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Quantum gravity is the solution ascribed to rendering the geometric description of classi-
cal gravity, in any dimensions, completely consistent with principles of quantum theory.
The serendipitous theoretical discovery that black holes are thermodynamical objects
that must participate in the second law has led to these purely gravitational objects to
be dubbed, ‘the hydrogen atom for quantum gravity’, analogous to the atomic spectrum
of hydrogen, effectively used by Neils Bohr and his contemporaries to successfully for-
mulate quantum mechanics in the early 20th century. Here, we employ the temperature
and entropy formulae describing Schwarzschild black holes to consider the emergence
of Einstein Field Equations from a complex-Hermitian structure, [Ricci tensor ±

√
−1

Yang-Mills field strength], where the gravitational degrees of freedom are the SU(N)
colors with N ∈ Z ≥ 0 and a condensate comprising color pairs, k = N/2, appropri-
ately coupled to the Yang-Mills gauge field. The foundations of our approach reveal
the complex-Hermitian structure is analogous to Cayley-Dickson algebras, which aids
in formulating the appropriate action principle for our formalism. The SU(N) gauge
group is broken into an effective SU(4) → SO(4) ↔ SO(1, 3) field theory on the tangent
space with two terms: the Einstein-Hilbert action and a Gauss-Bonnet topological term.
Moreover, since topologically classifying all n = 4 (dimensional) Riemannian manifolds
is not a clear-cut endeavor, we only consider the Euclidean path integral as the sum over
manifolds with distinct topologies, h ∈ Z ≥ 0 homeomorphic to connected sums of an
arbitrary number of n = 4-spheres and h number of n = 4-tori. Consequently, the par-
tition function adopts a reminiscent form of the sum of the vacuum Feynman diagrams
for a large N = exp(βM/2) theory, provided S = βM/2 = πN is the Schwarzschild
black hole entropy, β = 8πGM is the inverse temperature, G is gravitational constant,
M is the black hole mass and horizon area, A = 2GβM = 4πGN is pixelated in units
of 4πG. This leads us to conclude that the partition function for quantum gravity is
equivalent to the vacuum Feynman diagrams of a yet unidentified large N theory in
n = 4 dimensions. Our approach also sheds new light on the asymptotic behavior of
dark matter-dominated galaxy rotation curves (the empirical baryonic Tully-Fisher re-
lation) and emergent gravity in condensed matter systems with defects such as layered
materials with cationic vacancies as topological defects.
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I. INTRODUCTION

The gravitational field in general relativity has
a geometric description that, on one hand avails a
myriad of visual cues which aid to build physicists’
intuitions on the nature of space-time(Thorne et al.,
2000), but on the other hand, notoriously does not lend
itself to renormalization.(Doboszewski and Linnemann,
2018; Feynman et al., 2018; Hamber, 2008; Shomer,
2007; Thorne et al., 2000; Zee, 2010) This has led
to theoretic descriptions of gravity as an emer-
gent phenomenon garnering some traction(Jacobson,
1995; Kleinert, 1987; Konopka et al., 2008; Lee et al.,
2013; Markopoulou and Smolin, 2004; Oh et al., 2018;
Padmanabhan, 2010; Swingle and Van Raamsdonk,
2014; Van Raamsdonk, 2010; Verlinde, 2011) over quan-
tum field theoretic approaches since emergence appears
to by-pass the need for renormalization.(Burgess, 2004;
Linnemann and Visser, 2017) Arguments for a successful
quantum theory of gravity range from the need to under-
stand the nature of cosmic inflation(Hartle and Hawking,
1983) and black holes(Hawking, 1976a,b, 2005), to aes-
thetic considerations in favor of the unification of gravity
with gauge symmetries in the Standard Model of particle
physics.(Ross, 2003)

Employing a semi-classical approach, Bekenstein and
his contemporaries showed that black holes are thermo-
dynamical objects that must participate in the second
law.(Bardeen et al., 1973; Bekenstein, 1973; Hawking,
1974, 1975) As a consequence, some proponents of emer-
gent gravity have argued that gravity in general relativ-
ity may not be as fundamental as the other gauge the-
ories after all, since Boltzmann’s investigations demon-
strated that the second law is statistical, as it emerges
from underlying microscopic physics.(Jacobson, 1995;
Padmanabhan, 2010; Verlinde, 2011) Nonetheless, these
considerations have led to black holes being dubbed, ‘the
hydrogen atom for quantum gravity’(Corda and Feleppa,
2019; ’t Hooft, 2016), setting up black hole thermody-
namics as an indispensable tool, analogous to the atomic
spectrum of hydrogen, effectively used by Neils Bohr
and his contemporaries to successfully formulate quan-
tum mechanics in the early 20th century. However, unlike
the atomic spectrum of hydrogen that was well-grounded
in observations prior to Bohr’s insights, most effects of
black hole thermodynamics are not only presently be-
yond experimental reach(Hossenfelder, 2010), but also

are not entirely guaranteed to be more than an anal-
ogy.(Dougherty and Callender, 2016)

Nonetheless, consistency with well-tested ther-
modynamical behavior(Isi et al., 2021), coupled
with experiments using analogue gravitational
systems(Jacquet et al., 2020; Steinhauer, 2014) offer a
robust test for the correctness of the results, albeit with
major unresolved problems such as the black hole infor-
mation paradox(Almheiri et al., 2021; Hawking, 1976b)
related to the apparent violation of information conser-
vation in such systems(Hawking, 2005), and the nature
of the black hole microstates.(Bekenstein, 2008) In par-
ticular, according to the no-hair theorem(Thorne et al.,
2000), a charged-rotating (Kerr-Newman) black hole
is completely characterized by its mass (M), charge
(Q) and angular momentum (L), implying that black
holes are the ‘simplest’ objects in the universe, with no
other internal degrees of freedom. Moreover, Birkhoff’s
theorem(Israel, 1967; Jebsen, 2005) guarantees that
the simplest such black holes are static, uncharged and
non-rotating (Schwarszchild) black holes. While these
theorems are consistent with classical general relativity,
semi-classical approaches to black hole thermodynamics
pioneered by Hawking(Hawking, 1974, 1976a, 1975)
introduce a quantum field theory in a fixed space-time
background, leading to the serendipitous conclusion that
black holes not only are black bodies with a temperature,
T = κ/2πkB proportional to their surface gravity, κ,
and entropy, S = A/4G proportional to their surface
area, A, where G is the gravitational constant and kB
is Boltzmann’s constant, but also pack the maximum
amount of information possible within a given space,
often referred to as the Bekenstein bound.(Bekenstein,
2005; Bousso, 1999) The Bekenstein bound, coupled
with the no-hair theorem, already implies an apparent
contradiction, namely that the ‘simplest’ objects in the
universe simultaneously harbor the most amount of
information.

However, the black hole information paradox is a
far more insidious problem than the aforementioned
apparent contradiction, since black hole entropy and
temperature require the black hole to eventually evap-
orate by Unruh-Hawking radiation.(Hawking, 1974;
Unruh, 1977) In particular, the radiation is essentially
a black body spectrum in a mixed quantum state.
Whence, according to the semi-classical approach,
quantum objects in a pure quantum state which fall
into a black hole will eventually escape as Unruh-
Hawking radiation in a mixed state via particle-pair
production at the event horizon.(Giddings, 2012;
Mathur, 2009) This appears to violate conservation
of information since unitarity in quantum theory
precludes pure states evolving into mixed states and
vice versa. In essence, the black hole evaporation
process in the semi-classical approach is not time-
reversible(Hawking, 2005), since black hole entropy ap-
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pears not to follow, e.g. the Page curve.(Almheiri et al.,
2019, 2021, 2020; Hashimoto et al., 2020; Page,
1980, 1993) Attempts to conclusively address
the black hole information paradox range from
proposing black hole remnants(Chamseddine et al.,
2019), entangled black holes via an Einstein-Rosen
bridge(Maldacena and Susskind, 2013) to introduc-
ing mechanisms for encoding black hole informa-
tion in Unruh-Hawking radiation by circumventing
the challenges posed by monogamy of quantum
entanglement(Grudka et al., 2018), with no clear
consensus.

A related problem is the nature of black hole
microstates.(Bekenstein, 2008) In statistical mechanics,
entropy is a measure of the number of microstates, N
in a thermodynamical system, namely S = kB lnN . A
myriad of approaches conjecture that black hole mi-
crostates ought to correspond to the degrees of freedom
associated with quantum gravity.(Becker et al., 2006;
Bousso, 2002; Einstein et al., 1935; Einstein and Rosen,
1935; Hawking et al., 1999; Maldacena, 1999;
Maldacena and Susskind, 2013; Polchinski, 1998a,b;
Susskind, 1995; Swingle and Van Raamsdonk,
2014) For instance, it has been conjectured
that black hole information is entanglement
entropy(Swingle and Van Raamsdonk, 2014), with
ideas such as the Einstein-Rosen (ER) bridge =
Einstein-Podolski-Rosen (EPR)(Einstein et al., 1935;
Einstein and Rosen, 1935; Maldacena and Susskind,
2013) playing a major role in such approaches, with
the most successful proposals centered around the
holographic principle(Bousso, 2002; Susskind, 1995)
and the Anti-de Sitter/Conformal Field Theory
(AdS/CFT) correspondence(Hawking et al., 1999;
Hubeny et al., 2007; Maldacena, 1999; Nishioka et al.,
2009; Ryu and Takayanagi, 2006a,b) and the re-
liance of extra dimensions in the context of string
theory.(Becker et al., 2006; Polchinski, 1998a,b)

Fairly recent developments have highlighted random
tensor models/group field theories of rank n as prime can-
didates for quantum gravity.(Freidel, 2005; Gielen et al.,
2013; Gurau, 2011, 2012; Gurau and Rivasseau, 2011;
Maldacena, 1999; Oriti, 2006; Thorn, 1994) This follows
from the observation that their partition functions can
be Taylor expanded using 1/N as a small parameter,
where N is the size of the group and χn(M) is the
order of the expansion, which also corresponds to the
Euler characteristic of an emergent compact manifold,
M of dimensions n.(Aharony et al., 2000; ’t Hooft, 1993)
For instance, for random matrix models/group field the-
ories (tensors of rank n = 2), the emergent manifold
is (n = 2 dimensional, with χ2(M) = 2 − 2h, where
h ∈ Z ≥ 0 is a positive integer counting the sum of holes
and handles (genus) in the manifold. Such matrix theo-
ries have been argued to be dual to 2 dimensional quan-
tum gravity.(Gross, 1992) Thus, it is conjectured that

the partition function of n = 4 dimensional quantum
gravity, corresponding to a quantum theory of Einstein’s
general relativity, is a 1/N expansion for a rank n = 4
random tensor model/group field theory.(Gurau, 2011,
2012; Gurau and Rivasseau, 2011)
Motivated by questions pertaining to the nature of the

black hole microstates(Bekenstein, 2008), as well as an
overall pursuit for a suitable partition function for quan-
tum gravity in n = 4 dimensions, in this work, we em-
ploy the temperature and entropy formulae describing
Schwarzschild black holes in order to consider the emer-
gence of Einstein Field Equations (EFE) from a complex-
Hermitian structure, [Ricci tensor±

√
−1 Yang-Mills field

strength], where the gravitational degrees of freedom are
the SU(N) colors with N ∈ Z ≥ 0 and a condensate
comprising color pairs, k = N/2, appropriately coupled
to the Yang-Mills gauge field. The foundations of our
approach reveal the complex-Hermitian structure is anal-
ogous to Cayley-Dickson algebras(Schafer, 1954), which
aids in formulating the appropriate action principle for
our formalism. A similar construction, [metric tensor
±
√
−1 U(1) field strength] was considered by Einstein

as an attempt to geometrize Maxwell’s theory using a
complex-Hermitian metric tensor, albeit with limited suc-
cess.(Einstein, 1945, 1948)
Within the formalism, the complex-Hermitian struc-

ture avails the constraints, DµK
µ
ν = Ψ(DνΨ)† and

DνDµK
µν = 0, where Ψ plays the role of wave func-

tion and Kµν = Rµν − iFµν is a complex-Hermitian ten-
sor constructed using the Ricci tensor, Rµν and a Yang-
Mills/SU(N) field strength, Fµν . The SU(N) gauge
group is broken into an effective SU(4) → SO(4) ↔
SO(1, 3) field theory on the tangent space resulting in two
terms in the effective cation: the Einstein-Hilbert action
and a Gauss-Bonnet topological term.(Lovelock, 1971)
The Euclidean path integral is considered as the sum
over manifolds with distinct topologies, h ∈ Z ≥ 0 topo-
logically equivalent (homeomorphic) to connected sums
of any number of n = 4-spheres and h number of n = 4-
tori. Consequently, the partition function for quantum
gravity in n = 4 dimensions takes the form,

ZE
QG =

∑

ME∈h

exp(∓IEME(λ))N±χ4(M
E), (1a)

IEME(λ) =
λ

π

∫

ME

d 4xE
√

det(gEµν)R, (1b)

where N = exp(πN) is the number of microstates,
IEME(λ) is the Einstein-Hilbert action, with gEµν the met-
ric tensor in Euclidean signature, λ = 1/16G = m2

P/16,

mP = 1/
√
G the Planck mass and χ4(ME) the Euler

characteristic of a 4 dimensional Riemannian manifold,
ME, related to the 1, 3 pseudo-Riemannian space-time
manifold in Einstein’s general relativity by a Wick ro-
tation, t = ±itE. This result requires that the hori-
zon area, A = 2GβM = 4πGN is pixelated in units of
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4πG.(Bekenstein and Mukhanov, 1998, 1995; Mukhanov,
1986; Vaz and Witten, 1999)
Moreover, since it is not straightforward to topo-

logically classify all n = 4 dimensional Riemannian
manifolds,(Freedman, 1982) the Euclidean path integral
is considered as the sum over manifolds with distinct
topologies, h ∈ Z ≥ 0 homeomorphic to connected sums
of an arbitrary number of n = 4-spheres and h number
of n = 4-tori, thus obtaining the Euler characteristic,
χ4 = 2 − 2h. Consequently, eq. (1a) coincidentally cor-
responds to the generic form of the 1/N expansion of
the free energy of a largeN theory.(Aharony et al., 2000;
Gurau, 2012; ’t Hooft, 1993) This leads to the conclusion
that the quantum gravity partition function in n = 4 di-
mensions is equivalent to the sum of vacuum Feynman
diagrams of a yet unidentified large N theory taking the
form,

Z = exp(ZE
QG), (2a)

Z =

∫

D[ϕ] exp

(

−N±

λ±
Tr(γ(ϕ))

)

, (2b)

where S(ϕ) =
(
N
λ

)±
Tr(γ(ϕ)) is the action for uniden-

tified field tensors, ϕ of rank n = 4, transforming ap-
propriately under some unidentified group, and γ is the
unidentified function of ϕ defining the large N theory.
Thus, the vacuum Feynman diagrams pave n = 4 (di-
mensional) manifolds(Gurau, 2012), contrary to random
matrix large N theories where ϕ would be a tensor of
rank 2 (matrix), with Feynman diagrams defining n = 2
dimensional Riemannian manifolds, AE with a boundary,
with Euler characteristic given by χ2(AE ∈ h) = 2− 2h,
where h = g+ b/2 with g ∈ Z ≥ 0 the genus, Z a positive
integer and b the boundary contribution.(Aharony et al.,
2000; Gurau, 2012; ’t Hooft, 1993)
Finally, we consider the possibility of defining

χ4(ME) in terms of χ2(AE), where the matrix large
N gauge theories taking the form of eq. (2), can
be identified with quantum gravity in n = 4 di-
mensions. Our approach also sheds new light on
the asymptotic behavior of dark matter-dominated
galaxy rotation curves (the empirical baryonic
Tully-Fisher relation)(Eisenstein and Loeb, 1997;
Famaey and McGaugh, 2012; Kanyolo and Masese,
2021; Keeton, 2001; Martel and Shapiro, 2003;
McGaugh, 2012; McGaugh et al., 2000; Persic et al.,
1996) and emergent gravity in condensed matter
systems with defects(Holz, 1988; Kleinert, 1987;
Kleinert and Zaanen, 2004; Verçin, 1990; Zaanen et al.,
2004) such as layered materials(Kanyolo et al., 2021;
Masese et al., 2021b, 2018) with cationic vacancies as
topological defects.(Kanyolo and Masese, 2020)

II. NOTATION AND NOMENCLATURE

Throughout this paper, we use Einstein’s summation
convention(Thorne et al., 2000) for all repeated Greek
and Roman indices, and natural units where Planck’s
constant, speed of light in vacuum and Boltzmann con-
stant, respectively are set to unity (~ = c = kB = 1). We
also assume a torsion-free 1 + 3 dimensional space-time
manifold(Hehl et al., 1976), where ∇µ is the metric com-
patible covariant derivative, ∇σgµν = 0 and gµν = gνµ
is the metric tensor in Lorenzian signature. We shall
indicate reduced quantities with an overhead bar. For
instance β̄ = β/2π is the reduced inverse temperature
and m̄P = mP/

√
8π is the reduced Planck mass.

Moreover, in the tetrad formalism, (ωµ)
ā
b̄

=

−(ωµ)
ā
b̄

= eāα∇µe
α
b̄

= eāα∂µe
α
b̄
+ eāαΓ

α
µβe

β

b̄
is the

spin connection, Γα
µν = Γα

νµ = 1
2g

αβ(∂gµβ/∂x
ν +

∂gβν/∂x
µ − ∂gµν/∂x

β) are the torsion-free Christoffel
symbols/affine connection, e ā

µ are the tetrad fields, γµ
are the gamma matrices in curved space-time satisfy-
ing γµγν + γνγµ = 2gµν , ψ̄ = (ψ)∗T(γ0)−1 = ψ†(γ0)−1

is the Dirac adjoint spinor, γµ = eµāγ
ā with γā the

Dirac matrices in the tangent Minkowski space-time
manifold satisfying γāγb̄ + γb̄γā = 2ηāb̄, and eāµ, e

µ
ā are

tetrad fields satisfying eāµeāν = gµν and eµāeµb̄ = ηāb̄
with ηāb̄ the Minkowski metric tensor i.e. diag(ηāb̄) =
(1,−1,−1,−1).(De Felice and Clarke, 1992)

The overhead bar in ā, b̄, c̄ is used to distinguish the
Minkowski tangent manifold indices from the curved
space-time indices and group field theory indices, e.g.

in the tetrad fields, e0̄0 6= e00̄ and (ωµ)
ā
b̄
= ωµa(λa)

ā
b̄
,

where (λa)
ā
b̄
= −(λa)

ā
b̄

are n(n− 1)/2 = 6 (with n = 4)
anti-symmetric matrices corresponding to the generators
of rotation(Başkal et al., 2021) in the tangent Euclidean
space-time manifold and related to generators of SO(1, 3)
after Wick rotation.

A. Group scalars and vectors (tensors)

Since we will be interested in Yang-Mills theory, where
ta ≡ ~t are the SU(N) Hermitian matrices, we shall adopt
the following notation for objects which transform as
scalars and vectors respectively under SU(N),

T γ···δ
0α···β ≡ T γ···δ

α···β IN , (3a)

T γ···δ
aα···β ≡ ~T γ···δ

α···β , (3b)

fabcAaµT
γ···δ

bα···β ≡ ~Aµ × ~T γ···δ
α···β , (3c)

where IN is the N ×N identity matrix and,

T γ···δ
kα···β ≡ T

γ···δ
α···β = T γ···δ

α···β IN + iT γ···δ
α···β , (3d)

is the most general object of any space-time tensor that
transforms as a scalar (k = 0) or a vector (k = a) under
SU(N) with the boldface indicating the vectors corre-
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sponding to,

Aµ = ~Aµ ·~t ≡ Aaµta, (3e)

T
γ···δ

α···β ≡ ~T γ···δ
α···β ·~t, (3f)

in order for IN and i~t in eq. (3d) to be interpreted as

N × N basis matrices. This also implies that T γ···δ
α···β

and T
γ···δ

α···β must have the same rank in space-time
indices.

Since the identity matrix is already implied for the
scalars, we shall refrain from explicitly writing it unless
for clarity. In this notation, the Yang-Mills field strength
can be written as,

Fµν = ∂µAν − ∂νAµ − i[Aµ,Aν ]

= (∂µ ~Aν − ∂ν ~Aµ + ~Aµ × ~Aν) ·~t, (4)

where we choose the normalization of the SU(N) matri-
ces, ta as,

Tr(tatb) =
N

4
δab, (5a)

[ta, tb] = ifabctc, (5b)

with Tr the trace, fabc the structure constants and δab
the Kronecker delta. This normalization is chosen for
later convenience, and it corresponds to a re-scaling,
ta =

√

N/2Ta and fabc =
√

N/2Fabc of the customary
SU(N) matrices, Ta and the structure constants, Fabc

of particle physics.(Zee, 2010) The bold-face and the
overhead arrow (→) unambiguously serve as the disam-
biguation of group vectors from scalars.

Generically, since scalars commute with the SU(N)
gauge field, Aµ but vectors do not, the SU(N) gauge
covariant derivative, Dµ will act differently on scalars
and vectors to respectively yield scalars and vectors, as
follows,

DµT
γ···δ

α···β = ∇µT
γ···δ

α···β , (6a)

Dµ
~T γ···δ

α···β = ∇µ
~T γ···δ

α···β +
1

2
~Aµ × ~T γ···δ

α···β . (6b)

Here, we shall always have the factor of 1/2 in the cross-
product, which guarantees the Yang-Mills field strength
can be defined as,

Fµν ≡ DµAν −DνAµ, (6c)

in order for Dµ to act as a proper covariant derivative, by
observing that the SU(N) ⇔ U(1) exchange corresponds
to Fµν ⇔ Fµν and Aµ ⇔ Aµ, where Aµ and Fµν are
scalars under SU(N). This is consistent with Dµ ⇔ ∇µ.
Thus, the gauge covariant derivative transforms scalars
to scalars and vectors to vectors. Consequently, a dot-
product of a vector with the SU(N) matrix vector, ~t is

not a scalar, but must transform as a vector,

Dµ(T
γ···δ

α···β ) = Dµ(~T
γ···δ

α···β ·~t)

= (∇µ
~T γ···δ

α···β +
1

2
~Aµ × ~T γ···δ

α···β ) ·~t

= ∇µT
γ···δ

α···β − 1

2
i[Aµ,T

γ···δ
α···β ], (6d)

where we ought to have Dµ~t = 0. Moreover, the product
of a scalar and a vector,

T σ···ρ
µ···ν T

γ···δ
α···β = J γ···ρ

α···ν , (6e)

must be vector. This can be verified e.g. by noting that
differentiating by parts behaves as desired,

DηJ
γ···ρ

α···ν = Dη(T
σ···ρ

µ···ν T
γ···δ

α···β )

= T
γ···δ

α···β DηT
σ···ρ

µ···ν + T σ···ρ
µ···ν DηT

γ···δ
α···β

= T
γ···δ

α···β ∇ηT
σ···ρ

µ···ν + T σ···ρ
µ···ν ∇ηT

γ···δ
α···β

− T σ···ρ
µ···ν

1

2
i[Aη,T

γ···δ
α···β ]

= ∇ηJ
γ···ρ

α···ν − 1

2
i[Aη,J

γ···ρ
α···ν ]. (6f)

Since there exist complex objects like T γ···δ
α···β that are

neither scalars nor vectors but a combination of both, we
note that the derivative,

Dµ = ∇µ − iAµ, (7a)

D†
µ = ∇µ + iAµ, (7b)

acting on a scalar forms such a complex object, where
necessarily Dµ 6= Dµ. Proceeding, we can construct a
complex-valued curvature tensor, Kµν using commuta-
tion with the derivative in eq. (7) and a space-time vec-
tor, Vµ, which is such an object,

KµνV
µ ≡ [Dµ,Dν ]V

µ

= Dµ(∇ν − iAν)V
µ − Dν(∇µ − iAµ)V

µ

= ∇µ(∇ν − iAν)V
µ − iAµ(∇ν − iAν)V

µ

−∇ν(∇µ − iAµ)V
µ + iAν(∇µ − iAµ)V

µ

= [∇µ,∇ν ]V
µ − iVµ∇µAν + iVµ∇νAµ − [Aµ,Aν ]V

µ

= R ρ
µρν Vµ − i (∂µAν − ∂νAµ − i[Aµ,Aν ])V

µ

= (Rµν − i(DµAµ −DνAµ))V
µ

= (Rµν − iFµν)V
µ, (8a)

where Fµν is the Yang-Mills field strength defined in eq.
(6c) and,

[∇µ,∇ν ]Vσ = RρσµνV
ρ, (8b)

with Rρσµν and Rµν = R ρ
µρν the Riemann and Ricci

tensors. Thus, we find,

Kµν = Rµν − iFµν , (8c)
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is the object in question. In our notation, since Kµν ≡
Kkµν , we discover that, K0µν = Rµν and Kaµν =
~Fνµ. Consequently, Kµν has the property that Kµν =
(Kµν)

T∗ = (Kµν)
∗T = (Kνµ)

∗ = (Kµν)
†, i.e it is

Hermitian with respect to both the space-time and group
indices.
An intriguing observation is that, when the gauge

group is SU(2), these objects are space-time dependent
quaternion tensors. In particular, a typical quaternion,
Q corresponds to a space-time scalar represented as,

Q = Q+ iQ = Q+ i~Q ·~t = Q+ iQata

= Q+ e1Q1/2 + e2Q2/2 + e3Q3/2, (9a)

where,

e1e2 = −e2e1 = e3 = iσ3, (9b)

e2e3 = −e3e2 = e1 = iσ1, (9c)

e3e1 = −e1e3 = e2 = iσ2, (9d)

defines the quaternion algebra, Q,Qa are real numbers
and Q = ~Q ·~t = Qata with ta = σa/2 and σa the Pauli
matrices.(Meglicki, 2008) Thus, a dot-product of a vector
with the SU(2) matrices can be treated as the imaginary
part of a quaternion, whose real part transforms as a
scalar under SU(2). Evidently, our notation in eq. (3)
merely exploits the fact that in SU(2), the expressions
with fabc reduce to actual cross-products since the struc-
ture constants, fabc = εabc are proportional to the Levi-
Civita symbol, εabc. In SU(3), the objects are analogous
to octonions/Cayley numbers.(Dixon, 2013)
In particular, SU(2) objects can be related to the U(1)

objects by a Cayley-Dickson construction(Schafer, 1954),
where the number of generators (including the identity
matrix) is doubled in the construction. We shall refer to

all such objects, T γ···δ
α···β with their analogous Cayley-

Dickson algebra names, namely complex, quaternion, oc-
tonion, sedenion etc., corresponding to complex-valued
tensor objects with their imaginary parts transforming
as vectors under SU(N), i.e. U(1), SU(2), SU(3), SU(4)
etc. respectively. For instance, the Cayley-Dickson con-
struction allows one to factorize a quaternion curvature
tensor (eq. (8c)) into two complex tensors,

Kµν = Rµν − iFµν = Rµν − iFµν · t
= Rµν + e1Fµν1/2 + e2Fµν2/2 + e3Fµν3/2,

= Rµν + e1Fµν1/2 + e2(Fµν2 − e1Fµν3)/2, (10a)

where e1, e2, e3 are given in eq. (9b) and the factor of
1/2 arises from the normalization choice of the SU(N)
matrices given in eq. (5). However, the Cayley-Dickson
construction is obfuscated as the number of colors, N be-
comes large. For instance, SU(3) objects contain 32 = 9
real-valued tensors, whereas octonion tensors would only
have 2 × 4 = 8 real-valued tensors. Nonetheless, this

discrepancy arises from the fact that t8 and t3 SU(3)
matrices are both proportional to the single octonion
element, e8 hence reducing the octonion components by
one.(Shrestha et al., 2012)
On the other hand, the SU(4) object has 42 = 16 in-

dependent tensors (including the identity) which exactly
corresponds to 2× 8 = 16, the number of components of
a sedenion. Since we can write, 16 = (2× {2× [2× 2]}),
we are always able to construct the SU(4) object from
four quaternion sub-algebras,

Kµν = Rµνe0 + e1fµν1 + e2 [fµν2 − e1fµν3]

+ e4 {fµν4 − e1fµν5 − e2 [fµν6 − e1fµν7]}
+
√
2e8(fµν8 − e1fµν9 − e2 [fµν10 − e1fµν11]

− e4 {fµν12 − e1fµν13 − e2 [fµν14 − e1fµν15]})
= Rµν + eafµνa = Rµν − iFµν , (10b)

as long as e2e1 = −e3, e4e1 = −e5, e4e2 = −e6,
e4e3 = −e7, e2e1 = −e3, e8e1 = −e9, e8e2 = −e10,
e8e3 = −e11, e8e4 = −e12, e8e5 = −e13, e8e6 =
−e14 and e8e7 = −e15 is satisfied. In the last line,
eafµνa = Fµν follows from setting e0 = I4 and Kµν as-
sumed Hermitian, since any 4× 4 Hermitian matrix can
always be decomposed into components with SU(4) basis
matrices.
Finally, introducing Ψ = |Ψ|U, we note that U =

exp(iS) and its inverse U−1 = exp(−iS) are N ×N ma-
trices, while |Ψ| is a scalar under SU(N), where,

UU−1 = U−1U = IN , (11a)

is the N×N identity matrix which satisfies Dµ(U
−1U) =

U−1DµU + UDµU
−1 = 0. Consequently, it is straight-

forward to show, e.g. in SU(2), that Ψ, U and U−1 are
quaternions by recognizing the product property given in
eq. (6e) and calculating,

exp(iS) = exp(iS1σ1/2) exp(iS2σ2/2) exp(iS3σ3/2)

=
∑

j,k,l

1

j!k!l!
(iS1σ1/2)

j(iS2σ1/2)
k(iS3σ3/2)

l

= f(S1, S2, S3)I2 + if(S1, S2, S3), (11b)

where we have used, σaσb = δab + iεabcσc and the Taylor
expansion, exp(x) =

∑

k x
k/k!. Thus, eq. (11a) implies

that f2 + f2
1 + f2

2 + f2
3 = 1, where ~f = (f1, f2, f3). This

property can be generalized for the other SU(N) alge-

bras, with ~f ≡ fa and S ≡ θ a continuous infinitesimal
variable, where θ2 = 0 vanishes in order for,

U = exp(iθ) = IN + ~θ ·~t, (11c)

U−1 = exp(iθ) = IN − ~θ ·~t. (11d)

Thus, using det(U) = det(U−1) = 1 and U−1U =
UU−1 = IN , it follows that U,U−1 are unitary.
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In this formalism, a gauge transformation corresponds
to,

A′
µ = U−1AµU+ U−1DµU. (12a)

This requires that the field strength must transform in a
gauge invariant manner as,

F′
µν = U−1FµνU. (12b)

B. Introduction to p forms

A notation usually preferred for its compactness is
differential forms.(Demailly, 1997; Tu, 2017) We intro-
duce several straightforward guidelines on differential
forms particularly helpful to follow the discussion in the
manuscript:

(i) Any p form can be locally written as the contracted
form of a space-time tensor of rank p with an equal
number of space-time basis vectors, dxµp such that,

A =
1

p!
Aµ1···µp

dxµ1 ∧ · · · dxµp , (13a)

where, we can device a useful short-hand to write,

dxµ1 ∧ · · · dxµp = εµ1···µpdx1 · · · dxp, (13b)

with εµ1···µp the totally anti-symmetric Levi-Civita
symbol normalized as ε1,2,3,···p = 1 and the fac-
torial, p! introduced for later convenience. This
makes the p form the complete anti-symmetrization
of Aµ1···µp

.

(ii) The wedge product, ∧ is associative (i.e. (A ∧ B) ∧
C = A ∧ (B ∧ C)), and corresponds to the multipli-

cation operation for p forms, The wedge product of
a p and a q form yields a p+ q form,

A ∧ B =
1

p!q!
A[µ1···B···µp+q]dx

µ1 ∧ · · · dxµp+q , (14)

where [· · · ] indicates anti-symmetrization of the in-
dices. Thus, using this, one can show that,

A ∧ B = (−1)pqB ∧A. (15)

This means that A ∧ B = 0 when A = A = B = B
are group scalars and p = q is odd. However, when
A = A = B = B are group vectors (i.e. can be
decomposed into components multiplied by group
basis matrices which do not commute), eq. (15)
need not vanish, even for odd p = q. Finally, we
can determine the wedge product, A1 ∧ A2 · · ·An

for n number of p forms in a similar manner.

(iii) Since space-time indices are always hidden in the
notation, only p forms with equal rank can be added
or subtracted.

(iv) The Levi-Civita symbol does not transform appro-
priately as a tensor. To see this, on a manifold, M
of n dimensions with a metric tensor, gµν , we can
attempt to lower its indices by,

εµν···σρgµαgνβ · · · gσγgρδ = − det(gµν)εαβ···γδ, (16a)

where the right-hand side follows from the definition
of determinant of an n × n matrix and the minus
(-) sign originates from the Lorenzian signature of
the space-time manifold (For a Euclidean signature
metric, gEµν , we would have the determinant multi-
plied by a plus (+) sign instead). Thus, one divides
both sides by the measure

√
− det(gµν) to yield the

tensors,

vαβ···σρ =
√

− det(gµν)εαβ···σρ, (16b)

and,

vαβ···σρ =
1

√
− det(gµν)

εαβ···σρ, (16c)

whose raising and lowering operations by the metric
tensor are appropriately given by eq. (16a). We can
explicitly check each transforms as a tensor using,

det (gσρ(x)) = det

(

g′µν(x
′)
∂x′µ

∂xσ
∂x′ν

∂xρ

)

= det
(
g′µν(x

′)
)
∣
∣
∣
∣

∂x′

∂x

∣
∣
∣
∣

2

, (16d)

and,

dxσ1 ∧ · · · dxσp =
∂xσ1

∂x′µ1
dx′µ1 ∧ · · · ∂x

σp

∂x′µp
dx′µp

=
∂xσ1

∂x′µ1
· · · ∂x

σp

∂x′µp
εµ1···µpdx′1 · · · dxp

=

∣
∣
∣
∣

∂x

∂x′

∣
∣
∣
∣
εµ1···µpdx′1 · · · dx′p

=

∣
∣
∣
∣

∂x

∂x′

∣
∣
∣
∣
dx′σ1 ∧ · · · dx′σp , (16e)

where we recognize,

∣
∣
∣
∣

∂x

∂x′

∣
∣
∣
∣
=

∣
∣
∣
∣

∂x′

∂x

∣
∣
∣
∣

−1

. (16f)

is the determinant of the Jacobian matrix.

(v) For an nmanifold, M the volume element is a p = n
form built from eq. (16b) as,

dV =
1

(p = n)!
vα1···αp=n

dxα1 ∧ · · · dxαp=n , (17a)

where dV is the volume element. Using eq. (13),
and the property of the Levi-Civita symbol,

εα1···αn
εα1···αn = n!, (17b)
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the volume of the n = p manifold, M becomes,

∫

M

dV =

∫

M

dx1 · · · dxp=n
√

− det(gµν)

=

∫

M

dnx
√

− det(gµν). (17c)

We now recognize the need for the factorial, p! intro-
duced in (i). For our purposes, all manifolds shall
be Riemannian or pseudo-Riemannian, and hence
orientable (meaning det(gµν) does not change sign
anywhere on the manifold, to prevent the square-
root from turning imaginary).

(vi) The condition p = n, is referred to, in literature,
as the condition that the p form is a top form. We
note that the volume element requires this condi-
tion. This condition is vital, since the Lagrangian
density of any field theory must be a top form. Also,
due to eq. (13), the relevant Levi-Civita symbol
strictly must have p = n indices in order for eq.
(17a) to be a top form.

(vii) Any p ≤ n form, A, has a dual (n − p) form, ⋆A
known as the Hodge dual such that,

⋆A=
1

p!(n− p)!
vα1···αn

Aα1···αpdxαp+1∧· · ·dxαn. (18a)

The appearance of vα1···αn
, defined in eq. (16b),

guarantees the component of the Hodge dual,

(⋆A)αp+1···αn
=

1

p!
vα1···αn

Aα1···αp , (18b)

and its raised counterpart,

(⋆A)αp+1···αn =
1

p!
vα1···αnAα1···αp

, (18c)

appropriately transform as tensors. Consequently,
the Hodge operation done twice yields back the p
form,

⋆ ⋆ A = (−1)p(n−p)Aα1···αp
dxα1∧ · · ·dxαp, (18d)

where we have used,

vµ1···µpαp+1···αnvα1···αpαp+1···αn
= (−1)n−p(n− p)!δ

µ1···µp

α1···αp
,

with δ
µ1···µp

α1···αp
a generalized Kronecker delta with the

property, δ
µ1···µp

α1···αp
Aα1···αp = (−1)pp!Aµ1···µp .

(viii) The exterior derivative operation, d on any p form
is given by,

dA =
1

(p+ 1)!
∂µp+1

Aµ1···µp
dxµ1 ∧ · · · dxµp+1 . (19a)

Applying the exterior derivative operation twice an-
nihilates the p form,

d2A =
1

(p+ 2)!
∂µp+2

∂µp+1
Aµ1···µp

dxµ1 ∧ · · · dxµp+2 = 0,

where we have used the fact that partial derivatives
commute, [∂µp+2

, ∂µp+1
] = 0.

The expression translates into the Bianchi identities
in gauge and gravity theories, and can be familiar-
ized as the differential form version of the identities,
~∇ · (~∇× ~A) = 0 and ~∇× ~∇φ = 0 for spatial vector
and scalar fields in n = 3 dimensions. This is in-
structive, since the proof of these identities in vector
calculus also utilizes the fact that partial derivatives
commute.

For the wedge product of a p and a q form, A and
B respectively, the Leibniz rule is given by,

d(A ∧ B) = dA ∧ B+ (−1)pA ∧ dB. (19b)

For any p = n− 1 form, A, on a non-compact mani-
fold (i.e. a manifold with a boundary, ∂M), we can
elegantly write Stokes’ theorem as,

∫

∂M

A =

∫

M

dA. (19c)

(ix) Since the wedge product of an (n− p) form with a
p form is a top form, one can exploit this property
to define an inner product for two p forms, A and
B, as the integral of their wedge product over the
manifold, M,

〈A,B〉 =
∫

M

A ∧ ⋆B. (20a)

There is a sense in which the exterior derivative is
a raising operator acting on forms since it takes a
p form to a p + 1 form. One can define a lowering
operator, d† by introducing a p − 1 form C related
to A in eq. (20a) by dC = A, and differentiate
by parts and drop the boundary term (eq. (19c)),
∫

M
d(C ∧ ⋆B) =

∫

∂M C ∧ ⋆B = 0, to yield,

〈dC,B〉 =
∫

M

dC ∧ ⋆B = −
∫

M

C ∧ d ⋆ B

= −
∫

M

C ∧ ⋆(−1)p(n−p) ⋆ d ⋆ B

=

∫

M

C ∧ ⋆d†B = 〈C, d†B〉, (20b)

where the lowering operator is given by d† =
(−1)p(n−p)+1 ⋆ d⋆.

(x) For any p+1 = n form, B on the manifold, B is said
to be closed if dB = 0. Employing eq. (19), one
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could suspect that we can always write, B = dA,
with A defined the same way everywhere on ∂M.
It turns out that the statement is false for topo-
logically relevant manifolds. This stems from de
Rham cohomology(Demailly, 1997), a tool expos-
ing the extent to which the fundamental theorem of
calculus fails on topological manifolds.

In particular, if dA = B, where A is defined the
same way everywhere on ∂M, then B is said to be
exact. Thus, every exact form is closed, but the
converse fails due to the non-trivial topology of M.
Thus, the topology of the manifold can be exploited
to avail an avenue to apply Stokes’ theorem on com-

pact manifolds (i.e. manifolds without a boundary).
In particular, the boundary operation ∂ applied to
a compact manifold vanishes, ∂M = 0. However,
suppose M can be divided into two patches, M+

and M− due to topological reasons (which will be-
come apparent), then we can write the condition
that M is compact as,

∂M± = ±B, (21a)

M = M+ +M−, (21b)

where B is the boundary shared by M+ and M−,
albeit with opposite orientation (±), and must be a
compact manifold, ∂B = 0. Since B is n− 1 dimen-
sional when M is n dimensional, and both man-
ifolds are compact, this procedure can be carried
out successively n−1 times, introducing non-trivial
topologies at each stage.

For instance, in eq. (19c), when A = A is the
U(1) gauge field (p = 1 form) and M = S2 is the
n = 2-sphere, a magnetic monopole at the center
of the S2 sphere implies that A cannot be defined
the same way on the northern (∂M+ = S2

+) and
southern (∂M− = S2

−) hemispheres, each bounded
at the equator by the n = 2-sphere, B = S1 with
opposite orientation. Nonetheless, the respective
gauge fields are related by a gauge transformation,
A+ = A− + dθ1, where θ1 is a p = 0 form. Since θ1
is the azimuthal angle, defined modulo 2πν on S1,
where ν ∈ Z is an integer, Stokes’ theorem requires
that,

1

2π

∫

S2

dA =
1

2π

∫

S2
+

dA+
1

2π

∫

S2
−

dA

=
1

2π

∫

∂S2
+

A+ +
1

2π

∫

∂S2
−

A−

=
1

2π

∫

S1

A+ − 1

2π

∫

S1

A−

=
1

2π

∫

S1

dθ1 = ν, (22)

where ν is the monopole number in Maxwell’s
theory.(Dirac, 1931; Konishi, 2007; Zee, 2010) In

mathematics, the monopole number is referred
to as the first Chern number.(Chern, 1946) Gen-
erally, Stokes’ theorem (eq. (19c)) directly re-
lates such numbers to a class of non-exact but
otherwise closed p forms known as characteristic
classes.(Milnor and Stasheff, 2016)

Particularly useful for this paper, is the Euler char-
acteristic of an n = 4 dimensional compact Rieman-
nian manifold, ME (with Euclidean signature, de-
noted by the superscript, E) given by the integral,

χ4 =
1

8π2

∫

ME

Tr(R ∧R) =
1

πN

∑

j=±

∫

∂ME
j

CSj , (23a)

CSj =
N

8π
Tr

(

ωj ∧ dωj +
2

3
ωj ∧ ωj ∧ ωj

)

, (23b)

where ME =
∑

j=± ME
j , R = dω + ω ∧ ω is the

curvature p = 2 form which transforms as R′ =
ΛRΛ−1 under SO(4) rotations, ω′ = Λ−1ωΛ +
Λ−1dΛ, ω is the spin connection and CSj is the
Chern-Simons p = 3 form(Chern and Simons, 1974)
with,

k =
N

2
∈ Z ≥ 0, (23c)

a positive integer known as the Chern-Simons
level.(Jackiw and Pi, 2003) This further restricts
the number of colors, N to even positive integers.

The integrand in eq. (23a) is the second Euler class
and is equivalent to(Lovelock, 1971),

1
√

det(gµνE)
Tr(R ∧R)

= (RµνσρRµνσρ − 4RµνRµν +R2), (24a)

where Rµνσρ is the Riemann tensor, Rµν and R are
the Ricci tensor and scalar respectively and we have
used,

R = dω + ω ∧ω

= Rā
b̄ = dωā

b̄ + ωā
c̄ ∧ ωc̄

b̄

=
1

2

(

∂µω
ā
ν b̄ − ∂νω

ā
µ b̄ + ω ā

µ c̄ ∧ ω c̄
ν b̄

)

dxµ ∧ dxν

=
1

2
R ā

µν b̄dx
µ ∧ dxν , (24b)

with Rσ
ρµν = R ā

µν b̄
e σ
ā e

b̄
ρ the Riemann tensor.

A Wick rotation, tE → ±it, where tE is the Eu-
clidean time, corresponds to the transformation,
SO(4) → SO(1, 3), where the rotations, Λ now
correspond to local Lorentz transformations (three
boosts and three rotations) on the tangent manifold.
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Thus, the Chern-Simons p = 3 form transforms such
that the wave function,

ψ+
CS = exp

(

i

∫

B

CS+
)

= exp

(

i

∫

B

CS−
)

exp (iπNχ4)

= ψ−
CS exp (iπNχ4) , (25)

is single-valued under SO(1, 3), where we have used
∂Mj = jB with j = ± from eq. (21). In fact, since
the bold-face indicates that ω is a group vector, we
can borrow a leaf out of eq. (22), and take the two
Chern-Simons p = 3 forms to be related to each
other by local Lorentz transformations/Euclidean
rotations,

ω± = Λ−1ω∓Λ+Λ−1dΛ, (26)

which corresponds to,

CS± = CS∓ +Ndθ, (27a)

dθ =
1

24π
Tr(Λ−1dΛ)3, (27b)

where θ is a p = 2 form, defined modulo 2πν on
BE corresponding to the second Chern (winding)
number and,

χ4 =
1

24π2

∫

BE

Tr(Λ−1dΛ)3 = 2

∫

BE

dθ = ±2ν. (28)

However, eq. (28) is an atypical result since it some-
what purports the equivalence between the second
Euler and Chern classes. This is only valid if one
can treat ω as a gauge field, A, which shall have
great utility in the work herein.

In particular, eq. (28) exploits the fact that SU(4)
will be broken into SO(4) (F → R), which would
permit the second Chern class integrated over S4 to
be identified as the second Euler class on the four-
dimensional compact Riemannian manifold, ME,
provided (S4, S3) are homeomorphic to (ME,BE)
under a symmetry breaking U → Λ, where the
object U under SU(4) transforms as a vector un-
der SO(4), reflecting the apparent replacement of
the complex SU(4) tangent manifold with the real
SO(4) tangent manifold. This is explored in Section
III.A.

C. Group scalars and vectors (p forms)

AnyN×N Hermitian matrix, A = A† can be expanded
into basis SU(N) matrices, t including the identity ma-
trix, IN as,

A = A−A, (29a)

where A = AIN , A = ~A·~t, ~A = (A1, · · · , AN2−1), N
2−1

is the number of SU(N) generators andA,A1, · · · , AN2−1

are real-valued space-time functions. Defining anti-
Hermitian basis matrices, ~λ from the Hermitian ones,
~t and their commutation relations as follows,

~λ = −i~t, (29b)

[λa, λb] = fabcλc, (29c)

we recognize that eq. (29a) takes the desired object form,

albeit with anti-Hermitian basis vectors, ~λ in place of the
Hermitian vectors, ~t,

A = A+ iA. (29d)

In particular, taking A to be a p = 1 form, the object
form of the Yang-Mills p = 2 form can be defined com-
pactly as,

DA = F = dA+ iA ∧A = F + iF, (30a)

where d is the exterior derivative, F = dA is the U(1)
field strength, while F = dA +A ∧A is the Yang-Mills
field strength, which in component form can be written
as, Fµν = Fµν + iFµν .
For instance, the field equations correspond to,

1

2π
D†F = J = J + iJ, (30b)

which are equivalent to,

1

2π
DµF

µ
ν = Jν = Jν + iJν , (30c)

where D†F = d†F and D†F = d†F + ⋆(A ∧ F), in con-
formity with eq. (6a), and a factor of 2π introduced for
later convenience. Moreover, since d2 = d†2 = 0 vanishes,
D2 = D†2 = 0 is also an identity of the covariant deriva-
tives and likewise vanishes. Thus, we can retain our nota-
tion for Yang-Mills objects, namely the complex objects
(T), the scalars (T ) and the vectors (T). The bold-face

thus indicates that we are dealing with N ×N matrices,
whose basis matrices are the anti-Hermitian generators
of the SU(N) gauge group. Consequently, gauge trans-
formations correspond to,

A′ = A+ dθ, (31a)

A′ = U−1AU+ U−1dU, (31b)

which implies the respective components of the field
strength object transform as a scalar,

F ′ = dA′ = F = d(A + dθ) = dA, (31c)

and a vector,

F′ = d(U−1AU+ U−1dU)

+ (U−1AU+ U−1dU) ∧ (U−1AU+ U−1dU)

= U−1(dA +A ∧A)U = U−1FU, (31d)
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under SU(N) gauge group, where we have used d2θ =
d2U = d2U−1 = 0 and U−1dU = −UdU−1 in eq. (31d).
Finally, it is interesting to check that Maxwell’s theory

in special relativity takes the form,

∂jF
j = 2πJ0, (32a)

iεjkl∂kFl = −2πJj − ∂

∂t
Fj , (32b)

where Ej and Bj are the spatial components of the elec-
tric and magnetic fields respectively, εjkl is the n = 3
dimensional totally anti-symmetric Levi-Civita symbol
normalized as ε123 = 1, Fj = Ej + iBj is a complex vec-
tor constructed from the two U(1) group scalars, Ej , Bj

and Jµ = Jµ
e + iJµ

m is the complex current density con-
structed from two U(1) scalars, Jµ

e and Jµ
m, correspond-

ing to the electric and magnetic charge densities. Thus,
since Maxwell’s theory with monopoles satisfies S-duality,
i.e. Maxwell’s equations are invariant under the ex-
change of electric quantities with their magnetic coun-
terparts(Zee, 2010), eq. (32) can be written in a met-
ric independent manner using the language introduced
above as eq. (30), where the gauge group is U(1) instead
of SU(N) (A → A′). Consequently,

A = A+ iA′, (32c)

ν =
1

2π

∫

S2

dA, ν′ =
1

2π

∫

S2

dA′, (32d)

where ν and ν′ respectively are the monopole and elec-
tron numbers and S2 is the n = 2-sphere.

III. THEORY

A. Motivation

To gain insights into the scalar and vector structure we
have considered above, we can refrain from suppressing
the matrix components, and explicitly write the Yang-
Mills vector field strength and gauge transformations as,

Fā
b̄ = dAā

b̄ +Aā
c̄ ∧Ac̄

b̄, (33a)

F′ā
b̄ = (U−1)āc̄F

c̄
d̄(U)

d̄
b̄, (33b)

A′ā
b̄ = (U−1)āc̄A

c̄
d̄(U)

d̄
b̄ + (U−1)āc̄d(U)

c̄
b̄, (33c)

where Aā
b̄
= A∗ ā

b̄
is a space-time dependent N × N

Hermitian matrix. It is evident that, in the tetrad for-
malism, the curvature p = 2 form takes a similar form,

Rā
b̄ = dωā

b̄ + ωā
c̄ ∧ ωc̄

b̄, (34a)

R′ā
b̄ = (Λ−1)āc̄R

c̄
d̄(Λ)d̄b̄, (34b)

ω′ā
b̄ = (Λ−1)āc̄ω

c̄
d̄(Λ)d̄b̄ + (Λ−1)āc̄d(Λ)c̄b̄, (34c)

where the spin connection, ωā
b̄
= −ω ā

b̄
is a 4 × 4 anti-

symmetric matrix, and the components ā running from
0̄ to 3̄, correspond to the four coordinates of the tangent
manifold. Thus, one can expand ω into its basis matrices
in order to find,

ω = ωaλa = ω2λ2 + ω5λ5 + ω10λ10

+ ω14λ14 + ω12λ12 + ω7λ7, (35)

where λa are the anti-Hermitian generators of
SU(4)(Sbaih et al., 2013) and we require all the
SU(4) generators which do not appear in eq. (35) to be
set to nil. Consequently, this strictly breaks SU(4) gauge
symmetry in favor of SO(4), thus capturing the local
rotation group of the tangent space in n = 4 dimensions.

To further exploit the formalism, we can always cal-
culate with the full SU(4) symmetry and subsequently
break it to SO(4) afterwards, by setting the appropriate
values of A to nil, followed by a Wick rotation, SO(4)
→ SO(1, 3) in order to yield the local Lorentz group on
the tangent space replacing the Euclidean rotation group.
This corresponds to making the identifications,

R ⇔ F, ω ⇔ A, (36a)

Λ ⇔ U, ηāb̄ ⇔ δāb̄, (36b)

where U = exp(iθ) = exp(i~θ·~t) = exp(~θ·~λ) = exp(θE) =
Λ are local Lorentz transformations on the tangent man-
ifold, and

~λ = (KE
2 ,K

E
5 ,K

E
10, L14, L12, L7) = ( ~KE, ~L), (37a)

corresponds to the local generators of Euclidean boost,
~KE = (KE

1̄ ,K
E
2̄ ,K

E
3̄ ) and angular momentum ~L =

(L1̄, L2̄, L3̄) on the tangent space. In other words, we
shall have,

Λj = exp

(∫

λā
b̄ω

jb̄
µ ādx

µ

)

= exp

(∫

Tr(λωj)

)

, (37b)

where j = ± and λā
b̄
= λ′a ⊗λa is expanded as a matrix

tensor product into SU(4) according to eq. (35). Requir-
ing the trace to act on the λ′a basis matrices, but not
their matrix coefficients, λa, the Lorentz transformation
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of a topologically relevant manifold is defined as,

Λ = Λ+(Λ−)−1

= exp

(∫

Tr(λω+)−
∫

Tr(λω−)

)

= exp

(∫

λaω
+
b Tr(λ

′
aλ

′
b)−

∫

λ′aω
−
b Tr(λ

′
aλ

′
b)

)

= exp

(∫

λaω
+
b δab −

∫

λaω
−
b δab

)

= exp

(∫

ω+ −
∫

ω−

)

= exp

(

∓
∫

dθE

)

= exp
(
∓θE

)
= U∓1, (37c)

where U+1 ≡U is the unitary object under SU(4), and we
have used eq. (5) with N = 4, eq. (26), eq. (29b) and
set dθE = Λ−1dΛ.
Consequently, 6 of the 10 generators of Poincaré sym-

metry can be implemented by gauge/local Lorentz trans-
formations via the vector component of the object, F in
eq. (30a). However, to capture the remaining Poincaré
symmetry generators(Zee, 2010) (translations), we can
simply take a linear combination of the Killing vectors
and set it equal to the group scalar gauge field,

Aµ =

3∑

ā=0

cāξ
µ
ā , (38a)

where cā are constants with dimensions of mass and ξµā
are the 4 generators of space-time translations on the tan-
gent space. This suggests that the SU(N) scalar current
in eq. (30) can be written as,

Jµ = 2RµνA
ν . (38b)

This result is motivated by [∇µ,∇ν ]ξσā = Rρ
σµνξρā and

∇νξāµ = −∇µξāν , which guarantees that the scalar cur-
rent is conserved.
Finally, it will be convenient initially to work with

SU(N) instead of SU(4), which provides a generalized
framework for our approach. Comparing Kµν from eq.
(8c) with Fµν from eq. (30a), it is evident that, even
though Fµν is also Hermitian under the SU(N) matrix
indices, unlike Kµν , it is not invariant under complex
conjugation followed by transpose of the space-time in-
dices. We shall refer to Kµν as complex-Hermitian since
it exhibits both levels of hermiticity, while Fµν does not.

B. Equations of motion

1. Constraint 1

In the preceding work, we exploit the complex-
Hermiticity of Kµν in order to introduce two constraints
analogous to eq. (30). These constraints are essential to

obtaining an effective action for general relativity, with
desirable topological features for quantum gravity.
We shall use our notation to introduce the gauge co-

variant constraint,

DµK
µ
ν = Ψ(DνΨ)†, (39a)

Ψ =
√
R exp (iS) , Ψ† =

√
R exp (−iS) , (39b)

where R = gµνR
µν is the Ricci scalar, Kµν and Dµ are

given in eq. (8) and eq. (8c) respectively, and,

S = −
∫

pµdx
µ +

∫

Aµdx
µ, (39c)

is an action that transforms as a vector under SU(N),
where,

pµ = κuµ, (40a)

uµ =
dxµ(xν)

dτ
, (40b)

with pµ the n = 4-momenta of N particles, tracked by a
central space-time coordinate xν(τ), τ is the proper time
and κ is a mass parameter. We shall also choose the
following normalization condition on the n = 4-momenta
and n = 4-velocities,

Tr(pµpµ) =
N

4
~pµ · ~pµ ≡ λ, (41)

where λ is a parameter with dimensions of (mass)2 to be
determined. The central coordinate defines the center of
mass n = 4-velocity,

uµ =
dxµ(τ)

dτ
, (42a)

uµuµ = −1 (42b)

which transforms as a scalar under SU(N). Using eq. (7)
and separating the real and imaginary parts of eq. (39)
yields, respectively, the Bianchi identity,

∇µR
µ
ν =

1

2
∇νR, (43)

and the equations of motion for the gauge field,

DµF
µ
ν = 2πJν , (44a)

where,

Jν =
1

4π
i(Ψ∗DνΨ−ΨDνΨ

∗) = − R

2π
pν , (44b)

is the SU(N) current density. Thus, we arrive at familiar
expressions in general relativity and Yang-Mills theory.
For completeness, we can couple the Yang-Mills field

strength, Fµν to a Dirac spinor, ψ with N components
using the semi-classical EFE,

Rµν − 1

2
Rgµν = −8πGTµν , (45a)

Tµν =
(

〈T µν
Dirac〉+ T µν

SU(N)

)

, (45b)
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where,

T µν
YM =

2

Nπ
Tr

(

FµαFν
α − 1

4
FαβFαβg

µν

)

, (46a)

is the Yang-Mills energy-momentum tensor and,

T µν
Dirac =

1

4i

(
ψ̄γµDνψ + ψ̄γνDµψ

)
−

1

4i

(
(D†µψ̄)γνψ + (D†ν ψ̄)γµψ

)
, (46b)

is the energy-momentum tensor of the Dirac equations,

iγµ(Dµψ) =Mψ, (47a)

i(D†
µψ̄)γ

µ = −Mψ̄, (47b)

where M is the Dirac mass, Dµψ = (∇µ − iAµ)ψ,

D†
µψ̄ = ∇µψ̄ + iψ̄Aµ, ∇µψ = (∂µ − 1

4ω
āb̄
µ γāγb̄)ψ and

∇µψ̄ = ∂µψ̄+ ψ̄(14ω
āb̄
µ γāγb̄). The quantum average, 〈· · · 〉

is taken only over the Dirac terms in a semi-classical
sense, since fermionic field equations do not have a valid
classical description due to the Pauli-exclusion principle.
By contrast, bosonic field equations represent the equa-
tions of motion for a large number of bosons occupying
the same quantum state, which avails a valid classical
description.
Consequently, we can define the velocities, uν for the

Dirac degrees of freedom in the following manner,

uν =
〈ψ̄γνtψ〉
〈ψ̄ψ〉 . (48)

and proceed to calculate the trace of eq. (45) using eq.
(47) to yield,

R = −8πGM〈ψ̄ψ〉. (49)

Consequently, using eq. (43) to ensure that the right-
hand side of eq. (45) is divergence-free, we reproduce eq.
(44) with,

Jν = 〈ψ̄γνtψ〉. (50a)

Plugging in the results in eq. (49) into eq. (44), we find,

Jν = 4GMκ〈ψ̄ψ〉uν . (50b)

Notably, for eq. (50a) to correspond to eq. (50b), we use
eq. (48), which requires that,

κ =
1

4GM
, (51)

and thus motivates identifying κ as the surface
gravity(Wald, 1984), provided the Dirac mass, M dou-
bles as the central mass, M in the Schwarzschild metric
(for the the non-rotating black-hole solution of eq. (45)
with Tµν → 0).

2. Defining the central mass

However, general relativity does not admit a universal
definition of mass in arbitrary space-times.(Thorne et al.,
2000) Typically, one can exploit time translation sym-
metric (stationary) asymptotically flat space-times such
as the Schwarzschild metric to define the mass, M at
spatial infinity, where the curvature vanishes, since such
a space-time admits a time-like Killing vector, ξµ

0̄
as a

generator of time-translations, ξµ
0̄
∂/∂xµ = ∂/∂t.This in-

troduces the notion of conserved energy, that can appro-
priately be compared to expected notions in special rel-
ativity. Moreover, in addition to ξµ

0̄
, stationary axisym-

metric asymptotic flat space-times such as the Kerr met-
ric admit an additional unique rotational Killing vector,
ξµ
4̄
as a generator of rotations ξµ

4̄
∂/∂xµ = ∂/∂θ, whose

orbits comprise closed curves along the azimuthal angle,
0 ≤ θ ≤ 2π on the 2-surface of an oblate spheroid.
By definition, the Killing vectors obey the

relations(Bardeen et al., 1973),

∇µξν0̄ +∇νξµ0̄ = 0, (52a)

∇µξν4̄ +∇νξµ4̄ = 0, (52b)

∇µ∇νξ
µ
0̄
= Rµνξ

ν
0̄ , (52c)

∇µ∇νξ
µ
4̄
= Rµνξ

ν
4̄ , (52d)

where,

ξµ
0̄
∇µξ

ν
4̄ = ξµ

4̄
∇µξ

ν
0̄ . (53)

Thus, a linear combination of the Killing vectors, ξµ =
ξµ
0̄
+ Ωhξ

µ
4̄
, corresponding to the null vector tangent to

the generators at the horizon defined by ξµξµ = 0, also
satisfies eq. (52),

∇µξν +∇νξµ = 0, (54a)

∇µ∇νξ
µ = Rµνξ

µ, (54b)

and the parameter, Ωh is the angular frequency constant
on the horizon and satisfies,

ξµ∇µξ
ν = κξµ, (55)

where κ is the surface gravity we seek to define in terms
of the mass M , in a accordance to eq. (51). Since
∇µξν0̄ = −∇µξν0̄ is anti-symmetric, we can use Stokes’
theorem to transfer the integral of the asymptotically flat
space-like hypersurface, S = V (tangent to the rotation
Killing vector, ξµ

4̄
and intersecting the horizon at a 2-

surface ∂B = A), to the boundary, ∂S of S (consisting
of ∂B and a 2-surface, ∂S∞ at spatial infinity),

∫

∂S∞

dΣµν∇µξν0̄ +

∫

∂B

dΣµν∇µξν0̄

=

∫

∂S

dΣµν∇µξν0̄ = −
∫

S

dΣνξµ0̄R
µν , (56)
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where dΣµν = 1
2 (nµξν − nνξµ)dA and dΣµ are the sur-

face elements of ∂S and S respectively, while dA is the
area element of the horizon, dV = d 3x

√
− det(gµν) is

the volume element of S and nν is the other null vector
orthogonal to ∂B, normalized as nµξµ = −1. Thus, we
define the total mass as measured from infinity (corre-
sponding to the central mass) as,

M =
1

4πG

∫

∂S∞

dΣµν∇µξν0̄ . (57a)

In addition, the integral over ∂B yields,

∫

∂B

dΣµν∇µξν = −
∫

∂B

ξµ∇µξνnνdA

= −
∫

∂B

ξνnνκdA = −
∫

∂B=A

κdA = −κA, (57b)

where we have used eq. (55) and the fact that κ is con-
stant over the horizon.(Bardeen et al., 1973) Likewise,
the total angular momentum as measured from infinity
and the angular momentum at the horizon defined in a
similar manner as the mass,

L =
1

8πG

∫

∂S∞

dΣµν∇µξν4̄ , (58a)

Lh =
1

8πG

∫

∂B

dΣµν∇µξν4̄ , (58b)

where Stokes’ theorem, using eq. (54), yields,

∫

∂S∞

dΣµν∇µξν4̄ +

∫

∂B

dΣµν∇µξν4̄

=

∫

∂S

dΣµν∇µξν4̄ = −
∫

S

dΣνξµ4̄R
µν . (59)

Thus, since the EFE in eq. (45) can be transformed into
in n = 4 dimensions,

Rµν = −8πG

(

Tµν − 1

2
gαβT

αβgµν

)

, (60)

we can plug in the results from eq. (57) and eq. (58) into
eq. (56) to yield,

M =
κA
4πG

+ 2ΩhLh + 2E, (61a)

where the energy, E is given by,

E =

∫

S=V

dΣµξν0̄(T
µν − 1

2
gαβT

αβgµν), (61b)

where V is an n = 3 dimensional space-like hyper-surface.
For instance, it follows that, for the Kerr-Newmann

solution (T µν = FµαF ν
α − 1

4F
αβFαβg

µν , where Fµν =
∂µAν −∂νAν is the U(1) field strength with an appropri-
ate choice of gauge for Aµ), the energy becomes

E =
∑

i∈e,m

qiΦi, (62a)

where Φe and Φm are the electric and magnetic potentials
associated with the electric qe and qm monopole charges
respectively. Consequently, the exact solutions for the
quantities in eq. (61) are given by(Hawking, 1976a),

κ =
4π

A (r+ − rS/2) , Φi =
4π

A qir+, Ωh =
4π

A a, (62b)

where r± = rS/2 ±
√

(rS/2)2 − a2 −G
∑

i q
2
i is the ra-

dius of the inner(−) or outer(+) horizon, rS = 2GM is
the Schwarzschild radius, A = 4πr+rS and a = Lh/M .
Evidently, the surface gravity, κ is an elaborate function
of M and Lh as well as qi, and hence does not corre-
spond to eq. (51) unless the solution is Schwarzschild
(L → 0 and Q → 0). This implies that our approach
will be a good approximation to real systems as the lim-
its, r+ → rS and qi → 0 are satisfied, which correspond
to the limits ξµ → ξµ

0̄
and T µν → 0, where the energy-

momentum tensor is given by eq. (45).

3. Constraint 2

We shall consider a second constraint,

DνDµK
µν = 0, (63)

whose imaginary and real parts respectively correspond
to,

DµJ
µ = 0, (64a)

∇µ∇µR = 0. (64b)

The first expression in eq. (64a) is guaranteed by the
SU(N) symmetry. However, the second expression is
novel, since complex-Hermitian objects such as Kµν do
not traditionally appear in the formulation of Einstein’s
general relativity.
It is prudent to define a conserved current density,

Jν =
1

2π
∇νR, (65)

which transforms as a scalar under SU(N) gauge group.
For the purposes herein, we shall obtain the scalar cur-
rent density using,

R = Rc exp(−Φ), (66a)

Φ =

∫

pµdx
µ, (66b)

pµ = β̄−1uµ, (66c)

where Rc is a constant and β̄ = β/2π is a reduced inverse
temperature to be defined. Using the Killing vector ξµ,
we can exploit the Killing relations in eq. (54) by taking
the trace to find, ∇νξ

ν = 0 and setting,

Jν = Jcξν = − R

2π
pν , (67)
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in order to guarantee that the current is conserved,
∇νJ

ν = 0. When there is more than one space-time
isometry, one should take a linear combination of the
Killing vectors (such as in eq. (38a)), in order to con-
struct a suitable ξµ. This ensures that the constraint in
eq. (63) represents a combined space-time and SU(N)
gauge symmetry, where the conserved charge is a com-
plex object given by,

Q =

∫

V

d 3x
√

− det (gµν)Tr(J
0), (68)

related to this combined symmetry. Here, V is the n = 3
(dimensional) space-like hyper-surface corresponding to
spatial volume. Thus, Jµ = 1

2πΨ(DµΨ)† = Jµ + iJµ is
the conserved current. Nonetheless, the trace, Tr in Q

ensures that Q = 0 vanishes by virtue of the SU(N)
matrices being trace-less. This reduces the number of
finite charges to unity, where Q = Q + i0 is purely a
scalar under SU(N). Since Q is the only finite charge, it
is reasonable to identify Q = N with the SU(N) colors,
which corresponds to the scalar charge associated with
the Killing vectors, ξµ. Moreover, when N → 1, we
obtain a trivial U(1) gauge symmetry with the identity
replacing the trace-less matrices, and hence Q remains
finite satisfyingQ → 2Q. For U(1), this suggests eq. (39)
and eq. (63) respectively reduce to(Kanyolo and Masese,
2021),

∇µK
µ
ν = Ψ(DνΨ)†, (69a)

Ψ =
√
R exp(iS), Ψ† =

√
R exp(−iS), (69b)

∇µ∇νK
µν = 0, (69c)

where,

Dµ = ∇µ − iAµ, (70a)

Kµν = Rµν − iFµν , (70b)

S = −
∫

pµdx
µ +

∫

Aµdx
µ. (70c)

Proceeding, we employ the definitions in eq. (65) and
eq. (67) to discover that the n = 4-velocity is related to
the Killing vector by,

uν = − exp(Φ)ξν , (71)

where Jc = Rc/β̄ defines relates the constants. Applying
eq. (71), we obtain equations of motion for the center of
mass coordinate,

uµ∇µuν = exp(Φ)ξµ∇µ(exp(Φ)ξν)

= exp(2Φ)ξµ∇µξν + exp(Φ)ξνξ
µ∇µ exp(Φ)

= −1

2
exp(2Φ)∇ν(ξ

µξµ)

=
1

2
exp(2Φ)∇ν exp(−2Φ) = −∇νΦ,

where we have used eq. (71), eq. (42) and,

Rµν∇µξν = 0,

∇µξν = −∇νξµ,

1

2
ξµ∇µR = ∇ν(Rµνξ

µ) = ∇ν∇µ∇νξ
µ = 0,

from eq. (54), which guarantee that ξµ∇µΦ = 0. Thus,
we obtain the equation of motion,

uµ∇µuν = −β̄−1uν + ην , (72a)

which takes the form of a Langevin
equation(Lemons and Gythiel, 1997), where β̄ plays
the role of the mean free path between collisions and
ην the random acceleration (which is nil in eq. (72a)).
Moreover, since,

β̄−1 exp(−Φ)ξµ = −β̄−1 exp(−2Φ)uµ

= − exp(−2Φ)∇µΦ =
1

2
∇µ(exp(−2Φ))

= −1

2
∇µ(ξ

νξν) = −ξν∇µξν = ξν∇νξµ, (72b)

we obtain eq. (55), where κ = β̄−1 exp(−Φ) indeed is the
surface gravity. When ξµ → ξµ

0̄
= (−1,~0), the Killing

vector is time-like. Assuming a diagonalized metric ten-
sor, and using the face that Φ is real-valued, we obtain
u0 = exp(Φ) ≥ 0 and − exp(−2Φ) = exp(−2Φ)uµuµ =
ξµξµ = ξµξνgµν = g00 ≤ 0, which means that,

β−1 =
κ

2π
√

|g00|
≥ 0, (73a)

is the Tolman relation(Tolman, 1930;
Tolman and Ehrenfest, 1930), where κ is given in
eq. (51), defined at the Killing horizon, ξµξµ = 0. In
order to treat Φ as the Newtonian potential, we shall
assume it is small, Φ ≪ 1 such that, g00 ≃ 1 − 2Φ,
implying uµ → ξµ, which also lead to,

β−1 ≃ κ

2π
=

1

8πGM
, (73b)

as expected.(Bekenstein, 2008; Hawking, 1976a; Zee,
2010) Consequently, we can introduce the complex ob-
ject, S = S/2 + iS, where S = κ

∫
dτ in order for

Ψ =
√
ρc exp(S) and ρc is a constant.

Finally, using eq. (73b), eq. (65) and the trace of EFE
given in eq. (49), we find,

Jµ = 〈ψ̄ψ〉uµIN . (74)

In the same spirit as eq. (48), we can define the n = 4-
velocity as,

uν =
〈ψ̄γνψ〉
〈ψ̄ψ〉 IN , (75)
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where, uν is a scalar under SU(N) and hence an N ×N
matrix. Thus, we proceed to choose the normalization,

∫

V

d 3x
√

− det(gµν)J
0(~x)

=

∫

V

d 3x
√

− det(gµν) 〈ψ̄(~x)ψ(~x)〉u0(~x)IN

=

∫

V

d 3x
√

− det(gµν) 〈ψ̄(~x)γ0(~x)ψ(~x)〉IN

=

∫

V

d 3x
√

− det(gµν) 〈ψ†(~x)ψ(~x)〉IN = IN , (76a)

where we have used (γ0)−1γ0 = 1, in order for J0(~x) =
〈ψ†ψ〉 to have the proper normalization for a probabil-
ity density. Thus, the scalar charge, Q from eq. (68)
becomes,

Q = Tr(IN ) = N, (76b)

as expected. Likewise, we can employ eq. (76a) to obtain
the vector charges, Q using,

∫

M

d 4x
√

− det(gµν)J
µ

=

∫

dτ

∫

V

d 3x
√

− det(gµν)J
µ dt

dτ

=

∫

dτ

∫

V

d 3x
√

− det(gµν)J
µu0(~x)

=

∫

dτuµ(τ)

∫

V

d 3x
√

− det(gµν)J
0(~x)

=

∫

dτuµ(τ) =

∫

dτ
dxµ(τ)

dτ
= ∆xµ(τ), (77a)

where, M = (t,V) is the 1, 3 dimensional pseudo-
Riemannian manifold. Here, we have applied eq. (48)
and eq. (50b), and parametrized the vector current
as, Jµ(τ, ~x) = 〈ψ̄(~x)ψ(~x)〉uµ(τ). Note that, ∆xµ(τ) =
xµ(τ) − xµ(0) is the displacement with xµ(0) the inte-
gration constant. Thus, eq. (77a) implies that,

Tr

(
dx0

dt

)

=

∫

V

d 3x
√

− det(gµν)Tr(J
0) = 0, (77b)

and thus we shall have,

Q = 0, (77c)

by virtue of the SU(N) matrices being trace-less, Tr(t) =
0. Consequently, when N → 1 i.e. (SU(N) → U(1)) in
eq. (76b), the trace-less matrices can be replaced by
twice the identity matrix, 2IN implying that x0 → 2t, in
order for Q → 2Q as required. An approach, consider-
ing only this limit, has been employed in a preceding
paper(Kanyolo and Masese, 2021), which provides the
necessary framework to reproduce asymptotic behavior
of galaxy rotation curves, within the context of dark mat-
ter (Section V).

C. Lagrangian density

To ground the equations of motion on a firmer footing,
we provide a suitable action principle for our formalism.
We consider the following action on the space-time man-
ifold, M given by,

IM =

∫

M

d 4x
√

− det(gµν)
3∑

j=1

Tr (Lj) , (78a)

L1 = iψ̄γµDµψ −Mψ̄ψ, (78b)

L2 =
1

2π
Kµν(K

µν)†, (78c)

L3 =
1

2π
(DµΨ)(DµΨ)† +

λ

πN
|Ψ|2 − 1

8π
|Ψ|4, (78d)

where λ satisfies eq. (41), and Kµν and Ψ are given in eq.
(8) and eq. (39) respectively. Note that the Lagrangian
densities are N ×N identity matrices, which necessitates
the trace, Tr to be appear in the Lagrangian.
Proceeding to set L = L1 + L2 + L3, we derive the

constraints in eq. (39) and eq. (63) respectively by,

Dν
δL
δKµν

=
δL
δDµ

, Dν
δL

δ(Kµν)†
=

δL
δ(Dµ)†

, (79a)

DµDν
δL
δKµν

= 0, DµDν
δL

δ(Kµν)†
= 0, (79b)

where Kµν , (Kµν)
† and Dµ = ∇µ − iAµ, D†

µ = ∇µ +
iAµ are treated as independent fields. Moreover, recall
that the trace, Tr in the action, IM will introduce a
multiplicative factor of N to all SU(N) scalars in the
action. Thus, plugging in eq. (8) into L2 and using
FµνR

µν = 0, we can take the trace, Tr(L2) to find,

N

2π
RµνR

µν − N

8π
~Fµν · ~Fµν . (80a)

Consequently, this corresponds to the Lagrangian density
of the gravity and gauge fields, gµν and Aµ respectively.
However, currently, eq. (78) does not yet resemble the
Einstein-Hilbert action we should obtain in order to be
consistent with Einstein’s general relativity.
Moreover, the third Lagrangian density, Tr(L3) takes

the Ginzburg-Landau form for a Bose-Einstein conden-
sate of N colors of mass

√

2λ/πN , whose momenta are

given in eq. (40a). Substituting Ψ =
√
R exp(iS) from

eq. (39) into eq. (78) and taking the trace, Tr (L3) we
obtain,

1

2π
Tr(|DµΨ|2) + λ

π
R− N

8π
R2, (80b)

where R is the Ricci scalar. Thus, for eq. (78) to repro-
duce the Einstein-Hilbert action as expected (neglecting
the possible leading order terms), we ought to set the
coupling constant, λ to,

λ ≡ 1

16G
=
(mP

4

)2

, (81)
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where mP = 1/
√
G is the Planck mass. This suggests

that eq. (40a) describes the energy-momentum rela-
tion of Planckian particles. Moreover, we can perform
the symmetry breaking, SU(N) → SU(4) → SO(4) →
SO(1, 3), in accordance with eq. (35) and eq. (36), by

setting (Rµν)
ā
b̄
= (Fµν)

ā
b̄
, thus obtaining ~Fµν · ~Fµν =

(Fµν)
ā
b̄
(Fµν)

b̄
ā = RµνσρR

µνσρ, where Rµνσρ is the Rie-
mann tensor. In particular, since the tangent space must
have the same dimensions (n = 4) as the manifold, M,
the symmetry breaking (subsequently employed in eq.
(80a) to arrive at eq. (83)), can be viewed as a Cayley-
Dickson (de-)construction of Kµν from SU(N) to SU(4),
in a similar fashion to eq. (10b), setting the irrelevant
terms to nil and a subsequent Wick rotation to introduce
the Lorenzian signature.
Consequently, it is now evident that the coefficients in

eq. (78) and the normalization of the SU(N) matrices
in eq. (5) were a priori chosen in order to obtain the
factors, N/8π, N/2π and N/8π as the coefficients of the

terms −~Fµν · ~Fµν , RµνRµν and −R2 respectively, where
the former two arise from the Kµν(K

µν)† term and the
latter the |Ψ|4 term in the Lagrangian density. In turn,
this ensures that the resultant corrections to the Einstein-
Hilbert action (arising from the |Ψ|2 term) correspond to
the Gauss-Bonnet term(Lovelock, 1971),

LGB = − 1

8π
(R2 − 4RµνR

µν +RµνσρR
µνσρ), (82a)

which is topological in nature (a total derivative). From
eq. (23a),

dCS = −d 4x
√

− det (gµν)Tr(LGB). (82b)

Consequently, we have,

χ4(M) =
1

8π2

∫

M

Tr(R ∧R) =
1

πN

∫

M

dCS

=
1

πN

∫

∂M+=B

CS+ +
1

πN

∫

∂M−=−B

CS−

1

πN

∫

B

CS+ − 1

πN

∫

B

CS−

=
1

24π2

∫

B

dTr(Λ−1dΛ) = ±2ν, (82c)

where, we have used eq. (21) and eq. (27). Thus, χ4 is
the Euler characteristic in n = 4 dimensions, and hence
does not contribute to the equations of motion. Finally,
collecting all the terms, we have,

L =
1

2
Tr(|DµΨ|2) + i〈ψ̄γµDµψ〉

−M〈ψ̄ψ〉+ λ

π
R+Tr(LGB), (83)

where we have used the definition, Tr(L1) ≡ 〈L1〉 for
the Dirac field Lagrangian density. It is now clear that

varying this action with respect to the metric, gµν will
reproduce eq. (45) where T µν

SU(N) → 0, provided we can

find the conditions that allow the kinetic term of Ψ to
identically vanish.
In n = 4 dimensions, the constraint in eq. (39) is

invariant under T µν
SU(N) → 0. This arises from the fact

that mass-less SU(N) gauge field theories in n = 4 di-
mensions are conformal field theories, requiring that their
energy-momentum tensors are mass-less and hence trace-
less. On the contrary, a finite mass, Mgauge introduces
a preferred length scale comparable to the Compton
wavelength, ℓ ∼ 1/Mgauge.(Francesco et al., 2012) More-
over, in Ginzburg-Landau theories(Huebener, 2001), one
would typically assume Ψ varies slowly, resulting in the
sombrero potential dominating the free energy contribu-
tion over the kinetic term. Within this paradigm, we
can introduce the fluctuations, |Ψ|2 −〈|Ψ|2〉 = δ|Ψ|2 and
S − 〈S〉 = δS, and define the Ricci scalar as the fluctu-
ation, R = δ|Ψ|2 instead of |Ψ|2, where the mean values
of |Ψ|2 and S are kept independent of space-time coordi-
nates (〈|Ψ|2〉/2 = −Λ and 〈S〉 = Sc). This does not alter
the real and imaginary parts of eq. (39), since the Bianchi
identity and Yang-Mills equations, given in eq. (43) and
eq. (44) respectively, are invariant under the shift R →
R− 2Λ and S → S− Sc. Thus, we can identify Λ as the
cosmological constant. Consequently, the kinetic term in
eq. (83) leads to gauge symmetry breaking by generat-
ing the cosmological constant and hence a mass term for
the gauge field assuming Λ ≫ R, and Sc ≫ δS. How-
ever, since a mass term (spontaneous symmetry break-
ing) breaks the aforementioned conformal symmetry by
generating an additional energy-momentum tensor pro-
portional to 1

2M
2
gaugeTr(A

µAν) which is not trace-less,

this introduces a length scale ℓ ∼ Mgauge = 1/
√
Λ in

the gauge field theory.(Zee, 2010) On the other hand, in
order to maintain conformal symmetry, we shall explore
another approach of identically getting rid of the kinetic
term of Ψ.
In particular, we exploit the second constraint given in

eq. (63), which serendipitously avails an avenue for the
kinetic term to identically vanish. To see this, we plug in
Ψ =

√
R exp(iS), employ eq. (7), eq. (39c), eq. (67) and

eq. (73b), and the normalization conditions in eq. (41)
and eq. (42) to yield,

1

2
Tr(|DµΨ|2) = R

2

(

Tr(pµpµ) +
κ2N

4
uµuµ

)

, (84a)

which identically vanishes when,

πN =
λ

πκ̄2
= 4πGM2 =

βM

2
=

4πr2S
4l2P

= S, (84b)

which implies(Kanyolo and Masese, 2021),

βM = 2πN, (85a)
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where we have used eq. (51), eq. (81), the Schwarzschild
radius, rS = 2GM and Planck length, lP =

√
G = 1/mP

to identify the entropy, S. In fact, eq. (85a) is the al-
ready proposed black hole area quantization condition by
several authors(Bekenstein and Mukhanov, 1998, 1995;
Mukhanov, 1986; Vaz and Witten, 1999) since N ∈ Z ≥
0 is the number of colors and hence must be discrete.
Thus, to maintain conformal invariance, Killing horizon
areas must be pixelated in units of 4πG. Another curious
observation is, eq. (85a) can be rearranged in order for
the mass to take the form of bosonic, N = m or fermionic,
N = (2m+ 1) Matsubara frequencies(Abrikosov, 1975),

ωb =M = 2πN/β = 2ωf , (85b)

where m ∈ Z ≥ 0 is a positive integer. This could have
some deep significance for thermal Green functions not
explored further in the present work.
Finally, plugging in eq. (84b) into eq. (83), the sum

of the traces in eq. (78) can be transformed into an
equivalent sum,

3∑

j=1

Tr(Lj) = L(λ) + 〈L1〉+Tr(LGB), (86a)

where, L(λ) = λR/π corresponds to the Einstein-Hilbert
Lagrangian density and,

∫

M

d 4x
√

− det(gµν)Tr(LGB) = −Sχ4(M), (86b)

. is the Gauss-Bonnet term.(Lovelock, 1971) Thus, we
have demonstrated that eq. (78) is a candidate action
for the formalism earlier introduced, since it reproduces
the Einstein-Hilbert action, albeit with a finite topolog-
ical term. The significance of this topological term will
subsequently be explored within the context of quantum
gravity.

IV. RESULTS

A. Generating all mass terms

The path integral approach requires that the quan-
tum gravity wave function(Gibbons and Hawking, 1977;
Hamber, 2008; Hawking, 1978) be defined by,

ΨQG =

∫

D[gµν ,Aµ, ψ̄, ψ] exp(iIM), (87)

where IM is given in eq. (86a). We shall first treat
the gauge field, (Aµ)

ā
b̄
and the spin connection, (ωµ)

ā
b̄

as different fields an first consider the path integral over
Aµ. This appears straight-forward to perform since only
〈L1〉 in eq. (86a) depends on A. It will be clear that we
can effectively generate the |Ψ|4/8π term in eq. (78) by a

path integral with respect to Aµ, where the Lagrangian
initially has a term,

1

2

∫

M

d 4y
√

− det (gµν)Aµ(x)(G
−1)µν(x− y)Aν(y),

with,

(G−1)µν =
Tr(pαpα)

πN
√

− det (gµν)
gµνδ 4(x− y), (88a)

the inverse propagator, δ 4(x − y) the Dirac delta func-
tion normalized as

∫
d 4x δ 4(x − y) = 1, Tr(pαpα) = λ

given in eq. (41) and gauge field mass corresponding to
the reduced Planck mass,

√

2λ/π = m̄P = 1/
√
8πG (eq.

(81)). Consequently, the propagator, Gµν(x− y) is given
by,

Gµν =
πN
√

− det (gµν)

Tr(pαpα)
gµνδ

4(x− y), (88b)

which satisfies,

∫

d 4z (G−1)µα(x−z)Gα
ν(z−y) = δ 4(x−y)δµν , (88c)

where δµν = gµαgαν is the Kronecker delta.
Consequently, performing the path integral,

∫
D[Aµ]

obtains the action,

−1

2

∫

M

d 4x

∫

M

d 4yTr (Jµ(x)Jν (y))Gµν(x− y). (88d)

where the Dirac current, Jµ = 〈ψ̄γµtψ〉 is the Dirac cur-
rent in the term, 〈L1〉. Moreover, plugging in the equiv-
alent form of Jµ from eq. (44b) into eq. (88d) obtains,

− 1

2

∫

M

d 4x
√

− det(gµν)πN

(
R

2π

)2

= − 1

8π

∫

M

d 4x
√

− det(gµν)Tr
(
|Ψ|4

)
, (89)

as earlier remarked. Moreover, the masses of Aµ and Ψ
can effectively be generated by spontaneous symmetry
breaking in the following manner,

L4 =
1

πN
|φ|2|Ψ|2 − 1

2π
(Dµφ)

†(Dµφ)− V (φ), (90a)

V (φ) = −λ
2
|φ|2 + 1

4
|φ|4, (90b)

where the sombrero potential V (φ) has its minima at
|φc|2 = 0, λ, with λ the mass of the φ field as expected
from eq. (41). Notably, the first term in eq. (90a) yields
the Einstein-Hilbert action, while the kinetic term of φ
yields the mass term for the gauge field, |φc|2AµA

µ/2π,
which is integrated out by D[Aµ] as discussed in order
to yield eq. (89). Conversely, the presence of eq. (89) in
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the Lagrangian density gauge invariance is already spon-
taneously broken by the condensate, φ and not Ψ. Like-
wise, recall that the kinetic term of Ψ governs whether
the Killing horizon is quantized as in eq. (85a) or cosmo-
logical (Λ 6= 0) in nature, corresponding to either preserv-
ing or breaking the conformal symmetry of the underly-
ing gauge theory, Aµ. Consequently, this can be viewed
as exploring conformal and non-confomal regimes of the
theory, corresponding respectively to the length scales,
ℓ ∼ rS = 2GM comparable to the black hole radius and
ℓ ∼ 1/

√
Λ comparable to the size of the de Sitter uni-

verse.
Finally, since ψ no longer couples to Aµ after integrat-

ing it out, we recognize that the essence of the above
maneuvers in the case of ℓ ∼ rS is alreadycaptured in eq.
(87) by simply setting Aµ = 0.

B. Quantum gravity

We proceed by considering the path integral,
∫
D[ψ̄, ψ].

We shall perform this integral by the stationary
phase/steepest descent approach(Zee, 2010), where we
simply plug in the classical solutions of motion of ψ, ψ̄
given in eq. (47), which require, 〈L1〉 = 0. Consequently,
the path integral simply acquires an unimportant phase,
ln
(∫

D[ψ̄, ψ]
)
. Proceeding, we are interested in the path

integral involving the metric tensor, gµν as the dynamical
field. However, we face a daunting challenge to appro-
priately define this path integral since there lacks a con-
sensus in literature on how the measure, D[gµν ] ought to
be defined in order to yield consistent results.(Hamber,
2008)
Nonetheless, we make progress by defining the path in-

tegral with the measure as a discrete sum over an ensem-
ble of varied space-time manifolds, i.e.

∫
D[gµν ] →

∑

M.
Moreover, a neat observation from eq. (25) and eq. (28)
implies,

Sχ4(M) = πNχ4(M) = ±2πNν, (91)

where ν ∈ Z is the second Chern (winding) number. Con-
sequently, this implies that the topological action can
identically be excluded from the exponent. Moreover, we
can rewrite eq. (87) as,

ΨQG =
∑

M

exp(iIM(λ))ψ∗+
CS(B)ψ−

CS(B)

=
∑

M

exp(iIM(λ)), (92a)

where,

IM(λ) =
λ

π

∫

M

d 4x
√

− det (gµν)R, (92b)

is the Einstein-Hilbert action (in Lorenzian signature).

Nonetheless, since a Wick rotation, defined by t =
±itE and ΨQG → ZE

QG where ZE
QG is the partition func-

tion, transforms the exponent to a real value, the topolog-
ical term now contributes in the Euclidean path integral,

ZE
QG =

∑

ME

exp(∓IEME(λ)) exp
(
±Sχ4(ME)

)
, (93a)

where,

IEME(λ) =
λ

π

∫

ME

d 4xE
√

det(gEµν)R, (93b)

is the Einstein-Hilbert action in Euclidean signature and
ME ∈ (β,V) is the n = 4 (dimensional) Riemannian
manifold.

C. 1/N expansion

Since S is the thermodynamic entropy, it is expected
to be statistical, arising from quantum gravity degrees of
freedom of some quantum theory. Such a quantum theory
ought to reproduce the partition function given in eq.
(93), with the constraint, S = lnN , where N is the black
hole/quantum gravity number of microstates. As earlier
remarked, since the path integral measure, D[gµν ] is not
well-understood, the aspiration is for such a successful
quantum theory reproducing eq. (93) to have a well-
defined path integral measure, e.g. D[ϕ], where ϕ are
dynamical fields, in order for quantum gravity to emerge
from the path integral formulation, hence circumventing
this issue.
To make some progress in identifying such a theory, we

plug into eq. (93) the Boltzmann entropy formula,

S = lnN , (94)

thus obtaining the homestretch,

ZE
QG =

∑

ME∈h

exp(∓IEME(λ))N±χ4(M
E)

=
∑

ME∈h

exp

(

−
∫

dβHME(β)

)

= Tr

(

exp

(

−
∫

dβHME(β)

))

, (95)

corresponding to eq. (1a), where exp
(
−
∫
dβHME(β)

)

takes the form of a Boltzmann factor with the trace, Tr
going over the ensemble of manifolds, ME ∈ h with dis-
tinct topologies characterized by the index, h to be later
defined. Note that the classification of all n = 4 dimen-
sional Riemannian manifolds into distinct topologies is
not a straightforward exercise(Freedman, 1982), requir-
ing additional assumptions, tackled in subsequent sec-
tions.
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Nonetheless, we recognize eq. (95) as the 1/N expan-
sion of a largeN theory with the partition function given
by,

Z = exp(ZE
QG) =

∫

D[ϕ] exp

(

−N±

λ±
Tr(γ(ϕ))

)

, (96)

where S(ϕ) =
(
N
λ

)±
Tr(γ(ϕ)) is the action for unidenti-

fied field tensors, ϕ of rank n = 4 transforming appro-
priately as vectors under an unknown group, and γ is
the unidentified function of ϕ defining the large N the-
ory. In this case, the vacuum Feynman diagrams pave
n = 4 manifolds(Gurau, 2012), differing from random
matrix large N theories, where ϕ is a rank n = 2 tensor
(matrix) with vacuum Feynman diagrams defining n =
2 manifolds.(Gurau, 2011, 2012; Gurau and Rivasseau,
2011)

D. Topology

1. Old quantum condition

Considering the Langevin equation given in eq. (72a),
we define the geodesic curvature as,

kg(τ) = uνuµ∇µuν , (97a)

motivated by the fact that kg(τ) identically vanishes
as the n = 4-velocity approaches the Killing vector
uµ(τ) → ξµ(τ) due to the anti-symmetry relation in eq.
(54) or more favorably when the center of mass equations
of motion are geodesics,

uµ∇µu
ν = 0. (97b)

In particular, when the random acceleration vanishes,
ηµ = 0 as in eq. (72a), we can employ uµuµ = −1 to
discover the geodesic curvature corresponds to reduced
temperature, k(τ) = 1/β̄(τ). Moreover, observe that,

I(λ) =
λ

π

∫

d 4x
√

− det(gµν)R

= −M
2

∫

dt

∫

V

d 3x
√

− det(gµν)〈ψ̄ψ〉

= −M

2N

∫

dτ

∫

V

d 3x
√

− det(gµν)Tr(J
0(~x))

= −M
2

∫

dτ =
M

2

∫

uµ(τ)dx
µ(τ), (98)

where uµ(x
µ(τ)) = dxµ(τ)/dτ , uµ(τ)uµ(τ) = −1. Note

that, we have used eq. (49), eq. (74), eq. (76) and eq.
(81). Thus, eq. (98) guarantees that the Einstein-Hilbert
action satisfies,

IM(λ) = −M
2

∫

C(M)

dτ

=
M

2

∫

C(M)

uµ(x
µ(τ))dxµ(τ), (99)

where C identifies a world-line in space-time correspond-
ing to the trajectory for the center of mass. Under a wick
rotation, t → ±itE and τ → ±is, and closed world-lines
become possible, where s is the arc length for the closed
trajectory CE ∈ [0, β].
Consequently, the integral over the Langevin eq. (72a)

after Wick rotation yields,

∮

CE

kg(s) ds+
M

N

∮

CE

uµ(s)dx
µ(s) =

∮

CE

ηµdx
µ, (100a)

where,

M

∫ β

0

ds = βM = 2πN = 4πk, (100b)

uµ(s)uµ(s) = 1, uµ(s) = dxµ/ds and we have used βM =
2πN from eq. (85a) and eq. (23c).
2. Entropy as an adiabatic invariant

Recalling that ~ = 1, N ∈ Z ≥ 0 and Muµ has the
right form for momentum, we recognize eq. (100b) as the
old quantum condition (Wilson–Sommerfeld/Ishiwara
rule)(Ishiwara, 2017; Pauling and Wilson, 2012), which
is equivalent to the condition of black hole area quanti-
zation, implying that black hole entropy (proportional to
area) is an adiabatic invariant.(Henrard, 1993)
For instance, considering the constraint equations in

eq. (69) when the gauge field is broken to U(1) U(1),
we can appropriately re-scale the complex function using
the trace of EFE, R = −β〈ψ̄ψ〉 with β = 8πGM in order

to have, Ψ =
√

〈ψ̄ψ〉 exp(iS), S = −M
2

∫
ds and,

∇µKµν = −βΨ†∂Eν Ψ, (101a)

where ∂Eµ the partial derivative in Euclidean signature

and ∂Eµ − iAµ → ∂Eµ . Consequently, the normalization of
Ψ =

√
ρ exp(iS) in Euclidean signature, equivalent to eq.

(76a), corresponds to,

1 =

∫

V

d 3x
√

det(gEµν)u
0(~x(tE))〈ψ̄(~x(tE))ψ(~x(tE))〉

=

∫

V

d 3x
√

det(gEµν)u
0(~x(tE))Ψ†(~x(tE))Ψ(~x(tE))

=
2

M

∫

V

d 3x
√

det(gEµν)ξ
νΨ†(~x(tE))i∂Eν Ψ(~x(tE))

=
2

M
〈Ψ(~x(tE))|i ∂

∂tE
|Ψ(~x(tE))〉, (101b)

where ξµ = (−1,~0) is the time-like Killing vector and we
have used ξµ∇νRµν = 1

2ξ
µ∂EµR = 0 satisfied by eq. (52)

and eq. (101a). Computing the integrals below using eq.
(101a) and eq. (101b), we find,

−i
∫

V

d 3x
√

det(gEµν)ξ
ν∇µKµν =

βM

2
= S, (102a)
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and consequently,

− iβ−1

∫ β

0

dtE
∫

V

d 3x
√

det(gEµν)ξ
ν∇µKµν

= i

∫ β

0

dtE〈Ψ(~x(tE))| ∂
∂tE

|Ψ(~x(tE))〉 = S. (102b)

Moreover, if Ψ is interpreted as the wave function of
a quantum gravity system, the entropy, S becomes the
geometric phase/Berry phase.(Berry, 1984) In addition,
if a Schwarzschild black hole is described by Ψ and the
black hole does not undergo quantum transitions as it ac-
cretes/evaporates, the wave function should evolve adi-
abatically. For instance, this requires that the Unruh-
Hawking radiation from the black hole or the accreted
energy content to be negligible such that the space-time
can be assumed fairly static, ∂M/∂tE ≃ 0. Since the
system at finite temperature is periodic in β, a stan-
dard calculation of the adiabatic invariant(Berry, 1984;
Cohen et al., 2019) yields,

i

∫ β

0

dtE〈Ψ(~x(tE))| ∂
∂tE

|Ψ(~x(tE))〉

= i

∫

∂AE=CE

d~x · 〈Ψ(~x(tE))|~∇|Ψ(~x(tE))〉

=

∫

AE

d 2x~n · ~Ω =

∫

AE

Ω = 2πk, (102c)

whereAE is the n = 2 manifold enclosed by the Euclidean
path, ~x(tE), ~Ω = ~∇ × ~P is the Berry curvature(Berry,
1984) which can be written as a p = 2 form,

Ω = dP =
1

2
∂jPldx

j ∧ dxl, (103a)

whereas the Berry connection is given by ~P =
i〈Ψ(~x)|~∇|Ψ(~x))〉, which can be written as a p = 1 form,

P = i〈Ψ(~x)|∂l|Ψ(~x))〉dxl, (103b)

~n is the unit vector normal to AE and k = N/2 ∈ Z ≥ 0
is the first Chern number(Chern, 1946), corresponding
to the Chern-Simons level (eq. (23c)).(Jackiw and Pi,
2003)
In addition, since the object, Kµν under U(1), cor-

responds to the complex charge, Q = Q + i2Q, the
real and imaginary parts of the adiabatic wave function,
Ψ =

√
ρc exp(S) capture the same information about the

quantum system. Thus, we write the adiabatic wave
function as Ψ =

√
ρc exp(S) where,

S(tE, ~x) = − β̄M
4

Φ(~x) + iS(tE, ~x)

= S(0, ~x)/2 + iS(tE, ~x), (104a)

where S(0, ~x) = −β̄MΦ(~x)/2 is defined in order for
∂ρ/∂tE = 0 to vanish, ρc is a constant distribution with

〈ψ̄ψ〉 = ρc exp(−β̄MΦ(~x)) = ρ the equilibrium Boltz-
mann density distribution function which clearly satis-
fies, ∂ρ(~x)/∂tE = 0 and Φ(~x) is the Newtonian poten-
tial. Introducing fluctuations by ρ → ρ̃ = ρf2(tE, ~x)
where ρ̃ is the fluctuating density distribution, the man-
ifold will no longer admit a time-like Killing vector,
leading to ∂ρ̃/∂tE = ρ∂f2(tE, ~x)/∂tE 6= 0. Nonethe-
less, since the form of the wave function is constrained
by the complex charge, Q = Q + i2Q, we must have
Ψ̃ =

√
ρ̃ exp(iS) =

√
ρc exp(S̃) and ρ̃ = ρc exp(S) where,

S(tE, ~x) = ln f(tE, ~x)− β̄M

4
Φ(~x) + iS(tE, ~x)

= S(tE, ~x)/2 + iS(tE, ~x). (104b)

It follows from S(tE, ~x) = ln f2(tE, ~x)− β̄MΦ(~x)/2 that,

∂ ln f2

∂tE
=

∂S

∂tE
, (105)

where we can set f(0, ~x) = 1.
Applying these assumptions, we proceed to calcu-

late the Kullback-Leibler (KL) divergence, DKL(ρ||ρ̃) for
the two distributions ρ and ρ̃ by(Kullback and Leibler,
1951),

DKL(ρ||ρ̃) =
∫

V

d 3x
√

det(gEµν) ρ ln

(
ρ

ρ̃(t′E)

)

= −
∫

V

d 3x
√

det(gEµν) ρ ln f
2(t′E)

= −
∫ t′E

0

dtE
∫

V

d 3x
√

det(gEµν)
∂

∂tE
(ρ ln f2(tE))

=−
∫ t′E

0

dtE
∫

V

d 3x
√

det(gEµν)ρ
∂S

∂tE

=

∫ t′E

0

dtE
∫

V

d 3x
√

det(gEµν)Ψ
†i

∂

∂tE
Ψ

=i

∫ t′E

0

dtE〈Ψ| ∂
∂tE

|Ψ〉 = 2πk = S ≥ 0, (106)

where we have used eq. (105), ∂ρ/∂tE = 0 and set t′E = β
in the last line. Thus, by the positive definite property
of the KL divergence, the black hole entropy is always
positive, S = πN ≥ 0, consistent with N ∈ Z ≥ 0 as
expected.
3. Random acceleration

Proceeding to appropriately define the random accel-
eration, ην we note that, since the quantum gravity am-
plitude satisfies,

ΨQG =
∑

M

exp

(

ik

∫

C(M)

p

)

exp (−i2πkχ4(M))

=
∑

M

exp

(

ik

∫

C(M)

p

)

, (107)
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it implies we set, ψ∗+
CS ≡ exp

(
ik
∫

C
pµdx

µ
)
from eq. (25)

in order for ΨQG to transform appropriately. This also
implies that,

∫

CE(ME)

p = − 1

k

∫

BE(ME)

CS+, (108a)

where BE = ±∂ME
±. Moreover, to find CE(ME), it is

instructive to define ηµ such that it generates the 1/N
expansion terms in eq. (96), corresponding to the path
integral contributions. In other words, we ought to set,
∫

CE(ME)

kg(s)ds =
1

k

∫

BE(ME)

CS− = − 1

k
IME , (108b)

and,
∫

CE(ME)

η = ±2

∫

BE(ME)

dθ, (108c)

where θ is given in eq. (27). To make further progress,
we consider a series of compact manifolds homeomor-
phic to the n-sphere, Sn where n = 4, 3, 2, 1, together
with their non-compact hemispheres (indicated by ±)
with boundaries homeomorphic to the n− 1 spheres, i.e.
∂Sn

± = ±Sn−1. Thus, we employ the definitions,

ME = ME
+ +ME

−, ∂ME
± = ±BE, (109a)

BE = BE
+ + BE

−, ∂BE
± = ±DE, (109b)

DE = DE
+ +DE

−, ∂DE
± = ±CE, (109c)

where ME,BE,DE, CE are compact manifolds with di-
mensions n = 4, 3, 2, 1 respectiveley. Since BE is com-

pact, we expect that if dθ is non-exact on BE(ME), we
would have,

∫

BE

dθ =

∫

∂BE
+

θ+ +

∫

∂BE
−

θ− =

∫

DE

dα, (110a)

where θ+ − θ− = dα is also assumed and with the p =
1 form, α defined modulo 2πν on DE. This procedure
can be repeated successively under a similar treatment.
Proceeding, when dα is non-exact on DE(ME), we have,
∫

DE

dα =

∫

∂DE
+

α+ +

∫

∂DE
−

α− = ±1

2

∫

CE

dη, (110b)

where α+ −α− = ± 1
2dη as before and the random accel-

eration, η is defined modulo 2πν on CE(ME).

4. Gauss-Bonnet theorem

We can thus introduce the Gaussian curvature(Wu,
2008), K of the non-compact n = 2 Euclidean manifold,
AE bounded by ∂AE = CE(ME), by,

dp = ⋆K, (111a)
∫

∂AE

p =

∫

AE

⋆K, (111b)

where ⋆K is the p = 2 Hodge dual of p = 0 form, K.
Consequently, the integral form of the Langevin equation
summarizes to,

∫

∂AE

kg +

∫

AE

⋆K = 2πχ4. (112)

Evidently, this is the Gauss-Bonnet theorem in n = 2
dimensions(Wu, 2008), where the Euler characteristic of
the n = 4 compact manifold, ME has been transformed
into the Euler characteristic of the n = 2 non-compact

manifold, AE, i.e. χ4(ME) = χ2(AE). Consequently,
computing χ4(ME) can be done on AE instead of ME,
suggesting that the partition function in eq. (95) can ac-
tually arise from a random matrix large N group theory
where ϕ transforms as a vector under a rank n = 2 tensor
group theory, instead of rank n = 4, as earlier remarked.
Thus, these observations take us closer to defining the
appropriate large N theory for the field variable, ϕ by
edging us closer to consistently defining the topology in-
dex, h in eq. (96) for n = 4 manifolds of interest to our
study.
Finally, recall that the Gauss-Bonnet the-

orem in eq. (112) relates the Langevin
equation(Lemons and Gythiel, 1997) (eq. (72a)) to
the action in the integrand of the path integral in
eq. (87). Since varying the action, IM leads to the
field equations of gravity, we conclude that EFE are
analogous to the Fokker-Planck equation(Risken, 1996),
where the Ricci scalar R is proportional to the proba-
bility density. In diffusion models, the Fokker-Planck
equation is related to the Langevin equation by Itô’s
lemma, under a non-standard calculus known as Itô
calculus.(Øksendal, 2003)

5. Euler characteristic, χ4 = χ2

We shall consider some implications of our approach
by setting,

χ2 = 2− 2g − b, (113)

where g is the genus of AE and b = 1
2π

∫

CE k(s)ds is
the finite contribution of the geodesic curvature integral
over the boundary, CE. Moreover, we shall only consider
manifolds homeomorphic to the connected sums of the
n = 4-sphere, S4 and the n = 4-torus, T 4 where ME is
thus compact. Their respective Euler characteristics are
given by,

χ4(S
4) =

4∑

p=0

(−1)pbp(S
4) = 2, (114a)

χ4(T
4) =

4∑

p=0

(−1)pbp(T
4) = 0, (114b)
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respectively, where,

bp=0(S
n) =

(
n

0

)

= 1, bp=n(S
n) =

(
n

n

)

= 1, (114c)

bp6=0,4(S
n) = 0, bp(T

n) =

(
n

p

)

=
n!

(n− p)!p!
, (114d)

and bp is the p-th Betti number.(Bochner and Yano,
2016) The Betti numbers have the property that the
b0 and bn numbers are not additive (remain invariant)
under connected sum operations, while the rest of the
Betti numbers are additive.(Zagier, 2017) For instance,
the connected sum of manifolds homeomorphic to S4 has
the Euler characteristic,

χ4(S
4#S4# · · ·#S4)

= b0(S
4) + b4(S

4) = χ4(S
4), (115a)

since the Betti numbers, b0 = 1 and b4 = 1 are invariant,
while bp6=0,4 = 0 are additive but do not contribute to
additional terms since they are vanishing. Meanwhile,
the connected sum of manifolds homeomorphic to S4 and
T 4 has the Euler characteristic,

χ4(S
4#S4# · · ·#S4#T 4#T 4 · · ·#T 4

︸ ︷︷ ︸

h

)

=

(
4

0

)

+

(
4

4

)

+ h
∑

p6=0,4

(−1)p
(
4

p

)

= 2− 2h, (115b)

where h ∈ Z ≥ 0 is the number of tori in the connected
sum. Since, we can always reproduce eq. (115a) by set-
ting h = 0, we have,

χ4(ME) = 2− 2h, (116)

for all connected sums. Consequently, we note that,
χ2(AE) = χ4(ME) implies,

h = g + b/2. (117a)

Thus, when AE is compact, the contribution to the
Gauss-Bonnet theorem from the geodesic curvature van-
ishes, b = 0 and h corresponds to the genus of AE.

E. Average energy of manifolds

The energies associated with a given manifold can be
obtained from eq. (95) by, HME(β) = −∂IE

ME(β)/∂β,
which yields,

HME = ∓M
2
χ4(h)

∓ M

2β2

∫

ME∈h

d 4xE
√

det(gEµν)R, (118)

where we have used λ = 1/16G from eq. (81), β = 8πGM
and S = lnN = βM/2 = πN from eq. (84b). Mean-
while, individual probabilities, PME for a given manifold
correspond to,

PME =
(
ZE
QG

)−1
exp

(

−
∫

dβHME(β)

)

. (119)

Thus, given the above probability distribution for each
manifold configuration, the expression for average energy
becomes,

〈H〉 =
∑

ME∈h

PMEHME(β) = − ∂

∂β
ln(ZE

QG). (120)

Moreover, when there are no sources in the EFE or
when the energy momentum tensor is trace-less, the Ricci
scalar vanishes and the stationary phase/steepest descent
approach(Zee, 2010) allows the energy of the manifold to
be transformed into a more palatable expression by plug-
ging in R = 0. Thus, the average energy becomes purely
the sum of the topological contributions,

〈H〉 = M

2

∑

ME∈h

PMEχ4(h), (121)

PME∈h =
exp

(
−βM

2 χ4(h)
)

∑

ME∈h exp
(
−βM

2 χ4(h)
) . (122)

V. RAMIFICATIONS

A. Fermion/boson picture

Typically, in the 1/N expansion of a random matrix
theory such as in eq. (96), terms corresponding to the
topology, χ4(S

4#S4# · · ·#S4) = χ4(S
4) = 2 (planar

vacuum Feynman diagrams) would be expected to dom-
inate the expansion.(Gurau and Rivasseau, 2011) How-
ever, here, the ± sign arising from opposite-direction
Wick rotations slightly complicates the situation. To
understand how, recall that we are considering R = 0,
where R is the Ricci scalar. We can proceed by the
assumption above that the S4 topology dominates with
PME ≃ 1, where the manifold energy ME

BH ∈ h = 0 is
the central mass, HME∈h=0 =M and,

χ4(ME
BH) = χ4(S

4) = 2, (123)

with ME
BH the manifold corresponding to a space-time

with a single Schwarzschild black hole of mass, M while
the sign of the energy function chosen to correspond to
the Wick rotation, t = −itE. Even though black hole
solutions are vacuum solutions of EFE, this cannot be the
ground state of our theory since we could always lower
the energy of the manifold by removing the central mass,
by setting, M = 0.
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In fact, the ground state corresponding to HME =
0 is characterized by three quantum states: (M =
0, χ4(ME) 6= 0), (M 6= 0, χ4(ME) = 0) and (M =
0, χ4(ME) = 0) states; hence it is three-fold degenerate.
Nonetheless, since the 1/N expansion requires we take
the ’t Hooft limit (corresponding to N → ∞, λ = 1/16G
fixed), and eq. (84b) requires M2 ∝ πN = lnN → ∞,
this lifts the degeneracy by selecting the unique ground
state to be (M 6= 0, χ(ME) = 0). Thus, for our ap-
proach to be physical, (M = 0, χ4(ME)) ought to include
Minkowski space-time/Euclidean space, albeit alongside
other Riemannian manifolds with non-trivial topologies,
χ4(ME) 6= 2 − 2h. This is encouraging since it classi-
fies relevant manifolds consistent with the assumption,
ME ∈ h in the partition function, ZE

QG.

Proceeding, we already have, χ4(ME ∈ h) = 2 − 2h,
with h = 0, 1. To avoid negative mass states, M < 0 we
observe that, the manifold states with h ≥ 1 correspond
to a Wick rotation in the opposite direction, i.e. t =
+itE. In fact, the Wick rotations, t = ±itE correspond
to the following 1/N expansions,

ΨQG(t, h)

∣
∣
∣
∣
t=−itE,h≤1

= N−2 +N 0, (124a)

ΨQG(t, h)

∣
∣
∣
∣
t=+itE,h≥1

= N 0 +N−2 + · · · N 2−2h, (124b)

where both select the unique ground state, N 0 = 1 for
large N . Moreover, there is a sense in which the h = 1
state is fermionic whereas the h > 1 states are bosonic
in nature. This follows from their average energy expres-
sions,

〈H〉 = M

2

h=1∑

h=0

χ4(h) exp
(

−βM
2 χ4(h)

)

∑h′=1
h′=0 exp

(

−βM
2 χ4(h′)

)

=M
exp (−βM)

1 + exp (−βM)

=
M

exp (βM) + 1
=M〈c†c〉, (125a)

where c†, c are the fermionic creation and annihilation
operators respectively, satisfying the anti-commutation
relations, {c, c†} = 1. Thus, when the Ricci scalar in eq.
(118) is non-vanishing, R 6= 0, the presence of a massive
Dirac field restores the fermionic zero-point energy term,
−M/2 missing in eq. (125). Consequently, a substitution
of the trace of EFE into eq. (118) yields,

M

2β2

∫

ME

d 4xE
√

det(gEµν)R

= −M
2β

∫ β

0

ds

∫

V

d 3x
√

det(gEµν)〈ψ̄(~x)ψ(~x)〉u0(~x)

= −M
2β

∫ β

0

ds = −M
2
, (125b)

as expected. Here, R = −β〈ψ̄ψ〉 and β = 8πGM have
been used from eq. (49), and u0(~x) = dt/dτ = dtE/ds
with s = iτ the proper distance and tE = −it Eu-
clidean time, where the normalization condition given in
eq. (76a) applies. Thus, we conclude that the Euler char-
acteristic is proportional to the fermion number operator
acting on the quantum states (vacuum state, h = 1 and
the single fermion state, h = 0),

χ̂4 = 2c†c = c†c− cc† + 1, (126a)

|ν〉 ≡ |ME ∈ h ≤ 1〉, (126b)

where h = cc† and ν = 1−h = c†c is the winding number
given in eq. (28) in order for,

Ĥ =
M

2
(χ̂4 − 1), (126c)

Ĥ|ν〉 = HME∈h(ν)|ν〉. (126d)

The expressions are consistent with the plus sign option
of the Hamiltonian given in eq. (118).
Similarly, the manifolds with h ≥ 1 correspond to

bosonic states. In particular, performing a Wick rotation
in the opposite direction, t = +itE selects the appropri-
ate sign corresponding to the bosonic average energy,

〈H〉 = −M
2

h=∞∑

h=1

χ4(h) exp
(

βM
2 χ4(h)

)

∑h′=∞
h′=1 exp

(
βM
2 χ4(h′)

)

= − ∂

∂β
ln

(
h=∞∑

h=1

exp

(
βM

2
χ4(h)

))

=
∂

∂β
ln (1− exp(−βM))

=
M

exp (βM)− 1
=M〈a†a〉, (127a)

where a†, a are the bosonic creation and annihilation op-
erators respectively satisfying the commutation relations,
[a, a†] = 1. However, caution should be exercised to re-
place the Dirac field in the trace of EFE with R = −βρ,
arising from the trace with a dust energy-momentum ten-
sor, T µν

Dirac → T µν
Dust =Mρuµuν , where ρu0 is interpreted

as the bosonic probability density normalized as,
∫

V

d 3x
√

det(gEµν)ρ(~x)u
0(~x) = 1, (127b)

to unity. Thus, we obtain,

− M

2β2

∫

ME

d 4xE
√

det(gEµν)R

=
M

2β

∫ β

0

ds

∫

V

d 3x
√

det(gEµν)ρ(~x)u
0(~x)

=
M

2β

∫ β

0

ds =
M

2
, (127c)
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as expected. Consequently, parallel to the fermionic case,
the Euler characteristic operator is proportional to the
boson number operator, and the manifold states span
the states of the quantum harmonic oscillator,

χ̂4 = −2a†a = −a†a− aa† + 1, (128a)

|ν〉 ≡ |ME ∈ h ≥ 1〉, (128b)

as expected, where h = aa† and ν = h − 1 = a†a is the
winding number given in eq. (28), in order for,

Ĥ = −M
2
(χ̂4 − 1), (128c)

Ĥ|ν〉 = HME∈h|ν〉. (128d)

The expressions are consistent with the minus sign option
of the Hamiltonian given in eq. (118).
Finally, eq. (126) and eq. (128) satisfy the free energy

equation,

〈F̂〉 = 〈Ĥ〉 ± β−1S, (129a)

where F̂ = ±M
2 χ̂4 is the minimized free energy opera-

tor. By inspection, we see that eq. (129) corresponds to
the quantum version of the classical Gauss-Bonnet the-
orem given in eq. (112), where the Gaussian curvature
term is responsible for the black hole entropy, S whereas
the random acceleration term is responsible for the 1/N
expansion of the free energy since,

〈F̂〉 = −β−1 ln(ZE
QG), (129b)

Consequently, geodesics (kg(s) = 0) are allowed if and
only if M = 0. However, since M 6= 0 is imposed by
the ’t Hooft limit, geodesics must be precluded even for
the vacuum state (h = 1) unless R = 0. Conversely,
R 6= 0 gives rise to a finite zero-point term, ±M/2 that
cannot otherwise vanish. Consequently, AE must be non-
compact when M 6= 0 unless R = 0 and h = 1, since
the geodesic curvature term would otherwise identically
vanish, contradicting our previous statements.

B. Asymptotic behavior in galaxy rotation curves

A direct way of deriving the empirical baryonic Tully-
Fisher relation(McGaugh, 2012; McGaugh et al., 2000),
relevant for explaining the asymptotic behavior of galaxy
rotation curves is to employ eq. (85a) with additional mi-
nor considerations.(Kanyolo and Masese, 2021) First, we
shall consider the EFE coupled to a pressure-less dust,
where R = −8πGMρ is the trace. This corresponds to
the bosonic case given in eq. (127b), where M is the
mass of the baryonic matter in the galaxy. However, since
EFE are analogous to the Fokker-Planck equations, we
can modify the normalization condition and by treating
ρ as the number density of bosonic particles instead of a

probability density. A second adjustment is to relax the
expression for temperature, β 6= 8πGM , since this was
motivated by black hole thermodynamics, and hence is
not necessarily guaranteed to apply to this scenario, as
we shall see. Nonetheless, the condition, eq. (85a) can
be expected to be robust across varied (quantum) grav-
itational systems, since it simply corresponds to the old
quantization.(Ishiwara, 2017; Pauling and Wilson, 2012)

To simplify the problem, we assume that the periphery
of the galaxy contains a negligible amount of baryonic
matter compared to the interior, where ρ(x) ≃ ρD(x)
largely corresponds to the number density contribution
from dark matter.(Persic et al., 1996) In addition, we im-
pose the time-like Killing vector, ξµ on the space-time
manifold, in order to guarantee the equilibrium condi-
tions,

ξµ∂µρD = 0, (130a)

ρD(x) = ρc exp(−β̄MΦ(x)), (130b)

where ρc is a critical number density to be defined. Re-
spectively, eq. (130) follows from the Killing equations
in eq. (54) while assuming the equilibrium distribu-
tion takes the form of a Boltzmann factor with Φ(x)
the Newtonian potential appropriately defined. We take
the dark matter particles to be equivalent to a Bose-
Einstein condensate(Kanyolo and Masese, 2021) of the
colors, k = N/2 where k is the number of bosons/Cooper-
pairs(Tinkham, 2004) forming the condensate normaliza-
tion condition,

∫

V

d 3x
√

− det(gµν)|Ψ(~x)|2u0(~x) = k, (131a)

with |Ψ(~x)|2 = ρD(~x) the number density, u0(~x) the time
component of the n = 4-velocity vector and Ψ(~x) satisfies
eq. (69). For brevity, we consider the Newtonian limit
corresponding to,

∇2Φ(~x) = 4πGM |Ψ(~x)|2
= 4πGMρc exp(−2kΦ(~x)), (131b)

where u0(x) ≃ 1 and k = 2β̄M from eq. (85a). Here, we
have used the time-like Killing vector, ξµ = (−1,~0) and
ξµ∂µR = 8πGM∂ρD/∂t = 0, from eq. (130), in order to
guarantee, ∂Φ(x)/∂t = 0.

Assuming the conditions of spherical symmetry
of the dark matter halo(Kramer and Randall, 2016;
Persic et al., 1996), we can re-write eq. (131b) in spher-
ical coordinates as,

1

r2
∂

∂r

(

r2
∂Φ(r)

∂r

)

= 4πGMρc exp(−2kΦ(r)), (132)

and proceed to solve it. This yields the potential and
number density corresponding to the singular isothermal
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profile(Keeton, 2001),

Φ(r) =
1

2k
ln
(
Kr2

)
, (133a)

ρD(r) =
ρc
Kr2

=
1

4πGMkr2
, (133b)

ρc =
K

4πGMk
, (133c)

where K is a constant. However, the isothermal den-
sity profile is singular at the origin. This may not be a

priori unphysical since it is not peculiar for vortices in
nature to be described by singularities at the origin. In
fact, Φ(r) =

∫
pµdx

µ takes the form of a logarithmic spi-
ral with arctan(k) = θp the pitch angle, where eq. (66)
and eq. (107) imply Φ(r) is the quantum phase. How-
ever, since we have only considered conditions where dark
matter dominates over baryonic matter at the periphery
of the spiral galaxy, it is entirely feasible that predictions
with eq. (133) better approximate the asymptotic be-
havior of spiral galaxies where dark matter dominates,
rather than in the interior where there would be a sig-
nificant energy density contribution from the neglected
baryonic matter. Consequently, we shall introduce the
condensate wave function as,

Ψ =
√
ρD exp(ikΦ(r)) =

√
ρc exp (k(1 + 2i)Φ) , (134)

implying the approach admits the complex charge, Q =
Q + i2Q corresponding to the subsequent breaking of
SU(N) to U(1), Fµν → Fµν , where in eq. (69), Fµν

is the U(1) field strength and Kµν = Rµν − iFµν is the
complex-valued object. In a previous paper, we argued
that the ensuing U(1) gauge field strength corresponds
to Fµν ∝ ∇νξµ, where ξµ is the time-like Killing vector,
and thus ensuring dark matter remains effectively non-
interacting and charge-less.(Kanyolo and Masese, 2021)
Moreover, the normalization condition in eq. (131a)

can be exploited to find an expression for the number of
bosons, k,

k =

∫

V

d 3x ρD(r) =

∫ 1/a0

0

4πr2ρD(r)

=

∫ 1/a0

0

dr

GMk
=

1

GMka0
, (135)

where we have introduced a cut-off scale, 1/a0 for the
n = 3 manifold, V since the integral would otherwise
diverge. In addition, since the logarithmic spiral is
scale invariant but the cut-off introduces a length scale,
this suggests that conformal invariance must be broken,
while preserving scale invariance.(Milgrom, 2017) Conse-
quently, one would suspect that the cut-off scale would
be comparable to the size of the dark matter halo. How-
ever, since ρD = Ψ†Ψ in eq. (131a) is the number density
of the bosons (which are quantum mechanical objects),
the cut-off in the normalization of the condensate wave

function ought to define the size of the manifold, V and
not necessarily the halo. Thus, it is reasonable to set
the cut-off scale to be 1/a0 ≃

√

3/Λ, which is compara-
ble to the size of the de Sitter universe, where Λ is the
cosmological constant. Consequently, from eq. (135), we
have,

k =
1√

GMa0
≃ 1
√

GM(Λ/3)1/2
. (136)

However, the number of bosons, k in eq. (136) appears
not to take positive integer values. Of course, this is not a
problem since a finite cosmological constant requires the
kinetic term of Ψ to spontaneously break SU(N) gauge
symmetry in eq. (83), and hence does not require eq.
(84b) nor eq. (85a) to be satisfied. This corresponds
to breaking conformal invariance of the gauge theory,
as earlier discussed. Equivalently, whether k is a good
quantum number or not depends on the number/phase
regime(Kanyolo, 2020; Kanyolo and Shimada, 2020) of
the condensate governed by the commutation relation,

[k,Φ] = −i. (137)

For a more rigorous treatment, the commutation re-
lation should be replaced by the Susskind–Glogower
operators.(Susskind and Glogower, 1964) Thus, we are
considering here the phase regime of the condensate,
where the quantum phase Φ(r) obeys classical equa-
tions of motion analogous to the Josephson relations in
large tunnel junctions(Josephson, 1974), and the Cooper-
pair number, k is not a good quantum number. Mean-
while, the galactic size is determined by the binding
condition(Kanyolo and Masese, 2021), Φ(r) ≤ 0, which
corresponds to rc ≤ 1/

√
K, where ρ(rc) = ρc. The total

mass, Mtot.(r) within radius, r ≤ rc becomes,

Mtot.(r) =M

∫

dr4πr2ρ(r) =MD +M, (138a)

MD =M

∫ r

0

dr′4πr′2ρ(r′) =
r

Gk
, (138b)

whereMD is the mass of dark matter and is defined as the
mass, M of baryonic matter, arising as the integration
constant.
Consequently, a star of mass, m⋆ in orbit with speed,

v at the periphery of the galaxy will experience a gravi-
tational attractive force,

Fg(r) = −Gm⋆Mtot.(r)

r2
= −m⋆

kr
− GMm⋆

r2
, (139a)

as well as the centrifugal repulsion,

Fc =
m⋆v

2

r
. (139b)

The first term in eq. (139a) is the gravitational con-
tribution from dark matter, arising from the particular
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solution of the non-homogeneous equation (eq. (132))
given by eq. (133), while the second term is the New-
tonian inverse-square law arising from the complemen-

tary solution of the homogeneous equation (eq. (132)
with ρD = 0 ) given by ΦN = −GM/r. At large ra-
dius, r ≫ GM , the 1/r term dominates over the inverse-
square term, Fg ≃ m⋆/kr. Consequently, the critical
speed, vc of the star in orbit can be solved by setting,
Fc+Fg = 0, which yields the celebrated mass-asymptotic
speed relation(Milgrom, 1983),

vc ≃
1√
k
= (GMa0)

1/4, (140)

where a0 takes the form predicted by MOdified New-
tonian dynamics (MOND) for the acceleration param-
eter.(McGaugh, 2012; McGaugh et al., 2000) However,
our path to this result vastly differs from standard
MOND, since we explicitly rely on a pressure-less source
at the right-hand side of EFE as well as the con-
straints introduced herein which ultimately reproduce
eq. (140), consistent with the empirical baryonic Tully-
Fisher relation.(McGaugh, 2012; McGaugh et al., 2000)

C. Layered materials with cationic vacancies

The derivation of eq. (140) largely makes use of the old
quantization condition, β̄M = N = 2k from eq. (85a)
and a single (time-like) Killing vector, ξµ = (−1,~0). For
a gravitational system with two Killing vectors such as
the Schwarzschild black hole (time-like and azimuthal-
like), eq. (130) requires that the gravitational potential,
Φ cannot depend on more that two coordinates out of the
n = 4 coordinates of M. However, due to the spherical
symmetry, the radial coordinate, r(x, y, z) depends on
three Cartesian coordinates, x, y, z instead of two, which
means the Newtonian limit of the theory is effectively
three dimensional.
Here, we are interested in a two dimensional emergent

quantum gravitational system whose dynamics exploit
the Gauss-Bonnet theorem in n − 2 dimensions, partic-
ularly in the Newtonian limit, where n = 4 is the di-
mensions of the manifold, M and 2 is the number of
translation Killing vectors. Following our approach, we
shall consider a condensed matter system with desirable
properties which favor the topological aspects discussed
herein to emerge. In particular, we proceed to highlight
a wide class of layered materials where positively charged
mobile ions (cations) are sandwiched between the layers
of immobile ions forming adjacent series of slabs within
a stable crystalline structure, viz.,

(i) Layered transition metal oxides such as AxMO2

(where A = Li,Na,K,Ag, etc., M is a transi-
tion metal or a combination of multiple transi-
tion metals and 0 < x < 1), AyV2O5 (where

0 < y < 2), DxV2O5 (where D = Mg,Ca,Al,Ag)
and Ca3Co4O9;(Delmas et al., 2021; Galy, 1992;
Goodenough and Park, 2013; Masset et al., 2000;
Shannon et al., 1971a,b,c; Shirpour et al., 2014;
Whittingham, 2004; Xu et al., 2017)

(ii) Layered metal (di)chalcogenides such as AxTiS2
and AxCrS2 (where 0 < x < 1);(Chia et al., 2015;
Johnson and Worrell, 1982; Whittingham, 1978)

(iii) Graphite intercalation compounds such as LiC6,
KC8, RbC8 and CsC8, including their in-
termediate compositions, for instance, KC12n

(n > 1), LiC6n (n > 1) and LiC9n

(n ≥ 2);(Dresselhaus and Dresselhaus, 2002, 1981;
Guerard and Herold, 1975; Hosaka et al., 2020;
Jian et al., 2015)

(iv) Layered polyanion-based compounds compris-
ing pyrophosphates such as Na2CoP2O7 and
K2MP2O7 (M = Co, Ni, Cu), pyrovanadates
such as K2MnV2O7 and Rb2MnV2O7, oxyphos-
phates such as NaVOPO4 and LiVOPO4, layered
KVOPO4, diphosphates such as Na3V(PO4)2,
fluorophosphates such as Na2FePO4F, hydrox-
ysulphates such as LiFeSO4OH and oxysilicates
such as Li2VOSiO4.(Barpanda et al., 2018, 2012;
Jin et al., 2020; Liao et al., 2019; Liu et al., 2018;
Masquelier and Croguennec, 2013; Niu et al., 2019;
Prakash et al., 2006; Yahia et al., 2007)

In a majority of the aforementioned exemplars of lay-
ered materials, the mobility of the cations can be
traced to extremely weak chemical bonds whose strength
is correlated with the strength of emergent forces
such as Van der Waals interactions and the inter-
layer distance between the slabs.(Delmas et al., 2021;
Dresselhaus and Dresselhaus, 1981; Kanyolo et al., 2021;
Sun et al., 2019; Whittingham, 2004)
Layered transition metal oxides display a wide swath of

crystal structural versatility and composition tuneability.
They have thus been the subject of passionate research
in various realms of solid-state (electro)chemistry, ma-
terials science and condensed matter physics.(He et al.,
2012; Kalantar-zadeh et al., 2016; Kanyolo et al., 2021;
Kubota, 2020; Liu et al., 2019; McClelland et al., 2020;
Schnelle et al., 2021) A specific class of layered transition
metal oxide materials has recently emerged adopting,
inter alia, chemical compositions embodied mainly
by A4MDO6, A3M2DO6 or A2M2DO6 wherein A
represents an alkali-ion (Li, Na, K, etc.) or coinage
metal ions suchlike Ag, whereasM is mainly a transition
metal species such as Co, Ni, Cu, Zn, etc. and D depicts
a pnictogen or chalcogen metal species such as Sb, Bi,
Te and so forth. (Berthelot et al., 2012; Brown et al.,
2019; Derakhshan et al., 2007; Evstigneeva et al.,
2011; Grundish et al., 2019; Kumar et al., 2012;
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Nagarajan et al., 2002; Nalbandyan et al., 2013;
Politaev et al., 2010; Roudebush et al., 2013;
Seibel et al., 2013; Skakle et al., 1997; Smirnova et al.,
2005; Stratan et al., 2019; Uma and Gupta, 2016;
Viciu et al., 2007; Yadav et al., 2019; Zvereva et al.,
2013, 2016, 2012) In these materials, mobile A cations
are sandwiched between slabs entailing M atoms coor-
dinated with oxygen around D atoms in a hexagonal
(honeycomb) arrangement. We shall thus refer to these
materials as honeycomb layered oxides.(Kanyolo et al.,
2021)

Of particular interest are the dynam-
ics of the cations within the aforementioned
materials,(Kanyolo and Masese, 2020) since their
diffusion contributes a net current when a sufficient
external electric field arises in an electrode-electrolyte
setup forming a cell or battery.(Goodenough and Park,
2013) The polarity of the electric field defines the
charging and discharging processes corresponding to
de-intercalation (cation extraction) and intercalation
(cation insertion/reinsertion) processes respectively.
Theoretical computations show that the diffusion paths
are largely restricted to honeycomb pathways in hon-
eycomb layered tellurates (for instance, K2Ni2TeO6

and Na2Ni2TeO6)(Bera and Yusuf, 2020; Masese et al.,
2018), where locations of the cations are correlated
with specific sites defined by the honeycomb octahe-
dral structures within the slabs. Thus, the Van der
Waals forces initially localize the cations, forming a
loosely-bound two dimensional hexagonal lattice where
mobility of the cations is only possible when sufficient
activation energy can offset this localization leaving
cationic vacancies.(Matsubara et al., 2020; Wang et al.,
2018) Since the number of cationic vacancies should cor-
respond to the number of mobile cations if the material
had no initial vacancy defects, it is reasonable to expect
that the diffusion in the material can be completely
captured either by the dynamics of the cations within
the lattice or by the dynamics of the cationic vacancies.

In particular, when the cations are bosons, a Fermi
level does not exist, implying that a particle-hole pic-
ture, where the particle and the vacancy carry separate
pieces of information is precluded. Thus, the vacancies
cannot be treated as holes, but an equivalent descrip-
tion for the dynamics of the cations carrying the same
(thermodynamic) information. Consequently, a Bose-
Einstein condensate of the cations(Kanyolo and Masese,
2020) avails a prime avenue for an emergent geomet-
ric description of such vacancies as topological defects
within a theory of diffusion in the context of emergent
quantum gravity. Conversely, describing the diffusion
in layered materials comprising fermionic cations such
as 6Li with this approach would pose some significant
challenge. Nonetheless, since their magnetic moment is
readily trace-able in Nuclear Magnetic Resonance exper-
iments, the fermionic cations are typically introduced in

meager amounts via doping techniques in order to im-
prove resolution.(Lee et al., 2000; Pan et al., 2002) Con-
sequently, their overall effects on the diffusion properties
are expected to be negligible. Nonetheless, if the vacan-
cies are treated as holes it is expected that this particle-
hole symmetry is rather befitting to cationic Majorana
modes e.g. with twist defects(Beenakker, 2013; Bomb́ın,
2010; Zheng et al., 2015) which could be exploited to in-
corporate fermionic behavior in the formalism.(Kanyolo,
2019)

Considering emergent gravity to describe defects in
crystals is not entirely a novel idea.(Holz, 1988; Kleinert,
1988, 1987, 2005; Verçin, 1990; Yajima and Nagahama,
2016) For instance, it has long been proposed that con-
sidering finite torsion (non-symmetric Christoffel sym-
bols/affine connection, Γρ

µν 6= Γρ
νµ) within the con-

text of Einstein-Cartan theory ought to capture various
intriguing aspects related to disclinations and disloca-
tions within crystals.(Holz, 1988; Kleinert, 1988, 1987;
Verçin, 1990; Yajima and Nagahama, 2016) Moreover, it
has been further argued that Einstein gravity can still
emerge in a crystal whose kinetic energy order terms
are restricted to second-order in derivatives(Kleinert,
2005) in accordance with Lovelock’s theorem.(Lovelock,
1971) Thus, since the connection considered herein is
torsion-free (Γρ

µν = Γρ
νµ) and topological defects can

still be non-vanishing even for torsion-free manifolds as
long as higher order derivatives of the Gauss-Bonnet
type(Lovelock, 1971) are present in the crystal, herein
we shall consider a description of bosonic cationic vacan-
cies as topological defects.

In particular, the radial distribution function (pair cor-
relation function), g(~xa) is the conditional probability
density that a cation will be found at ~xa at each inter-
layer, relative to another within the same inter-layer.
Equivalently, it is the average density of the cations at
~xa relative to a tagged particle.(Chandler, 1987) This
means the number density, ρbg(~xa) = ρa2D(~xa) is normal-
ized as(Tuckerman, 2010),

∫

AE
a

d 2xa

√

det(gaij(~xa)) ρ
a
2D(~xa) = Na − 1, (141)

where Na is the number of cations within the inter-layer,
a, ρb is the bulk number density and the integration is
performed over the Euclidean n = 2 manifolds, AE

a at
each inter-layer with a metric tensor, gaij(~xa). Note that
Einstein summation convention should not be applied for
the index, a. The −1 in the normalization can be thought
to arise from excluding the contribution of the reference
cation, as per the above definition. The center of mass co-
ordinates describe average diffusion properties and hence
must obey the uncoupled Langevin equations,

d2~xa
ds2

= −~pa(s) + ~ηa(s), (142)
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where s = ±it is Euclidean time, ~ηa(s) is the acceleration
and ~pa = m̄d~xa(s)/ds are the center of mass momenta
with m̄ the average mass of the cations and 1/m̄ playing
the role of a mean time between collisions, assumed to
be equivalent in all slabs due to translation invariance,
za+1 = za + ∆za along the vector, ~n = (0, 0, 1) normal
to the slabs (the z direction). This guarantees that in
the continuum limit and when the energy of cations is
conserved, the crystal must admit not only a time-like
but also a z-like Killing vector.
Observe that, we can follow eq. (112) and define the

Gauss-Bonnet theorem at each inter-layer by making the
identification,

d2~xa
ds2

= kag (s), (143)

Ha =M

∫

CE
a

kag (s)ds, (144)

whereHa is the Hamiltonian at each inter-layer, a andM
is the total mass of the mobile cations in the structure.
Since we shall be concerned with momentum conserva-
tion, d2~xa/ds

2 = 0, we can set kag (s) = 0, which implies
the Gauss-Bonnet theorem expression is devoid bound-
ary terms and hence simplifies to,

∫

∂AE
a

pa =

∫

AE
a

⋆Ka =

∫

AE
a

dηa = 2π(2− 2ha), (145)

where ha is the genus of AE
a . If we interpret the cationic

vacancies in AE as the genus, then eq. (145) reveals that
the energy needed to create vacancies in the vacuummust
always balance the energy due to motion, since pa 6= 0
when ha 6= 1.
On the other hand, the Fokker-Planck equation corre-

sponds to the Newtonian limit,

∇2Φ(x) =
1

m̄
ρ(x) exp(2Φ(x)), (146a)

where we have used u0(x) = exp(Φ(x)) 6= 1 and 1/m̄ ↔
4πGM = β/2, requiring m̄ to play the role of temper-
ature. In order to guarantee ρ(~x) can be related to the
two dimensional number density, we impose time-like,
ξµt̄ = (−1,~0) and z−like, ξµz̄ = (~0, 1) Killing vectors which
guarantee that ∂ρ(x)/∂t = ∂ρ(x)/∂z = 0, where,

ρ(x) = ρb exp(−β̄MΦ(x)), (146b)

is the Boltzmann factor with β̄ = 1/m̄. Moreover, since
m̄ is also defined as the average mass of the cations, we
have β̄M = N as required by eq. (85a).

Thus, the Newtonian potential ought to split into z-
like inter-layer slices labeled by index a, each satisfying,

∇2
aΦa(~xa) =

1

m̄
ρa(~xa) exp(2Φa(~xa)), (146c)

where ∇2
a = ∂2/∂x2a + ∂2/∂y2a is the two dimensional

Laplacian operator. Thus, to be consistent with eq.
(141), the number density normalization is given by,

N − Σ =

∫

VE

d 3x exp(2Φ(x))ρ(x)

= lim
∆za→0

Σ∑

a=1

∆za

∫

AE
a

d 2xa exp(2Φa(~xa))ρa(~xa)

=

Σ∑

a=1

(Na − 1), (147a)

where N =
∑Σ

a=1Na is the total number of cations, Σ
is the total number of two dimensional manifolds corre-
sponding to the space between the layers (inter-layers) of
the material and,

∆zaρa(~xa) = ρa2D(~xa) (147b)

exp(2Φ(~xa)) =
√

det(gaij(~xa)), (147c)

with ∆za the inter-layer spacing.
Thus, we recognize eq. (146c) as Liouville’s equation,

with the Gaussian curvature given by,

Ka(~xa) = − 1

m̄
ρa(~xa). (148a)

This means that the n = 2 manifold, AE
a is described by

the conformal metric,

dσ2
a = f2(dx2a + dy2a), (148b)

where f2 = exp(2Φ(~xa)) =
√

det(gaij(~xa)) is the confor-

mal factor. To find the order of magnitude for ∆za, we
should use eq. (145), eq. (148a) and eq. (147b) to find,

ha = Na, (149a)

∆za = 1/4πm̄. (149b)

A potential problem with the model is that the cations
are charged while typically the gravitational field, Φa(~xa)
is not. However, this poses no problem since we only need
to require that the SU(N) symmetry in our approach to
break to F → F = dA, where A = Aµdx

µ is the elec-
tromagnetic (U(1)) gauge potential and hence requiring
the wave function, Ψ to be charged. To consistently in-
troduce the electric field, we shall require the (random)
accelerations and the friction terms respectively, in the
Langevin equation to take the forms,

~ηa = qm(~n× ~Ea), (150a)

~∇aΦ(~xa) = ~pa, (150b)

where ~Ea = (Exa
, Eya

, 0) is the electric field on AE
a re-

sponsible for the (de-)intercalation process in the cell, qm



30

is the magnetic charge and ~n = (0, 0, 1) is the unit vector
normal to the slabs. The Gauss-Bonnet theorem then re-
quires that the Dirac quantization condition(Dirac, 1931)
is satisfied,

Φa =

∫

CE

pa =

∫

CE

ηa

= qm

∫

CE

d~xa · (~n× ~Ea) = qm

∫

AE

d 2x ~∇a · ~Ea

= qmqe = 2πνa = πχ2(ha), (150c)

where qe =
∫

AE
a

d 2x ~∇a · ~Ea is the electric charge,

~∇a · ~Ea = −f2Ka/2qm, νa is the monopole number
and χ2(ha) = 2 − 2ha. Notably, Φa is analogous
to the Aharonov-Casher phase(Aharonov and Casher,
1984), where the magnetic moment corresponds to, ~µ =
qm~n. Thus, it is intuitive to view the cations diffusing
along curves around neutral vacancies with a magnetic
moment.
Consequently, the pair correlation function can be

written as a Boltzmann factor,

g(ha) = exp

(
M

m̄
πχ2(ha)

)

= Nχ2(ha), (151)

where N = exp(πN) and M/m̄ = N . Thus, we rec-
ognize the 1/N expansion factor appearing in the pair
correlation function. We expect the pair correlations to
be calculated for varied cationic vacancies as cations are
created/annihilated on the manifold. Thus, a weighted
sum over the distinct topologies yields,

〈ga〉 =
∑

ha

Pha
(λ)Nχ2(ha), (152)

where Pha
(λ) is the probability for the topology ha to

occur in a given (de-)intercalation process and λ(m̄) is
a parameter that ought to depend only on m̄ and hence
the temperature, β̄−1 = m̄. Consequently, eq. (152)
corresponds to the sum of vacuum Feynman diagrams of
a large N theory, where the ’t Hooft limit (N → ∞,
keeping λ fixed) makes physical sense, since it can be
interpreted as a consequence of considering a fixed equi-
librium temperature environment with a large number of
particles in the material.

VI. DISCUSSION

Gravity, as formulated by Einstein, is not simply a
force like electro-magnetism or the weak and strong
nuclear forces but rather manifests itself as space-
time curvature in a pseudo-Riemannian n = 4 mani-
fold.(Thorne et al., 2000) Thus, the emergence of such
manifolds from an underlying theory with desirable clas-
sical or quantum properties would be sufficient to test

certain thermodynamic and topological features in gen-
eral relativity and specifically quantum gravity. In the
present work, we have shown that the foundations of our
approach reveal a rich complex-Hermitian structure anal-
ogous to Cayley-Dickson algebras(Schafer, 1954), which
can be exploited to formulate the appropriate action
principle to yield general relativity in n = 4 dimen-
sions as the effective theory, albeit with a Gauss-Bonnet
(topological) term. Moreover, we treat the ill-defined
Euclidean path integral measure of quantum gravity,
D[gEµν ] by taking the sum over topologically distinct

manifolds,
∫
D[gEµν ] → ∑

ME∈h, which yields a parti-
tion function reminiscent of the 1/N expansion of an
unknown large N theory.(Freidel, 2005; Gielen et al.,
2013; Gurau, 2011, 2012; Gurau and Rivasseau, 2011;
Maldacena, 1999; Oriti, 2006; Thorn, 1994)
However, the (pseudo-)Riemannian manifold in our ap-

proach is not emergent, rather it is introduced ab initio

in the treatment. Nonetheless, large N theories have the
feature that the topologies of the vacuum Feynman dia-
grams pave an emergent manifold, with dimensions equal
to the rank of the tensor group theory. Moreover, it has
been conjectured that specific large N theories are equiv-
alent to some string theories.(Freidel, 2005; Gielen et al.,
2013; Gurau, 2011, 2012; Gurau and Rivasseau, 2011;
Maldacena, 1999; Oriti, 2006; Thorn, 1994) Thus, it
would be interesting to investigate whether these ideas
are compatible with the work herein. Nonetheless, the
expectation is that rank n = 4 tensor group theo-
ries are prime candidates for the large N theory we
seek(Gurau, 2011, 2012; Gurau and Rivasseau, 2011),
where the group field, ϕ need not be space-time depen-
dent. A particularly curious fact is that, unlike random
matrix large N theories in n = 4 dimensions, N/λ is not
dimensionless, but has dimensions of 1/(mass)2.
For illustration purposes, we can substitute, in eq.

(96), the bosonic action, S(ϕ) = N
λ Tr(γ(ϕ)) with γ(ϕ) =

ϕ2/2−ϕ4/4g2, where the free propagator after appropri-
ate re-scaling, ϕ → ϕ/g corresponds to 〈ϕ2〉 ≃ λ/g2N
and g is a coupling constant with mass dimensions. Thus,
the field, ϕ becomes dimensionless after re-scaling, is as-
sumed Hermitian and need not be space-time dependent.
Assuming ϕ transforms as a vector under the group,
U(N ) constrained by λ/π = g2N = ln(N ) = S, where
the ’t Hooft limit corresponds to N,N → ∞ at fixed λ/π.
The free energy contribution from any vacuum Feyn-

man diagram, FhF (N,N ) at a given loop level, F is pro-
portional to the product of three terms(’t Hooft, 1993),

FhF (N,N ) = fF

(
g2N
λ

)V (
g2N
λ

)−E

NF

= (πN)F−χ2(h)fFNχ2(h), (153)

where F is the number of loops, E is the number of propa-
gators, V is the number of vertices, corresponding to two-
particle interactions, fF is the proportionality constant
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which depends only on F , and F−E+V = χ2(h) = 2−2h
is the Euler characteristic of some emergent n = 2 di-
mensional Riemannian manifold, AE, with the Feynman
diagrams acting as the simplex triangulation of the mani-
fold with F faces, E edges and V vertices. Consequently,
the free energy contribution at a given topology level,
h = g+b/2 (where g is the genus of AE and b the bound-
ary contribution) corresponds to the sum over loop dia-
grams,

Fh(N,N ) =
+∞∑

F=0

FhF (N,N ) = fh(N)Nχ2(h), (154a)

where,

fh(N) = (πN)−χ2(h)
+∞∑

F=0

(πN)F fF . (154b)

In fact, eq. (154a) is robust and is obtained by most rank
n = 2 large N group theories, albeit with differing fh(N)
values which completely characterize the specific theory
under consideration.
In our approach, we argued that χ2(AE) = χ4(ME) is

possible, where ME is the n = 4 dimensional compact

Riemannian manifold corresponding to the connected
sum of h number of n = 4-tori (T 4) and an arbitrary
number of n = 4-spheres (S4). Thus, the 1/N expan-
sion in eq. (95) corresponds to a large N theory with
fh(N) ≃ exp(−g2λ) = exp(−πN) = 1/N , where the
coupling constant satisfies,

g−2 = − 1

π

∫

ME

√

det(gEµν)R =
M

2λ

∫ β

0

ds =
πN

λ
. (155)

Here, we have used eq. (98) in Euclidean signature and
eq. (100b) respectively. Consequently, due to the form
of eq. (154b), it is prudent to re-scale the path integral
measure as,

∑

ME∈h → ∑

ME∈h(πN)χ4(h) in order for
fF = 1/F ! to appropriately yield eq. (95) with the quan-
tum gravity partition function corresponding to the 1/N
expansion, ZE

QG =
∑

h Fh(N,N ). The fermionic case
should follow similar treatment and considerations with
a suitable group field theory.
Finally, using the temperature and entropy of the

Kerr-Newmann black hole(Bekenstein, 2008) instead of
Schwarzschild’s should alter the expressions considered,
but not the conclusions herein. Nonetheless, we are
left to puzzle how Unruh-Hawking radiation(Hawking,
1974, 1976a; Unruh, 1977), and more importantly,
the black hole information paradox(Hawking, 1976b;
Mathur, 2009) fits into this picture. Since a space-time
with an evaporating black hole will be subject to fluctu-
ation-dissipation effects(Banerjee and Majhi, 2020), one
expects that our approach lacks key features which ought
to be incorporated in future works. Another interest-
ing observation is that breaking SU(N) to SO(N) by the

identifications in eq. (36) is possible since the number of
anti-symmetric SU(N) generators is given by (N2−N)/2,
which is equivalent to the number of SO(n) generators,
(n2 − n)/2, which allows the decomposition of ω in eq.
(35) when N = n is the number of dimensions. Conse-
quently, due to eq. (106), eq. (23c) can be interpreted
as a relation between the central charge of a black hole,
k and the number of dimensions, n. Such a relationship
has been conjectured in the context of the sphere pack-
ing optimization problem in n dimensions and quantum
gravity.(Hartman et al., 2019)

In summary, we have employed the thermodynamic ex-
pressions for entropy and temperature of Schwarzschild
black holes to constrain an SU(N) gauge theory lead-
ing to the emergence of a quantum framework for grav-
ity, where the gravitational degrees of freedom are the
N ∈ Z ≥ 0 colors and a condensate comprising color
pairs, k = N/2, appropriately coupled to the Yang-Mills
gauge field. The foundations of our approach reveal a
complex-Hermitian structure, constructed as [Ricci ten-
sor ±

√
−1 Yang-Mills field strength], whose structure

is analogous to Cayley-Dickson algebras(Schafer, 1954),
which aids in formulating the appropriate action princi-
ple. The SU(N) gauge group is broken into an effective
SU(4) → SO(4) ↔ SO(1, 3) field theory with two terms:
the Einstein-Hilbert action and a Gauss-Bonnet topolog-
ical term. Moreover, the Euclidean path integral is con-
sidered as the sum over manifolds with distinct topolo-
gies, h ∈ Z ≥ 0 homeomorphic to connected sums of
an arbitrary number of n = 4-spheres and h number of
n = 4-tori.

Consequently, the partition function takes a rem-
iniscent form of the sum of the vacuum Feynman
diagrams for a large N = exp(βM/2) theory, provided
S = βM/2 = πN is the Schwarzschild black hole
entropy, β = 8πGM is the inverse temperature, G is
gravitational constant, M is the black hole mass and
horizon area, A = 2GβM = 4πGN is pixelated in units
of 4πG. This leads us to conclude that the partition
function for quantum gravity is equivalent to the vac-
uum Feynman diagrams of a yet unidentified large N
theory in n = 4 dimensions. Our approach also sheds
new light on the asymptotic behavior of dark matter-
dominated galaxy rotation curves (the empirical bary-
onic Tully-Fisher relation)(Eisenstein and Loeb, 1997;
Famaey and McGaugh, 2012; Kanyolo and Masese,
2021; Keeton, 2001; Martel and Shapiro, 2003;
McGaugh, 2012; McGaugh et al., 2000; Persic et al.,
1996) and emergent gravity in condensed matter
systems with defects(Holz, 1988; Kleinert, 1987;
Kleinert and Zaanen, 2004; Verçin, 1990; Zaanen et al.,
2004) such as layered materials(Kanyolo et al., 2021;
Masese et al., 2021a,b,c, 2018) which admit cationic
vacancies as topological defects.(Kanyolo and Masese,
2020)

While we acknowledge quantum gravity is a broad sub-
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ject whose rapid progress largely remains uncovered by
the present work, we consider the demonstration of the
intriguing ramifications, not only in quantum gravity re-
search but also in condensed matter and materials sci-
ence, as warranting considerable merit.
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Poincaré 13 (3), 399–423.

Gurau, Razvan, and Vincent Rivasseau (2011), “The 1/N
expansion of colored tensor models in arbitrary dimension,”
EPL (Europhysics Letters) 95 (5), 50004.

Hamber, Herbert W (2008), Quantum gravitation: The
Feynman path integral approach (Springer Science & Busi-
ness Media).

Hartle, James B, and Stephen W Hawking (1983), “Wave
function of the universe,” in Euclidean Quantum Gravity
(World Scientific) pp. 310–325.

Hartman, Thomas, Dalimil Mazáč, and Leonardo Rastelli
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