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Abstract

High-resolution magnetic resonance imaging (MRI) provides de-
tailed anatomical information critical for clinical application diagnosis.
However, current MRIs are acquired at clinical resolutions due to the
limit of physical, technological, and economic considerations. On the
other hand, existing approaches require paired MRI images as training
data, which are difficult to obtain on existing datasets when the align-
ment between high and low-resolution images has to be implemented
manually.

Within the scope of project, we aim to provide an end-to-end sys-
tem to solve the super-resolution method on 3D MRI. Our proposed
method derives from recent neural network developments and does
not require paired data for efficient training. By integrating different
models with separated functions, our 3D super-resolution CycleGAN
(SRCycleGAN) achieved compelling results on MRI volumes. The out-
put is close with ground-truth, showing a low distortion on different
scaling factors. Besides, we also compare our method against different
GAN-based methods in this field to highlight the performance.

Deep learning, neural network, generative model, MRI, medical image
analysis, super-resolution

1 Introduction

Magnetic resonance imaging (MRI) is widely used in medical imaging be-
cause of its non-invasive assessment of the body’s anatomy and physiology
in health and disease while providing the best contrast resolution on soft tis-
sues. MRI with high quality in the clinical and research domain is preferred



because it can provide critical structural details with a smaller voxel size,
enabling accurate image analysis. However, MRI images are acquired with a
finite resolution and less spatial coverage limited by the signal-to-noise ratio
(SNR) or long-time scanning [18]. For example, a 3T MRI scanner may take
from 2 to 48 hours to produce a high-resolution (HR) output, depending on
the clinical-pathological question and the size of the area being scanned.
Thus, improving medical image quality is becoming a potential direction
with strong values for research and practical worlds.

Super-resolution (SR) is a process that produces high-resolution images
from single- or multi-frame low-resolution images. In medical analysis, it
becomes a very potential solution as a post-processing technique to increase
the spatial resolution of medical scans after the acquisition process [15].

Before learning-based methods became widely used, resolution enhance-
ment on medical images mostly relied on statistical methods such as in-
terpolation [9], dictionary mapping [12, 13], regularization [14]. However,
non-learning methods are limited by concepts of data representation. They
are not robust methods, and the performance is not stable on images with
abundant structural details.

In recent years, many learning-based methods have presented excellent
performances to improve the quality of images. Convolutional neural net-
works (CNN) can model various complex structures while keeping cost time
low for the sub-sequence process to produce output images after the train-
ing phase. Since Dong et al. [10] firstly introduced SRCNN, it has inspired
many follow-ups approaches applied on different types of medical image [4].
In terms of MRI, there are several studies based on these methods have
been proposed. For example, [20,24] proposed a dense network with full
use of hierarchical features to reconstruct high-resolution brain MRI; [16]
used a residual network to reconstruct 3D HR cardiac volume from mul-
tiple 2D LR slices, or [21] introduced a 3D CNN for musculoskeletal MRI
super-resolution.

However, most of the super-resolution methods for medical images in the
real world require low and high-resolution MRI arranged in pairs to secure
the efficient learning of the model. It is not easy to obtain a paired medical
dataset. As mentioned above, the scanning phase to produce high-resolution
MRI might take a very long time, while data size is usually limited due to
the tedious and time-consuming task of paired data retrieval.

To address the problem, our work aims to provide a method that per-
forms super-resolution tasks on MRI through unpaired training. The pro-
posed method, entitled 3D super-resolution Cycle-consistent GAN (SRCy-
cleGAN), developed based on recent researches in neural networks, Cycle-
GAN [2] and Residual Dense Network (RDN) [3]. By integrating two net-
works into a new architecture, the proposed network can be executed on any
publicly available MRI dataset through an unpaired training process, thus
overcoming the limitations explained earlier. For evaluation, we compare



the performance of proposed methods to tricubic-interpolation method and
GAN-based methods for super-resolution in 2D space: the ESRGAN [8] and
our previous work on super-resolution CycleGAN [22].

In Section 2, we introduce details of the network architecture used in our
experiments. For evaluation, we compare model performance with other SR
methods: interpolation, super-resolution GAN-based methods on 2D data,
and different states of SRCycleGAN on 3D data in Section 4. Then, we
discuss experimental results in Section 5
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Figure 1: Details of residual dense block in 3D. RDB contains several convo-
lutional layers followed by a ReLLU activation function in continuous connec-
tion. The number of features through convolutional layers is increased with
a certain growth rate, which aims at synthesizing information from input.
The higher growth rate can further improve the performance of the network.
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Figure 2: The architecture of the generator. It contains several RDBs for
feature extraction. In the beginning, shallow features are extracted from raw
input through two single convolutional layers. Then, features from RDBs are
extracted and concatenated to form global features. A convolutional layer
is used to adaptively fuse a range of features with different levels, followed
by 3 x 3 convolutional layer to further extract features for global residual
learning. Finally, the shallow and fused features are concatenated to obtain
the dense feature before conducting up-scaling.



2 Method

2.1 Network architecture
2.1.1 Generative network architecture

Our generator is a 3D implementation of residual dense blocks (RDB) - a
combination of residual blocks [11] and dense blocks [17] with the removing
of batch normalization layers as building units in Figure 1. RDB was proved
to reduce computational time, memory usage and speed up the training
process while using fewer parameters.

The details of the generators are shown in Figure 2. Based on RDN
architecture, the generators use both local and global features to synthesize
information. By concatenating components of blocks, local features are syn-
thesized from the states of preceding RDBs and whole layers in the current
RDB. Then, global features are stacked to make full use of features from
all preceding layers. Before upsampling, feature output has information of
all subsequent layers, which preserves the feed-forward nature and extracts
local densely features.

2.1.2 Adversarial network architecture

Following the fundamental CycleGAN [2], our final model aims at translat-
ing LR MRI volume into an HR MRI volume without the requirement of
paired images for training. The network contains two generators to produce
images between LR and HR MRI and two discriminators to predict output
be real or generated. The final objective is to train the generator G to
fool a differentiable discriminator D that is trained to distinguish generated
SR images from LR images. Once well trained, the generator can create
highly similar solutions to real images and thus difficult to classify by D.
This encourages perceptually superior solutions residing in the subspace, or
manifold, of real images.

The main difference between the two generators is the up/down-sampling
operators. We use the deconvolutional as the upsampler for 3D data in this
generator. Based on [6], it has been proved to work similarly to an upsam-
pling operator on SR tasks. We use a convolutional layer as a downscaling
operator to reconstruct LR from HR MRI in the downsampling generator
in terms of downsampling.

In terms of discriminators, it is similar to a CNN contains several convo-
lutional layers mixed with an instance normalization layer followed by Leaky
ReLU (LReLU) activation to extract information from 3D volume and label
whether it is a real or generated image. The depth of the network is cus-
tomizable depending on the number of mixed blocks in the network. In the
end, a convolutional layer with a single output channel is used to produce
values ranging from 0 (reconstructed MRI) to 1 (real MRI).



3 Experiments

3.1 Dataset

We focus on implementing a method that can perform super-resolution
through unpaired training. For a dataset with high quality enough and
a large amount of MRIs, through the degradation process which used a
down-sampling operator with fixed scaling factors [6], we expect to obtain
the LR MRI volume with the minimum loss value on pixels and reduce the
appearance of new artifacts.

In this work, we used the BraTS2018 dataset [7] - a dataset containing
3T MRI images with different types of sequences as training data. It is
a very popular dataset in the field of multimodal brain MRI segmentation
[7,23]. BraTS contains 285 volumes in the training set and 59 volumes in the
validation set, including T1, T2, T1-ce 3T MRI. The variety of the dataset
is confirmed when samples were acquired with different clinical protocols
and various scanners from multiple institutions. The field of view is 155 x
240 x 240, wherein slice thickness is lmm. Training set in the BraTS is
downgraded into LR volumes with fixed scale factors. All image resolution
changes are executed during the training phase.

3.2 Training setting

Tricubic ESRGAN | 2D SRCy- | 3D Cycle- | 3D SRCy-
cleGAN GAN w/o | cleGAN
DC
BraTS | 2x 30.24 40.12 42.57 44.75 51.22
4x 27.26 35.85 36.76 35.78 37.82

Table 1: Average value of PSNR (dB) for scale factor x2 and x4 on BraT$S
dataset

Due to the size of the network and GPU memory capacity, the model
is trained on patches. For each training batch, high-resolution volumes
are randomly extracted from 155 x 240 x 240 into different patcches with
size 64 x 64 x 64; corresponding to a size of 64/s x 64/s x 64/s on LR
volumes where s is the scaling factor. Based on [13] and [20], the low-
resolution samples can be obtained through a down-sampling by isotropic
scaling factors and Gaussian filter. Each generator contains 3 RDBs, where
each block includes three dense blocks in residual connection. The batch
size is set as 2. The learning rate is initialized to 0.0001, and decay starts
after every 200 epochs. The ADAM optimizer is used to update network
weights based on training data. The training CycleGAN model takes an
average of 45 hours with an NVIDIA Quadro P4000 8GB for 250 epochs.



4 Result

For testing, the MRIs from the BraTS test set (with size mentioned in Sec-
tion 3.1) are degraded at scaling factor x2, or x4 to simulate low-resolution
MRI. Then, the proposed model performs the reconstruction process back
to HR MRI. Figure 3 shows the visualization of model performance on T1-
weight 3T. The results of models on generated high-resolution MRIs are
very exploitable. SRCycleGAN can maintain fine features of the main ob-
ject compared to ground truth in qualitative visual quality.

Low-resolution Ground-truth Reconstructed Low-resolution Ground-truth Reconstructed
T1-weighted T2-weighted

Figure 3: Visualization of 3D model performance on BraTS dataset. On
randomly selected sample, zoom-ins are shown in the red box

Since there is no current benchmark dataset or state-of-the-art meth-
ods in the super-resolution for medical images, we want to evaluate the
performance of different GAN-based models. We compare the performance
of two states of 3D SRCycleGAN to interpolation (tricubic interpolation)
and GAN-based method (2D ESRGAN [8] and 2D SRCycleGAN [22]) for
measurement purposes. The 2D SRCyleGAN is our previous study on be-
fore working on 3D model. The primary difference between 2D and 3D
versions is the difference of components in network architecture and also
the model complexity. For example, in upscaling part, the 2D CycleGAN
uses a sub-pixel function from ESPCNN [6] while the proposed 3D model
uses transpose convolutional layers. A model in 3D space might provide
an outstanding result compared to methods in 2D space due to the data
structure and uniformity of 3D volumes. Quantitative results on table 1
show the average distortion and fidelity values obtained on the test set by
all tested methods. Image quality measurements in terms of PSNR show
that the 3D SRCycleGAN method can achieve relatively low distortion for
4x and 2x scale factor. In general, both implementations of 3D CycleGAN
provides super-resolution MRI images with detailed textures, compared to
2D models and tricubic interpolation.



5 Discussion

The complexity of GAN-based models is very considerable, with millions
of parameters. It increases along with the increase of model depth or the
size of the input. Therefore, to reduce the computational cost of the model,
training is performed on patches. Doing so can also ensure the diversity of
data.

MRI volumes contain different or more complex spatial variations, cor-
relations, and statistical properties than natural images, limiting the SR
imaging performance of most traditional methods. Moreover, because the
sampling and degradation operations are coupled and ill-posed, SR tasks
cannot be performed beyond a marginal degree using traditional methods,
which cannot effectively restore some fine features and suffer from the risk of
producing a blurry appearance and new artifacts. In an unpaired training,
the generated output cannot be compared to the target output to improve
performance due to the difference in voxel values.

Although the reconstructed output at high-resolution levels is quite close
to the original input in all aspects, at both the training and testing phase,
we also observe the limitation of model performance in terms of blur on
small objects, although the reconstructed images are fairly detailed. This
issue might come from the degradation process. In some cases, when the
resolution of input is not satisfied enough, the over degradation might lead
to the lack of information of objects, and later is the not-fully reconstructed.

6 Conclusion

In this paper, we proposed SRCycleGAN to solve the super-resolution on
medical images. The advantage of self-learning between two different classes
can be used to perform the unpaired training. By integrating network ar-
chitectures, we use CycleGAN to match the problem of SR. Evaluation of
reconstructed images on both T1 and T2-weighted MRI shows exploitable
results with low distortion and detailed texture. We also compared SRCy-
cleGAN with different methods in the same domains to have an objective
perspective about model performance. The quantitative evaluation shows
that the SRCycleGAN is better and more measured than other methods on
different scaling factors.
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