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Abstract

We present a parameter estimation method for nonlinear mixed effect models

based on ordinary differential equations (NLME-ODEs). The method presented

here aims at regularizing the estimation problem in presence of model misspec-

ifications, practical identifiability issues and unknown initial conditions. For

doing so, we define our estimator as the minimizer of a cost function which

incorporates a possible gap between the assumed model at the population level

and the specific individual dynamic. The cost function computation leads to

formulate and solve optimal control problems at the subject level. This control
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theory approach allows to bypass the need to know or estimate initial condi-

tions for each subject and it regularizes the estimation problem in presence of

poorly identifiable parameters. Comparing to maximum likelihood, we show on

simulation examples that our method improves estimation accuracy in possibly

partially observed systems with unknown initial conditions or poorly identifi-

able parameters with or without model error. We conclude this work with a

real application on antibody concentration data after vaccination against Ebola

virus coming from phase 1 trials. We use the estimated model discrepancy at

the subject level to analyze the presence of model misspecification.

Keywords: Dynamic population models, Ordinary differential equations,

Optimal control theory, Clinical trial analysis

1. Introduction

ODE models are standard in population dynamics, epidemiology, virology,

pharmacokinetics, or genetic regulation networks analysis due to their ability to

describe the main mechanisms of interaction between different biological com-

ponents of complex systems, their evolution in time and to provide reasonable

approximations of stochastic dynamics [1, 2, 3]. In cases of experimental designs

involving a large number of subjects and limited number of individual measure-

ments, non-linear mixed-effect models may be more relevant than subject-by-

subject model to gather information from the whole population while allowing

between-individual variability. For example, clinical trials and pharmacokinet-

ics/pharmacodynamics studies often fall into this category [4, 5]. Formally, we

are interested in a population where the dynamics of the compartments of each

subject i ∈ J1, nK is modeled by the d-dimensional ODE: ẋi(t) = fθ,bi(t, xi(t))

xi(0) = xi,0
(1)

where f is a d−dimensional vector field, θ is a p−dimensional parameter, bi ∼

N(0, Ψ) is a q−dimensional random effect where Ψ is a variance-covariance

matrix, xi,0 ∼ Γi is the initial condition for subject i belonging to Rd where Γi
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is a possibly subject dependent distribution. We denote Xθ,bi,xi,0 the solution of5

(1) for a given set (θ, bi, xi,0). In (1), we can also incorporate covariate functions

zi which are omitted here for the purpose of clarity.

Our goal is to estimate the true population parameters (θ∗, Ψ∗) as well as the

true subject specific realizations {b∗i }i∈J1, nK from partial and noisy observations

coming from n subjects and described by the following observational model:

yij = CXθ∗,b∗i ,x
∗
i,0

(tij) + εij

where tij is the j-th measurement time-point for the i−th subject on the obser-

vation interval [0, T ]. Here C is a do × d sized observation matrix emphasizing

the potentially partially observed nature of the process and εij ∼ σ∗×N(0, Ido)10

is the measurement error. We also assume only a subset of the true initial

condition x∗i,0 ∼ Γ ∗i , denoted xk∗i,0, is known, the other ones, denoted xu∗i,0,

being unknown. For the sake of clarity, we order the state variables as fol-

lows: xi,0 =
((
xui,0
)T
,
(
xki,0
)T)T

. We denote ni the number of observations

for the i-th subject, yi = {yij}j∈J1, niK its corresponding set of observations15

and y = {yi}i∈J1, nK the set of all observations in the population. We consider

a Bayesian framework where a priori knowkedge about population parameters

can be available under the form of a prior P [θ,Ψ] .

Our problem belongs to the class parameter estimation problem in nonlinear

mixed effect models. In this context, frequentist methods based on likelihood20

maximization (via different numerical procedures: Laplace approximation [6],

Gaussian quadrature [5] or SAEM [7, 8]) and Bayesian ones aiming to recon-

struct the a posteriori distribution or to derive the maximum a posteriori esti-

mator (via MCMC algorithms [9, 10], importance sampling [11], approximation

of the asymptotic posterior distribution [12]) have been proposed. In particular,25

dedicated methods/softwares using the structure of ODE models have been im-

plemented to increase numerical stability and speed up convergence rate [13], to

reduce the computational time [14] or to avoid the repeated model integration

and estimation of initial conditions [15]. However, all the preceding methods

face similar pitfalls due to specific features of population models based on ODEs30
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(with the exception of [15]):

1. They do not account for model misspecification presence, a common fea-

ture in ODE models used in biology. Indeed, the ODE modeling process

suffers from model inadequacy, understood as the discrepancy between

the mean model response and real world process, and residual variability35

issues, that is subject specific stochastic perturbations or missed elements

which disappear by averaging over the whole population [16]. As exam-

ples of model inadequacy causes, one can think of ODE models used in

epidemiology and virology which are derived by approximations where for

instance, interactions are modeled by pairwise products while higher order40

terms and/or the influence of unknown/unmeasured external factors are

neglected. Regarding residual variability, let us remind that biological pro-

cesses are often stochastic and the justification of deterministic modeling

comes from the approximation of stochastic processes [17, 18]. Moreover,

in the context of population models, new sources of model uncertainties45

emerge. Firstly, error measurement in covariates zi can leads to use a

proxy function ẑi instead of zi [10]. Secondly, the sequential nature of

most inference methods leads to estimate {b∗i }i∈J1, nK based on an approx-

imation θ̂ instead of θ∗. Thus, the structure of mixed-effect models spread

measurement uncertainty into the mechanistic model structure during the50

estimation. It turns classical statistical uncertainties into model error

causes. Estimation of θ∗, Ψ∗ and {b∗i }i∈J1, nK has to be done in presence

of model error presence although it is known to dramatically impair the

accuracy of methods which do not take it into account [19].

2. They have to estimate or make assumptions on
(
xu∗i,0,Γ

∗
i

)
. In ODE models,55

the initial conditions are generally nuisance parameters in the sense that

knowing their values does not bring answers to the scientific questions

which motivate the model construction but the estimation of the relevant

parameters requires x∗i,0 inference as well. For example, partially observed

compartmental models used in pharmacokinetics/pharmacodynamics of-60
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ten involve unknown initial conditions which needs to be inferred to es-

timate the transmission rates between compartments which are the true

parameters of interest. Unknown initial conditions imply either: assump-

tions on
(
xu∗i,0,Γ

∗
i

)
values [4], another potential cause of model misspecifi-

cations, or the need to estimate them [20] which increases the optimization65

problem dimension and degrades estimation accuracy due to covariance

effect between (θ∗,Ψ∗) and
(
xu∗i,0,Γ

∗
i

)
estimate.

3. They can face accuracy degradation when the inverse problem of param-

eter estimation is ill-posed [2] due to practical identifiability issues. Ill-

posedness in ODE models is often due to the geometry induced by the70

mapping (θ, bi, xi,0) 7−→ CXθ,bi,xi,0 , where there can be a small number of

relevant directions of variation skewed from the original parameter axes

[21]. This problem, called sloppiness, often appears in ODE models used in

biology [21, 22] and leads to an ill-conditioned Fisher Information Matrix.

For maximum likelihood estimators this is a cause for high variance due75

to the Cramér-Rao bound. For Bayesian inference, it leads to a nearly sin-

gular asymptotic a posteriori distribution because of Bernstein–von Mises

theorem (see [23] for the computational induced problems). Despite this

problem is in part mitigated by the population approach which merges

different subjects for estimating (θ∗,Ψ∗) and uses distribution of bi | Ψ as80

prior at the subject level [24], estimation accuracy can benefit from the

use of regularization techniques.

These specific features of ODE-based population models limit the amount of

information classic approaches can extract for estimation purposes from obser-

vations no matter their qualities or abundances. This advocates for the develop-85

ment of new estimation procedures. Approximate methods [25, 26] have already

proven to be useful for ODE models facing these issues with observations coming

from one subject. These approaches rely on an approximation of the solution

of the original ODE (1) which is expected to have a smoother dependence with

respect to the parameters and to relax the constraint imposed by the model90
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during the estimation process. The interest of such approximations is twofold.

Firstly, they produce estimators with a better conditioned variance matrix com-

paring to classic likelihood based approaches. Secondly, they reduce the effect of

model error on estimator accuracy. Also, some of these approximations bypass

the need to estimate initial conditions [26, 27]. In this work, we develop a new95

estimation method specific to NLME-ODEs integrating such approximations to

mitigate the effect of model misspecification and poorly identifiable parameters

on estimation accuracy, while avoiding the need to estimate xu∗i,0. We propose

here a nested estimation procedure where population parameters (θ∗,Ψ∗, σ∗)

are estimated through the maximization of an outer criterion. This requires in100

turn an estimator for the {b∗i }i∈J1, nK obtained through the repeated optimiza-

tion of inner criteria. We consider that the actual dynamic for each subject is

described by a perturbed version of the ODE (1) where the added perturbation

captures different sources of errors at the subject level [19, 28]. We control the

magnitude of the acceptable perturbations by defining the inner criteria through105

a cost function balancing the two contrary objectives of fidelity to the observa-

tions and to the original model: to this end, we introduce a model discrepancy

penalization term. The practical computation of the {b∗i }i∈J1, nK estimators re-

quire to solve optimal control problems [29] known as tracking problems. This is

done using a method inspired by [30]. In addition, our method does not need to110

know/infer xu∗i,0 but can provide an estimator of it if needed with no additional

computational costs.

In section 2, we present the estimation method and derive the inner and

outer criteria. In section 3, we introduce the numerical method used for solving

the control problems appearing in the inner criteria. In section 4, we analyse the115

asymptotic behavior of (θ∗,Ψ∗) estimator and derive an approximation of its

asymptotic Variance-Covariance matrix from it. In section 5, we compare our

approach with classic maximum likelihood in simulations. We then proceed to

the real data analysis coming from clinical studies and a model of the antibody

concentration dynamics following immunization with an Ebola vaccine in East120

African participants [31]. Section 7 concludes and discuss future extensions of
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the method.

2. Construction of the estimator: definition of the inner and outer

criteria

From now on, we use the following Choleski decomposition σ2Ψ−1 = 4T4125

and the parametrization (θ,∆, σ) instead of (θ,Ψ, σ). This parametrization

will allows us to enforce positiveness and symmetry of Ψ and to derive an ex-

plicit estimator of σ given a value for (θ,∆). The norm ‖.‖2 will denote the

classic Euclidean one defined by ‖b‖2 =
√
bT b. Similarly as in the Expectation-

Maximization (EM) algorithm, we estimate the population and individual pa-130

rameters via a nested procedure:

� Estimation of b̂i := b̂i(θ,∆) for each subject i by minimization of an

inner criterion gi based on an approximation of maxxu0,i lnP(yi, bi |

xu0,i, θ,∆, σ), the log joint-distribution of the data and the random effects

profiled on unknown initial conditions.135

� Estimation of (θ,∆) by maximization of an outer criterion G(θ,∆, σ)

based on an approximation of maxσ maxb lnP [θ,∆, σ, b | y], the log joint-

distribution of (θ,∆, σ, b) sequentially profiled on σ and b.

2.1. Inner criteria

In this section, we describe the procedure used to estimate the random effects140

{b∗i }i∈J1, nK for a given (θ,∆, σ) value. A straightforward approach would be

to look for the minimum of the log joint-likelihood function of the data and{
bi, x

u
0,i

}
. However, we want to:

1. avoid estimation of unknown initial conditions,

2. allow for each subject an acceptable departure from the assumed model at145

the population level to take into account possible model misspecifications.
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To solve the first point, we define our estimator as the maximizer of the joint

conditional likelihood P(yi, bi | xu0,i, θ,∆, σ) profiled on the unknown initial con-

dition. Since

P(yi, bi | xu0,i, θ,∆, σ) = P(yi | bi, xu0,i, θ,∆, σ)P(bi | θ,∆, σ)

= (2π)
−(doni+q)/2 σ−(doni+q) |4| e−0.5

(∑
j‖CXθ,bi,x0,i (tij)−yij‖

2

2
+bTi (4T4)bi

)
/σ2

by using P(yi | bi, θ,∆, σ) =
∏
j P(yij | bi, θ,∆, σ) =

∏
j (2π)

−do/2
σ−d

o

e
−0.5‖CXθ,bi,x0,i (tij)−yij‖

2

2
/σ2

,

P(bi | θ,∆, σ) = (2π)
−q/2 |Ψ|−1/2

e−0.5bTi Ψ−1bi and σ2q |Ψ|−1
= |4|2, a straight-

forward mixed-effect estimator would be b̂i = arg minbi minxu0,i

{∑
j

∥∥CXθ,bi,x0,i
(tij)− yij

∥∥2

2
+ ‖∆bi‖22

}
that is, the classic maximum likelihood criteria profiled on xu0,i. Concerning the

second point, we allow perturbations comparing to the original model, by as-

suming that the dynamic of each subject i follows a perturbed version of ODE

(1):  ẋi(t) = fθ,bi(t, xi(t)) +Bui(t)

xi(0) = xi,0
(2)

with the addition of the forcing term t 7→ Bui(t) with B a d×du matrix and ui a

function in L2
(
[0, T ] ,Rdu

)
. We denote Xθ,bi,xi,0,ui the solution of this new ODE

(2). However, to ensure the possible perturbations remain small, we replace

the data fitting criterion
∑
j

∥∥CXθ,bi,x0,i
(tij)− yij

∥∥2

2
by minui Ci(bi, xi,0, ui |

θ, U) where Ci(bi, xi,0, ui | θ, U) =
∑
j

∥∥CXθ,bi,x0,i,ui(tij)− yij
∥∥2

2
+‖ui‖2U,L2 and

‖ui‖2U,L2 =
∫ T

0
ui(t)

TUui(t)dt is the weighted Euclidean norm. Therefore the

magnitude of the allowed perturbations is controlled by a positive definite and

symmetric weighting matrix U. Finally, we obtain:

b̂i (θ,∆) := arg minbi gi(bi | θ,∆, U) (3)

where gi(bi | θ,∆, U) = minxu0,i

{
minui Ci(bi, xi,0, ui | θ, U) + ‖∆bi‖22

}
.This re-

quires to solve the infinite dimensional optimization problem minui Ci(bi, xi,0, ui |

θ, U) in L2
(
[0, T ] ,Rdu

)
. This problem belongs to the field of optimal con-

trol theory for which dedicated approaches have been developed to solve them

[32, 33, 29]. Here we use the same method as in [27] which is detailed in section 3.

The perturbation ui corresponding to the solution of minxu0,i {minui Ci(bi, xi,0, ui | θ, U)}
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is named optimal control and denoted ui,θ,bi . The corresponding solution of (2)

for ui := ui,θ,bi is denoted Xθ,bi and named optimal trajectory. In particular,

Xθ,bi and ui,θ,bi are respectively the subject specific state variable and pertur-

bation such that:

gi(bi | θ,∆, U) =
∑
j

∥∥CXθ,bi(tij)− yij
∥∥2

2
+ ‖ui,θ,bi‖

2
U,L2 + ‖∆bi‖22 . (4)

To incorporate possible model errors in the estimation process, e.g. due to

subject specific exogenous perturbations, Xθ,bi is now assumed to be the sub-

ject specific regression function, defined as the state-variable which needs the

smallest perturbation in order to get close to the observations.150

Remark 2.1. The definition of the optimal control ui,θ,bi has an interpretation

in terms of Bayesian inference in an infinite dimensional space. According

to [34] (theorem 3.5 and Corollary 3.10), ui,θ,bi is a maximum a posteriori

estimator where the chosen prior measure is a centered Gaussian random field

with the covariance operator determined by U .155

2.2. Outer criteria definition

We focus in this section on population parameter estimation. Classic ap-

proaches rely on maximum a posteriori distribution or the likelihood of the ob-

servations in which they get rid of the unknown subject specific parameters by

taking the mean value of P [θ,∆, σ, b | y] or P [y | θ,∆, σ, b], Eb [P [θ,∆, σ, b | y]]

or Eb [P [y | θ,∆, σ, b]] respectively, as outer criteria. This generally requires

the numerical approximation of integrals of possibly high dimensions (the same

as b), a source of approximation and computational issues [6]. To avoid this,

we consider the random effects as nuisance parameters and rely on a classic

profiling approach for (θ∗,4∗) estimation [35]. Instead of taking the mean,

we rely on the maximal value of the joint distribution with respect to b, or

equivalently maxb lnP [θ,∆, σ, b | y]. Bayes formula gives us P [θ,∆, σ, b | y] ∝

P [y | θ,∆, σ, b]P [θ,∆, σ, b] . Since P [θ,∆, σ, b] = P [b | θ,∆, σ]P [θ,∆], we get

P [θ,∆, σ, b | y] ∝ (
∏
i P [yi | θ,∆, σ, bi]P [bi | θ,∆, σ])P [θ,∆] by conditional in-

dependence of subject by subject observations and subject specific parameters.
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It follows that

max
b

lnP [θ,∆, σ, b | y] ∝
∑
i

max
bi

(lnP [yi | θ,∆, σ, bi] + lnP [bi | θ,∆, σ])+lnP [θ,∆]

and now we construct a suitable approximation of this last expression to estimate

population parameters. As said in the previous section, we define the optimal

trajectory Xθ,bi as the regression function for each subject. Therefore, we ap-

proximate P [yi | θ,∆, σ, bi] by P̃ [yi | θ,∆, σ, bi] '
∏
j (2π)

−do/2
σ−d

o

e−0.5‖CXθ,bi (tij)−yij‖
2

2
/σ2

and we derive from this:

arg max
bi

(
ln P̃ [yi | θ,∆, σ, bi] + lnP [bi | θ,∆, σ]

)
= arg max

bi

∑
j

∥∥CXθ,bi(tij)− yij
∥∥2

2
+ ‖∆bi‖22

 .

We regularize this estimation problem by approximating it via the addition of

the Tikhonov penalization term on perturbation magnitude ‖ui,θ,bi‖
2
U,L2 , thus

arg maxbi

(
ln P̃ [yi | θ,∆, σ, bi] + lnP [bi | θ,∆, σ]

)
' arg maxbi gi(bi | θ,∆, U) =

b̂i (θ,∆) by using definition (4). From this, we derive

G [θ,∆, σ | y] =
∑
i

(
ln P̃

[
yi | θ,∆, σ, b̂i (θ,∆)

]
+ lnP

[
b̂i (θ,∆) | θ,∆, σ

])
+lnP [θ,∆]

as suitable approximation. Moreover, for each (θ,∆), the maximizer in σ2 of G

has a closed form expression:

σ2 (θ,∆) =
1

(do
∑
i ni + qn)

∑
i

∑
j

∥∥∥CXθ,b̂i(θ,∆)(tij)− yij
∥∥∥2

2
+
∥∥∥4b̂i (θ,∆)

∥∥∥2

2

 .

(5)

By using this expression for σ2 (θ,∆), we get that arg max(θ,∆) maxσ2 G(θ,∆, σ |

y) = arg max(θ,∆) {G [θ,∆ | y]} where:

G [θ,∆ | y] = −0.5

(
do
∑
i

ni + qn

)
ln
(
σ2 (θ,∆)

)
+ n ln |4|+ lnP [θ,∆] .

Thus we can profile G on sigma σ2 and define our estimator as:(
θ̂, ∆̂

)
= arg max(θ,∆) {G [θ,∆ | y]} (6)

to reduce the optimization problem dimension and focus on the structural pa-

rameters. An estimator of σ∗ is obtained from there by computing σ2
(
θ̂, ∆̂

)
10



given by equation (5). The details of the outer criteria derivation are left in

appendix A.160

3. Numerical procedure for ui,θ,bi , Xθ,bi and gi computation

In this section we explain how to get numerical approximations for minxu0,i {minui Ci(bi, xi,0, ui | θ, U)}

and ui,θ,bi linked to the perturbed ODE (2) which are then used to evaluate

Xθ,bi and gi. Firstly, we approximate gi with a special type of optimal control

problem, known as ’tracking problem’, in a discrete time setting. Secondly, we165

adapt the method proposed by [30, 36] to obtain minui Ci(bi, xi,0, ui | θ, U). This

presents the advantage of formulating minui Ci(bi, xi,0, ui | θ, U) as a quadratic

form (or a sequence of quadratic forms) with respect to xu0,i. Thus, the com-

putation of minxu0,i {minui Ci(bi, xi,0, ui | θ, U)} does not add any computational

complexity comparing to minui Ci(bi, xi,0, ui | θ, U).170

All it requires for the user is to specify a pseudo-linear representation of ODE

(1), i.e a possibly state-dependent matrix Aθ,bi (t, xi(t)) and state-independent

vector rθ,bi(t) such that:

fθ,bi(t, xi(t)) = Aθ,bi (t, xi(t))xi(t) + rθ,bi(t). (7)

This formulation is crucial for solving the optimal control problem in a com-

putationally efficient way. Linear models already fit in this formalism with

Aθ,bi (t) := Aθ,bi (t, xi(t)). For nonlinear models, the pseudo-linear representa-

tion is not unique but always exists [36] (in order to exploit this non-uniqueness

as an additional degree of freedom, see [37] section 6).175

3.1. gi expression as an optimal control problem

We now rely on the pseudo-linear version of model (2):

 ẋi(t) = Aθ,bi (t, xi(t))xi(t) + rθ,bi(t) +Bui(t)

xi(0) = xi,0
(8)
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and it discretized version: xi(t
d
k+1) =

(
Id + ∆kAθ,bi(t

d
k, xi(t

d
k))
)
xi(t

d
k) + ∆krθ,bi(t

d
k) +B∆kui(t

d
k)

xi(0) = xi,0
(9)

where the discretization is made at Ki + 1 time points
{
tdk
}

0≤k≤Ki
with td0 = 0

and tdKi = tini . This set contains the observations time points i.e. {tij}0≤j≤ni ⊂{
tdk
}

0≤k≤Ki
, but can be bigger and patient specific, allowing to accurately ap-180

proximate Xθ,bi,xi,0 even when the observations are sparse on [0, T ]. We define:

� ∆k = tdk+1 − tdk, the mesh size between two discretization time-points,

� udi the set of discrete values taken by the control at each time step i.e

udi =
(
u(tdk), . . . , u(tdKi−1)

)
,

� wk = 1{∃tij | tij=tdk}/(t
d
k+1 − tdk) i.e. wk is equal to 1/(tdk+1 − tdk) if tdk185

corresponds to an observation time tij , otherwise wk = 0,

� ydk=yij if tdk = tij , 0 otherwise,

� Xd
θ,bi,xi,0,udi

the solution of (9).

The weights wk and the set of extended data
{
ydk
}

are introduced to have a

vector of observations with the same length as
{
tdk
}

0≤k≤Ki
. We now introduce

the discretized version of the cost Ci to be minimized:

Cdi (bi, xi,0, u
d
i | θ, U) =

∑ni
j=0

∥∥∥CXd
θ,bi,xi,0,udi

(tij)− yij
∥∥∥2

2
+
∑Ki−1
k=0 4kui(tk)TUui(tk)

=
∥∥∥CXd

θ,bi,xi,0,udi
(tini)− yini

∥∥∥2

2

+
∑Ki−1
k=0 4k

(∥∥∥CXd
θ,bi,xi,0,udi

(tdk)− ydk
∥∥∥2

2
wk + ui(tk)TUui(tk)

)
.

(10)

such that our inner criteria gi can be approximated by:

gi(bi | θ,∆, U) ' min
xu0,i

min
udi

Cdi (bi, xi,0, u
d
i | θ, U) + ‖∆bi‖22 .

The solution of this discrete control problem will be denoted udi,θ,bi , and the

related optimal trajectory X
d

θ,bi : they will be used as numerical approximations190

of ui,θ,bi and Xθ,bi respectively.
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3.2. Numerical methods for solving the tracking problem

We present how to numerically obtain minxu0,i minudi C
d
i (bi, xi,0, u

d
i | θ, U) as

well as the corresponding minimizer udi,θ,bi . We start with linear ODE models,

then we consider nonlinear models following the steps detailed in [36].195

3.2.1. Linear models

Here, we suppose Aθ,bi(t) := Aθ,bi(t, x) in the pseudo-linear model formu-

lation. For a given set (θ, bi, xi,0), Linear-Quadratic theory ensures the existence

and uniqueness of the optimal control udi,θ,bi and that minxu0,i minudi C
d
i (bi, xi,0, u

d
i |

θ, U) can be computed by solving a discrete final value problem, called the Ric-200

cati equation (e.g. [32, 33]).

Proposition 3.1. Let us introduce (Rθ,bi,k, hθ,bi,k) for 1 ≤ k ≤ Ki, the solution

of the discrete Riccati equation:

Rθ,bi,k = Rθ,bi,k+1 +4kwkCTC + ∆k

(
Rθ,bi,k+1Aθ,bi(t

d
k) +Aθ,bi(t

d
k)TRθ,bi,k+1

)
+ 42

kAθ,bi(t
d
k)TRθ,bi,k+1Aθ,bi(t

d
k)

− 4k(Id +4kAθ,bi(tdk)T )Rθ,bi,k+1BG(Rθ,bi,k+1)BTRθ,bi,k+1(Id +4kAθ,bi(tdk))

hθ,bi,k = hθ,bi,k+1 −4kwkCT ydk +4kAθ,bi(tdk)Thθ,bi,k+1

+ ∆k

(
Id + ∆kAθ,bi(t

d
k)
)T
Rθ,bi,k+1rθ,bi(t

d
k)

− ∆k(Id + ∆kAθ,bi(t
d
k))TRθ,bi,k+1BG(Rθ,bi,k+1)BT

(
hθ,bi,k+1 + ∆kRθ,bi,k+1rθ,bi(t

d
k)
)

(11)

with final condition (Rθ,bi,Ki , hθ,bi,Ki) = (CTC, −CT yini) and G(Rθ,bi,k+1) :=[
U +4kBTRθ,bi,k+1B

]−1
. Hence we get:

gi(bi | θ,∆, U) = ‖∆bi‖22 + yTiniyini

−
(
Rukθ,bi,0x

k
0,i + huθ,bi,0

)T (
Ruθ,bi,0

)−1 (
Rukθ,bi,0x

k
0,i + huθ,bi,0

)
+
(
xk0,i
)T
Rkθ,bi,0x

k
0,i + 2

(
hkθ,bi,0

)T
xk0,i

+
∑Km−1
k=0 4k

(
wk
(
ydk
)T
ydk +

(
2 (hθ,bi,k+1)

T
+ ∆krθ,bi(t

d
k)TRθ,bi,k+1

)
rθ,bi(t

d
k)
)

−
∑Km−1
k=0 4k

(
hθ,bi,k+1 + ∆kRθ,bi,k+1rθ,bi(t

d
k)
)T
BG(Rθ,bi,k+1)BT

(
hθ,bi,k+1 + ∆kRθ,bi,k+1rθ,bi(t

d
k)
)

(12)

where Ruθ,bi,0, R
uk
θ,bi,0

, Rkθ,bi,0, huθ,bi,0 and hkθ,bi,0 are given by the following decom-

position Rθ,bi,0 :=

 Ruθ,bi,0 Rukθ,bi,0(
Rukθ,bi,0

)T
Rkθ,bi,0

 and hθ,bi,0 :=
(
huθ,bi,0 hkθ,bi,0

)
.

13



Moreover, the control udi,θ,bi which minimizes the cost (10) is unique and equal

to:

udi,θ,bi(t
d
k) = −G(Rθ,bi,k+1)BT

(
Rθ,bi,k+1

((
Id +4kAθ,bi(tdk)

)
X
d

θ,bi(t
d
k) + ∆krθ,bi(t

d
k)
)

+ hθ,bi,k+1

)
(13)

where X
d

θ,bi is the optimal trajectory, i.e. the solution of the initial value prob-

lem:
X
d

θ,bi(t
d
k+1) =

(
Id +4kAθ,bi(tdk)

)
X
d

θ,bi(t
d
k) + ∆krθ,bi(t

d
k)

− 4kBG(Rθ,bi,k+1)BTRθ,bi,k+1

((
Id +4kAθ,bi(tdk)

)
X
d

θ,bi(tk) + ∆krθ,bi(t
d
k)
)

− 4kBG(Rθ,bi,k+1)BThθ,bi,k+1

(14)

with estimator x̂ui,0 = −
(
Ruθ,bi,0

)−1 (
Rukθ,bi,0x

k
0 + huθ,bi,0

)
for xui,0.

3.2.2. Non-linear models

We adapt the method proposed by [36] to solve tracking problem for discrete

time models. The outline of the method is the following: we replace the original

problem (10) by a recursive sequence of problems, where the l-th one is defined

by:

minudi C
d,l
i (bi, xi,0, u

d
i | θ, U) :=

∥∥∥CXd,l

θ,bi,xi,0,udi
(tini)− yini

∥∥∥2

2

+
∑Ki−1
k=0 4k

(∥∥∥CXd,l

θ,bi,xi,0,udi
(tdk)− ydk

∥∥∥2

2
wk + ui(tk)TUui(tk)

)
such that

 xi(t
d
k+1) =

(
Id + ∆kAθ,bi(t

d
k, X

d,l−1

θ,bi (tdk))
)
xi(t

d
k) + ∆krθ,bi(t

d
k) +B∆kui(tk)

xi(0) = xi,0.

(15)

where X
d,l−1

θ,bi is the solution of problem (15) at iteration l − 1. Thus, for each

l, the matrix Aθ,bi(t
d
k, X

d,l−1

θ,bi (tdk)) does not depend on xi and the problem (15)205

is solved using proposition 3.1. We then construct the following algorithm:

1. Initialization phase: X
u,d,0

θ,bi (tdk) = xu,ri,0 for all k ∈ J0, niK where xu,ri,0 is an

arbitrary starting point for the unknown initial condition and X
k,d,0

θ,bi (tdk) =

xki,0.

2. At iteration l: use proposition 3.1 to obtain (Rlθ,bi , h
l
θ,bi

), ud,li,θ,bi ,X
d,l

θ,bi and210

gli(bi | θ,∆, U).
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3. If
∑Ki
k=1

∥∥∥Xd,l
θ,bi

(tdk)−Xd,l−1
θ,bi

(tdk)
∥∥∥2

2
< ε1 and

∣∣gli(bi | θ,∆, U)− gl−1
i (bi | θ,∆, U)

∣∣ <
ε2, then step 4; otherwise get back to step 2.

4. Set (Rθ,bi , hθ,bi) = (Rlθ,bi , h
l
θ,bi

) , udi,θ,bi = ud,li,θ,bi , X
d

θ,bi = X
d,l

θ,bi and

gi(bi | θ,∆, U) = gli(bi | θ,∆, U).215

4. Asymptotic Variance-Covariance matrix estimator for
(
θ̂, ∆̂

)
In this section, we derive an estimator of the asymptotic variance of

(
θ̂, ∆̂

)
.

We highlight that in practice the matrix ∆ is parametrized by a vector δ of

dimension q′, i.e 4 := 4(δ). We give here a variance estimator of
(
θ̂, δ̂
)
. The

variance of ∆̂ can be obtained using classic delta-methods (see [38] chapter 3).220

We introduce the function h(bi, θ,∆,yi) = ‖∆bi‖22 +
∑
j

∥∥CXθ,bi(tij)− yij
∥∥2

2
in

order to present sufficient conditions ensuring our estimator is asymptotically

normal:

1. the function G̃ [θ,∆(δ)] = −0.5 (doE [n1] + q) ln

(
limn

1
n

∑n
i E[h(̂b(θ,∆(δ)),θ,∆(δ),yi)]

doE[n1]+q

)
+

ln |∆(δ)| has a well separated minimum
(
θ, δ
)

belonging to the interior of225

a compact Θ× Ω,

2. the true initial condition distributions {Γ ∗i }i∈J1,nK have finite variance and

either

(a) they are identicals Γ ∗i = Γ ∗ or

(b) are such that for ν = 0 and ν = 1:

lim
n−→∞

1(
V (ν)

)2E
[

n∑
i=1

(
h

(ν)
(yi)− E

[
h

(ν)
(yi)

])2

1{h(yi)−E[h(yi)]>ε
√
V (ν)}

]

where h
(ν)

(yi) = d(ν)h
d(ν)(θ,δ)

(̂bi(θ,∆(δ)), θ,∆(δ),yi) and V (ν) =

√∑
i V ar(h

(ν)
(yi))2,230

3. the subject specific number of observations {ni}i∈J1,nK are i.i.d and uni-

formly bounded,
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4. for all possibles values (θ, bi), the solution Xθ,bi,x∗
0,i

belongs to a compact

χ of Rd, and for all (t, θ, x), the mapping bi 7−→ fθ,bi(t, x) has a compact

support Θb,235

5. (θ, bi, t, x) 7−→ fθ,bi(t, x) belongs to C1(Θ×Θb × [0, T ]× χ,Rd),

6. the matrices ∂2

∂2bi
gi(b̂i

(
θ,∆(δ)

)
| θ,∆(δ), U) and ∂2Ci

∂2x0,i
(b̂i
(
θ,∆(δ)

)
, Xθ,̂bi(θ,∆(δ))(0), uθ,̂bi(θ,∆(δ)) |

θ, U) are of full rank almost surely for every sequence yi,

7. there is a neighborhood Θθ of θ such that (θ, bi, t, x) 7−→ fθ,bi(t, x) ∈

C5(Θθ ×Θb × [0, T ]× χ,Rd).240

Condition 2b is here to ensure asymptotic normality for non identically dis-

tributed random variables via Lindeberg-Feller theorem. Conditions 1-4 are

used to derive the consistency of our estimator toward
(
θ, δ
)

by following classic

steps for M-estimator by proving 1/the uniform convergence of our stochastic

cost function to a deterministic one, 2/the existence of a well-separated mini-245

mum for this deterministic function [38]. Conditions 6-7 ensures that our cost

function is asymptotically smooth enough in the vicinity of
(
θ, δ
)

to proceed

to a Taylor expansion and transfer the regularity of the cost function to the

asymptotic behavior of
√
n(θ̂ − θ, δ̂ − δ). Less restrictive conditions can be es-

tablished under which our estimator is still asymptotically normal, in particular250

regarding fθ,bi regularity with respect to t.

Theorem 4.1. Under conditions 1-7, there is a model dependent lower bound

λ such that if ‖U‖2 > λ then the estimator
(
θ̂, δ̂
)

is asymptotically normal and:

√
n(θ̂ − θ, δ̂ − δ) N

(
0, A(θ, δ)−1B(θ, δ)

(
A(θ, δ)−1

)T)
where A(θ, δ) = limn

1
n

∑n
i=1

[
∂J̃(θ,δ,yi)
∂(θ,δ)

]
, B(θ, δ) = limn

1
n

[∑
i J̃(θ, δ,yi)J̃(θ, δ,yi)

T
]

and the vector valued function J̃(θ, δ,yi) =

 J̃θ(θ, δ,yi)

J̃δ(θ, δ,yi)

 is given by:

J̃θ(θ, δ,yi) = d
dθh(̂b(θ,∆(δ)), θ,∆(δ), yi)

J̃δ(θ, δ,yi) = d
dδh(̂bi(θ,∆(δ)), θ,∆(δ), yi)− 2

doE[n1]+qTr
(
4(δ)−1 ∂4(δ)

∂δk

)
h(̂bi(θ,∆(δ)), θ,∆(δ), yi).
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The proof is left in appendix C. The practical interest of this theorem is to

give an estimator of Variance-Covariance V (θ̂, δ̂) ' Â(θ̂, δ̂)−1B̂(θ̂, δ̂)
(
Â(θ̂, δ̂)−1

)T
/n

with the matrices Â(θ̂, δ̂) = − 1
n

∑n
i=1

∂J(θ̂,δ̂,yi)
∂(θ,δ) and B̂ = 1

n

∑n
i=1 J(θ̂, δ̂,yi)J(θ̂, δ̂,yi)

Twhere

the (p+ q) components of the vector valued function J for 1 ≤ k ≤ p are given

by

Jk(θ, δ,yi) =
d

dθk
h(̂b(θ,∆(δ)), θ,∆(δ),yi)

and for p+ 1 ≤ k ≤ p+ q by

Jk(θ, δ,yi) =
d

dδk
h(̂bi(θ,∆(δ)), θ,∆(δ),yi)−

2n

do
∑
i ni + qn

Tr

(
4(δ)−1 ∂4(δ)

∂δk

)
h(̂bi(θ,∆(δ)), θ,∆(δ),yi).

Now that we have proven the existence of the variance matrix V (θ∗, δ∗) such

that δ̂ − δ∗  N (0, V (θ∗, δ∗)), we can use the Delta method to derive the

asymptotic normality of the original matrix Ψ
(
δ̂
)

= σ2
(

∆(δ̂)T∆(δ̂)
)−1

as

well as an estimator of its asymptotic variance. In the case of a diagonal matrix

Ψ, composed of the elements
(
Ψ2

1, . . .Ψ
2
q

)
and of the parametrization 4(δ) =

eδ1 0 0

0
. . . 0

0 0 eδq

 used in section 5, we derive:


Ψ1(δ̂)

...

Ψq(δ̂)

−


Ψ1(δ∗)
...

Ψq(δ
∗)

 N

0, σ2


e−δ

∗
1 0 0

0
. . . 0

0 0 e−δ
∗
q

V (θ∗, δ∗)


e−δ

∗
1 0 0

0
. . . 0

0 0 e−δ
∗
q


 .

Remark 4.1. The previous theorem 4.1 states that we retrieve a parametric

convergence rate despite a number of nuisance parameter increasing with the

number of subjects. We avoid the pitfall described in [39] for profiled methods,

thanks to the i.i.d structure of the nuisance parameters. This allows us to pre-255

vent bias accumulation for score functions among subjects by using the central

limit theorem.

5. Results on simulated data

We compare the accuracy of our approach with maximum likelihood (ML) in

different models and experimental designs reflecting the problems exposed in in-260
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troduction, that is estimation in 1/presence of model error, 2/partially observed

framework with unknown initial conditions and 3/presence of poorly identi-

fiable parameters. For the fairness of comparison with ML, we choose a non-

informative one i.e. lnP [θ,∆] = 0 for our method throughout this section. If the

ODE (1) has an analytical solution, the ML estimator is computed via SAEM265

algorithm (SAEMIX package [7]). Otherwise, it is done via a restricted likeli-

hood method dedicated to ODE models implemented in the nlmeODE package

[13]. We proceed to Monte-Carlo simulations based on NMC = 100 runs. At

each run, we generate ni observations coming from n subjects on an observa-

tion interval [0, T ] with Gaussian measurement noise of standard deviation σ∗.270

From these data, we estimate θ∗, Ψ∗ and b∗i with both estimation methods. We

quantify the accuracy of each entry ψ̂p of the population parameters estimate

ψ̂ =
(
θ̂, Ψ̂

)
via Monte-Carlo computation of the bias Bias(ψ̂p) = E

[
ψ̂p

]
− ψ∗p,

the empirical variance V e(ψ̂p) = E
[(

E
[
ψ̂p

]
− ψ∗p

)2
]
, the mean square error

MSE(ψ̂p) = Bias(ψ̂p)
2 + Vemp(ψ̂p), the estimated variance V̂

(
ψ̂p

)
as well as275

the coverage rate of the 95%-confidence interval derived from it. This coverage

rate, denoted CR in the following results, corresponds to the frequency at which

the interval

[
ψ̂p ± z0.975

√
V̂
(
ψ̂p

)]
contains ψ∗p with z0.975 the 0.975−quantile

of the centered Gaussian law. We compute the previous quantities for the nor-

malized values ψ̂normp :=
ψ̂p
ψ∗
p

to make relevant comparisons among parameters280

with different order of magnitude. For b∗i , we estimate the mean square error

MSE(̂bi) = E
[∥∥∥b∗i − b̂i∥∥∥2

2

]
. For each subsequent examples, we give the results

for n = 50 and present in appendix B the case n = 20 to analyze the evolution

of each estimator accuracy with respect to data sparsity.

For our method, we need to select U balancing model and data fidelity285

in the inner criteria (4). We use the method presented in [40] to compute

EPi(U), the prediction error for the subject i corresponding to the estima-

tors θ̂U ,
{
b̂i,U

}
i∈J1, nK

obtained for a given matrix U . From this, we compute

EP(U) =
∑
i EPi(U) the global prediction error for the whole population. We

retain the matrix U minimizing EP among a trial of tested values and we de-290
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note θ̂, Ψ̂,
{
b̂i,

}
i∈J1, nK

the corresponding estimator. In the following, we use the

superscript ML to denote the ML estimator.

For solving the optimization problems required for computing our inner and

outer criteria, we use the Nelder-Mead algorithm implemented in the optimr

package [41]. All optimization algorithms used here require a starting guess295

value. We start from the true parameter value for each of them. By doing

so, we aim to do not mix two distinct problems: 1)the numerical stability of

the estimation procedures, 2)the intrinsic accuracy of the different estimators.

These two problems are correlated, but we aim to adress only the latter which

corresponds to the issues raised in introduction. Still, we check on preliminary300

analysis that local minima presence was not an issue in the vicinity of (θ∗,4∗)

by testing different starting points for all methods. No problem appears for

our method and SAEMIX. A negligible number of non convergence cases ap-

pear for nlmODE which have been discarded thanks to the convergence criteria

embedded in the package.305

5.1. Partially observed linear model

We consider the population model where each subject i follows the ODE:
Ẋ1,i = φ2,iX2,i − φ1,iX1,i

Ẋ2,i = −φ2,iX2,i

(X1,i(0), X2,i(0)) = (x1,0, x2,0,i)

(16)

with the following parametrization: log(φ1,i) = θ1 + bi and log(φ2,i) = θ2 where

bi ∼ N(0,Ψ). The true population parameter values are θ∗ = (θ∗1 , θ
∗
2) =

(log (0.5) , log (2)) and Ψ∗ = 0.52 and we are in a partially observed frame-

work where only X1,i is accessible. The true initial conditions are distributed310

with x∗1,0,i ∼ N(2, 0.5) and x∗2,0,i ∼ N(3, 1). ODE (16) has an analytic solution

given by X1,i(t) = e−φ1,it(x1,0 +
x2,0φ2,i

φ1,i−φ2,i
(e(φ1,i−φ2,i)t − 1)) for its first compo-

nent which will be used for estimation with the SAEMIX package. We generate

ni = 11 observations per subject on [0, T ] = [0, 10] with measurement noise of

standard deviation σ = 0.05. An example of observations and corresponding315

solution is plotted in figure 1.
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Figure 1: Left: Examples of (16) solutions and corresponding observations. Right: Solution

of (16) and a realization of (17) for the same parameter values.

We want to investigate the impact of initial condition, especially the unob-

served one x∗2,0,i, on the ML estimator accuracy. Indeed, our method does not

need to estimate x∗2,0,i and thus no additional difficulties appear in this par-

tially observed framework. For the ML, however, it is nuisance subject-specific320

parameter that should be estimated and for which no observations are avail-

able. For this, we compute θ̂ML
x0

, θ̂ML
x0,2

and θ̂ML the ML estimator respectively

when: 1) both initial conditions are perfectly known, 2) x∗1,0,i is replaced by the

measured value, 3)in addition x∗2,0,i has to be estimated.

5.1.1. Correct model case325

We present the estimation results in table 1. For ML, the results are goods

in terms of accuracy and consistent in terms of asymptotic confidence inter-

val coverage rate when both initial conditions are known: 95% for θ1 and θ2

in accordance with theoretical results. However, there is a significant drop in

accuracy when x∗2,0,i has to be estimated, especially for θ2. In particular, the330

coverage rate drops to 86% and 80% for θ1 and θ2 respectively. Interestingly,

ML inaccuracy is driven by bias and under-estimated variance when initial con-

ditions are not known. In this case our method provides a relevant alternative:

it gives accurate estimations with a good coverage rate for all parameters while
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Well-specified Misspecified

MSE Bias V e V̂ CR MSE bi MSE Bias V e V̂ CR MSE bi

θ1

θ̂ML
x0

0.01 0.01 0.01 0.01 0.95 0.01 4e-4 0.01 0.01 0.91

θ̂ML
x0,2

0.01 0.01 0.01 0.01 0.94 0.01 -3e-4 0.01 1e-4 0.89

θ̂ML 0.04 -0.04 0.04 0.01 0.86 0.05 0.02 0.05 0.01 0.81

θ̂ 5e-3 8e-3 8e-3 1e-2 0.97 0.01 -8e-3 7e-3 0.05 0.97

θ2

θ̂ML
x0

4e-5 1e-3 4e-5 4e-5 0.95 1e-4 -1e-3 1e-4 1e-4 0.83

θ̂ML
x0,2

6e-5 1e-3 6e-5 8e-5 0.94 1e-4 -1e-3 2e-4 0.01 0.82

θ̂ML 4e-3 -0.01 3e-3 1e-4 0.80 4e-3 -2e-3 4e-3 2e-4 0.63

θ̂ 5e-5 2e-3 4e-5 4e-5 0.93 1e-4 2e-5 1e-4 1e-4 0.92

Ψ

θ̂ML
x0

0.01 -0.03 0.01 7e-3 1 5e-3 0.01 -0.003 0.01 0.01 1 0.01

θ̂ML
x0,2

0.02 -0.03 0.01 7e-3 1 5e-3 0.01 -0.005 0.01 0.01 1 0.01

θ̂ML 0.05 0.17 0.02 0.02 1 0.10 0.09 0.21 0.04 0.03 1 0.12

θ̂ 0.01 -0.01 0.01 0.01 0.92 0.01 0.02 -0.02 0.02 0.01 0.90 0.01

Table 1: Results of estimation for model (16). The different subscripts stand for the following

estimation scenarios: 1)x0 when both initial conditions are set to
(
x∗0,1, x

∗
0,2

)
, 2)x0,2 when

x0,i is set to yi,0 and x0,2 to x∗0,2, 3/absence of subscript when x0,i is set to yi,0 and x0,2 is

estimated. Results from our method are in bold.

avoiding the estimation of x∗2,0,i. Estimation of individual random effects is also335

more accurate with our method, with a decrease of more than 90% of MSE for

bi comparing to ML.

5.1.2. Estimation in presence of model error at the subject level

To mimic misspecification presence, we now generate the observations from

the hypoelliptic stochastic model:
dX1,i = φ2,iX2,idt− φ1,iX1,idt

dX2,i = −φ2,iX2,idt+ αdBt

(X1,i(0), X2,i(0)) = (x1,0, x2,0,i)

(17)

with Bt a Wiener process and α = 0.1 the diffusion coefficient. For the sake

of comparison, a solution of (16) and a realization of its perturbed counterpart340
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given by (17) are plotted in figure 1. This framework where stochasticity only

affects the unmeasured compartment is known to be problematic for parameter

estimation and inference procedures are yet to be developed for sparse sampling

case. From figure 1 it is easy to see the diffusion α will be hard to estimate

when we only have observations for X1,i. Thus, we still estimate the parame-345

ters from the model (16) which is now seen as a deterministic approximation of

the true stochastic process. Still, it is expected that our method will mitigate

the effect of stochasticity on the estimation accuracy by taking into account

model error presence. Results are presented in table 1. The differences between

the two methods are similar to the previous well-specified case with an addi-350

tional loss of accuracy coming from model error for both estimators. However,

the misspecification effect for SAEM is more pronounced than for our method

which manages to limit the damages done. This confirms the benefits of taking

into account model uncertainty for the regularization of the inverse problem, in

particular when model error occurs in the unobserved compartment, a situation355

in which classic statistical criteria for model assessment based on a data fitting

criterion are difficult to use.

5.2. Partially observed nonlinear model

We consider a simplified version of the model used in [13] for the analysis of

glucose and insulin regulation:
Ġi = SG(GB −Gi)−XiGi

İi = γt(Gi − h)− ni(Ii − IB)

Ẋi = −p2(Xi + SI(Ii − IB)).

(18)

We are in a partially observed case where only the glucose (Gi) and insulin (Ii)

concentration are measured. The values of parameters (p2, γ, h,GB , IB) are set

to (−4.93,−6.85, 4.14, 100, 100) and we aim to estimate θ = (θSG , θSI , θn), linked

to the original model via the parametrization: log(SG) = θSG , log(SI) = θSI

and log(ni) = θn + bi where bi ∼ N(0,Ψ). The true population parameter val-

ues are θ∗ = (−3.89, −7.09, −1.81) and Ψ∗ = 0.262. The true subject-specific

22



initial conditions x∗i,0 =
(
G∗0,i, I

∗
0,i, X

∗
0,i

)
are distributed according ln(x∗i,0) ∼

N(lx∗
0
,Ψlx∗0

) with lx∗
0

= (5.52, 4.88,−7) and Ψlx∗0
=
(
0.172, 0.12, 10−4

)
. We

generate ni = 5 observations on [0, T ] = [0, 180] with Gaussian measurement

noise of standard deviation σ∗ = 3. As in the previous example, we investi-

gate the impact of unknown initial conditions on estimators accuracy. We are

particularly interested by the joint estimation of θSI , which appears only in

the equation ruling the unobserved state variable Xi, and x∗0,i required for each

subject by the maximum likelihood based method. For this, we distinguish two

cases, 1)when θSI is known, 2)when θSI has to be estimated and we respectively

denote θ̂Si and θ̂ the corresponding estimators. Finally, since the model is non-

linear we have to specify a pseudo-linear representation of the vector field as in

(7):

Aθ,bi (t, Gi, Ii, Xi) =


−SG 0 −Gi
γt −ni 0

0 −p2SI −p2

 , rθ,bi (t) =


SGGB

−γth+ niIB

−p2SIIB

 .

5.2.1. Correct model case

We present the estimation results in table 2. Our method obtains smaller360

MSE than ML and escapes the drop in coverage rate of the confidence interval in

the case of θ∗SI estimation. The difference between the two estimators behavior

is explained by the fact that they are defined through the construction of two

different optimization problems. At the population level, our approach leads

to minimize a cost function depending on a 4-dimensional parameter whereas365

ML, due to its need to estimate x∗i,0, considers a 10-dimensional one. Thus,

the topology of the parameter spaces explored by each method to look for the

minimum are very different.
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Well-specified Misspecified

MSE Bias V e V̂ CR MSE bi MSE Bias V e V̂ CR MSE bi

θSG

θ̂ML
Si

5e-5 2e-3 4e-5 9e-6 0.95 6e-5 3e-3 6e-5 2e-5 0.85

θ̂ML 2e-3 0.03 1e-3 8e-5 0.85 2e-3 3e-3 1e-3 2e-4 0.54

θ̂Si 1e-5 4e-4 1e-5 8e-6 0.95 2e-5 -2e-5 2e-5 2e-5 0.93

θ̂ 2e-4 -6e-4 2e-4 2e-4 0.96 3e-4 -1e-3 3e-4 4e-4 0.93

θSI

θ̂ML
Si

known known

θ̂ML 2e-3 0.03 1e-3 6e-5 0.90 0.01 0.04 0.01 1e-3 0.55

θ̂Si known known

θ̂ 1e-4 -7e-4 1e-4 1e-4 0.96 3e-4 -1e-3 3e-4 3e-4 0.92

θn

θ̂ML
Si

7e-4 3e-3 6e-4 5e-4 0.94 8e-4 -3e-3 8e-4 5e-4 0.89

θ̂ML 9e-4 8e-3 8e-4 5e-4 0.86 5e-3 -5e-3 5e-3 5e-4 0.88

θ̂Si 5e-4 6e-3 5e-4 5e-4 0.95 4-4 7e-4 4e-4 5e-4 0.95

θ̂ 6e-4 6e-3 5e-4 5e-4 0.95 4e-4 6e-4 4e-4 5e-4 0.96

Ψ

θ̂ML
Si

0.02 7e-4 0.02 0.02 0.95 0.02 0.03 -3e-3 0.03 0.02 0.93 0.03

θ̂ML 0.04 -0.09 0.03 0.02 0.88 0.02 0.03 -8e-3 0.02 0.02 0.87 0.03

θ̂Si 0.01 -2e-3 0.01 0.01 0.95 0.01 0.01 -4e-3 0.01 0.02 0.94 0.01

θ̂ 0.01 3e-3 0.01 0.01 0.94 0.01 0.02 -7e-3 0.02 0.02 0.94 0.02

Table 2: Results of estimation for model (18). The different subscripts stand for the following

estimation scenarios: 1)Si when Si is set to S∗
i , 2)absence of subscript when Si is estimated.

Results from our method are in bold.
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5.2.2. Estimation in presence of model error at the subject level

To mimic misspecification presence, we generate the observations from the

stochastic model:
dGi = (SG(GB −Gi)−XiGi) dt+ α1dB1,t

dIi = (γt(Gi − h)− ni(Ii − IB))dt+ α2dB2,t

dXi = (−p2(Xi + SI(Ii − IB))) dt+ α3dB3,t

(19)

where the Bi,t are Wiener processes and (α1, α2, α3) =
(
2, 2, 2× 10−4

)
their370

diffusion coefficients. We present the estimation results in table 2. For ML, the

drop in coverage rate for θ∗SG and θ∗SI is even more striking when θ∗SI needs to

be estimated. This is explained by the effect of model misspecification which

increases bias and the fact that ML does not take into account this new source

of uncertainty which leads to under-estimation of variance and too narrow con-375

fidence intervals.

5.3. Antibody concentration evolution model

We consider the model presented in [31] to analyze the antibody concentra-

tion, denoted Ai, generated by two populations of antibody secreting cells: the

short lived, denoted Si, and the long-lived, denoted Li:

Ṡi = −δSSi
L̇i = −δLLi
Ȧi = ϑS,iSi + ϑL,iLi − δAb,iAi
(Si(0), Li(0), Ai(0)) = (S0,i, L0,i, A0,i) .

(20)

This model is used to quantify the humoral response on different populations

after an Ebola vaccine injection with a 2 doses regimen seven days after the

second injection when the antibody secreting cells enter in a decreasing phase.

These cells being unobserved, the preceding equation can be simplified to focus

on antibody concentration evolution:

Ȧi = φS,ie
−δSt + φL,ie

−δLt − δAb,iAi (21)

with φS,i := ϑS,iS0,i and φL,i := ϑL,iL0,i. This equation has an analytic solu-

tion which will be used for maximum likelihood estimation with SAEMIX. We
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Parameters Biological interpretation Values

δL long-lived B-cells declining rate log(2)/(364× 6)

θ∗

θ∗δS
Mean log-value for δS , the short-lived cells declining rate log(log(2)/1.2) ' −0.54

θ∗φS
Mean log-value for φS , the antibodies influx from short-lived cells log(2755) ' 7.92

θ∗φL
Mean log-value for φL, the antibodies influx from long-lived cells log(16) ' 2.78

θ∗δAb
Mean log-value for δAb, the antibodies declining rate log(log(2)/24) ' −3.54

Ψ∗

Ψ∗
φS

Inter individual variance for log(φS,i) 0.922

Ψ∗
φL

Inter individual variance for log(φL,i) 0.852

Ψ∗
δAb

Inter individual variance for log(δAb,i) 0.32

Table 3: Biological interpretation and parameter values

consider the following parametrization: log(δS) = θδS , log(φS,i) = θφS + bφS ,i,380

log(φL,i) = θφL + bφL,i and log(δAb,i) = θδAb + bδAb,i. The true parameter val-

ues are presented in table 3. According to [31], the parameter δL was non-

identifiable and only a lower bound has been derived for it via profiled likelihood.

So, to make fair comparisons between our approach and maximum likelihood,

we do not estimate it. Regarding population parameters, we are particularly385

interested in the behavior of estimation methods for θδS and θφS . Indeed, a

parameter sensitivity analysis shows the symmetric role of θδS and θφS on the

ODE solution (see [42]). Thus, they are likely to face practical identifiability

problems. To investigate this effect, we estimate the parameters when 1) θ∗δS is

known (the corresponding estimators will be denoted with the subscript δS), 2)390

it has to be estimated as well.

5.3.1. Correct model case

We generate ni = 11 observations on the interval [0, T ] = [0, 364] with mea-

surement noise of standard deviation σ∗ = 100. For each subject i, the initial

condition has been generated according to A∗0,i ∼ N(A0, σ
2
A0

) with A0 = 500395

and σA0
= 260 to reflect the dispersion observed in data presented in [31]. We

present the estimation results in table 4. Our method gives an improved

estimation with reduced variance of θ∗δS comparing to the ML. Our approach
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Well-specified Misspecified

MSE Bias V e V̂ CR MSE bi MSE Bias V e V̂ CR MSE bi

θδS

θ̂ML
δS

known known

θ̂ML 2.13 0.78 1.51 70.64 0.92 3.88 1.48 1.68 4.10 0.80

θ̂δS known known

θ̂ 0.62 -0.34 0.50 0.66 0.92 0.93 -0.40 0.77 0.62 0.90

θφS

θ̂ML
δS

4e-4 0.01 3e-4 3e-4 0.94 1e-3 0.02 1e-3 5e-4 0.91

θ̂ML 0.01 -0.05 7e-3 0.40 0.92 0.02 -0.10 0.01 0.02 0.88

θ̂δS 2e-3 -0.05 2e-4 1e-3 0.94 7e-4 -0.02 3e-4 1e-3 0.92

θ̂ 2e-3 1e-3 2e-3 2e-3 0.93 4e-3 -6e-3 3e-3 0.01 0.90

θφL

θ̂ML
δS

3e-3 0.02 3e-3 2e-3 0.95 5e-3 0.03 4e-3 3e-3 0.93

θ̂ML 4e-3 0.03 4e-3 3e-3 0.90 9e-3 0.05 7e-3 4e-3 0.90

θ̂δS 7e-4 -0.01 5e-4 3e-3 0.95 2e-3 -0.02 3e-3 2e-3 0.97

θ̂ 3e-3 -3e-3 3e-3 2e-3 0.91 6e-3 -8e-3 6e-3 7e-3 0.90

θδAb

θ̂ML
δS

7e-4 -0.02 5e-4 3e-4 0.93 2e-3 -0.03 1e-3 1e-3 0.92

θ̂ML 2e-3 -0.02 1e-3 4e-4 0.88 4e-3 -0.04 3e-3 7e-4 0.88

θ̂δS 2e-4 0.01 1e-4 3e-4 0.95 3e-4 2e-3 3e-4 3e-4 0.96

θ̂ 4e-4 0.01 3e-4 2e-4 0.90 3e-4 8e-3 3e-4 2e-3 0.89

ΨφS

θ̂ML
δS

0.04 -1e-3 0.04 0.07 1 0.15 0.05 0.03 0.05 0.08 1 0.17

θ̂ML 0.11 0.01 0.11 0.05 1 0.17 0.13 0.01 0.13 0.25 1 0.21

θ̂δS 0.02 8e-3 0.02 0.01 0.94 0.06 0.02 2e-3 0.02 0.02 0.94 0.11

θ̂ 0.02 -0.03 0.02 0.02 0.94 0.07 0.02 -0.05 0.02 0.03 0.92 0.08

ΨφL

θ̂ML
δS

0.03 0.04 0.02 0.04 1 0.30 0.05 0.03 0.05 0.06 1 0.73

θ̂ML 0.03 0.05 0.02 0.04 1 0.60 0.03 0.05 0.02 0.07 1 0.74

θ̂δS 0.02 -0.1 5e-3 8e-3 0.93 0.07 0.02 -0.10 0.01 0.02 0.91 0.10

θ̂ 0.03 -0.06 0.02 0.01 0.92 0.08 0.03 -0.06 0.02 0.03 0.87 0.12

ΨδAb

θ̂ML
δS

0.11 0.18 0.08 0.02 1 0.10 0.33 0.41 0.17 0.05 1 0.56

θ̂ML 0.20 0.29 0.11 0.02 1 0.50 0.30 0.34 0.19 0.05 1 0.69

θ̂δS 0.10 -0.30 0.01 0.01 0.95 0.03 0.10 -0.16 0.08 0.06 0.91 0.04

θ̂ 0.11 -0.27 0.04 0.04 0.95 0.04 0.15 -0.29 0.06 0.10 0.88 0.06

Table 4: Results of estimation for model (21). The different subscripts stand for the following

estimation scenarios: 1)δS when θδS is set to θ∗δS
, 2)absence of subscript when θδS is estimated.

Results from our method are in bold.
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provides an improved estimate for the {b∗i }i∈J1, nK. We assume that is due to the

committed estimation error for θ∗, as it causes model error for {b∗i }i∈J1, nK esti-400

mation, which is not taken into account by exact methods. This in turn explains

why their variance Ψ∗ is better estimated with our approach. In this mixed-

effect context, this cause of model error is systematically present and claims for

the use of estimation methods taking into account modeling uncertainties when

subject specific parameters are critical for the practitioner.405

5.3.2. Estimation in presence of model error at the subject level

The data are now generated with a stochastic perturbed version of the orig-

inal model:

dAi =
(
φS,ie

−δSt + φL,ie
−δLt − δAb,iAi

)
dt+ αdBt (22)

where Bt is a Wiener process and α = 10 its diffusion coefficient. The value

for α has been chosen big enough to produce significantly perturbed trajecto-

ries but small enough to ensure that ODE (21) is still a relevant approximation

for estimation purpose. The results are presented in table 4. Our method still410

outperforms the maximum likelihood for θ∗δS as well as the {b∗i }i∈[1, n] estima-

tion and their variances. In addition, we mitigate the effect of model error on

estimation accuracy.

6. Real data analysis

We now proceed to the estimation starting from real data presented in

[31] from which the parameter values given in table 3 come from. In [31],

the estimation is made from cohorts coming from three phase I trials per-

formed in African and European countries. Each subject was vaccinated with

two doses, Ad26.ZEBOV (Janssen Vaccines and Prevention) and MVA-BN-

Filo (Bavarian Nordic). In these cohorts, both the effect of injection order,

either Ad26.ZEBOV first and MVA-BN-Filo second, or MVA-BN-Filo first and

Ad26.ZEBOV second, and the delay between, 28 or 56 days, were evaluated. In

this study, we focus on an east African subpopulation where Ad26.ZEBOV
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was injected first and then MVA-BN-Filo with a delay of 28 days between

the two doses. As in [31] to stay in the temporal domain of validity of the

model, we use the 5 measurements per subject made seven days after the sec-

ond dose injection. The estimation in the original work has been done using

the NIMROD software [12] and log-transformed antibody concentration mea-

surement. We now estimate the parameters with our method with the aim to

compare our results with the existing one. We used the same prior distribution

π(θ) ∼ N




−1

0

0

−4.1

 ,


25 0 0 0

0 100 0 0

0 0 100 0

0 0 0 1



 for θ = (θδS , θφS , θφL , θδAb)

as them. We set our mesh-size to get 200 discretization points for each subject

on the observation interval and we use U = 10 i.e. a value lower than in the

simulated data case because of the model error presence. We also proceed to

the log-transformation of the data to stabilize the measurement noise variance.

This drives us to use the nonlinear model:

˙̃
Ai(t) =

1

ln(10)

(
φS,ie

−δSt + φL,ie
−δLt

)
10−Ãi(t) − δAb,i

ln(10)
(23)

describing the dynamic of Ãi(t) := log10Ai(t) for parameter estimation purpose.415

We use Aθ,bi(t, x, zi(t)) = 1
ln(10)

(
φS,ie

−δSt + φL,ie
−δLt

)
10−x

x and rθ,bi(t, zi(t)) =

− δAb,i
ln(10) for the pseudo-linear formulation of the model. Our estimation and the

one from the original paper [31] are presented in Table 5. In the following, we

denote
(
θ̂P , b̂i

P
)

(respectively
(
θ̂, b̂i

)
) the estimation obtained by [31] (respec-

tively our approach). Both methods produce estimations with overlapping con-420

fidence intervals for θ. Still, significant differences appear for (ΨφS ,ΨφL ,ΨδAb)

estimation which quantifies the dispersion of random effects. We only consider

a subset of the subjects used in [31] for estimation. This has an effect on the

observed diversity within the cohort of patients and thus on (ΨφS ,ΨφL ,ΨδAb)

estimation. Regarding the predictions, we present in figure 2 examples of esti-425

mated trajectories.

The confidence intervals are computed via Monte-Carlo sampling from the

29



2.5

3.0

3.5

0 100 200 300
Time: 7 days after second dose injection (Days)

E
LI

S
A

 u
ni

ts
/m

l

OCA based estimation NIMROD based estimation

Estimated trajectories 

2.4

2.8

3.2

3.6

0 100 200 300
Time: 7 days after second dose injection (Days)

E
LI

S
A

 u
ni

ts
/m

l

OCA based estimation NIMROD based estimation

Estimated trajectories 

2.5

3.0

3.5

0 100 200 300
Time: 7 days after second dose injection (Days)

E
LI

S
A

 u
ni

ts
/m

l

OCA based estimation NIMROD based estimation

Estimated trajectories 

2.0

2.5

3.0

3.5

0 100 200 300
Time: 7 days after second dose injection (Days)

E
LI

S
A

 u
ni

ts
/m

l

OCA based estimation NIMROD based estimation

Estimated trajectories 

Figure 2: Examples of fitted trajectories for both methods for different subjects. Here

Time=0 is the 7th day post-second dose. Dashed lines: fitted ODE solutions (23) with(
θ̂P , b̂i

P
)

. Solid line: optimal trajectories X
θ̂,b̂i

. Shaded area are the 95% confidence inter-

vals.
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θδS θφS θφL θδAb

Pasin et al. -0.57 [-1.02, -0.02] 7.92 [7.52, 8.30] 2.78 [2.62, 3.01] -3.54 [-3.62, -3.45]

OCA -0.18 [-0.58, 0.22] 7.45 [6.85, 7.96] 2.58 [2.15, 3.01] -3.48 [-3.95, -3.01]

ΨφS ΨφL ΨδAb

Pasin et al. 0.92 [0.83, 1.01] 0.85 [0.78, 0.92] 0.3 [0.24, 0.36]

OCA 0.64 [0.60, 0.70] 0.70 [0.55, 0.90] 0.25 [0.19, 0.31]

Table 5: Estimation presented in [31]and via our approach.

approximated normal laws N (θ̂, V (θ̂)) and N (θ̂P , V (θ̂P )) to quantify the effect

of estimation uncertainy on θ on the prediction. For NIMROD estimation, for

a given sampled value θ̃P ∼ N (θ̂P , V (θ̂P )) and subject i, the sampled regres-430

sion function X
θ̃P ,b̂i

P
,y0,i

is obtained by solving ODE (23) for parameter values

(θ, bi, x0,i) =
(
θ̃P , b̂i

P
, y0,i

)
. Regarding our approach, for θ̃ ∼ N (θ̂, V (θ̂)) the

sampled regression function for subject i is the optimal trajectory X θ̃,b̂i
obtained

via the minimization of the cost function Ci(b̂i, xi,0, ui | θ̃, U). This imposes a

common goal of data fidelity to each sampled X θ̃,b̂i
which limits their inter-435

variability. This explain the differences between the two confidence intervals in

terms of shape and width and why our method gives narrower intervals. Still,

despite these differences in shapes, both prediction intervals cover the same

points. Morever, on the long-term our intervals are nearly always contained in

the ones given by NIMROD.440

Our estimation of θ supports the parameter inference obtained in [31] via

another method and the subsequent analysis made on the antibody concentra-

tion dynamics. In addition to this parametric comparison, we want to assess

the model adequacy via the temporal evolution analysis of the optimal controls

ui,θ̂,bi(θ̂) estimated as byproducts of our method. Indeed, they quantify the ex-

ogenous perturbations ui we need to add to model (23) so that the solution of

its perturbed counterpart,

˙̃
Ai,u(t) =

1

ln(10)

(
φS,ie

−δSt + φL,ie
−δLt

)
10−Ãi,u(t) − δAb,i

ln(10)
+ ui (24)
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reproduce the observations. This approach is similar to the one developed in

[43] where control theory replaces non-parametric procedures to estimate ui.

For comparison, we also quantify the committed model error for
(
θ̂P , b̂i

P
)

. To

do so, we compute uPi , the solution of the optimal control problem: uPi =

arg minui

{∑
j

∥∥∥Ã
i,θ̂P ,b̂i

P
,yi0,ui

(tij)− yij
∥∥∥2

2
+ ‖ui‖2U,L2

}
. In the last expression445

Ã
i,θ̂P ,b̂i

P
,yi0,ui

is the solution of the perturbed ODE (24) for (θ, bi) =
(
θ̂P , b̂i

P
)

and yi0 is the measured concentration at t = 0 used a surrogate value for the

initial condition (as they did in [31]). We still use U = 10 for this optimal

control problem to allow for the same level of perturbation magnitude for both

methods. In figure (3), we plot ui,θ̂,bi(θ̂) and uPi as well as their mean values450

and confidence intervals.

Our method leads to residual perturbations of smaller magnitudes and nar-

rower confidence intervals. This means our approach produces an estimation

which minimizes the committed model error for each subject comparing to a

method based only on a data fitting criteria. This is particularly clear at the455

beginning of the observation interval. In this case, our narrower confidence in-

terval clearly excludes a null perturbation and advocates for an over-estimation

of the predicted antibody concentration by the model. This makes sense because

model (20) assumes that both populations of antibody secreting cells decrease

with time, and that is probably not true at the beginning of the dynamic. Thus,460

despite similar results regarding parameter values between our estimation and

[31], the insight given by our method at the dynamic scale leads us to the ad-

ditional conclusion of model misspecification presence at the beginning of the

observation interval.

7. Conclusion465

In this work, we propose an estimation method addressing issues encountered

by classic approaches for the problem of parameter estimation in NLME-ODEs.

We identify three potential sources of problems for exact methods such as like-

lihood based inference: their difficulties in presence of model error, their need
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Figure 3: 1) Up: Estimated residual controls for each subject, 2) bottom: mean optimal control

and 95% confidence interval for the optimal controls a) left: uPi obtained from parameter

estimation in [31], b) right: u
i,θ̂,bi(θ̂)

obtained from our estimation.33



to estimate initial conditions and their dramatic performance degradation when470

facing poorly identifiable parameters. We propose here a method based on con-

trol theory accounting for the presence of potential model uncertainty at the

subject level and which can be easily profiled on the initial conditions. Simula-

tions with both presence and absence of model errors illustrate the benefits of

regularization techniques for estimating poorly identifiable parameters, subject475

specific parameters as well as their variances in NLME-ODEs. In addition, by-

passing estimation of initial conditions represents a clear advantage for partially

observed systems comparing to likelihood based approaches, as emphasized in

simulations.

Still, this benefit in term of estimation accuracy comes with a computational480

price. On a server with the parallelization package Snow in R language, it takes

approximately 10-15 minutes to obtain an estimation for the two-dimensional

linear model, 30 minutes for the insulin model and 3-4 hour for the antibody

concentration evolution one, whereas it was a matter of minutes for the other

approaches. Nevertheless, the use of compiled languages and proper paralleliza-485

tion could reduce the computation time. Moreover, we have willingly separated

the formal definition of the optimal control problem required by our method

and the numerical procedure used to solve it, in case it may exists better suited

approaches for this specific control problem. Right now, our current strategy

allows us to profile on initial conditions, so looking for another numerical pro-490

cedure is beyond the scope of this paper.

An under-exploited feature of the method so far is the obtained optimal

controls. The qualitative based analysis exposed in section 6 can be made more

rigorous. For example, to stay in a Bayesian setting, we can specify a prior

distribution for the controls and then compare it with the obtained posterior495

once the inference is made. This would lead to a semi-parametric inference

problem for which an optimal control based approach has already been proven

useful (see [27]). This is a subject for further work.
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Software

Our estimation method is implemented in R and a code reproducing the500

examples of Section 5 is available on a GitHub repository located here.
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protocols based on predictions from a mechanistic model of the effect of il7520

on cd4 counts, Statistics in medicine 38 (2) (2019) 221–235.

[4] A. F. M. Lavielle, A. Samson, F. Mentre, Maximum likelihood estimation

of long terms hiv dynamic models and antiviral response., Biometrics 67

(2011) 250–259.

35

https://github.com/QuentinClairon/NLME_ODE_estimation_via_optimal_control.git


[5] J. Guedj, R. Thiebaut, D. Commenges, Maximum likelihood estimation in525

dynamical models of hiv, Biometrics 63 (2007) 1198–206.

[6] J. Pinheiro, D. M. Bates, Approximations to the loglikelihood function

in the nonlinear mixed effects model., Journal of the Computational and

Graphical Statistics 4 (1994) 12–35.

[7] E. Comets, A. Lavenu, M. Lavielle, Parameter estimation in nonlinear530

mixed effect models using saemix, an r implementation of the saem al-

gorithm, Journal of Statistical Software 80 (2017) 1–42.
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