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Abstract 

Human malignant gliomas are the most common type of primary brain tumors. Composed of glial cells 

and their precursors, they are aggressive and highly invasive, leading to a poor prognosis. Due to the 

difficulty of surgically removing tumors and their resistance to treatments, novel therapeutic approaches 

are needed to improve patient life expectancy and comfort.  

Drosophila melanogaster is a compelling genetic model to better understanding human neurological 

diseases thanks to its high conservation in signaling pathways and cellular content of the brain. Here, 

glioma has been induced in Drosophila by co-activating the Epidermal Growth Factor Receptor (EGFR) 

and the Phosphatidyl-Inositol-3 Kinase (PI3K) signaling pathways.  

Complementary nuclear magnetic resonance (NMR) techniques were used to obtain metabolic profiles 

in third instar larvae brains. Fresh organs were directly studied by 1H High Resolution – Magic Angle 

Spinning (HR-MAS) NMR and brain extracts were analyzed by solution-state 1H-NMR. Statistical analyses 

revealed differential metabolic signatures, impacted metabolic pathways and glioma biomarkers. Each 

method was efficient to determine biomarkers. The highlighted metabolites including glucose, myo-

inositol, sarcosine, glycine, alanine and pyruvate for solution-state NMR and proline, myo-inositol, 
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acetate and glucose for HR-MAS, show very good performances in discriminating samples according to 

their nature with data mining based on ROC curves. Combining results allows for a more complete view 

of induced disturbances and opens the possibility of deciphering the biochemical mechanisms of these 

tumors. The identified biomarkers provide a means to rebalance specific pathways through targeted 

metabolic therapy and to study the effects of pharmacological treatments using Drosophila as a model 

organism.  

 

Keywords : Drosophila, glioma, HR-MAS, metabolism, NMR. 

1. Introduction 

Malignant gliomas represent 50% of tumors of the central nervous system and are characterized by the 

destructive, fast and diffuse proliferation of glial cells 1. Gliomas  were first classified based on the type of 

glial cells they are originated from (astrocytes, oligodendrocytes or ependymal cells) and then ranked 

from grade I to IV based on their malignancy 1, 2. Recently additional phenotypic and genetic parameters 

have been considered by the World Health Organization (WHO) to refine the classification of diffuse 

gliomas, including the WHO grade II and III astrocytic tumors, the grade II and III oligodendrogliomas 

and the grade IV glioblastoma multiform (GBMs) 3.  

GBMs are the most aggressive gliomas and the median survival time of patients is 15 to 16 months 4. GBM 

cells are characterized by their diffuse infiltration into healthy brain tissue which renders complete 

surgical resection impossible and they show high resistance to apoptosis making chemotherapy and 

radiotherapy unsuccessful 1, 5, 6. The development of new therapeutic approaches to improve patients’ life 

expectancy and comfort are thus highly needed.  

  GBM present heterogeneity in terms of genetic alterations inside the same tumor 7. In most GBM cases, 

a Receptor Tyrosine Kinase (RTK) called Epidermal Growth Factor Receptor (EGFR) and its downstream 

signaling network are altered 3, 8. Besides  mutations in genes encoding isocitrate dehydrogenases 1 and 

2 (IDH1 and IDH2) are also found in Low Grade Gliomas (grades II and III) and secondary GBMs (GBM, 

IDH-mutant) 3. In 40 % of exclusively primary GBMs, the wild-type EGFR gene is amplified resulting in 



3 
 

EGFR overexpression 2, 9-11. In addition, in 50 to 60% of the EGFR amplified primary GBMs, the presence 

of an EGFR variant allele known as EGFRvIII (or ΔEGFR or del2-7EGFR) has been detected. This receptor 

mutant generated from a deletion in the extracellular domain becomes unable to bind ligands but exhibits 

constitutive activity, therefore increasing cell proliferation  12, 13. Aberrant EGFR’s signaling cascade 

including effectors regulating cell proliferation and apoptosis can also be altered in gliomas 1, 8. The two 

main are the RAS/MAPK pathway which regulates cell proliferation and the Phosphatidylinositide 3 

Kinase (PI3K)-AKT-mTOR pathway, which controls cell survival and proliferation. Gain of function 

mutation in PIK3CA which codes for the catalytic subunit p110α of the enzyme PI3K has been reported 

in 15% of GBMs 14, 15. Overexpression of the wild type form of PI3KD gene has been described in GBMs 16, 

17. In some cases, activation of the PI3K pathway has been associated with expression of the EGFRvIII 

variant or loss of the tumor suppressor Phosphatase TENsin homolog (PTEN). EGFRvIII expression has 

been associated with PI3K activation, the tumor suppressor PTEN being inhibited or not 18. Inhibitors 

targeting EGFR or mTOR have been used to treat GBMs but demonstrate no effect or only a cytostatic one 

8, 19, 20.  

Metabolic reprogramming in cancer cells is a well-known hallmark of carcinogenesis even if the 

mechanisms are not fully understood yet and they differ between different types of cancers 21-23. Cancer 

cells need to modify their metabolic pathways in order to produce energy and to proliferate. These 

modifications are not restricted to one pathway at the time but rather work as a whole to respond to the 

cancer cell’s needs to proliferate and survive.  Glioma cells, as many other cancer cells, use aerobic 

glycolysis known as the Warburg effect 24. Cancer cell glucose intake increases and its product pyruvate 

is converted to lactate through fermentation instead of going through the Tricarboxylic Acid Cycle (TCA 

cycle) and oxidative phosphorylation (OXPHOS) for adenosine triphosphate (ATP) production 25. This 

phenomenon is independent of the amount of oxygen. Although aerobic glycolysis is less productive in 

terms of number of ATP than the oxidative metabolism, its higher rates promotes faster energy 

production to compensate 24-26. The increased levels of produced lactate acidify the extracellular 

environment and provide biomass resources to stimulate cell proliferation 26, 27. Aerobic glycolysis not 

only generates lactate and energy for proliferation but also intermediates necessary for synthesis of 
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amino acids, nucleotides and fatty acids 23. Pyruvate being preferentially converted to lactate, the 

Tricarboxylic Acid Cycle (TCA cycle) is also altered to maintain mitochondrial function 23. Anaplerotic 

pathways produce intermediate metabolites to replenish the cycle so that biomass precursors like amino 

acids can still be synthesized 23. It has been shown that glioma cells can also use fatty acids and ketones 

to provide acetyl CoA which can then feed the TCA cycle and  OXPHOS 25, 27. Lastly, the Pentose Phosphate 

Pathway (PPP) is reported to be very active compared to glycolysis in dividing glioma cells in order to 

produce nucleotides necessary for nucleic acid replication 27, 28. Modification of the metabolism in glioma 

cells is not well understood, but it is often tightly linked to genetic alterations: for example alteration in 

the RTK/PI3K/AKT/mTOR pathway, which regulates glucose and glutamine metabolism 29 and 

mutations in Isocitrate Dehydrogenase (IDH1/2), which lead to production of the oncometabolite D-2-

hydroxyglutarate (D-2HG) 30, 31.  

Metabolic changes are usually a consequence of the genetic mutations that cause gliomas. However they 

are essential not only for tumor growth but also for responding to changes in the microenvironment. It 

is of particular importance in the case of gliomas as they develop in the brain where the different cell 

types (neurons, astrocytes, microglia) are in close interactions, influencing each other. Targeting such 

altered metabolic adaptations migth enable the development of new therapeutic approaches . Moreover, 

identification of metabolic signatures in gliomas may be used as diagnostic biomarkers to refine the 

classification of the different grades 33 and thus for early detection of glioblastomas. They also may be 

helpful to follow the response to therapy.  Therefore, in vivo GBMs models are useful for such studies by 

allowing to take into consideration the importance of interaction between different cell types in the brain, 

and adaptation of the glioma metabolism to its microenvironment 32.  

Recently, two glioma models have been developed in Drosophila, mirroring the main characteristics of 

human gliomas. There are many advantages in using Drosophila melanogaster as a model organism for 

human diseases. On a practical side, it is relatively cost and time effective with a generation time of 12 

days at 26°C. Moreover, manipulation of gene expression in Drosophila is easily achievable with the 

binary system Gal4/UAS.  Regarding its usefulness to study human pathologies, Drosophila is known to 
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possess homolog genes for more than 65% of known human genes causing diseases 34. Considering the 

high conservation of signaling and metabolic pathways, this fly is a compelling model to study human 

diseases and in particular cancer 35, 36.   

A first model, established by Read et al. in 2009 37 and used in this study, is based on the co-expression of 

constitutive forms of PI3K and EGFR in glial cells during larval development. This induces abnormal glial 

proliferation similar to human glioma, deformed and larger brains, and lethality during the 3rd instar 

larval stage 37, 38. A second model was recently developed in adult by co-activating the PI3K and EGFR 

signaling pathway only in adult brain 39.  These two in vivo models are of particular interest to explore 

alterations in metabolism, because they maintain the interaction between glial cells and neurons.  

NMR spectroscopy is a first-line analytical method in metabolomics, applicable to liquid and to semi-solid 

samples. Solution-state NMR is recognized as a method of choice for biomarker identification, due to its 

high resolution and its high reproducibility. However, even if it requires little sample preparation, the 

metabolite extraction step could induce biases, and the results obtained in vitro could not fully reflect 

biochemical mechanisms observed in vivo. Usually showing lower resolution and sensitivity than 

solution-state NMR, 1H HR-MAS is much less used.  Nevertheless, it has the great advantage to require 

minimum sample preparation and for example, analyses were here directly performed on intact larval 

brains (ex vivo). The HR-MAS technique is thus considered as an essential bridge between in vivo and 

tissue-extract NMR spectroscopy 40. However while many  studies compare in vivo and ex vivo data, only 

a few of them rely on the comparison of ex vivo HR-MAS and in vitro solution-state NMR data 40-42 as  

recently brilliantly illustrated to monitor differentiations of stem cells 42. 

Metabolomic studies using NMR spectroscopy has already been succesfully used in Drosophila to 

characterize specific metabolites involved in various physiological processes : effect of environmental 

conditions temperature 43-49, dessication and starvation 50, effect of hypoxia 51-54or infection 55 and also in 

disease models such as Huntington disease 56, 57 or Alzheimer disease 58). Several HR-MAS studies were 

also conducted in Drosophila and have demonstrated the relevance of this technique  to identify metabolic 

modifications in various biological conditions: response to trauma 59, 60 or Drosophila mutants and disease 

models 60-62. The main goal of this study is therefore to explore the metabolic modifications linked to the 
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induction of glioma in a Drosophila larval model by combining two complementary techniques, 1H 

solution-state and HR-MAS NMR. 

 

2. Material and methods 

2.1 Drosophila culture 

 

The fly stocks were maintained at 22°C on a standard medium (per liter: 90.25 g cornmeal, 82.5 g dry 

yeast, 10.75 g agar and 37.5 mL of a 10% solution of methyl-4-hydroxybenzoate in ethanol). Crosses were 

performed at 26°C on standard medium. Drosophila lines were obtained from the Bloomington Stock 

Center except the stock UAS-dEGFRλ (T. Schubach). 

Glioma were generated by crossing UAS-dp110CAAX; UAS-dEGFRλ virgins with UAS-GFP; repo-Gal4/TMTbSb 

males. As controls, we crossed UAS-dp110CAAX; UAS-dEGFRλ virgins with w1118 males (UAS controls) and 

w1118 virgins with UAS-GFP; repo-Gal4/TMTbSb (Gal4 controls) males. Larval brains were recovered from 

3rd instar wandering larvae (120 hrs a.e.d.).  

2.2 NMR spectroscopy experiments 

Solution-state 1H-NMR analysis 

Third instar larval brains were dissected following the same conditions as described above. In total, 10 

brains were collected per sample and added into microtubes containing 50 µL of PBS and kept in ice 

during the end of the dissections. Immediately after collection, samples were frozen at – 80°C and stored 

in the freezer. A total of 10 glioma samples, 12 UAS-control samples and 12 Gal4-control samples were 

prepared. For metabolite extraction, the samples were taken out of the freezer and 450 µL of an 

acetonitrile / water: 50/50 solution were added to the microtubes and sonicated for 5 minutes in an ice 

bath 58, 63. The samples were then centrifuged for 10 minutes at 10000 rpm at 5°C. 400 µL of supernatant 

were collected and transferred to pierced microtubes to allow the acetonitrile to evaporate in a speed-
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vac during 30 minutes. The samples were then freeze-dried overnight and the dry products were stored 

at -80°C. 

To prepare the solution-state NMR samples, the dry extracts were taken out of the freezer and solubilized 

by adding 250 µL of phosphate buffer (PBS 0.1 M, pH 7.4 made in D2O) also containing Sodium 3-

trimethylsilyl [2,2,3,3-d4] propionate (TSP) for chemical shift referencing. Samples were vortexed and 

centrifuged 10 minutes and 250 µL were transferred to 3 mm NMR tubes before analysis.  

The 1H-NMR measurements were performed on a Bruker 700 MHz Avance III HD spectrometer (Bruker 

BioSpin, Germany) equipped with a Bruker 5 mm cryoprobe. Solution-state NMR data was acquired using 

a cpmgpr1D pulse program with water suppression. Each FID was acquired in 32k points for 256 scans 

and an acquisition time of 26 minutes. 2D homonuclear NMR experiments such as Total Correlation 

Spectroscopy (TOCSY), Correlation Spectroscopy (COSY) and 13C-HSQC were also recorded on some 

samples for spectral annotation. 

High Resolution Magic Angle Spinning (HR-MAS) analysis  

Third instar larvae were dissected in a drop of ice-cold phosphate buffer (pH 7.4 made in D2O) under the 

microscope in order to collect their brains and in a maintained cool environment to limit metabolic 

degradation. Ten to 15 brains and a drop of PBS were transferred into a 4 mm HR-MAS rotors. A total of 

15 glioma samples, 9 UAS-control samples and 8 Gal4-control samples were prepared. Once ready, each 

sample was analyzed on a Bruker 750 MHz Avance III HD spectrometer (Bruker BioSpin, Germany) 

equipped with a Bruker 4 mm MAS probe. The sample was kept at 3°C with a rotor spinning frequency of 

4 kHz. HR-MAS NMR data was acquired using a spin echo (echo time of 2 rotor periods) with water 

suppression. Each FID was acquired in 40k points for 1024 scans and an acquisition time of 53 minutes. 

2D 1H-1H Total through Bond correlation SpectroscopY (TOBSY) experiments were also performed on 

several samples for assigning the observed peaks.  
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2.3 NMR data processing and statistical analysis 

Each HR-MAS spectrum was phased and normalized by the number of brains in the sample with 

Bruker TopSpin 3.5. Each solution-state 1H-NMR spectrum was phased and referenced to TSP resonance. 

Baseline correction, chemical shift alignment and then 0.01 ppm bucketing of the preprocessed HR-MAS 

data and solution-state 1H-NMR data were done using the web-based NMR Processing tool 

NMRProcFlow 64.  

Statistical analyses were carried out on Workflow4Metabolomics 65 from both solution-state 1H-

NMR  and HR-MAS data sets.  First, all spectra were normalized using the total intensity method. Then, 

multivariate analyses were performed on each set of normalized data: i) Principal Component Analysis 

(PCA) was performed to get an unsupervised overview of the grouping between samples and spot any 

potential outlier; ii) Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) 66 were performed 

using either glioma or control as discriminant conditions to certify that a prediction model could be built 

based on the experimental data.  A seven-fold cross-validation method was used to prevent over-fitting 

and to assess the significance of the model by giving the Q2 value. A permutation testing, using 100 

permutations, further validates the model. Only variables with a Variable Importance in Projection (VIP) 

calculated from the OPLS-DA models above 1 were kept; t-tests were then performed on the filtered data. 

Differences between groups were considered significant if false discovery rate (fdr) corrected p-values 

were under the 0.05 threshold. The OPLS-DA multivariate analyses permitted to select the variables 

differentiating the glioma samples from the controls and univariate analyses (t-test) were done to 

confirm the significance of the variables. 

2.4 Metabolite identification and pathway analysis 

For the sake of metabolites identification, a concentrated sample prepared with 100 glioma brain 

extracts was analyzed by 2D solution NMR experiments (TOCSY, COSY and 13C-HSQC).  

For both the solution-state NMR and HRMAS data sets, buckets involved in the differentiation 

between glioma and controls were identified. Then the corresponding signals were assigned to 
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metabolites using online databases such as the Human Metabolome Database (HMDB) and the 

BioMagResBank (BMRB) and the 2D NMR experiments 67, 68 leading to list of discriminant metabolites 

between control and glioma samples.  

The list of discriminant metabolites was used as entry into the Pathway Analysis module of 

MetaboAnalyst 69 to identify the impacted pathways. 

2.5 Biomarker Analysis 

For identifying potential biomarkers and evaluating their performance, one or two buckets of each 

discriminant metabolite (with the exception of benzoate) were extracted from data matrices (for both 

solution-state NMR and HR-MAS). The ability of each metabolite to separate glioma from control samples 

was tested with receiver operating characteristic (ROC curves) on the web server MetaboAnalyst 69. ROC 

curve is probability curve representing specificity (false positive rate) versus sensitivity (true positive 

rate). AUC (Area under ROC curve) measures the degree of separability of glioma from control samples. 

It tells how much the model is capable of distinguishing between the two batches of samples. Then, the 

separation capacity of several groups of randomly selected metabolites was investigated. Classical 

univariate ROC curve analyses as well as multivariate ROC curve analyses based on PLS-DA, SVM or 

Random Forests algorithms have been carried out. Finally, four biomarkers were manually selected to 

evaluate and validate their performance to correctly sort the samples by data mining with linear SVM 

algorithm (support vector machine algorithm).  

 

3. Results 

3.1 Glioma model 

A Drosophila genetic model for glioma has been successfully developed by Read et al. 37 by co- 

activation of constitutive forms of  EGFR (dEGFRλ) and PI3K (dp110CAAX) specifically in glial cells using 

the Gal4- repo driver which express Gal4 specifically in glial cells at all developmental stages. When we 
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crossed UAS-dp110CAAX;UAS-GFP;UAS-EGFRλ virgins with UAS-GFP; repo-Gal4/TMTbSb males, we 

observed enlarged and deformed brains in UAS-dp110CAAX;UAS-GFP;UAS-EGFRλ;repo-Gal4 larvae 

confirming abnormal glial cell proliferation induced by the transgenes (Figure 1) as described by Read 

et al. 37. No tumors were detected elsewhere in the larvae. The two control groups (Gal4-controls and 

UAS-controls) exhibited normal brains.   

 

Figure 1. Fluorescence microscopy images of Drosophila melanogaster 3rd instar larval brains. Green 

Fluorescent Protein (GFP) is expressed in glial cells. (1): control w1118; UAS-GFP; repo-Gal4; (2): Glioma model UAS-

dp110CAAX; UAS-GFP; UAS-EGFRλ; repo-Gal4. The glioma model brain is larger and deformed revealing abnormal 

glial cell proliferation. 

 

3.2 NMR results 

Well resolved 1H spectra were obtained from HR-MAS and solution-state NMR with small amount of 

material. Up to 47 metabolites could be identified with solution-state NMR and about 20 with HR-MAS 

(Figure 2). Because of the solvent chosen for extraction, lipids were not present in the solution-state 

NMR samples, which brought the advantage of revealing weak (such as the lactate one at 1.33 ppm)  that 
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would normally be hidden under the intense fatty acids peaks. Hence, HR-MAS data was used to 

determine lipids’ significance in the model. 

 

Figure 2.  Annotated 1H NMR spectra of glioma samples between 0.70 and 4.5 ppm: (A) 700 MHz solution-

state NMR spectrum of 3rd instar larval brain extracts (n=10) and (B) 750 MHz HR-MAS spectrum of fresh 3rd instar 

larval brains samples (n=10-15). The 20 discrimant metabolites reported in Table 1 and Table S2 are annotated. 1: 

Acetate 2: Alanine 3: Arginine 4: Benzoate (non visible in this frequency range) 5: GABA 6: Glucose 7: Glutamine 8: 

Glycine 9: Isoleucine 10: Lactate 11: Leucine 12: Myo-inositol (MI) 13: Phosphocholine (PC) 14: 

Phosphoethanolamine (PE) 15: Proline 16: Pyruvate 17: Sarcosine 18: Succinate 19: Tyrosine 20: Valine. Note that 

the lactate peak at 1.33 ppm is annotated for HR-MAS spectra even if not found discriminant. Same for PC on 

solution-state NMR spectra at 3.21 ppm. Superposition of spectra from control and glioma samples clearly show 

changes in the level of several metabolites (Figure S1). 

3.3 Statistical analysis, metabolite identification and pathway analysis 

First, unsupervised multivariate analyses PCA were performed with different components 

(component 1 as abscissa and component 2 as ordinate). On the solution-state NMR data set (Figure 3 

top left) PCA analyses showed a clear separation between the glioma group and the controls indicating 
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differences in metabolite composition. The two control groups were very similar. For the HR-MAS data 

set, the separation between the glioma group and the controls is less clear (Figure 3 bottom left). 

However, as in the first case, the two control groups were also quite similar. Thus we decided to merge 

control groups as one for further statistical analysis. Orthogonal Partial Least Squares discriminant 

analysis (OPLS-DA) were then performed. OPLS, that is a supervised multivariate analysis, enables to 

separately model the variation correlated (predictive) to the factor of interest and the uncorrelated 

(orthogonal) variation. OPLS-DA were performed using either glioma or controls as discriminant 

conditions to certify that a prediction model could be built based on the data (Figure 3 right). Very good 

Q2Y values (0≤ Q2Y ≤1) of 0.92 for the solution-state NMR data and 0.86 for the HR-MAS data were 

obtained assessing the quality of the predictions. Thus, with each set of data, the model built by the OPLS-

DA clearly shows that glioma samples and controls have different metabolic fingerprints and this model 

allows to successfully predict the nature of the samples.  
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Figure 3. Multivariate analyses score plots. Top: Solution-state NMR results. Bottom: HR-MAS results. Left: 

Unsupervised multivariate analysis PCA. Right: Supervised multivariate analysis OPLS-DA. Blue: glioma model 

samples. Red: w1118; UAS-dp110CAAX; UAS-EGFRλ controls.  Green: w1118; UAS-GFP; repo-Gal4 controls. R2X is the 

percentage of the data matrix X explained by the model, R2Y is the percentage of the response Y explained by the 

model, Q2Y is the quality of the prediction. 
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Finally, the data matrixes were filtered to retain the variables having a VIP above 1 and t-tests were 

performed to obtain the buckets significantly different between glioma and control samples with a p-

value of less than 0.05. The metabolites related to these buckets were identified. In total, 20 metabolites 

were identified, 14 with HR-MAS and 19 with the solution-state NMR data. The 20 metabolites were: 

acetate, alanine, arginine, benzoate, -aminobutyrate (GABA), glucose, glutamine, glycine, isoleucine, 

lactate, leucine, myo-inositol, phosphocholine (PC), phosphoethanolamine (PE), proline, pyruvate, 

sarcosine, succinate, tyrosine, and valine. Among them, 13 metabolites were common to both methods 

(Figure 4).  Overall all the biomarkers found with HR-MAS were also extracted with the solution-state 

NMR except for PC.  The average relative variations of biomaker concentrations between control and 

glioma samples were determined from integrated intenties of well-resolved peaks characteristic of each 

metabolites in solution-state and HR-MAS spectra (Table 1). With the exception of myo-inositol which 

shows a huge increase (fold change >3) which can be explained by the glial cell proliferation, the other 

metabolites show a more modest fold change. Most of the metabolites identified here in Drosophila larvae 

brains have already been reported in studies using various human sample sources (Human GBM cultured 

cells, biopsies, cerebrospinal fluid, plasma, serum) and different techniques (1HNMR spectroscopy, HR-

MAS, in vivo imaging, GC/MS ) (Table 1). Glucose has not been identified in humans, but its presence can 

be expected as cancer cells, and more specifically GBM cells increase glucose uptake. 
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Figure 4. Venn diagram of the identified metabolites for the glioma model developed in Drosophila 

melanogaster. In total, 14 were found discriminant with HR-MAS analysis and 19 with solution-state NMR. Thirteen 

of these biomarkers were identified with both methods. 

 

The metabolic pathways mainly impacted in glioma samples (Table 1) correspond to energetic pathways 

(glycolysis, TCA cycle) and anabolic pathways (amino-acid metabolism, TCA cycle).   

                

  Discriminant  NMR HR-MAS Metabolites previously 
detected in Human 

Metabolic Pathways 

  metabolites  p-val 
G-C 
/C 

 p-val 
G-C 
/C 

  

1 Acetate ** ↗  *** ↗  Glioma cell lines grade II vs grade 
IV 70 (Shao, 2014) 

Glycolysis, gluconeogenesis - 
Pyruvate metabolism     1.92 ppm 31% 1.92 ppm 35% 

2 Alanine *** ↗  * ↗  Cerebrospinal fluid samples glioma 
vs healthy 71 (Ballester, 2018) 

Alanine aspartate and glutamate 
metabolism     1.49 ppm 73% 1.44 ppm 28% 

3 Arginine *** ↗  ** ↗  Plasma samples of low grade vs 
high grade 72 (Zhao, 2016) 

Arginine and proline metabolism 
    3.24 ppm 66%   34% 

4 Benzoate *** ↘      Serum samples from GBM patients 
vs healthy 73-75 (Huang, 2017; 
Bjorkblom, 2016; Chen, 2016) 

Benzoate metabolism 
    7.49 ppm -22%     



16 
 

5 GABA ** ↘  ** ↘  GBM cells and GBM tissues vs 
normal human astrocytes 76 

(Palanichamy, 2016) 

Alanine aspartate and glutamate 
metabolism - Arginine and proline 

metabolism 
    2.30 ppm -22% 2.30 ppm -8% 

            

6 Glucose *** ↗  ** ↗  
  Glycolysis, gluconeogenesis 

    3.26 ppm 134% 3.24 ppm 34% 

7 Glutamine *** ↗  * ↗  
Glioma cell lines (grade IV vs. II) 70 

(Shao, 2014) 

Alanine aspartate and glutamate 
metabolism - Purine and pyrimidine 
metabolism - Arginine biosynthesis 

    2.46 ppm 48% 2.14 ppm 21% 

            

8 Glycine *** ↗      Cerebrospinal fluid samples of  
glioma vs healthy 71 (Ballester, 

2018) 

Glycine, serine and threonine 
metabolism - Carbon metabolism     3.57 ppm 43%     

9 Isoleucine *** ↘      Plasma samples glioma vs healthy 
77 (Kelimu, 2016) 

Valine, leucine and isoleucine 
degradation     1.46 ppm -61%     

10 Lactate *** ↗  * ↗  Plasma sample high grade vs low 
grade glioma 72 (Zhao, 2016) 

Glycolysis, gluconeogenesis - 
Pyruvate metabolism     4.13 ppm 43% 4.12 ppm 16% 

11 Leucine ** ↗  ** ↗ Glioma cell lines (grade IV vs. II) 70 
(Shao, 2014) 

Valine, leucine and isoleucine 
degradation     0.97 ppm 28% 0.94 ppm 18% 

12 Myoinositol *** ↗  *** ↗   HGG vs PCNSL 78 (Nagashima, 
2018) 

Inositol phosphate metabolism 
    3.54 ppm 282% 3.52 ppm 229% 

13 PC     ** ↗  Brain biopsies of GBM vs. grade II 
astrocytomas 79 (Wright, 2010) 

Glycerophospholipid metabolism 
        3.21 ppm 21% 

14 PE ** ↗  ** ↗  Brain biopsies of GBM vs. grade II 
astrocytomas 79 (Wright, 2010) 

Glycerophospholipid metabolism 
    4.00 ppm 62% 3.99 ppm 47% 

15 Proline ** ↘  ** ↘  Brain biopsies of HGOs vs. LGOs 80 
(Erb, 2008) 

Arginine and proline metabolism 
    3.32 ppm -59% 2.06 ppm -27% 

16 Pyruvate *** ↗      Plasma samples glioma vs healthy 
77 (Kelimu, 2016) 

Glycolysis, gluconeogenesis and 
pyruvate metabolism     2.38 ppm 81%     

17 Sarcosine *** ↗      Plasma samples mutant IDH glioma 
vs wild type IDH glioma 72 (Zhao, 

2016) 

Glycine, serine and threonine 
metabolism - Choline metabolism     2.76 ppm 83%     

18 Succinate *** ↗  * ↗  Plasma samples mutant IDH glioma 
vs wild type IDH glioma71, 81, 82 

(Ballester, 2018; Nakamizo, 2013; 
Kalinina, 2016) 

Citrate cycle (TCA) 
    2.41 ppm 32% 2.41 ppm 36% 

19 Tyrosine *** ↗      Glioma cell lines (grade IV vs. II) 70 
(Shao, 2014) 

Phenylalanine and tyrosine 
metabolism     7.21 ppm 74%     

20 Valine * ↗  * ↗  Glioma cell lines (grade IV vs. II) 80 
(Erb, 2008) 

Valine, leucine and isoleucine 
degradation     1.05 ppm 40% 1.03 ppm 44% 

                
Table 1. Identified metabolites discriminating glioma brains from control samples analyzed by solution-

state NMR and HR-MAS. References associated with human gliomas. Impacted metabolic pathways. The 

resulting metabolites were identified by first filtering the buckets from the data matrices given by the OPLS-DA with 

a VIP threshold of 1 and then by performing a t-test on the remaining variables with a p-value threshold of 0, 05. 

Metabolite bucket selected for p-value calculations and the ratio of the difference in mean between glioma and 
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control samples to the mean of the control samples (G-C/C). * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001. 

↗: increased relative levels and ↘: decreased relative levels in the glioma samples compared to the controls. 

Abbreviations : GBM: glioblastoma; HGG: High Grade Glioma; PCNSL: primary central nervous system lymphoma; 

HGO: High Grade oligodendrioma; LGO: low grade oligodendrioma; IDH: isocitrate dehydrogenase 

 

 

                

  Discriminant  NMR HR-MAS Metabolites previously 
detected in Human 

Metabolic Pathways 

  metabolites 
 

Chemical 
shift 

Fold 
change 

  
Fold 

change 
  

1 Acetate **   ***  Glioma cell lines grade II vs grade 
IV 70 (Shao, 2014) 

Glycolysis, gluconeogenesis - 
Pyruvate metabolism     1.92 ppm 1.31  1.35 

2 Alanine ***   *   Cerebrospinal fluid samples glioma 
vs healthy 71 (Ballester, 2018) 

Alanine aspartate and glutamate 
metabolism     1.49 ppm 1.73  1.28 

3 Arginine ***   **   Plasma samples of low grade vs 
high grade 72 (Zhao, 2016) 

Arginine and proline metabolism 
    3.24 ppm 1.66   1.34 

4 Benzoate ***       Serum samples from GBM patients 
vs healthy 73-75 (Huang, 2017; 
Bjorkblom, 2016; Chen, 2016) 

Benzoate metabolism 
    7.49 ppm 0.75     

5 GABA **   **  GBM cells and GBM tissues vs 
normal human astrocytes 76 

(Palanichamy, 2016) 

Alanine aspartate and glutamate 
metabolism - Arginine and proline 

metabolism 
    2.30 ppm 0.78  0.92 

            

6 Glucose ***   **   
  Glycolysis, gluconeogenesis 

    3.26 ppm 2.34  1.34 

7 Glutamine ***   *   
Glioma cell lines (grade IV vs. II) 70 

(Shao, 2014) 

Alanine aspartate and glutamate 
metabolism - Purine and pyrimidine 
metabolism - Arginine biosynthesis 

    2.46 ppm 1.48 2.14 ppm 1.21 

            

8 Glycine ***       Cerebrospinal fluid samples of  
glioma vs healthy 71 (Ballester, 

2018) 

Glycine, serine and threonine 
metabolism - Carbon metabolism     3.57 ppm 1.43     

9 Isoleucine ***       Plasma samples glioma vs healthy 
77 (Kelimu, 2016) 

Valine, leucine and isoleucine 
degradation     1.46 ppm 0.39     

10 Lactate ***   *   Plasma sample high grade vs low 
grade glioma 72 (Zhao, 2016) 

Glycolysis, gluconeogenesis - 
Pyruvate metabolism     4.13 ppm 1.43  1.16 

11 Leucine **   **  Glioma cell lines (grade IV vs. II) 70 
(Shao, 2014) 

Valine, leucine and isoleucine 
degradation     0.97 ppm 1.28  1.18 

12 Myoinositol ***   ***    HGG vs PCNSL 78 (Nagashima, 
2018) 

Inositol phosphate metabolism 
    3.54 ppm 3.82  3.29 

13 PC     **   Glycerophospholipid metabolism 
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        3.21 ppm 1.21 
Brain biopsies of GBM vs. grade II 

astrocytomas 79 (Wright, 2010) 

14 PE **   **   Brain biopsies of GBM vs. grade II 
astrocytomas 79 (Wright, 2010) 

Glycerophospholipid metabolism 
    4.00 ppm 1.62  1.47 

15 Proline **   **   Brain biopsies of HGOs vs. LGOs 80 
(Erb, 2008) 

Arginine and proline metabolism 
    3.32 ppm 0.41 2.06 ppm 0.73 

16 Pyruvate ***       Plasma samples glioma vs healthy 
77 (Kelimu, 2016) 

Glycolysis, gluconeogenesis and 
pyruvate metabolism     2.38 ppm 1.81     

17 Sarcosine ***       Plasma samples mutant IDH glioma 
vs wild type IDH glioma 72 (Zhao, 

2016) 

Glycine, serine and threonine 
metabolism - Choline metabolism     2.76 ppm 1.83     

18 Succinate ***  *   Plasma samples mutant IDH glioma 
vs wild type IDH glioma71, 81, 82 

(Ballester, 2018; Nakamizo, 2013; 
Kalinina, 2016) 

Citrate cycle (TCA) 
    2.41 ppm 1.32  1.36 

19 Tyrosine ***       Glioma cell lines (grade IV vs. II) 70 
(Shao, 2014) 

Phenylalanine and tyrosine 
metabolism     7.21 ppm 1.74     

20 Valine *   *   Glioma cell lines (grade IV vs. II) 80 
(Erb, 2008) 

Valine, leucine and isoleucine 
degradation     1.05 ppm 1.40  1.44 

                
Table 2. Identified metabolites discriminating glioma brains from control samples analyzed by solution-

state NMR and HR-MAS. References associated with human gliomas. Impacted metabolic pathways. The 

resulting metabolites were identified by first filtering the buckets from the data matrices given by the OPLS-DA with 

a VIP threshold of 1 and then by performing a t-test on the remaining variables with a p-value threshold of 0, 05. 

Metabolite bucket selected for p-value and ratio of the mean of glioma samples to the mean of control samples 

calculations (G/C). * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001. ↗: increased relative levels and ↘: 

decreased relative levels in the glioma samples compared to the controls. Abbreviations : GBM: glioblastoma; HGG: 

High Grade Glioma; PCNSL: primary central nervous system lymphoma; HGO: High Grade oligodendrioma; LGO: low 

grade oligodendrioma; IDH: isocitrate dehydrogenase 

3.4 Biomarker Analysis 

To evaluate the ability of each metabolite to discriminate glioma samples from controls, metabolites were 

analyzed individually by the area under the curve (0 ≤ AUC ≤ 1)  in the receiver operator characteristics 

(ROC) curve and t-tests values presented in Table S2. For the solution-state NMR, individual metabolites 

were found to have a significant AUC between 1.0 (for glucose, myo-inositol, sarcosine and glycine) and 

0.82 (for acetate). For HR-MAS, the AUC values of the individual metabolites range from 0.98 (for myo-

inositol) to 0.75 (for lactate). 
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The multivariate ROC curves obtained with solution-state NMR data, show that glucose (AUC= 1, t-test 

value= 6.09E-17), myo-Inositol (AUC= 1, t-test value= 1.24E-16), sarcosine (AUC= 1, t-test value= 5.94E-11), 

and glycine (AUC= 1, t-test value= 1.64E-10) reached very good power in discriminating glioma samples 

from controls, all samples being classified correctly with each of the four metabolites (Figure 5). 

 

Figure 5. Solution-state NMR biomarker analysis – ROC curves for individual biomarker and boxplots of the four 

most discriminant metabolites between glioma samples (G, in green) and controls (C, in red). AUC: area under the 

ROC curve. 

Likewise, the multivariate ROC curves of four most discriminant metabolites, obtained with HR-MAS data, 

were proline (AUC= 0.98, t-test value= 3.68E-10), myo-inositol (AUC= 0.97, t-test value= 4.91E-09), acetate 

(AUC= 0.94, t-test value= 8.87E-06) and glucose (AUC= 0.90, t-test value= 6.73E-05). These metabolites 

reached very good power in discriminating glioma samples from controls (Figure 6). 
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Figure 6. HR-MAS biomarker analysis – ROC curves for individual biomarker and boxplots of the four most 

discriminant metabolites between glioma samples (G, in green) and controls (C, in red). AUC: area under the ROC 

curve. 

After testing the ability of individual metabolites to separate glioma samples from controls, the 

separation capacity of selected groups of metabolites was investigated. For solution-state NMR, a group 

of 4 metabolites (glucose, myo-inositol, sarcosine and glycine) correctly discriminates all 10 glioma 

samples from the 24 control samples (Figure 1S). For HR-MAS, a group of 4 metabolites (proline, myo-

inositol, acetate and glucose) correctly discriminates 30 out of 32 samples. Only one glioma sample and 

one control sample are incorrectly classified (Figure 2S). 

 



21 
 

4. Discussion 

Solution-state 1H NMR and 1H HR-MAS are complementary methods which allow to 

discriminate between normal and diseased flies. 

In this study, we identified metabolite biomarkers in a transgenic model of glioblastoma (GBM) in 

Drosophila melanogaster. We used two complementary NMR spectroscopy approaches: i) solution-state 

1H NMR  commonly used for biomarker discovery and known for producing good and highly reproducible 

results and ii) 1H HR-MAS NMR, for which such biomarkers identifications in metabolomics is less 

common but which fully reflects in vivo mechanisms. HR-MAS spectroscopy was directly performed on 

dissected brains without preparation (ex-vivo) and extraction bias, providing a complementary and more 

accurate view of the biochemical mechanisms. As expected, more metabolites (19 versus 14) were 

identified with solution-state NMR because of the higher resolution and sensitivity. However some 

metabolites such as lipids or phosphocholine could be detected using HR-MAS but not from the solution-

state NMR analysis because of the chosen extraction method. Indeed, the extraction procedure partially 

removes choline-containing compounds from the tissue that may have close association with cell 

membranes. Nevertheless 13 metabolites were common to both methods: acetate, alanine, arginine, 

GABA, glucose, glutamine, lactate, leucine, myo-inositol, phospho-ethanolamine, proline, succinate and 

valine. Among metabolites not detected as discriminant in HR-MAS analysis, most displayed resonances 

which overlap with others. The lower resolution of HR-MAS does not allow to unambiguously discern 

them. This is the case for example of glycine (a single resonance at 3.56 ppm), which is very difficult to 

separate from myo-inositol (resonances at 3.27, 3.52, 3.61 and 4.05 ppm).   

Prediction models were built with results obtained from the two methods, solution-state 1H NMR and 1H 

HR-MAS NMR, allowing to discriminate control and diseased flies, as demonstrated by the OPLS-DA and 

ROC curves analysis. Evaluation of biomarkers by ROC analysis showed that all metabolites had a strong 

discriminating power since their AUC values were all above 0.82 for the solution-state NMR and all above 

0.75 for the HR-MAS. In the case of solution-state NMR, with each of the four most discriminant 

metabolites (glucose, myo-inositol, sarcosine and glycine) or a combination of these four metabolites, 



22 
 

models correctly sorting 100% of the samples could be established. In the case of HR-MAS, the model 

with the four most discriminant metabolites (proline, myo-inositol, acetate and glucose) correctly sorts 

30 of the 32 samples (94%).  

These results also demonstrate that the two methods allow identification of glioma specific metabolites 

and consequently to access to the metabolic reprogramation in the glioma Drosophila model. Most of the 

metabolites identified in this study have been already identified in human samples (table 1), indicating 

the relevance of the Drosophila model. These metabolites constitute tools for detection and treatment of 

gliomas. Some of them could be used for early detection of gliomas. Currently, there are few biomarkers 

allowing early detection of gliomas. Several studies using multiparametric MRI texture analysis 70, 

circulating biomarkers 71 or micro RNAs 72 have shown their usefulness as biomarkers for patients with 

glioma. The model used in our study does not discriminate which of the metabolites are more 

characteristic of an early glioma. However, it is interesting to note that we have found myo-inositol and 

glutamine as strong signatures of glioma in Drosophila, metabolites proposed by Kallenberg et al. as 

markers of early neoplastic infiltration 73. 

These metabolites highlight metabolic modifications of the tumor essential to its progression and open 

the way to new therapeutic approaches targeting these metabolic pathways. Drosophila is a particularly 

relevant model for testing the effectiveness of such approaches. Finally, these metabolites may constitute 

reliable biomarkers with high diagnostic performance that could be used to follow the evolution of glioma 

during therapeutic treatment studies in Drosophila.  

 

Altered metabolism in the Glioma Drosophila model 

The metabolic properties of cancer cells differ significantly from those of normal cells. In fact, they 

must be able to capture nutrients in the external medium in a significant way to produce ATP, to 

synthesize macromolecules (proteins, lipids, nucleic acids) and their precursors, to ensure their 

proliferation and to tolerate oxidative stress or hypoxia for example. All this requires a reprogramming 
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of the metabolic pathways. Discriminant metabolites identified in this study highlight altered metabolism 

of cancer cells. The main metabolic pathways affected in our glioma model are energetic pathways 

(glycolysis, TCA cycle), amino acids metabolism and glycerophospholipid metabolism (Table 1). 

Among the metabolites, which have a higher level in glioma, myo-inositol (MI) was the most predominant 

marker, its significant elevation in the glioma model being detected with the two NMR methods. MI is 

produced by astrocytes in adult brain and is a marker of astrogliosis 74-76. Moreover, MI is involved in the 

activation of protein kinase C, which activates some proteolytic enzymes responsible for cell invasion in 

glioma, as for example matrix metalloproteases 77-79 and in the synthesis of phosphatidylinositol lipids 80. 

MI is also an important osmolyte in the brain which is involved in the regulation of the intracellular 

osmolality to adapt changes in the extracellular compartment. Several studies have already linked MI 

levels to glioma malignancy 73, 79, 81. Increased levels are found in lower grade astrocytomas compared to 

GBM and control brains which are consistent with higher survival rate in patients 81. Therefore most 

aggressive forms of glioma seem to have lower MI pool because its metabolism is upregulated while in 

low grade astrocytomas MI pathway is less activated resulting in its accumulation 79. It has also been 

proposed that the variation in MI concentration may reflect the integrity of the brain blood-barrier which 

is disrupted in GBMs, leading to modification of the osmotic environment 82. The increased level of MI 

suggests that our model would be closer to a low grade astrocytoma or that the brain blood-barrier is not 

disturbed.  

A major modification of the metabolism in cancer cells is the use of aerobic glycolysis to produce ATP 

(Warburg effect) leading to the production of lactate 24. We actually found a significant higher relative 

concentration of lactate and pyruvate in our glioma model which may reflect Warburg effect. Under 

normal conditions astrocytes already favored the use of glycolysis to produce lactate and alanine that are 

used to fuel neurons 83, 84. We can note that in parallel to the increase in lactate we also showed an increase 

in alanine. We also detected a higher level of glucose and acetate in glioma samples. These two 

metabolites are bioenergetic substrates used in cancer cells, in particular in gliomas 85. It has also been 

shown that activation of the EGFR pathway in gliomas increases the uptake of glucose and also of acetate 

32.  
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Levels of several amino acids displayed different ratios in glioma as compared to the controls (alanine, 

arginine, glutamine, glycine, isoleucine, leucine, proline, tyrosine and valine). High levels of some these 

amino acids have already been reported in brain tumors and in extracellular fluids of brain tumors 86. 

Cancer cells often display higher expression of transporters and receptors for amino acids 87 and it has 

been shown that glioma cells also increase their amino acids uptake 22, 28. 

Cancer cells need high level of amino acids to support protein synthesis but also to produce energy. Some 

of amino acids may be used as alternative sources to fuel the TCA cycle. Several studies have shown that 

mitochondria are altered in GBM and then could compromise the OXPHOS 88, 89. As the Warburg effect is 

not efficient in ATP production, GBM cells need to use other nutrients to produce ATP. The important role 

of glutamine and glutaminolysis is well documented in cancer cells and particularly in GBM 90 but other 

amino acids may also be catabolized to obtain metabolites which can fuel the TCA cycle, for example 

valine, leucine or isoleucine may be degraded into succinyl-CoA and then succinate, or tyrosine 

metabolism may lead to fumarate. In particular it has been shown that GBM cells use in addition to 

glutamine, acetate and branched-chain amino acids (leucine, valine, isoleucine) to ensure their growth 91 

and that the enzymes involved in the biosynthesis of BCAAs (branched chain amino acids) are very 

important in ensuring tumor proliferation 92, 93. The use of these amino acids as a source of ATP may 

explain the increase in succinate we have noted. 

The high level of glycine is characteristic of high grade glioma 60, 81. Previous studies based on the HR-

MAS analysis of human biopsies proposed glycine as a biomarker for brain tumors 60. Higher 

concentration of glycine have been found in high grade glioma while levels in low grade astrocytomas 

were unchanged. Recently, a study of Tiwari et al. on glioma patients demonstrated a higher level of 

glycine in the most aggressive glioma, suggesting a reprogramation of the glycine metabolism 94. Glycine, 

a nonessential amino acid, is a neurotransmitter but also participates to the one-carbon cycle metabolic 

pathway which is involved in synthesis of nucleotides, proteins, lipids and substrates for methylation 

reactions. Glycine can be synthesized by cell, in the cytosol or in the mitochondria 95. In the cytosol, glycine 

is synthesized from glycolysis via the intermediate 3-phosphoglyceraldehyde. In our glioma model, the 

PI3K/Akt/mTOR pathway known to stimulate glycolysis is constitutively activated which may favor de 
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novo synthesis of glycine. More generally, glycine is a key an amino acid to ensure rapid proliferation of 

cancer cells and metastasis 96-98. Locasale et al. 99 demonstrated that in some cancer cells, a large amount 

of glycolytic carbons are used to synthetize serine and glycine via phosphoglycerate dehydrogenase 

(PGDH) and that the gene encoding this enzyme is often amplified. Jain et al. 96 have shown that impairing 

glycine uptake or its biosynthesis in mitochondria prevents the rapid proliferation of cancer cells and 

that the mortality is greater in breast cancer patients when this pathway is overexpressed. In 2019, Xia 

et al. 100 reported that in neuroblastoma cells resulting from an aberrant MCYN (member of the MYC 

family of oncogenic transcription factors) activation, the serine-glycine-one-carbon (SGOC) biosynthetic 

pathway is activated and that small molecules inhibiting this pathway demonstrate cytotoxicity to cell 

lines with MCYN activation and xenografts. 

Our study also highlighted an increase in phosphocholine (PC) and phosphoethanolamine (PE). PC and 

PE are involved in biosynthesis of phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdE), 

which are the major constituents of membrane cells, particularly in brain 101. Elevated levels of PC and PE 

are a mark of cancer cells 102. Choline species have been reported to be increased in brain tumors and 

may reflect increased membrane turnover or cellular density. They have been proposed as marker of 

gliomas aggressiveness 103, 104. Increase in PC may also be explained by the activation of the 

PI3K/Akt/mTOR pathway frequently altered in GBM and involved in our model. This pathway regulates 

the expression of several genes, in particular the gene that encodes the hypoxia inducible factor 1a (HIF-

1) 105. HIF-1 controls the expression of choline kinase alpha 106 that catalyzes the synthesis of PC from 

choline. Increase level of PE has also been reported in biopsy of brain tumors 104, 107, 108. In addition to its 

role in metabolism of phospholipids, PC may also be a second messenger involved in cancer growth 109. 

 

In our model, GABA has a lower level in glioma. GABA is a neurotransmitter in the cortex area of the brain. 

It plays an inhibitor role on synapses 110. Literature offers conflicting results regarding GABA levels in 

glioma. Some studies suggest that GABA is less present or not detected in high grade tumors compared 

to low grade tumors and control brains while others find higher levels of GABA in GBM than in control 

brains 81, 86, 111. Other studies describe the metabolic switch of GABA in GBM stem-like cells 112. Decreased 
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levels of GABA, associated with increased concentration of its by-products 2-hydroxyglutarate (2-HG) 

and 4-hydroxybutyrate (GHB), are correlated with a loss of tumorgenicity 112.  

Among metabolites displaying an increased level in glioma, two are of particular interest: succinate and 

lactate. These two metabolites may support carcinogenesis and are considered as oncometabolites 113. 

Succinate displays many effects involved in the development of the tumor: it inhibits α-ketoglutarate 

(KG)-dependent dioxygenases (KGDD), a class of enzymes involved in various biological processes. 

For example, inhibition of prolyl-hydroxylases by succinate, leads to stabilization of hypoxia inducible 

factor 114. Succinate may also participates to epigenetic reprograming by inhibition of Ten-Eleven 

Translocation proteins (TETs) and Histone Lysine Demethylases (KDMs), involved respectively in DNA 

demethylation and histone demethylation 115-118. In the same way, lactate is an oncometabolite. It is not 

only a by-product of glycolysis, it is also a second messenger, acting as a signaling molecule to induce 

autocrine, paracrine, and endocrine-like effects 119, 120. The high amounts of lactate secreted by tumor 

cells leads to an acidification of the tumor microenvironment favoring invasion, metastasis, angiogenesis 

and suppression of immune response 121. Lactate may also be involved in epigenetic reprogramation. The 

work of Bhagat et al. 122 on pancreatic ductal adenocarcinoma, has shown that lactate may indirectly 

participate to epigenetic reprograming by inducing increased synthesis of alpha-ketoglutarate (KG) in 

mesenchymal stem cells surrounding cancer cells. Alpha-ketoglutarate is known to be involved in 

activation of the demethylase TET Enzyme and Histone Lysine demethylases (JMJD). Recently, Zhang et 

al. 123 established that lactate can modulate a new histone modification: lysine lactylation. They also 

showed that this new epigenetic mark may contribute to modulate gene expression. Thus, the mutations 

we used to perform our glioma model (Pi3K and EGFR gain of function) leads to accumulation of these 

two oncometabolites which in turn are able to modify the tumor environment and to reprogram gene 

expression in the tumoral cells to favor its development and aggressiveness. These oncometabolites may 

constitute key biomarkers useful in diagnosis and prognosis, but they may also be considered as new 

therapeutic targets. Many studies have been performed to inhibit synthesis of these metabolites. For 

example, several molecules targeting LDH, which catalyzes the synthesis of lactate from pyruvate have 

been developed such as oxamate, gossypol, galloflavin, or N-hydroxyindole compounds 124 (for review 
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see El Hassouni et al. 2020). Gossypol demonstrated a cytotoxic effect on cancer cell lines. It was also 

used in clinical trials, in particular with patients with malignant glioma 125, but it showed a poor clinical 

efficacy. Two N-hydroxyindole compounds, NHI-1 and NHI-2, tested in GBM cell lines and glioma stem 

cells induce apoptosis and cell differentiation 126 but their effect was transient. In addition, a better 

knowledge of the functions of these oncometabolites could also be useful in finding other therapeutic 

targets. 

 

3 Conclusion 

In this study, glioma model has been successfully induced in Drosophila melanogaster, following Read’s 

model [36], by co-activating the Epidermal Growth Factor Receptor (EGFR) and the Phosphatidyl-

Inositol-3 Kinase (PI3K) signaling pathways. In total, twenty biomarkers for the glioma Drosophila model 

were identified using NMR based metabolomics. Nineteen discriminant metabolites were detected by 

solution-state NMR, known as a highly sensitive and highly resolved tool to obtain metabolic fingerprints 

from brain extracts. Fourteen discriminant metabolites were detected by HR-MAS, allowing to directly 

observing key metabolites from dissected brains (ex-vivo), without further sample preparation. Thirteen 

metabolites were highlighted by both methods, which shows a very good correlation between them. 

Among all the identified metabolites, glucose, myo-inositol, sarcosine, glycine, alanine and pyruvate for 

solution-state NMR and proline, myo-inositol, acetate and glucose for HR-MAS NMR allow to discriminate 

samples according to their nature with very good performances. This demonstrates that each method by 

itself is able to identify glioma biomarkers. Nevertheless, a more complete view of the induced 

disturbances and a better understanding of metabolic pathway impacts are obtained from the combined 

analysis 

Most of identified metabolites were consistent with human oncogenesis and glial cells proliferation. The 

main metabolic pathways impacted in our glioma model are energetic pathways (glycolysis, TCA cycle), 

amino acids metabolism and glycerophospholipid metabolism. This study consolidates the interest of 

Drosophila melanogaster in studying and modelling glioma and opens the possibility of deciphering the 
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biochemical mechanisms disturbed in these tumors. The identified biomarkers provide means to 

rebalance specific pathways through targeted metabolic therapy, and to study the effects of 

pharmacological treatments using Drosophila melanogaster as a model organism. 
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and glycine) for the solution-state NMR.  

Figure 3S : Biomarker analysis on a group of four selected metabolites (proline, myo-inositol, acetate 
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