ † ( x)ψ( x) I N = I N , (76a) 
where we have used (γ 0 ) -1 γ 0 = 1, in order for J 0 ( x) = ψ † ψ to have the proper normalization for a probability density. Thus, the scalar charge, Q from eq. ( 68) becomes,

Q = Tr(I N ) = N, (76b) 
as expected. Likewise, we can employ eq. (76a) to obtain the vector charges, Q using,

M d 4 x -det(g µν ) J µ = dτ V d 3 x -det(g µν ) J µ dt dτ = dτ V d 3 x -det(g µν ) J µ u 0 ( x) = dτ u µ (τ ) V d 3 x -det(g µν ) J 0 ( x) = dτ u µ (τ ) = dτ dx µ (τ ) dτ = ∆x µ (τ ), ( 77a 
)
where, M = (t, V) is the 1, 3 dimensional pseudo-Riemannian manifold. Here, we have applied eq. ( 48) and eq. ( 50b), and parametrized the vector current as, J µ (τ, x) = ψ( x)ψ( x) u µ (τ ). Note that, ∆x µ (τ ) =

x µ (τ ) -x µ (0) is the displacement with x µ (0) the integration constant. Thus, eq. ( 77a) implies that,

Tr dx 0 dt = V d 3 x -det(g µν ) Tr(J 0 ) = 0, ( 77b 
)
and thus we shall have,

Q = 0, (77c) 
by virtue of the SU(N ) matrices being trace-less, Tr(t) = 0. Consequently, when N → 1 i.e. (SU(N ) → U(1)) in eq. ( 76b), the trace-less matrices can be replaced by twice the identity matrix, 2I N implying that x 0 → 2t, in order for Q → 2Q as required. An approach, considering only this limit, has been employed in a preceding paper (Kanyolo and Masese, 2021), which provides the necessary framework to reproduce asymptotic behavior of galaxy rotation curves, within the context of dark matter (Section V).

C. Lagrangian density

To ground the equations of motion on a firmer footing, we provide a suitable action principle for our formalism. We consider the following action on the space-time manifold, M given by,

I M = M d 4 x -det(g µν ) 3 j=1 Tr (L j ) , (78a) 
L 1 = i ψγ µ D µ ψ -M ψψ, (78b) 
L 2 = 1 2π K µν (K µν ) † , (78c) 
L 3 = 1 2π (D µ Ψ)(D µ Ψ) † + λ πN |Ψ| 2 - 1 8π |Ψ| 4 , (78d) 
where λ satisfies eq. ( 41), and K µν and Ψ are given in eq. ( 8) and eq. ( 39) respectively. Note that the Lagrangian densities are N × N identity matrices, which necessitates the trace, Tr to be appear in the Lagrangian. Proceeding to set L = L 1 + L 2 + L 3 , we derive the constraints in eq. ( 39) and eq. ( 63) respectively by,

D ν δL δK µν = δL δD µ , D ν δL δ(K µν ) † = δL δ(D µ ) † , (79a) 
D µ D ν δL δK µν = 0, D µ D ν δL δ(K µν ) † = 0, ( 79b 
)
where K µν , (K µν ) † and D µ = ∇ µ -iA µ , D † µ = ∇ µ + iA µ are treated as independent fields. Moreover, recall that the trace, Tr in the action, I M will introduce a multiplicative factor of N to all SU(N ) scalars in the action. Thus, plugging in eq. ( 8) into L 2 and using F µν R µν = 0, we can take the trace, Tr(L 2 ) to find,

N 2π R µν R µν - N 8π F µν • F µν . ( 80a 
)
Consequently, this corresponds to the Lagrangian density of the gravity and gauge fields, g µν and A µ respectively. However, currently, eq. ( 78) does not yet resemble the Einstein-Hilbert action we should obtain in order to be consistent with Einstein's general relativity. Moreover, the third Lagrangian density, Tr(L 3 ) takes the Ginzburg-Landau form for a Bose-Einstein condensate of N colors of mass 2λ/πN , whose momenta are given in eq. ( 40a). Substituting Ψ = √ R exp(iS) from eq. ( 39) into eq. ( 78) and taking the trace, Tr (L 3 ) we obtain,

1 2π Tr(|D µ Ψ| 2 ) + λ π R - N 8π R 2 , ( 80b 
)
where R is the Ricci scalar. Thus, for eq. ( 78) to reproduce the Einstein-Hilbert action as expected (neglecting the possible leading order terms), we ought to set the coupling constant, λ to,

λ ≡ 1 16G = m P 4 2 , (81) 
where m P = 1/ √ G is the Planck mass. This suggests that eq. ( 40a) describes the energy-momentum relation of Planckian particles. Moreover, we can perform the symmetry breaking, SU(N ) → SU(4) → SO(4) → SO(1, 3), in accordance with eq. ( 35) and eq. ( 36), by setting (R µν ) āb = (F µν ) āb , thus obtaining

F µν • F µν = (F µν ) āb (F µν ) bā = R µνσρ R µνσρ
, where R µνσρ is the Riemann tensor. In particular, since the tangent space must have the same dimensions (n = 4) as the manifold, M, the symmetry breaking (subsequently employed in eq. ( 80a) to arrive at eq. ( 83)), can be viewed as a Cayley-Dickson (de-)construction of K µν from SU(N ) to SU(4), in a similar fashion to eq. ( 10b), setting the irrelevant terms to nil and a subsequent Wick rotation to introduce the Lorenzian signature.

Consequently, it is now evident that the coefficients in eq. ( 78) and the normalization of the SU(N ) matrices in eq. ( 5) were a priori chosen in order to obtain the factors, N/8π, N/2π and N/8π as the coefficients of the terms -F µν • F µν , R µν R µν and -R 2 respectively, where the former two arise from the K µν (K µν ) † term and the latter the |Ψ| 4 term in the Lagrangian density. In turn, this ensures that the resultant corrections to the Einstein-Hilbert action (arising from the |Ψ| 2 term) correspond to the Gauss-Bonnet term [START_REF] Lovelock | The Einstein tensor and its generalizations[END_REF],

L GB = - 1 8π (R 2 -4R µν R µν + R µνσρ R µνσρ ), ( 82a 
)
which is topological in nature (a total derivative). From eq. ( 23a),

dCS = -d 4 x -det (g µν )Tr(L GB ). ( 82b 
)
Consequently, we have,

χ 4 (M) = 1 8π 2 M Tr(R ∧ R) = 1 πN M dCS = 1 πN ∂M+=B CS + + 1 πN ∂M-=-B CS - 1 πN B CS + - 1 πN B CS - = 1 24π 2 B dTr(Λ -1 dΛ) = ±2ν, (82c)
where, we have used eq. ( 21) and eq. ( 27). Thus, χ 4 is the Euler characteristic in n = 4 dimensions, and hence does not contribute to the equations of motion. Finally, collecting all the terms, we have,

L = 1 2 Tr(|D µ Ψ| 2 ) + i ψγ µ D µ ψ -M ψψ + λ π R + Tr(L GB ), ( 83 
)
where we have used the definition, Tr(L 1 ) ≡ L 1 for the Dirac field Lagrangian density. It is now clear that varying this action with respect to the metric, g µν will reproduce eq. ( 45) where T µν SU(N) → 0, provided we can find the conditions that allow the kinetic term of Ψ to identically vanish.

In n = 4 dimensions, the constraint in eq. ( 39) is invariant under T µν SU(N) → 0. This arises from the fact that mass-less SU(N ) gauge field theories in n = 4 dimensions are conformal field theories, requiring that their energy-momentum tensors are mass-less and hence traceless. On the contrary, a finite mass, M gauge introduces a preferred length scale comparable to the Compton wavelength, ∼ 1/M gauge . [START_REF] Francesco | Conformal field theory[END_REF] Moreover, in Ginzburg-Landau theories [START_REF] Huebener | Ginzburg-landau theory[END_REF], one would typically assume Ψ varies slowly, resulting in the sombrero potential dominating the free energy contribution over the kinetic term. Within this paradigm, we can introduce the fluctuations, |Ψ| 2 -|Ψ| 2 = δ|Ψ| 2 and S -S = δS, and define the Ricci scalar as the fluctuation, R = δ|Ψ| 2 instead of |Ψ| 2 , where the mean values of |Ψ| 2 and S are kept independent of space-time coordinates ( |Ψ| 2 /2 = -Λ and S = S c ). This does not alter the real and imaginary parts of eq. ( 39), since the Bianchi identity and Yang-Mills equations, given in eq. ( 43) and eq. ( 44) respectively, are invariant under the shift R → R -2Λ and S → S -S c . Thus, we can identify Λ as the cosmological constant. Consequently, the kinetic term in eq. ( 83) leads to gauge symmetry breaking by generating the cosmological constant and hence a mass term for the gauge field assuming Λ R, and S c δS. However, since a mass term (spontaneous symmetry breaking) breaks the aforementioned conformal symmetry by generating an additional energy-momentum tensor proportional to 1 2 M 2 gauge Tr(A µ A ν ) which is not trace-less, this introduces a length scale ∼ M gauge = 1/ √ Λ in the gauge field theory. [START_REF] Zee | Quantum field theory in a nutshell[END_REF] On the other hand, in order to maintain conformal symmetry, we shall explore another approach of identically getting rid of the kinetic term of Ψ.

In particular, we exploit the second constraint given in eq. ( 63), which serendipitously avails an avenue for the kinetic term to identically vanish. To see this, we plug in Ψ = √ R exp(iS), employ eq. ( 7), eq. (39c), eq. ( 67) and eq. ( 73b), and the normalization conditions in eq. ( 41) and eq. ( 42) to yield,

1 2 Tr(|D µ Ψ| 2 ) = R 2 Tr(p µ p µ ) + κ 2 N 4 u µ u µ , (84a) 
which identically vanishes when,

πN = λ πκ 2 = 4πGM 2 = βM 2 = 4πr 2 S 4l 2 P = S, (84b) 
which implies (Kanyolo and Masese, 2021),

βM = 2πN, (85a) 
where we have used eq. ( 51), eq. ( 81), the Schwarzschild radius, r S = 2GM and Planck length, l P = √ G = 1/m P to identify the entropy, S. In fact, eq. ( 85a) is the already proposed black hole area quantization condition by several authors (Bekenstein andMukhanov, 1998, 1995;[START_REF] Mukhanov | Are black holes quantized?[END_REF][START_REF] Vaz | Mass quantization of the Schwarzschild black hole[END_REF] since N ∈ Z ≥ 0 is the number of colors and hence must be discrete. Thus, to maintain conformal invariance, Killing horizon areas must be pixelated in units of 4πG. Another curious observation is, eq. ( 85a) can be rearranged in order for the mass to take the form of bosonic, N = m or fermionic, N = (2m + 1) Matsubara frequencies [START_REF] Abrikosov | Methods of quantum field theory in Statistical Physics[END_REF],

ω b = M = 2πN/β = 2ω f , (85b) 
where m ∈ Z ≥ 0 is a positive integer. This could have some deep significance for thermal Green functions not explored further in the present work. Finally, plugging in eq. (84b) into eq. ( 83), the sum of the traces in eq. ( 78) can be transformed into an equivalent sum,

3 j=1 Tr(L j ) = L(λ) + L 1 + Tr(L GB ), (86a) 
where, L(λ) = λR/π corresponds to the Einstein-Hilbert Lagrangian density and,

M d 4 x -det(g µν )Tr(L GB ) = -Sχ 4 (M), (86b) 
is the Gauss-Bonnet term. [START_REF] Lovelock | The Einstein tensor and its generalizations[END_REF]) Thus, we have demonstrated that eq. ( 78) is a candidate action for the formalism earlier introduced, since it reproduces the Einstein-Hilbert action, albeit with a finite topological term. The significance of this topological term will subsequently be explored within the context of quantum gravity.

IV. RESULTS

A. Generating all mass terms

The path integral approach requires that the quantum gravity wave function [START_REF] Gibbons | Action integrals and partition functions in quantum gravity 1977[END_REF][START_REF] Hamber | Quantum gravitation: The Feynman path integral approach[END_REF][START_REF] Hawking | Quantum gravity and path integrals[END_REF] be defined by,

Ψ QG = D[g µν , A µ , ψ, ψ] exp(iI M ), ( 87 
)
where I M is given in eq. (86a). We shall first treat the gauge field, (A µ ) āb and the spin connection, (ω µ ) āb as different fields and first consider the path integral over A µ . This appears straight-forward to perform since only L 1 in eq. (86a) depends on A. It will be clear that we can effectively generate the |Ψ| 4 /8π term in eq. ( 78) by a path integral with respect to A µ , where the Lagrangian initially has a term,

1 2 M d 4 y -det (g µν )A µ (x)(G -1 ) µν (x -y)A ν (y), with, (G -1 ) µν = Tr(p α p α ) πN -det (g µν ) g µν δ 4 (x -y), (88a) 
the inverse propagator, δ 4 (x -y) the Dirac delta function normalized as d 4 x δ 4 (x -y) = 1, Tr(p α p α ) = λ given in eq. ( 41) and gauge field mass corresponding to the reduced Planck mass, 2λ/π = mP = 1/ √ 8πG (eq. ( 81)). Consequently, the propagator, G µν (x -y) is given by,

G µν = πN -det (g µν ) Tr(p α p α ) g µν δ 4 (x -y), (88b) 
which satisfies,

d 4 z (G -1 ) µ α (x-z)G α ν (z -y) = δ 4 (x-y)δ µ ν , (88c) 
where δ µ ν = g µα g αν is the Kronecker delta. Thus, performing the path integral, D[A µ ] obtains the action,

- 1 2 M d 4 x M d 4 y Tr (J µ (x)J ν (y)) G µν (x -y). ( 88d 
)
where the current, J µ = ψγ µ tψ is the Dirac current in the term, L 1 . Moreover, plugging in the equivalent form of J µ from eq. (44b) into eq. ( 88d) obtains,

- 1 2 M d 4 x -det(g µν )πN R 2π 2 = - 1 8π M d 4 x -det(g µν )Tr |Ψ| 4 , (89) 
as earlier remarked. Moreover, the masses of A µ and Ψ can effectively be generated by spontaneous symmetry breaking in the following manner,

L 4 = 1 πN |φ| 2 |Ψ| 2 - 1 2π (D µ φ) † (D µ φ) -V (φ), (90a) V (φ) = - λ 2 |φ| 2 + 1 4 |φ| 4 , ( 90b 
)
where the sombrero potential V (φ) has its minima at |φ c | 2 = 0, λ, with λ the mass of the φ field as expected from eq. ( 41). Notably, the first term in eq. ( 90a) yields the Einstein-Hilbert action, while the kinetic term of φ yields the mass term for the gauge field, |φ c | 2 A µ A µ /2π, which is integrated out by D[A µ ] as discussed in order to yield eq. ( 89). Conversely, the presence of eq. ( 89) in the Lagrangian density implies gauge invariance is already spontaneously broken by the condensate, φ but not by Ψ. Likewise, recall that the kinetic term of Ψ governs whether the Killing horizon is quantized as in eq. (85a) or cosmological (Λ = 0) in nature, corresponding to either preserving or breaking the conformal symmetry of the underlying gauge theory, A µ . Consequently, this can be viewed as exploring conformal and non-confomal regimes of the theory, corresponding respectively to the length scales, ∼ r S = 2GM comparable to the black hole radius and ∼ 1/ √ Λ comparable to the size of the de Sitter universe.

Finally, since ψ no longer couples to A µ after integrating it out, we recognize that the essence of the above maneuvers in the case of ∼ r S is already captured in eq. ( 87) by simply setting A µ = 0.

B. Quantum gravity

We proceed by considering the path integral, D[ ψ, ψ]. We shall perform this integral by the stationary phase/steepest descent approach [START_REF] Zee | Quantum field theory in a nutshell[END_REF], where we simply plug in the classical solutions of motion of ψ, ψ given in eq. ( 47), which require, L 1 = 0. Consequently, the path integral simply acquires an unimportant phase, ln D[ ψ, ψ] . Proceeding, we are interested in the path integral involving the metric tensor, g µν as the dynamical field. However, we face a daunting challenge to appropriately define this path integral since there lacks a consensus in literature on how the measure, D[g µν ] ought to be defined in order to yield consistent results. [START_REF] Hamber | Quantum gravitation: The Feynman path integral approach[END_REF] Nonetheless, we make progress by defining the path integral with the measure as a discrete sum over an ensemble of varied space-time manifolds, i.e. D[g µν ] → M . Moreover, a neat observation from eq. ( 25) and eq. ( 28) implies,

Sχ 4 (M) = πN χ 4 (M) = ±2πN ν, (91) 
where ν ∈ Z is the second Chern (winding) number. Consequently, this implies that the topological action can identically be excluded from the exponent. Moreover, we can rewrite eq. ( 87) as,

Ψ QG = M exp(iI M (λ))ψ * + CS (B)ψ - CS (B) = M exp(iI M (λ)), (92a)
where,

I M (λ) = λ π M d 4 x -det (g µν )R, (92b) 
is the Einstein-Hilbert action (in Lorenzian signature). Nonetheless, since a Wick rotation, defined by t = ±it E and Ψ QG → Z E QG where Z E QG is the partition function, transforms the exponent to a real value, the topological term now contributes in the Euclidean path integral,

Z E QG = M E exp(∓I E M E (λ)) exp ±Sχ 4 (M E ) , (93a) 
where,

I E M E (λ) = λ π M E d 4 x E det(g E µν )R, (93b) 
is the Einstein-Hilbert action in Euclidean signature and M E ∈ (β, V) is the n = 4 (dimensional) Riemannian manifold.

C. 1/N expansion

Since S is the thermodynamic entropy, it is expected to be statistical, arising from quantum gravity degrees of freedom of some quantum theory. Such a quantum theory ought to reproduce the partition function given in eq. ( 93), with the constraint, S = ln N , where N is the black hole/quantum gravity number of microstates. As earlier remarked, since the path integral measure, D[g µν ] is not well-understood, the aspiration is for such a successful quantum theory reproducing eq. ( 93) to have a welldefined path integral measure, e.g. D[ϕ], where ϕ are dynamical fields, in order for quantum gravity to emerge from the path integral formulation, hence circumventing this issue.

To make some progress in identifying such a theory, we plug into eq. ( 93) the Boltzmann entropy formula,

S = ln N , (94) 
thus obtaining the homestretch,

Z E QG = M E ∈h exp(∓I E M E (λ))N ±χ4(M E ) = M E ∈h exp -dβ H M E (β) = Tr exp -dβ H M E (β) , (95) 
corresponding to eq. ( 1a), where exp -dβ H M E (β) takes the form of a Boltzmann factor with the trace, Tr going over the ensemble of manifolds, M E ∈ h with distinct topologies characterized by the index, h to be later defined. Note that the classification of all n = 4 dimensional Riemannian manifolds into distinct topologies is not a straightforward exercise [START_REF] Freedman | The topology of fourdimensional manifolds[END_REF], requiring additional assumptions, tackled in subsequent sections. Nonetheless, we recognize eq. ( 95) as the 1/N expansion of a large N theory with the partition function given by,

Z = exp(Z E QG ) = D[ϕ] exp - N ± λ ± Tr(γ(ϕ)) , ( 96 
)
where S(ϕ) = N λ ± Tr(γ(ϕ)) is the action for unidentified field tensors, ϕ of rank n = 4 transforming appropriately as vectors under an unknown group, and γ is the unidentified function of ϕ defining the large N theory. In this case, the vacuum Feynman diagrams pave n = 4 manifolds [START_REF] Gurau | The complete 1/N expansion of colored tensor models in arbitrary dimension[END_REF], differing from random matrix large N theories, where ϕ is a rank n = 2 tensor (matrix) with vacuum Feynman diagrams defining n = 2 manifolds. [START_REF] Gurau | The 1/N expansion of colored tensor models[END_REF][START_REF] Gurau | The complete 1/N expansion of colored tensor models in arbitrary dimension[END_REF][START_REF] Gurau | The 1/N expansion of colored tensor models in arbitrary dimension[END_REF] D. Topology

Old quantum condition

Considering the Langevin equation given in eq. ( 72a), we define the geodesic curvature as,

k g (τ ) = u ν u µ ∇ µ u ν , (97a) 
motivated by the fact that k g (τ ) identically vanishes as the n = 4-velocity approaches the Killing vector u µ (τ ) → ξ µ (τ ) due to the anti-symmetry relation in eq. ( 54) or more favorably when the center of mass equations of motion are geodesics,

u µ ∇ µ u ν = 0. ( 97b 
)
In particular, when the random acceleration vanishes, η µ = 0 as in eq. ( 72a), we can employ u µ u µ = -1 to discover the geodesic curvature corresponds to reduced temperature, k(τ ) = 1/ β(τ ). Moreover, observe that,

I(λ) = λ π d 4 x -det(g µν )R = - M 2 dt V d 3 x -det(g µν ) ψψ = - M 2N dτ V d 3 x -det(g µν )Tr(J 0 ( x)) = - M 2 dτ = M 2 u µ (τ )dx µ (τ ), ( 98 
)
where u µ (x µ (τ )) = dx µ (τ )/dτ , u µ (τ )u µ (τ ) = -1. Note that, we have used eq. ( 49), eq. ( 74), eq. ( 76) and eq. ( 81). Thus, eq. ( 98) guarantees that the Einstein-Hilbert action satisfies,

I M (λ) = - M 2 C(M) dτ = M 2 C(M) u µ (x µ (τ ))dx µ (τ ), ( 99 
)
where C identifies a world-line in space-time corresponding to the trajectory for the center of mass. Under a wick rotation, t → ±it E and τ → ±is, and closed world-lines become possible, where s is the arc length for the closed trajectory

C E ∈ [0, β].
Consequently, the integral over the Langevin eq. ( 72a) after Wick rotation yields,

C E k g (s) ds + M N C E u µ (s)dx µ (s) = C E η µ dx µ , (100a)
where,

M β 0 ds = βM = 2πN = 4πk, (100b) 
u µ (s)u µ (s) = 1, u µ (s) = dx µ /ds and we have used βM = 2πN from eq. ( 85a) and eq. ( 23c).

Entropy as an adiabatic invariant

Recalling that = 1, N ∈ Z ≥ 0 and M u µ has the right form for momentum, we recognize eq. ( 100b) as the old quantum condition (Wilson-Sommerfeld/Ishiwara rule) [START_REF] Ishiwara | The universal meaning of the quantum of action[END_REF][START_REF] Pauling | Introduction to quantum mechanics with applications to chemistry[END_REF], which is equivalent to the condition of black hole area quantization, implying that black hole entropy (proportional to area) is an adiabatic invariant. [START_REF] Henrard | The adiabatic invariant in classical mechanics[END_REF] For instance, considering the constraint equations in eq. ( 69) when the gauge field is broken to U(1) U(1), we can appropriately re-scale the complex function using the trace of EFE, R = -β ψψ with β = 8πGM in order to have, Ψ = ψψ exp(iS), S = -M 2 ds and,

∇ µ K µν = -βΨ † ∂ E ν Ψ, ( 101a 
)
where ∂ E µ the partial derivative in Euclidean signature and

∂ E µ -iA µ → ∂ E µ .
Consequently, the normalization of Ψ = √ ρ exp(iS) in Euclidean signature, equivalent to eq.

(76a), corresponds to,

1 = V d 3 x det(g E µν )u 0 ( x(t E )) ψ( x(t E ))ψ( x(t E )) = V d 3 x det(g E µν )u 0 ( x(t E ))Ψ † ( x(t E ))Ψ( x(t E )) = 2 M V d 3 x det(g E µν )ξ ν Ψ † ( x(t E ))i∂ E ν Ψ( x(t E )) = 2 M Ψ( x(t E ))|i ∂ ∂t E |Ψ( x(t E )) , (101b)
where ξ µ = (-1, 0) is the time-like Killing vector and we have used ξ µ ∇ ν R µν = 1 2 ξ µ ∂ E µ R = 0 satisfied by eq. ( 52) and eq. (101a). Computing the integrals below using eq. (101a) and eq. ( 101b), we find,

-i V d 3 x det(g E µν )ξ ν ∇ µ K µν = βM 2 = S, (102a) 
and consequently,

-iβ -1 β 0 dt E V d 3 x det(g E µν )ξ ν ∇ µ K µν = i β 0 dt E Ψ( x(t E ))| ∂ ∂t E |Ψ( x(t E )) = S. (102b)
Moreover, if Ψ is interpreted as the wave function of a quantum gravity system, the entropy, S becomes the geometric phase/Berry phase. [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF] In addition, if a Schwarzschild black hole is described by Ψ and the black hole does not undergo quantum transitions as it accretes/evaporates, the wave function should evolve adiabatically. For instance, this requires that the Unruh-Hawking radiation from the black hole or the accreted energy content be negligible such that the space-time can be assumed fairly static, ∂M/∂t E 0. Since the system at finite temperature is periodic in β, a standard calculation of the adiabatic invariant [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF][START_REF] Cohen | Geometric phase from Aharonov-Bohm to Pancharatnam-Berry and beyond[END_REF] yields,

i β 0 dt E Ψ( x(t E ))| ∂ ∂t E |Ψ( x(t E )) = i ∂A E =C E d x • Ψ( x(t E ))| ∇|Ψ( x(t E )) = A E d 2 x n • Ω = A E Ω = 2πk, (102c)
where A E is the n = 2 manifold enclosed by the Euclidean path, x(t E ), Ω = ∇ × P is the Berry curvature [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF] which can be written as a p = 2 form,

Ω = dP = 1 2 ∂ j P l dx j ∧ dx l , ( 103a 
)
whereas the Berry connection is given by P = i Ψ( x)| ∇|Ψ( x)) , which can be written as a p = 1 form,

P = i Ψ( x)|∂ l |Ψ( x)) dx l , (103b) 
n is the unit vector normal to A E and k = N/2 ∈ Z ≥ 0 is the first Chern number [START_REF] Chern | Characteristic classes of Hermitian manifolds[END_REF], corresponding to the Chern-Simons level (eq. ( 23c)). [START_REF] Jackiw | Chern-Simons modification of general relativity[END_REF] In addition, since the object, K µν under U(1), corresponds to the complex charge, Q = Q + i2Q, the real and imaginary parts of the adiabatic wave function, Ψ = √ ρ c exp(S) capture the same information about the quantum system. Thus, we write the adiabatic wave function as Ψ = √ ρ c exp(S) where,

S(t E , x) = - βM 4 Φ( x) + iS(t E , x) = S(0, x)/2 + iS(t E , x), ( 104a 
)
where S(0, x) = -βM Φ( x)/2 is defined in order for ∂ρ/∂t E = 0 to vanish, ρ c is a constant distribution with ψψ = ρ c exp(-βM Φ( x)) = ρ the equilibrium Boltzmann density distribution function which clearly satisfies, ∂ρ( x)/∂t E = 0 and Φ( x) is the Newtonian potential. Introducing fluctuations by ρ → ρ = ρf 2 (t E , x) where ρ is the fluctuating density distribution, the manifold will no longer admit a time-like Killing vector, leading to ∂ ρ/∂t E = ρ∂f 2 (t E , x)/∂t E = 0. Nonetheless, since the form of the wave function is constrained by the complex charge, Q = Q + i2Q, we must have Ψ = √ ρ exp(iS) = √ ρ c exp( S) and ρ = ρ c exp(S) where,

S(t E , x) = ln f (t E , x) - βM 4 Φ( x) + iS(t E , x) = S(t E , x)/2 + iS(t E , x). (104b) It follows from S(t E , x) = ln f 2 (t E , x) -βM Φ( x)/2 that, ∂ ln f 2 ∂t E = ∂S ∂t E , ( 105 
)
where we can set f (0, x) = 1. Applying these assumptions, we proceed to calculate the Kullback-Leibler (KL) divergence, D KL (ρ||ρ) for the two distributions ρ and ρ by [START_REF] Kullback | On information and sufficiency[END_REF],

D KL (ρ||ρ) = V d 3 x det(g E µν ) ρ ln ρ ρ(t E ) = - V d 3 x det(g E µν ) ρ ln f 2 (t E ) = - t E 0 dt E V d 3 x det(g E µν ) ∂ ∂t E (ρ ln f 2 (t E )) = - t E 0 dt E V d 3 x det(g E µν )ρ ∂S ∂t E = t E 0 dt E V d 3 x det(g E µν )Ψ † i ∂ ∂t E Ψ =i t E 0 dt E Ψ| ∂ ∂t E |Ψ = 2πk = S ≥ 0, (106)
where we have used eq. ( 105), ∂ρ/∂t E = 0 and set t E = β in the last line. Thus, by the positive definite property of the KL divergence, the black hole entropy is always positive, S = πN ≥ 0, consistent with N ∈ Z ≥ 0 as expected.

Random acceleration

Proceeding to appropriately define the random acceleration, η ν we note that, since the quantum gravity amplitude satisfies,

Ψ QG = M exp ik C(M) p exp (-i2πkχ 4 (M)) = M exp ik C(M)
p , (107) it implies we set, ψ * + CS ≡ exp ik C p µ dx µ from eq. ( 25) in order for Ψ QG to transform appropriately. This also implies that,

C E (M E ) p = - 1 k B E (M E ) CS + , ( 108a 
)
where

B E = ±∂M E ± . Moreover, to find C E (M E
), it is instructive to define η µ such that it generates the 1/N expansion terms in eq. ( 96), corresponding to the path integral contributions. In other words, we ought to set,

C E (M E ) k g (s)ds = 1 k B E (M E ) CS -= - 1 k I M E , (108b)
and,

C E (M E ) η = ±2 B E (M E ) dθ, ( 108c 
)
where θ is given in eq. ( 27). To make further progress, we consider a series of compact manifolds homeomorphic to the n-sphere, S n where n = 4, 3, 2, 1, together with their non-compact hemispheres (indicated by ±) with boundaries homeomorphic to the n -1 spheres, i.e.

∂S n ± = ±S n-1 . Thus, we employ the definitions,

M E = M E + + M E -, ∂M E ± = ±B E , ( 109a 
)

B E = B E + + B E -, ∂B E ± = ±D E , ( 109b 
)

D E = D E + + D E -, ∂D E ± = ±C E , ( 109c 
)
where M E , B E , D E , C E are compact manifolds with dimensions n = 4, 3, 2, 1 respectiveley. Since B E is compact, we expect that if dθ is non-exact on B E (M E ), we would have,

B E dθ = ∂B E + θ + + ∂B E - θ -= D E dα, (110a) 
where θ + -θ -= dα is also assumed and with the p = 1 form, α defined modulo 2πν on D E . This procedure can be repeated successively under a similar treatment. Proceeding, when dα is non-exact on D E (M E ), we have,

D E dα = ∂D E + α + + ∂D E - α -= ± 1 2 C E dη, (110b) 
where α + -α -= ± 1 2 dη as before and the random acceleration, η is defined modulo 2πν on C E (M E ).

Gauss-Bonnet theorem

We can thus introduce the Gaussian curvature [START_REF] Wu | Historical development of the Gauss-Bonnet theorem[END_REF], K of the non-compact n = 2 Euclidean manifold,

A E bounded by ∂A E = C E (M E ), by, dp = K, ( 111a 
) ∂A E p = A E K, ( 111b 
)
where K is the p = 2 Hodge dual of p = 0 form, K.

Consequently, the integral form of the Langevin equation summarizes to,

∂A E k g + A E K = 2πχ 4 . ( 112 
)
Evidently, this is the Gauss-Bonnet theorem in n = 2 dimensions [START_REF] Wu | Historical development of the Gauss-Bonnet theorem[END_REF], where the Euler characteristic of the n = 4 compact manifold, M E has been transformed into the Euler characteristic of the n = 2 non-compact manifold, A E , i.e. χ 4 (M E ) = χ 2 (A E ). Consequently, computing χ 4 (M E ) can be done on A E instead of M E , suggesting that the partition function in eq. ( 95) can actually arise from a random matrix large N group theory where ϕ transforms as a vector under a rank n = 2 tensor group theory, instead of rank n = 4, as earlier remarked. Thus, these observations take us closer to defining the appropriate large N theory for the field variable, ϕ by edging us closer to consistently defining the topology index, h in eq. ( 96) for n = 4 manifolds of interest to our study. Finally, recall that the Gauss-Bonnet theorem in eq. ( 112) relates the Langevin equation [START_REF] Lemons | Paul langevin's 1908 paper "On the theory of Brownian motion[END_REF] (eq. ( 72a)) to the action in the integrand of the path integral in eq. ( 87). Since varying the action, I M leads to the field equations of gravity, we conclude that EFE are analogous to the Fokker-Planck equation [START_REF] Risken | Fokker-Planck equation[END_REF], where the Ricci scalar R is proportional to the probability density. In diffusion models, the Fokker-Planck equation is related to the Langevin equation by Itô's lemma, under a non-standard calculus known as Itô calculus. (Øksendal, 2003) 5. Euler characteristic, χ4 = χ2

We shall consider some implications of our approach by setting,

χ 2 = 2 -2g -b, ( 113 
)
where g is the genus of A E and b = 1 2π C E k(s)ds is the finite contribution of the geodesic curvature integral over the boundary, C E . Moreover, we shall only consider manifolds homeomorphic to the connected sums of the n = 4-sphere, S 4 and the n = 4-torus, T 4 where M E is thus compact. Their respective Euler characteristics are given by,

χ 4 (S 4 ) = 4 p=0 (-1) p b p (S 4 ) = 2, ( 114a 
)
χ 4 (T 4 ) = 4 p=0 (-1) p b p (T 4 ) = 0, (114b) 
respectively, where,

b p=0 (S n ) = n 0 = 1, b p=n (S n ) = n n = 1, (114c) b p =0,4 (S n ) = 0, b p (T n ) = n p = n! (n -p)!p! , (114d) 
and b p is the p-th Betti number. [START_REF] Bochner | Curvature and Betti Numbers[END_REF] The Betti numbers have the property that the b 0 and b n numbers are not additive (remain invariant) under connected sum operations, while the rest of the Betti numbers are additive. [START_REF] Zagier | What are the Betti numbers of a manifold?[END_REF] For instance, the connected sum of manifolds homeomorphic to S 4 has the Euler characteristic,

χ 4 (S 4 #S 4 # • • • #S 4 ) = b 0 (S 4 ) + b 4 (S 4 ) = χ 4 (S 4 ), (115a) 
since the Betti numbers, b 0 = 1 and b 4 = 1 are invariant, while b p =0,4 = 0 are additive but do not contribute to additional terms since they are vanishing. Meanwhile, the connected sum of manifolds homeomorphic to S 4 and T 4 has the Euler characteristic,

χ 4 (S 4 #S 4 # • • • #S 4 # T 4 #T 4 • • • #T 4 h ) = 4 0 + 4 4 + h p =0,4 (-1) p 4 p = 2 -2h, (115b) 
where h ∈ Z ≥ 0 is the number of tori in the connected sum. Since, we can always reproduce eq. ( 115a) by setting h = 0, we have,

χ 4 (M E ) = 2 -2h, (116) 
for all connected sums. Consequently, we note that,

χ 2 (A E ) = χ 4 (M E ) implies, h = g + b/2. (117a) 
Thus, when A E is compact, the contribution to the Gauss-Bonnet theorem from the geodesic curvature vanishes, b = 0 and h corresponds to the genus of A E .

E. Average energy of manifolds

The energies associated with a given manifold can be obtained from eq. ( 95) by, H M E (β) = -∂I E M E (β)/∂β, which yields,

H M E = ∓ M 2 χ 4 (h) ∓ M 2β 2 M E ∈h d 4 x E det(g E µν )R, (118) 
where we have used λ = 1/16G from eq. ( 81), β = 8πGM and S = ln N = βM/2 = πN from eq. (84b). Meanwhile, individual probabilities, P M E for a given manifold correspond to,

P M E = Z E QG -1 exp -dβ H M E (β) . (119) 
Thus, given the above probability distribution for each manifold configuration, the expression for average energy becomes,

H = M E ∈h P M E H M E (β) = - ∂ ∂β ln(Z E QG ). (120) 
Moreover, when there are no sources in the EFE or when the energy momentum tensor is trace-less, the Ricci scalar vanishes and the stationary phase/steepest descent approach [START_REF] Zee | Quantum field theory in a nutshell[END_REF] allows the energy of the manifold to be transformed into a more palatable expression by plugging in R = 0. Thus, the average energy becomes purely the sum of the topological contributions,

H = M 2 M E ∈h P M E χ 4 (h), (121) 
P M E ∈h = exp -β M 2 χ 4 (h) M E ∈h exp -β M 2 χ 4 (h) . ( 122 
) V. RAMIFICATIONS A. Fermion/boson picture
Typically, in the 1/N expansion of a random matrix theory such as in eq. ( 96), terms corresponding to the topology, χ 4 (S 4 #S 4 # • • • #S 4 ) = χ 4 (S 4 ) = 2 (planar vacuum Feynman diagrams) would be expected to dominate the expansion. [START_REF] Gurau | The 1/N expansion of colored tensor models in arbitrary dimension[END_REF] However, here, the ± sign arising from opposite-direction Wick rotations slightly complicates the situation. To understand how, recall that we are considering R = 0, where R is the Ricci scalar. We can proceed by the assumption above that the S 4 topology dominates with P M E 1, where the manifold energy

M E BH ∈ h = 0 is the central mass, H M E ∈h=0 = M and, χ 4 (M E BH ) = χ 4 (S 4 ) = 2, (123) 
with M E BH the manifold corresponding to a space-time with a single Schwarzschild black hole of mass, M while the sign of the energy function chosen to correspond to the Wick rotation, t = -it E . Even though black hole solutions are vacuum solutions of EFE, this cannot be the ground state of our theory since we could always lower the energy of the manifold by removing the central mass, by setting, M = 0.

In fact, the ground state corresponding to H M E = 0 is characterized by three quantum states: (M = 0, χ 4 (M E ) = 0), (M = 0, χ 4 (M E ) = 0) and (M = 0, χ 4 (M E ) = 0) states; hence it is three-fold degenerate. Nonetheless, since the 1/N expansion requires we take the 't Hooft limit (corresponding to N → ∞, λ = 1/16G fixed), and eq. (84b) requires M 2 ∝ πN = ln N → ∞, this lifts the degeneracy by selecting the unique ground state to be (M = 0, χ(M E ) = 0). Thus, for our approach to be physical, (M = 0, χ 4 (M E )) ought to include Minkowski space-time/Euclidean space, albeit alongside other Riemannian manifolds with non-trivial topologies, χ 4 (M E ) = 2 -2h. This is encouraging since it classifies relevant manifolds consistent with the assumption, M E ∈ h in the partition function, Z E QG . Proceeding, we already have, χ 4 (M E ∈ h) = 2 -2h, with h = 0, 1. To avoid negative mass states, M < 0 we observe that, the manifold states with h ≥ 1 correspond to a Wick rotation in the opposite direction, i.e. t = +it E . In fact, the Wick rotations, t = ±it E correspond to the following 1/N expansions,

Ψ QG (t, h) t=-it E ,h≤1 = N -2 + N 0 , (124a) Ψ QG (t, h) t=+it E ,h≥1 = N 0 + N -2 + • • • N 2-2h , (124b)
where both select the unique ground state, N 0 = 1 for large N . Moreover, there is a sense in which the h = 1 state is fermionic whereas the h > 1 states are bosonic in nature. This follows from their average energy expressions,

H = M 2 h=1 h=0 χ 4 (h) exp -βM 2 χ 4 (h) h =1 h =0 exp -βM 2 χ 4 (h ) = M exp (-βM ) 1 + exp (-βM ) = M exp (βM ) + 1 = M c † c , (125a) 
where c † , c are the fermionic creation and annihilation operators respectively, satisfying the anti-commutation relations, {c, c † } = 1. Thus, when the Ricci scalar in eq. ( 118) is non-vanishing, R = 0, the presence of a massive Dirac field restores the fermionic zero-point energy term, -M/2 missing in eq. ( 125). Consequently, a substitution of the trace of EFE into eq. ( 118) yields,

M 2β 2 M E d 4 x E det(g E µν )R = - M 2β β 0 ds V d 3 x det(g E µν ) ψ( x)ψ( x) u 0 ( x) = - M 2β β 0 ds = - M 2 , (125b) 
as expected. Here, R = -β ψψ and β = 8πGM have been used from eq. ( 49), and u 0 ( x) = dt/dτ = dt E /ds with s = iτ the proper distance and t E = -it Euclidean time, where the normalization condition given in eq. ( 76a) applies. Thus, we conclude that the Euler characteristic is proportional to the fermion number operator acting on the quantum states (vacuum state, h = 1 and the single fermion state, h = 0),

χ4 = 2c † c = c † c -cc † + 1, ( 126a 
) |ν ≡ |M E ∈ h ≤ 1 , (126b) 
where h = cc † and ν = 1-h = c † c is the winding number given in eq. ( 28) in order for,

Ĥ = M 2 ( χ4 -1), (126c) 
Ĥ|ν = H M E ∈h (ν)|ν . (126d) 
The expressions are consistent with the plus sign option of the Hamiltonian given in eq. ( 118).

Similarly, the manifolds with h ≥ 1 correspond to bosonic states. In particular, performing a Wick rotation in the opposite direction, t = +it E selects the appropriate sign corresponding to the bosonic average energy,

H = - M 2 h=∞ h=1 χ 4 (h) exp βM 2 χ 4 (h) h =∞ h =1 exp βM 2 χ 4 (h ) = - ∂ ∂β ln h=∞ h=1 exp βM 2 χ 4 (h) = ∂ ∂β ln (1 -exp(-βM )) = M exp (βM ) -1 = M a † a , (127a) 
where a † , a are the bosonic creation and annihilation operators respectively satisfying the commutation relations, [a, a † ] = 1. However, caution should be exercised to replace the Dirac field in the trace of EFE with R = -βρ, arising from the trace with a dust energy-momentum tensor, T µν Dirac → T µν Dust = M ρu µ u ν , where ρu 0 is interpreted as the bosonic probability density normalized as,

V d 3 x det(g E µν )ρ( x)u 0 ( x) = 1, (127b) 
to unity. Thus, we obtain,

- M 2β 2 M E d 4 x E det(g E µν )R = M 2β β 0 ds V d 3 x det(g E µν )ρ( x)u 0 ( x) = M 2β β 0 ds = M 2 , (127c) 
as expected. Consequently, parallel to the fermionic case, the Euler characteristic operator is proportional to the boson number operator, and the manifold states span the states of the quantum harmonic oscillator,

χ4 = -2a † a = -a † a -aa † + 1, ( 128a 
) |ν ≡ |M E ∈ h ≥ 1 , (128b) 
as expected, where h = aa † and ν = h -1 = a † a is the winding number given in eq. ( 28), in order for,

Ĥ = - M 2 ( χ4 -1), (128c) 
Ĥ|ν = H M E ∈h |ν . (128d) 
The expressions are consistent with the minus sign option of the Hamiltonian given in eq. ( 118).

Finally, eq. ( 126) and eq. ( 128) satisfy the free energy equation,

F = Ĥ ± β -1 S, (129a) 
where F = ± M 2 χ4 is the minimized free energy operator. By inspection, we see that eq. ( 129) corresponds to the quantum version of the classical Gauss-Bonnet theorem given in eq. ( 112), where the Gaussian curvature term is responsible for the black hole entropy, S whereas the random acceleration term is responsible for the 1/N expansion of the free energy since,

F = -β -1 ln(Z E QG ), (129b) 
Consequently, geodesics (k g (s) = 0) are allowed if and only if M = 0. However, since M = 0 is imposed by the 't Hooft limit, geodesics must be precluded even for the vacuum state (h = 1) unless R = 0. Conversely, R = 0 gives rise to a finite zero-point term, ±M/2 that cannot otherwise vanish. Consequently, A E must be noncompact when M = 0 unless R = 0 and h = 1, since the geodesic curvature term would otherwise identically vanish, contradicting our previous statements.

B. Asymptotic behavior in galaxy rotation curves

A direct way of deriving the empirical baryonic Tully-Fisher relation [START_REF] Mcgaugh | The baryonic Tully-Fisher relation of gas-rich galaxies as a test of ΛCDM and MOND[END_REF][START_REF] Mcgaugh | The baryonic Tully-Fisher relation[END_REF], relevant for explaining the asymptotic behavior of galaxy rotation curves is to employ eq. (85a) with additional minor considerations. (Kanyolo and Masese, 2021) First, we shall consider the EFE coupled to a pressure-less dust, where R = -8πGM ρ is the trace. This corresponds to the bosonic case given in eq. ( 127b), where M is the mass of the baryonic matter in the galaxy. However, since EFE are analogous to the Fokker-Planck equations, we can modify the normalization condition and by treating ρ as the number density of bosonic particles instead of a probability density. A second adjustment is to relax the expression for temperature, β = 8πGM , since this was motivated by black hole thermodynamics, and hence is not necessarily guaranteed to apply to this scenario, as we shall see. Nonetheless, the condition, eq. ( 85a) can be expected to be robust across varied (quantum) gravitational systems, since it simply corresponds to the old quantization condition. [START_REF] Ishiwara | The universal meaning of the quantum of action[END_REF][START_REF] Pauling | Introduction to quantum mechanics with applications to chemistry[END_REF] To simplify the problem, we assume that the periphery of the galaxy contains a negligible amount of baryonic matter compared to the interior, where ρ(x) ρ D (x) largely corresponds to the number density contribution from dark matter. [START_REF] Persic | The universal rotation curve of spiral galaxies-I. The dark matter connection[END_REF] In addition, we impose the time-like Killing vector, ξ µ on the space-time manifold, in order to guarantee the equilibrium condi-tions,

ξ µ ∂ µ ρ D = 0, (130a) ρ D (x) = ρ c exp(-βM Φ(x)), (130b) 
where ρ c is a critical number density to be defined. Respectively, eq. ( 130) follows from the Killing equations in eq. ( 54) while assuming the equilibrium distribution takes the form of a Boltzmann factor with Φ(x) the Newtonian potential appropriately defined. We take the dark matter particles to be equivalent to a Bose-Einstein condensate (Kanyolo and Masese, 2021) of the colors, k = N/2 where k is the number of bosons/Cooperpairs [START_REF] Tinkham | Introduction to superconductivity[END_REF] forming the condensate normalization condition,

V d 3 x -det(g µν )|Ψ( x)| 2 u 0 ( x) = k, (131a) 
with |Ψ( x)| 2 = ρ D ( x) the number density, u 0 ( x) the time component of the n = 4-velocity vector and Ψ( x) satisfies eq. ( 69). For brevity, we consider the Newtonian limit corresponding to,

∇ 2 Φ( x) = 4πGM |Ψ( x)| 2 = 4πGM ρ c exp(-2kΦ( x)), (131b) 
where u 0 (x) 1 and k = 2 βM from eq. ( 85a). Here, we have used the time-like Killing vector, ξ µ = (-1, 0) and ξ µ ∂ µ R = 8πGM ∂ρ D /∂t = 0, from eq. ( 130), in order to guarantee, ∂Φ(x)/∂t = 0. Assuming the conditions of spherical symmetry of the dark matter halo [START_REF] Kramer | Updated kinematic constraints on a dark disk[END_REF][START_REF] Persic | The universal rotation curve of spiral galaxies-I. The dark matter connection[END_REF], we can re-write eq. (131b) in spherical coordinates as, 1 r 2 ∂ ∂r r 2 ∂Φ(r) ∂r = 4πGM ρ c exp(-2kΦ(r)), ( 132)

and proceed to solve it. This yields the potential and number density corresponding to the singular isothermal profile [START_REF] Keeton | A catalog of mass models for gravitational lensing[END_REF],

Φ(r) = 1 2k ln Kr 2 , ( 133a 
) ρ D (r) = ρ c Kr 2 = 1 4πGM kr 2 , ( 133b 
)
ρ c = K 4πGM k , ( 133c 
)
where K is a constant. However, the isothermal density profile is singular at the origin. This may not be a priori unphysical since it is not peculiar for vortices in nature to be described by singularities at the origin. In fact, Φ(r) = p µ dx µ takes the form of a logarithmic spiral with arctan(k) = θ p the pitch angle, where eq. ( 66) and eq. ( 107) imply Φ(r) is the quantum phase. However, since we have only considered conditions where dark matter dominates over baryonic matter at the periphery of the spiral galaxy, it is entirely feasible that predictions with eq. ( 133) better approximate the asymptotic behavior of spiral galaxies where dark matter dominates, rather than in the interior where there would be a significant energy density contribution from the neglected baryonic matter. Consequently, we shall introduce the condensate wave function as,

Ψ = √ ρ D exp(ikΦ(r)) = √ ρ c exp (k(1 + 2i)Φ) , (134) 
implying the approach admits the complex charge, Q = Q + i2Q corresponding to the subsequent breaking of SU(N ) to U(1), F µν → F µν , where in eq. ( 69), F µν is the U(1) field strength and K µν = R µν -iF µν is the complex-valued object. In a previous paper, we argued that the ensuing U(1) gauge field strength corresponds to F µν ∝ ∇ ν ξ µ , where ξ µ is the time-like Killing vector, and thus ensuring dark matter remains effectively noninteracting and charge-less. (Kanyolo and Masese, 2021) Moreover, the normalization condition in eq. ( 131a) can be exploited to find an expression for the number of bosons, k,

k = V d 3 x ρ D (r) = 1/a0 0 4πr 2 ρ D (r) = 1/a0 0 dr GM k = 1 GM ka 0 , (135) 
where we have introduced a cut-off scale, 1/a 0 for the n = 3 manifold, V since the integral would otherwise diverge. In addition, since the logarithmic spiral is scale invariant but the cut-off introduces a length scale, this suggests that conformal invariance must be broken, while preserving scale invariance. [START_REF] Milgrom | Scale invariance at low accelerations (aka mond) and the dynamical anomalies in the universe[END_REF] Consequently, one would suspect that the cut-off scale would be comparable to the size of the dark matter halo. However, since ρ D = Ψ † Ψ in eq. ( 131a) is the number density of the bosons (which are quantum mechanical objects), the cut-off in the normalization of the condensate wave function ought to define the size of the manifold, V and not necessarily the halo. Thus, it is reasonable to set the cut-off scale to be 1/a 0 3/Λ, which is comparable to the size of the de Sitter universe, where Λ is the cosmological constant. Consequently, from eq. ( 135), we have,

k = 1 √ GM a 0 1 GM (Λ/3) 1/2 . ( 136 
)
However, the number of bosons, k in eq. ( 136) appears not to take positive integer values. Of course, this is not a problem since a finite cosmological constant requires the kinetic term of Ψ to spontaneously break SU(N ) gauge symmetry in eq. ( 83), and hence does not require eq. (84b) nor eq. ( 85a) to be satisfied. This corresponds to breaking conformal invariance of the gauge theory, as earlier discussed. Equivalently, whether k is a good quantum number or not depends on the number/phase regime (Kanyolo, 2020;[START_REF] Kanyolo | Rescaling of applied oscillating voltages in small josephson junctions[END_REF] of the condensate governed by the commutation relation,

[k, Φ] = -i. (137) 
For a more rigorous treatment, the commutation relation should be replaced by the Susskind-Glogower operators. [START_REF] Susskind | Quantum mechanical phase and time operator[END_REF]) Thus, we are considering here the phase regime of the condensate, where the quantum phase Φ(r) obeys classical equations of motion analogous to the Josephson relations in large tunnel junctions [START_REF] Josephson | The discovery of tunnelling supercurrents[END_REF], and the Cooper-pair number, k is not a good quantum number. Meanwhile, the galactic size is determined by the binding condition (Kanyolo and Masese, 2021), Φ(r) ≤ 0, which corresponds to r c ≤ 1/ √ K, where ρ(r c ) = ρ c . The total mass, M tot. (r) within radius, r ≤ r c becomes,

M tot. (r) = M dr4πr 2 ρ(r) = M D + M, (138a) 
M D = M r 0 dr 4πr 2 ρ(r ) = r Gk , (138b) 
where M D is the mass of dark matter and is defined by the mass, M of baryonic matter, which also appears as the integration constant. Consequently, a star of mass, m in orbit with speed, v at the periphery of the galaxy will experience a gravitational attractive force,

F g (r) = - Gm M tot. (r) r 2 = - m kr - GM m r 2 , ( 139a 
)
as well as the centrifugal repulsion,

F c = m v 2 r . (139b) 
The first term in eq. ( 139a) is the gravitational contribution from dark matter, arising from the particular solution of the non-homogeneous equation (eq. ( 132)) given by eq. ( 133), while the second term is the Newtonian inverse-square law arising from the complementary solution of the homogeneous equation (eq. ( 132) with ρ D = 0 ) given by Φ N = -GM/r. At large radius, r GM , the 1/r term dominates over the inverse-square term, F g m /kr. Consequently, the critical speed, v c of the star in orbit can be solved by setting, F c + F g = 0, which yields the celebrated mass-asymptotic speed relation [START_REF] Milgrom | A modification of the newtonian dynamics as a possible alternative to the hidden mass hypothesis[END_REF],

v c 1 √ k = (GM a 0 ) 1/4 , (140) 
where a 0 takes the form predicted by MOdified Newtonian dynamics (MOND) for the acceleration parameter. [START_REF] Mcgaugh | The baryonic Tully-Fisher relation of gas-rich galaxies as a test of ΛCDM and MOND[END_REF][START_REF] Mcgaugh | The baryonic Tully-Fisher relation[END_REF] However, our path to this result vastly differs from standard MOND, since we explicitly rely on a pressure-less source at the right-hand side of EFE as well as the constraints introduced herein which ultimately reproduce eq. ( 140), consistent with the empirical baryonic Tully-Fisher relation. [START_REF] Mcgaugh | The baryonic Tully-Fisher relation of gas-rich galaxies as a test of ΛCDM and MOND[END_REF][START_REF] Mcgaugh | The baryonic Tully-Fisher relation[END_REF] C. Layered materials as quantum gravity analogues

The derivation of eq. ( 140) largely makes use of the old quantization condition, βM = N = 2k from eq. (85a) and a single (time-like) Killing vector, ξ µ = (-1, 0). For a gravitational system with two Killing vectors such as the Schwarzschild black hole (time-like and azimuthallike), eq. ( 130) requires that the gravitational potential, Φ not to depend on more that two coordinates out of the n = 4 coordinates of M. However, due to the spherical symmetry, the radial coordinate, r(x, y, z) depends on three Cartesian coordinates, x, y, z instead of two, which means the Newtonian limit of the theory is effectively three dimensional.

Here, we are interested in a two dimensional emergent quantum gravitational system whose dynamics exploit the Gauss-Bonnet theorem in n -2 dimensions, particularly in the Newtonian limit, where n = 4 is the dimensions of the manifold, M and 2 is the number of translation Killing vectors. Following our approach, we shall consider a condensed matter system with desirable properties which favor the topological aspects discussed herein to emerge. In particular, we proceed to highlight a wide class of layered materials where positively charged mobile ions (cations) are sandwiched between the layers of immobile ions forming adjacent series of slabs within a stable crystalline structure, viz., (i) Layered transition metal oxides such as A x M O 2 (where A = Li, Na, K, Ag, etc., M is a transition metal or a combination of multiple transition metals and 0 < x < 1), A y V 2 O 5 (where 0 < y < 2), D x V 2 O 5 (where D = Mg, Ca, Al, Ag) and Ca 3 Co 4 O 9 ; [START_REF] Delmas | The layered oxides in lithium and sodium-ion batteries: A solid-state chemistry approach[END_REF][START_REF] Galy | Vanadium pentoxide and vanadium oxide bronzes-structural chemistry of single (S) and double (D) layer MxV 2 O 5 phases[END_REF][START_REF] Goodenough | The Liion rechargeable battery: a perspective[END_REF][START_REF] Masset | Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca 3 Co 4 O 9[END_REF]Shannon et al., 1971a,b,c;[START_REF] Shirpour | Lepidocrocite-type layered titanate structures: new lithium and sodium ion intercalation anode materials[END_REF][START_REF] Whittingham | Lithium batteries and cathode materials[END_REF][START_REF] Xu | A review of Ni-based layered oxides for rechargeable Li-ion batteries[END_REF] (ii) Layered metal (di)chalcogenides such as A x TiS 2 and A x CrS 2 (where 0 < x < 1); [START_REF] Chia | Electrochemistry of nanostructured layered transition-metal dichalcogenides[END_REF][START_REF] Johnson | Lithium and sodium intercalated dichalcogenides: Properties and electrode applications[END_REF][START_REF] Whittingham | Chemistry of intercalation compounds: Metal guests in chalcogenide hosts[END_REF] (iii) Graphite intercalation compounds such as LiC 6 , KC 8 , RbC 8 and CsC 8 , including their intermediate compositions, for instance, KC 12n (n > 1), LiC 6n (n > 1) and LiC 9n (n ≥ 2); (Dresselhaus andDresselhaus, 2002, 1981;[START_REF] Guerard | Intercalation of lithium into graphite and other carbons[END_REF][START_REF] Hosaka | Research development on K-ion batteries[END_REF][START_REF] Jian | Carbon electrodes for K-ion batteries[END_REF] ( [START_REF] Barpanda | Polyanionic insertion materials for sodium-ion batteries[END_REF][START_REF] Barpanda | High-voltage pyrophosphate cathodes[END_REF][START_REF] Jin | Polyanion-type cathode materials for sodium-ion batteries[END_REF][START_REF] Liao | Competing with other polyanionic cathode materials for potassium-ion batteries via fine structure design: new layered KVOPO 4 with a tailored particle morphology[END_REF][START_REF] Liu | Novel 3.9 V layered Na 3 V 3 (PO 4 ) 4 cathode material for sodium ion batteries[END_REF][START_REF] Masquelier | Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries[END_REF][START_REF] Niu | A review on pyrophosphate framework cathode materials for sodiumion batteries[END_REF][START_REF] Prakash | Electrochemical reactivity of Li 2 VOSiO 4 toward Li[END_REF][START_REF] Yahia | Crystal structures of new pyrovanadates A 2 MnV 2 O 7 (A = Rb, K)[END_REF] In a majority of the aforementioned exemplars of layered materials, the mobility of the cations can be traced to extremely weak chemical bonds whose strength is correlated with the strength of emergent forces such as Van der Waals interactions and the inter-layer distance between the slabs. [START_REF] Delmas | The layered oxides in lithium and sodium-ion batteries: A solid-state chemistry approach[END_REF][START_REF] Dresselhaus | Intercalation compounds of graphite[END_REF]Kanyolo et al., 2021;[START_REF] Sun | Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage[END_REF][START_REF] Whittingham | Lithium batteries and cathode materials[END_REF] Layered transition metal oxides display a wide swath of crystal structural versatility and composition tuneability. They have thus been the subject of passionate research in various realms of solid-state (electro)chemistry, materials science and condensed matter physics. [START_REF] He | Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries[END_REF][START_REF] Kalantar-Zadeh | Two dimensional and layered transition metal oxides[END_REF]Kanyolo et al., 2021;[START_REF] Kubota | Electrochemistry and solid-state chemistry of layered oxides for Li-, Na-, and K-ion batteries[END_REF][START_REF] Liu | Recent progress of layered transition metal oxide cathodes for sodium-ion batteries[END_REF][START_REF] Mcclelland | Muon spectroscopy for investigating diffusion in energy storage materials[END_REF][START_REF] Schnelle | Magnetic and electronic ordering phenomena in the ru2o6-layer honeycomb lattice compound agruo 3[END_REF] A specific class of layered transition metal oxide materials has recently emerged adopting, inter alia, chemical compositions embodied mainly by A 4 M DO 6 , A 3 M 2 DO 6 or A 2 M 2 DO 6 wherein A represents an alkaliion (Li, Na, K, etc.) or coinage metal ions such as Ag, whereas M is mainly a transition metal species such as Co, Ni, Cu, Zn, etc. and D depicts a pnictogen or chalcogen metal species such as Sb, Bi and Te. [START_REF] Berthelot | New layered compounds with honeycomb or-dering: Li 3 Ni 2 BiO 6 , Li 3 NiM'BiO 6 (M' = Mg, Cu, Zn), and the delafossite Ag 3 Ni 2 BiO 6[END_REF][START_REF] Brown | Synthesis-controlled polymorphism and magnetic and electrochemical properties of Li 3 Co 2 SbO 6[END_REF][START_REF] Derakhshan | Electronic structures and low-dimensional magnetic properties of the ordered rocksalt oxides Na 3 Cu 2 SbO 6 and Na 2 Cu 2 TeO 6[END_REF][START_REF] Evstigneeva | A new family of fast sodium ion conductors: Na 2 M 2 TeO 6 (M = Ni, Co, Zn, Mg)[END_REF][START_REF] Grundish | Electrochemical properties of three Li 2 Ni 2 TeO 6 structural polymorphs[END_REF][START_REF] Kumar | Novel lithium-containing honeycomb structures[END_REF][START_REF] Nagarajan | New CuM 2/3 Sb 1/3 O 2 and AgM 2/3 Sb 1/3 O 2 compounds with the delafossite structure[END_REF][START_REF] Nalbandyan | Crystal structure of Li 4 ZnTeO 6 and revision of Li 3 Cu 2 SbO 6[END_REF][START_REF] Politaev | Mixed oxides of sodium, antimony (5+) and divalent metals (Ni, Co, Zn or Mg)[END_REF][START_REF] Roudebush | Structure and magnetic properties of Cu 3 Ni 2 SbO 6 and Cu 3 Co 2 SbO 6 delafossites with honeycomb lattices[END_REF][START_REF] Seibel | Structure and magnetic properties of the α-NaFeO 2 -type honeycomb compound Na 3 Ni 2 BiO 6[END_REF][START_REF] Skakle | Synthesis of Li 3 Cu 2 SbO 6 , a new partially ordered rock salt structure[END_REF][START_REF] Smirnova | Subsolidus phase relations in Na 2 O-CuO-Sb 2 On system and crystal structure of new sodium copper antimonate Na 3 Cu 2 SbO 6[END_REF][START_REF] Stratan | Synthesis, structure and magnetic properties of honeycomb-layered Li 3 Co 2 SbO 6 with new data on its sodium precursor, Na 3 Co 2 SbO 6[END_REF][START_REF] Uma | Synthesis and characterization of new rocksalt superstructure type layered oxides Li 9/2 M 1/2 TeO 6 (M (III) = Cr, Mn, Al, Ga)[END_REF][START_REF] Viciu | Structure and basic magnetic properties of the honeycomb lattice compounds Na 2 Co 2 TeO 6 and Na 3 Co 2 SbO 6[END_REF][START_REF] Yadav | New series of honeycomb ordered oxides, Na 3 M 2 SbO 6 (M (II = Mn, Fe[END_REF][START_REF] Zvereva | A new layered triangular antiferromagnet Li 4 FeSbO 6 : Spin order, field-induced transitions and anomalous critical behavior[END_REF][START_REF] Zvereva | Orbitally induced hierarchy of exchange interactions in the zigzag antiferromagnetic state of honeycomb silver delafossite Ag 3 Co 2 SbO 6[END_REF][START_REF] Zvereva | Monoclinic honeycomb-layered compound Li 3 Ni 2 SbO 6 : preparation, crystal structure and magnetic properties[END_REF] In these materials, mobile A cations are sandwiched between slabs entailing M atoms coordinated with oxygen around D atoms in a hexagonal (honeycomb) arrangement. We shall thus refer to these materials as honeycomb layered oxides. (Kanyolo et al., 2021) Of particular interest are the dynamics of the cations within the aforementioned materials, [START_REF] Kanyolo | An idealised approach of geometry and topology to the diffusion of cations in honeycomb layered oxide frameworks[END_REF] since their diffusion contributes a net current when a sufficient external electric field arises in an electrode-electrolyte setup forming a cell or battery. [START_REF] Goodenough | The Liion rechargeable battery: a perspective[END_REF] The polarity of the electric field defines the charging and discharging processes corresponding to de-intercalation (cation extrac-tion) and intercalation (cation insertion/reinsertion) processes respectively. Theoretical computations show that the diffusion paths are largely restricted to honeycomb pathways in honeycomb layered tellurates (for instance, K 2 Ni 2 TeO 6 and Na 2 Ni 2 TeO 6 ) [START_REF] Bera | Temperature-dependent Na-ion conduction and its pathways in the crystal structure of the layered battery material Na 2 Ni 2 TeO 6[END_REF][START_REF] Masese | Rechargeable potassium-ion batteries with honeycomb-layered tellurates as high voltage cathodes and fast potassium-ion conductors[END_REF], where locations of the cations are correlated with specific sites defined by the honeycomb octahedral structures within the slabs. Thus, the Van der Waals forces initially localize the cations, forming a loosely-bound two dimensional hexagonal lattice where mobility of the cations is only possible when sufficient activation energy can offset this localization leaving cationic vacancies. [START_REF] Matsubara | Magnetism and ion diffusion in honeycomb layered oxide K 2 Ni 2 TeO 6[END_REF][START_REF] Wang | Na+/vacancy disordering promises high-rate na-ion batteries[END_REF] Since the number of cationic vacancies should correspond to the number of mobile cations if the material had no initial vacancy defects, it is reasonable to expect that the diffusion in the material can be completely captured either by the dynamics of the cations within the lattice or by the dynamics of the cationic vacancies.

In particular, when the cations are bosons, a Fermi level does not exist, implying that a particle-hole picture, where the particle and the vacancy carry separate pieces of information is precluded. Thus, the vacancies cannot be treated as holes, but an equivalent description for the dynamics of the cations carrying the same (thermodynamic) information. Consequently, a Bose-Einstein condensate of the cations(Kanyolo and Masese, 2020) avails a prime avenue for an emergent geometric description of such vacancies as topological defects within a theory of diffusion in the context of emergent quantum gravity. Conversely, describing the diffusion in layered materials comprising fermionic cations such as 6 Li with this approach would pose some significant challenge. Nonetheless, since their magnetic moment is readily trace-able in Nuclear Magnetic Resonance experiments, the fermionic cations are typically introduced in meager amounts via doping techniques in order to improve resolution. [START_REF] Lee | 6 Li and 7 Li magicangle spinning Nuclear Magnetic Resonance and in situ xray diffraction studies of the charging and discharging of LixMn 2 O 4 at 4 V[END_REF][START_REF] Pan | 6 Li MAS NMR studies of the local structure and electrochemical properties of cr-doped lithium manganese and lithium cobalt oxide cathode materials for lithium-ion batteries[END_REF] Consequently, their overall effects on the diffusion properties are expected to be negligible. Nonetheless, if the vacancies are treated as holes it is expected that this particle-hole symmetry is rather befitting to cationic Majorana modes e.g. with twist defects [START_REF] Beenakker | Search for majorana fermions in superconductors[END_REF][START_REF] Bombín | Topological order with a twist: Ising anyons from an abelian model[END_REF][START_REF] Zheng | Demonstrating non-abelian statistics of majorana fermions using twist defects[END_REF] which could be exploited to incorporate fermionic behavior in the formalism. [START_REF] Kanyolo | Berry's phase and renormalization of applied oscillating electric fields by topological quasi-particles[END_REF] Considering emergent gravity to describe defects in crystals is not entirely a novel idea. [START_REF] Holz | Geometry and action of arrays of disclinations in crystals and relation to (2 + 1)-dimensional gravitation[END_REF][START_REF] Kleinert | Lattice defect model with two successive melting transitions[END_REF][START_REF] Kleinert | Gravity as a theory of defects in a crystal with only second gradient elasticity[END_REF][START_REF] Kleinert | Emerging gravity from defects in world crystal[END_REF][START_REF] Verçin | Metric-torsion gauge theory of continuum line defects[END_REF][START_REF] Yajima | Finsler geometry of topological singularities for multi-valued fields: Applications to continuum theory of defects[END_REF] For instance, it has long been proposed that considering finite torsion (non-symmetric Christoffel symbols/affine connection, Γ ρ µν = Γ ρ νµ ) within the context of Einstein-Cartan theory ought to capture various intriguing aspects related to disclinations and dislocations within crystals. [START_REF] Holz | Geometry and action of arrays of disclinations in crystals and relation to (2 + 1)-dimensional gravitation[END_REF][START_REF] Kleinert | Lattice defect model with two successive melting transitions[END_REF][START_REF] Kleinert | Gravity as a theory of defects in a crystal with only second gradient elasticity[END_REF][START_REF] Verçin | Metric-torsion gauge theory of continuum line defects[END_REF][START_REF] Yajima | Finsler geometry of topological singularities for multi-valued fields: Applications to continuum theory of defects[END_REF] Moreover, it has been further argued that Einstein gravity can still emerge in a crystal whose kinetic energy order terms are restricted to second-order in derivatives [START_REF] Kleinert | Emerging gravity from defects in world crystal[END_REF] in accordance with Lovelock's theorem. [START_REF] Lovelock | The Einstein tensor and its generalizations[END_REF]) Thus, since the connection considered herein is torsion-free (Γ ρ µν = Γ ρ νµ ) and topological defects can still be non-vanishing even for torsion-free manifolds as long as higher order derivatives of the Gauss-Bonnet type [START_REF] Lovelock | The Einstein tensor and its generalizations[END_REF] are present in the crystal, herein we shall consider a description of bosonic cationic vacancies as topological defects.

In particular, the radial distribution function (pair correlation function), g( x a ) is the conditional probability density that a cation will be found at x a at each interlayer, relative to another within the same inter-layer. Equivalently, it is the average density of the cations at x a relative to a tagged particle. [START_REF] Chandler | Introduction to modern statistical[END_REF] This means the number density, ρ b g( x a ) = ρ a 2D ( x a ) is normalized as [START_REF] Tuckerman | Statistical mechanics: theory and molecular simulation[END_REF],

A E a d 2 x a det(g a ij ( x a )) ρ a 2D ( x a ) = N a -1, (141) 
where N a is the number of cations within the inter-layer, a, ρ b is the bulk number density and the integration is performed over the Euclidean n = 2 manifolds, A E a at each inter-layer with a metric tensor, g a ij ( x a ). Note that Einstein summation convention should not be applied for the index, a. The -1 in the normalization can be thought to arise from excluding the contribution of the reference cation, as per the above definition. The center of mass coordinates describe average diffusion properties and hence must obey the uncoupled Langevin equations,

d 2 x a ds 2 = -p a (s) + η a (s), (142) 
where s = ±it is Euclidean time, η a (s) is the acceleration and p a = md x a (s)/ds are the center of mass momenta with m the average mass of the cations and 1/ m playing the role of a mean time between collisions, assumed to be equivalent in all slabs due to translation invariance, z a+1 = z a + ∆z a along the vector, n = (0, 0, 1) normal to the slabs (the z direction). This guarantees that in the continuum limit and when the energy of cations is conserved, the crystal must admit not only a time-like but also a z-like Killing vector.

Observe that, we can follow eq. ( 112) and define the Gauss-Bonnet theorem at each inter-layer by making the identification,

d 2 x a ds 2 = k a g (s), (143) 
H a = M C E a k a g (s)ds, (144) 
where H a is the Hamiltonian at each inter-layer, a and M is the total mass of the mobile cations in the structure.

Since we shall be concerned with momentum conservation, d 2 x a /ds 2 = 0, we can set k a g (s) = 0, which implies the Gauss-Bonnet theorem expression is devoid boundary terms and hence simplifies to,

∂A E a p a = A E a K a = A E a dη a = 2π(2 -2h a ), (145)
where h a is the genus of A E a . If we interpret the cationic vacancies in A E as the genus, then eq. ( 145) reveals that the energy needed to create vacancies in the vacuum must always balance the energy due to motion, since p a = 0 when h a = 1.

On the other hand, the Fokker-Planck equation corresponds to the Newtonian limit,

∇ 2 Φ( x) = 1 m ρ( x) exp(2Φ( x)), (146a) 
where we have used u 0 (x) = exp(Φ(x)) = 1 and 1/ m ↔ 4πGM = β/2, requiring m to play the role of temperature. In order to guarantee ρ( x) can be related to the two dimensional number density, we impose time-like, ξ µ t = (-1, 0) and z-like, ξ µ z = ( 0, 1) Killing vectors which guarantee that ∂ρ(x)/∂t = ∂ρ(x)/∂z = 0, where,

ρ( x) = ρ b exp(-βM Φ AC ( x)), (146b) 
is the Boltzmann factor with β = 1/ m, n • ∇ = ∂/∂z and Φ AC ( x) = d x • n × ∇Φ( x) (and not Φ( x))) the potential energy governing the dynamics of the cations. Moreover, since m is also defined as the average mass of the cations, we have βM = N as required by eq. (85a). Thus, the Newtonian potential ought to split into zlike inter-layer slices labeled by index a, each satisfying,

∇ 2 a Φ a ( x a ) = 1 m ρ a ( x a ) exp(2Φ a ( x a )), (146c) 
where ∇ 2 a = ∂ 2 /∂x 2 a + ∂ 2 /∂y 2 a is the two dimensional Laplacian operator. Thus, to be consistent with eq. ( 141), the number density normalization is given by,

N -Σ = V E d 3 x exp(2Φ(x))ρ(x) = lim ∆za→0 Σ a=1 ∆z a A E a d 2 x a exp(2Φ a ( x a ))ρ a ( x a ) = Σ a=1 (N a -1), (147a)
where N = Σ a=1 N a is the total number of cations, Σ is the total number of two dimensional manifolds corresponding to the space between the layers (inter-layers) of the material and,

∆z a ρ a ( x a ) = ρ a 2D ( x a ) (147b) exp(2Φ( x a )) = det(g a ij ( x a )), (147c) 
with ∆z a the inter-layer spacing. Thus, we recognize eq. ( 146c) as Liouville's equation, with the Gaussian curvature given by,

K a ( x a ) = - 1 m ρ a ( x a ). (148a) 
This means that the n = 2 manifold, A E a is described by the conformal metric,

dσ 2 a = f 2 (dx 2 a + dy 2 a ), (148b) 
where f 2 = exp(2Φ( x a )) = det(g a ij ( x a )) is the conformal factor. To find the order of magnitude for ∆z a , we should use eq. ( 145), eq. ( 148a) and eq. ( 147b) to find,

h a = N a , ( 149a 
) ∆z a = 1/4π m. (149b) 
A potential problem with the model is that the cations are charged while typically the gravitational field, Φ a ( x a ) is not. However, this poses no problem since we only need to require that the SU(N ) symmetry in our approach breaks to F → F = dA, where A = A µ dx µ is the electromagnetic (U(1)) gauge potential and hence requiring the wave function, Ψ to be charged. To consistently introduce the electric field, we shall require the (random) accelerations and the friction terms respectively, in the Langevin equation, to take the forms,

η a = q m ( n × E a ), (150a) 
∇ a Φ AC ( x a ) = p a , (150b) 
where E a = (E xa , E ya , 0) is the electric field on A E a responsible for the (de-)intercalation process in the cell, q m is the magnetic charge and n = (0, 0, 1) is the unit vector normal to the slabs. The Gauss-Bonnet theorem then requires that the Dirac quantization condition [START_REF] Dirac | Quantised singularities in the electromagnetic field[END_REF] be satisfied,

Φ AC a = C E p a = C E η a = q m C E d x a • ( n × E a ) = q m A E d 2 x ∇ a • E a = q m q e = 2πν a = πχ 2 (h a ), ( 150c 
)
where q e = A E a d 2 x ∇ a • E a is the electric charge, ∇ a • E a = -f 2 K a /2q m , ν a is the monopole number and χ 2 (h a ) = 2 -2h a . Notably, Φ AC a is analogous to the Aharonov-Casher phase [START_REF] Aharonov | Topological quantum effects for neutral particles[END_REF], where the magnetic moment corresponds to, µ = q m n. Thus, it is intuitive to view the cations diffusing along curves around neutral vacancies with a magnetic moment.

Consequently, the pair correlation function can be written as a Boltzmann factor,

g(h a ) = exp M m πχ 2 (h a ) = N χ2(ha) , (151) 
where N = exp(πN ) and M/ m = N . Thus, we recognize the 1/N expansion factor appearing in the pair correlation function. We expect the pair correlations to be calculated for varied cationic vacancies as cations are created/annihilated on the manifold. Thus, a weighted sum over the distinct topologies yields,

g a = ha P ha (λ)N χ2(ha) , (152) 
where P ha (λ) is the probability for the topology h a to occur in a given (de-)intercalation process and λ( m) is a parameter that ought to depend only on m and hence the temperature, β-1 = m. Consequently, eq. ( 152) corresponds to the sum of vacuum Feynman diagrams of a large N theory, where the 't Hooft limit (N → ∞, keeping λ fixed) makes physical sense, since it can be interpreted as a consequence of considering a fixed equilibrium temperature environment with a large number of particles in the material.

VI. DISCUSSION

Gravity, as formulated by Einstein, is not simply a force like electro-magnetism or the weak and strong nuclear forces but rather manifests itself as space-time curvature in a pseudo-Riemannian n = 4 manifold. [START_REF] Thorne | Gravitation[END_REF] Thus, the emergence of such manifolds from an underlying theory with desirable classical or quantum properties would be sufficient to test certain thermodynamic and topological features in general relativity and specifically quantum gravity. In the present work, we have shown that the foundations of our approach reveal a rich complex-Hermitian structure analogous to Cayley-Dickson algebras [START_REF] Schafer | On the algebras formed by the Cayley-Dickson process[END_REF], which can be exploited to formulate the appropriate action principle to yield general relativity in n = 4 dimensions as the effective theory, albeit with a Gauss-Bonnet (topological) term. Moreover, we treat the ill-defined Euclidean path integral measure of quantum gravity, D[g E µν ] by taking the sum over topologically distinct manifolds, D[g E µν ] → M E ∈h , which yields a partition function reminiscent of the 1/N expansion of an unknown large N theory. [START_REF] Freidel | Group field theory: An overview[END_REF][START_REF] Gielen | Cosmology from group field theory formalism for quantum gravity[END_REF][START_REF] Gurau | The 1/N expansion of colored tensor models[END_REF][START_REF] Gurau | The complete 1/N expansion of colored tensor models in arbitrary dimension[END_REF][START_REF] Gurau | The 1/N expansion of colored tensor models in arbitrary dimension[END_REF][START_REF] Maldacena | The large-N limit of superconformal field theories and supergravity[END_REF][START_REF] Oriti | The group field theory approach to quantum gravity[END_REF][START_REF] Thorn | Reformulating string theory with the 1/N expansion[END_REF] However, the (pseudo-)Riemannian manifold in our approach is not emergent, rather it is introduced ab initio in the treatment. Nonetheless, large N theories have the feature that the topologies of the vacuum Feynman diagrams pave an emergent manifold, with dimensions equal to the rank of the tensor group theory. Moreover, it has been conjectured that specific large N theories are equivalent to some string theories. [START_REF] Freidel | Group field theory: An overview[END_REF][START_REF] Gielen | Cosmology from group field theory formalism for quantum gravity[END_REF][START_REF] Gurau | The 1/N expansion of colored tensor models[END_REF][START_REF] Gurau | The complete 1/N expansion of colored tensor models in arbitrary dimension[END_REF][START_REF] Gurau | The 1/N expansion of colored tensor models in arbitrary dimension[END_REF][START_REF] Maldacena | The large-N limit of superconformal field theories and supergravity[END_REF][START_REF] Oriti | The group field theory approach to quantum gravity[END_REF][START_REF] Thorn | Reformulating string theory with the 1/N expansion[END_REF] Thus, it would be interesting to investigate whether these ideas are compatible with the work herein. Nonetheless, the expectation is that rank n = 4 tensor group theories are prime candidates for the large N theory we seek [START_REF] Gurau | The 1/N expansion of colored tensor models[END_REF][START_REF] Gurau | The complete 1/N expansion of colored tensor models in arbitrary dimension[END_REF][START_REF] Gurau | The 1/N expansion of colored tensor models in arbitrary dimension[END_REF], where the group field, ϕ need not be space-time dependent. A particularly curious fact is that, unlike random matrix large N theories in n = 4 dimensions, N /λ is not dimensionless, but has dimensions of 1/(mass) 2 .

For illustration purposes, we can substitute, in eq. ( 96), the bosonic action, S(ϕ) = N λ Tr(γ(ϕ)) with γ(ϕ) = ϕ 2 /2-ϕ 4 /4g 2 , where the free propagator after appropriate re-scaling, ϕ → ϕ/g corresponds to ϕ 2 λ/g 2 N and g is a coupling constant with dimensions of mass. Thus, the field, ϕ becomes dimensionless after re-scaling, is assumed Hermitian and need not be space-time dependent. We can also assume ϕ transforms as a vector under the group, U(N ) constrained by λ/π = g 2 N = ln(N ) = S, where the 't Hooft limit corresponds to N, N → ∞ at fixed λ/π.

Consequently, the free energy contribution from any vacuum Feynman diagram, F hF (N, N ) at a given loop level, F is proportional to the product of three terms('t [START_REF] Hooft | A planar diagram theory for strong interactions[END_REF],

F hF (N, N ) = f F g 2 N λ V g 2 N λ -E N F = (πN ) F -χ2(h) f F N χ2(h) , ( 153 
)
where F is the number of loops, E is the number of propagators, V is the number of vertices, corresponding to two-particle interactions, f F is the proportionality constant which depends only on the loop level, F , and F -E + V = χ 2 (h) = 2 -2h is the Euler characteristic of some emergent n = 2 dimensional Riemannian manifold, A E , with the Feynman diagrams acting as the simplex triangulation of the manifold with F faces, E edges and V vertices. Consequently, the free energy contribution at a given topology level, h = g + b/2 (where g is the genus of A E and b the boundary contribution) corresponds to the sum over loop diagrams,

F h (N, N ) = +∞ F =0 F hF (N, N ) = f h (N )N χ2(h) , (154a) 
where,

f h (N ) = (πN ) -χ2(h) +∞ F =0 (πN ) F f F . (154b) 
In fact, eq. ( 154a) is robust and is obtained by most rank n = 2 large N group theories, albeit with differing f h (N ) values which completely characterize the specific theory under consideration.

In our approach, we argued that χ 2 (A E ) = χ 4 (M E ) is possible, where M E is the n = 4 dimensional compact Riemannian manifold corresponding to the connected sum of h number of n = 4-tori (T 4 ) and an arbitrary number of n = 4-spheres (S 4 ). Thus, the 1/N expansion in eq. ( 95) corresponds to a large N theory with f h (N ) exp(-g 2 λ) = exp(-πN ) = 1/N , where the coupling constant satisfies,

g -2 = - 1 π M E d 4 x det(g E µν )R = M 2λ β 0 ds = πN λ .
Here, we have used eq. ( 98) in Euclidean signature and eq. ( 100b) respectively. Consequently, due to the form of eq. ( 154b), it is prudent to re-scale the path integral measure as, M E ∈h → M E ∈h (πN ) χ4(h) in order for f F = 1/F ! to appropriately yield eq. ( 95) with the quantum gravity partition function corresponding to the 1/N expansion, Z E QG = h F h (N, N ). The fermionic case should follow a similar treatment and considerations with a suitable group field theory.

Finally, using the temperature and entropy of the Kerr-Newmann black hole [START_REF] Bekenstein | Bekenstein-Hawking entropy[END_REF] instead of Schwarzschild's should alter the expressions considered, but not the conclusions herein. Nonetheless, we are left to puzzle how Unruh-Hawking radiation [START_REF] Hawking | Black hole explosions?[END_REF](Hawking, , 1976a;;[START_REF] Unruh | Origin of the particles in blackhole evaporation[END_REF], and more importantly, the black hole information paradox (Hawking, 1976b;[START_REF] Mathur | The information paradox: a pedagogical introduction[END_REF] fits into this picture. Since a space-time with an evaporating black hole will be subject to fluctuation-dissipation effects [START_REF] Banerjee | Fluctuation-dissipation relation from anomalous stress tensor and Hawking effect[END_REF], one expects that our approach lacks key features which ought to be incorporated in future works. Another interesting observation is that breaking SU(N ) to SO(N ) by the identifications in eq. ( 36) is possible since the number of real anti -symmetric SU(N ) generators is given by (N 2 -N )/2, which is equivalent to the number of SO(n) generators, (n 2 -n)/2, which allows the decomposition of ω in eq. ( 35) when N = n is the number of dimensions. Consequently, due to eq. ( 106), eq. ( 23c) can be interpreted as a relation between the central charge of a black hole, k and the number of dimensions, n. Such a relationship has been conjectured in the context of the sphere packing optimization problem in n dimensions and quantum gravity, which relies on modular forms. [START_REF] Hartman | Sphere packing and quantum gravity[END_REF] In summary, we have employed the thermodynamic expressions for entropy and temperature of Schwarzschild black holes to constrain an SU(N ) gauge theory leading to the emergence of a quantum framework for gravity, where the gravitational degrees of freedom are the N ∈ Z ≥ 0 colors and a condensate comprising color pairs, k = N/2, appropriately coupled to the Yang-Mills gauge field. The foundations of our approach reveal a complex-Hermitian structure, constructed as [Ricci tensor ± √ -1 Yang-Mills field strength], whose structure is analogous to Cayley-Dickson algebras [START_REF] Schafer | On the algebras formed by the Cayley-Dickson process[END_REF], which aids in formulating the appropriate action principle. The SU(N ) gauge group is broken into an effective SU(4) → SO(4) ↔ SO(1, 3) field theory with two terms: the Einstein-Hilbert action and a Gauss-Bonnet topological term. Moreover, the Euclidean path integral is considered as the sum over manifolds with distinct topologies, h ∈ Z ≥ 0 homeomorphic to connected sums of an arbitrary number of n = 4-spheres and h number of n = 4-tori.

Consequently, the partition function takes a reminiscent form of the sum of the vacuum Feynman diagrams for a large N = exp(βM/2) theory, provided S = βM/2 = πN is the Schwarzschild black hole entropy, β = 8πGM is the inverse temperature, G is gravitational constant, M is the black hole mass and horizon area, A = 2GβM = 4πGN is pixelated in units of 4πG. This leads us to conclude that the partition function for quantum gravity is equivalent to the vacuum Feynman diagrams of a yet unidentified large N theory in n = 4 dimensions. Our approach also sheds new light on the asymptotic behavior of dark matter-dominated galaxy rotation curves (the empirical baryonic Tully-Fisher relation) [START_REF] Eisenstein | Can the Tully-Fisher relation be the result of initial conditions?[END_REF][START_REF] Famaey | Modified newtonian dynamics (MOND): observational phenomenology and relativistic extensions[END_REF]Kanyolo and Masese, 2021;[START_REF] Keeton | A catalog of mass models for gravitational lensing[END_REF][START_REF] Martel | Gravitational lensing by cdm halos: singular versus nonsingular profiles[END_REF][START_REF] Mcgaugh | The baryonic Tully-Fisher relation of gas-rich galaxies as a test of ΛCDM and MOND[END_REF][START_REF] Mcgaugh | The baryonic Tully-Fisher relation[END_REF][START_REF] Persic | The universal rotation curve of spiral galaxies-I. The dark matter connection[END_REF] and emergent gravity in condensed matter systems with defects [START_REF] Holz | Geometry and action of arrays of disclinations in crystals and relation to (2 + 1)-dimensional gravitation[END_REF][START_REF] Kleinert | Gravity as a theory of defects in a crystal with only second gradient elasticity[END_REF][START_REF] Kleinert | Nematic world crystal model of gravity explaining absence of torsion in spacetime[END_REF][START_REF] Verçin | Metric-torsion gauge theory of continuum line defects[END_REF][START_REF] Zaanen | Duality in 2+1 D quantum elasticity: superconductivity and quantum nematic order[END_REF] such as layered materials (Kanyolo et al., 2021;Masese et al., 2021aMasese et al., ,b,c, 2018) ) which admit cationic vacancies as topological defects. [START_REF] Kanyolo | An idealised approach of geometry and topology to the diffusion of cations in honeycomb layered oxide frameworks[END_REF] While we acknowledge quantum gravity is a broad subject whose rapid progress largely remains uncovered by the present work, we consider the demonstration of the intriguing ramifications, not only in quantum gravity research but also in condensed matter and materials science, as warranting considerable merit.

  iv) Layered polyanion-based compounds comprising pyrophosphates such as Na 2 CoP 2 O 7 and K 2 M P 2 O 7 (M = Co, Ni, Cu), pyrovanadates such as K 2 MnV 2 O 7 and Rb 2 MnV 2 O 7 , oxyphosphates such as NaVOPO 4 and LiVOPO 4 , layered KVOPO 4 , diphosphates such as Na 3 V(PO 4 ) 2 , fluorophosphates such as Na 2 FePO 4 F, hydroxysulphates such as LiFeSO 4 OH and oxysilicates such as Li 2 VOSiO 4 .
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