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Abstract

Artificial Intelligence, especially deep neural networks, have shown
impressive performances for classification tasks since the last decade.
In the medical field, trustworthy deep models exist but they do not
provide any insights on how and why they classify data due to their
complex structure. In this study we propose to leverage the power
of deep neural network for classifying resting state brain activities by
gender, then we use explainable Artificial Intelligence models to deter-
mine which functional networks are salient with respect to the gender.
Firstly, we trained an accurate convolutional neural network to deter-
mine gender based on resting-state brain spatial maps corresponding to
intrinsically connected networks and computed by independent com-
ponent analysis. Then, we compare, through mask-based assessment,
state of the art explainable Artificial Intelligence models to extract the
most meaningful components involved in gender determination. Based
on a powerful deep classifier, and with an appropriate explainable arti-
ficial intelligence method, we supply meaningful results in accordance
with neurology literature results for gender classification. Throughout
this study, we show that powerful deep models can be used in med-
ical diagnostics since they recover, thank to reliable explainable arti-
ficial intelligence models, already established literature results related
to gender determination with respect to brain network activities.

resting-state, functional magnetic resonance imaging, artificial intelli-
gence, explainable artificial intelligence, gender classification

1 Introduction

Artificial Intelligence (AI) performs in humans feasible tasks where classical
algorithms often fail. AI is based on a canonical functional representation:
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Deep Neural Networks (DNN). Its complex structure allows it to permeate
strong non-linearities involved in data describing daily life tasks. However,
there is an inner back and forth communicating process related to perfor-
mances and model opacities between regular and deep models. For classifi-
cation tasks, regular algorithms are simpler but highly human-interpretable
in terms of internal decision making processes, on the other side, DNN are
highly performant but have very cloudy internals, often qualified as ”black-
box” models. A taxonomy of methods, labelled as eXplainable AI (XAI)
methods, has been proposed by the machine learning community to ex-
plain DNN decision making processes. Functional neuroimaging, especially
functional MRI (fMRI), permits to record in vivo spontaneous task-free or
task-based brain activities. Deep models prove to be numerically accurate
when applied to medical field, including the fMRI domain [13], [11], [17].
Deep learning has been applied to static and dynamic resting-state Func-
tional Connectivity (FC) data for gender classification. But the lack of
interpretability of these deep models constitutes a major flaw when they
underlie medical diagnoses. FC refers to intrinsically connected networks,
such as sensorimotor, limbic salience, central executive, default-mode, ven-
tral and dorsal attentional and language-dedicated networks, which dynam-
ically interact during task-free or task-positive brain activities. These net-
works are usually extracted from the global brain signal recorded with fMRI
or electroencephalograms (EEG) using seed-based correlational or indepen-
dent component analyzes (ICA). Several studies applying machine learning
algorithms (SVM, GCN, LSTM-based...) to FC demonstrated that some
networks, such as DMN, as well as their dynamic interaction allowed for
gender identification. In this study, we aimed at: 1 leveraging high perfor-
mance of DNN to achieve gender classification and 2. determining mean-
ingful statistical dynamics embedding resting-state brain activity, using our
masked-based XAI pipeline. For reproductibility purposes, we choose to use
the publicly-available S1200 Wu-Minn Human Connectome Project to lead
our study.

2 Problem Formulation

2.1 Data set

The data we use in this study is N = 812 subject resting state fMRI connec-
tome data from the S1200 WU-Minn Human Connectome Project (released
in June 2017 named as HCP1200 Parcellation+Timeseries+Netmats). The
data consist of T = 1, 200 volumes for each run for a total of 4,800 volumes
for each subject over the four 15 minutes long runs. Each run of each sub-
ject’s rs-fMRI was preprocessed by the HCP consortium [16]. The data were
minimally preprocessed [6] and artefacts were removed using ICA+FIX [9]
and [14]. We choose relatively low model order ICA (number of compo-
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22-25 y. 26-30 y. 31-35 y. 36+ y. Total

Women 70 181 153 6 410
Men 125 176 99 2 402
Total 195 357 252 8 812

Table 1: Dataset subject distribution

Figure 1: Model architecture

nents, C = 25) as previous studies have demonstrated that such models
yield refined components that correspond to known anatomical and func-
tional segmentations according to [2], [10], [16], [21]. The study subject
demographic are shown in Table 1.

2.2 Procedure

Classification task Independent component analysis (ICA) generates sta-
tistically mutually independent spatial maps whose (neural) nodes display
synchronized spontaneous BOLD fluctuations during the brain resting-state.
These maps represent not only intrinsically connected networks but also
noise due due to breathing, eye or head movements and spinal fluid pulsa-
tions easily identifiable by visual inspection or trained algorithms. These
artifacts are indentified and discarded by [9]. To accurately classify subjects
according to their gender and to account for sex differences in functional
brain organization in a spatio-temporal manner, we train a convolutional
neural network over 4 runs-averaged Independant Component (IC) time se-
ries. The network is composed of 3 convolutional blocks followed by 3 linear
blocks. Each convolutional block is followed by a ReLU activation map,
and each linear block has a dropout process enabled. Then, we apply the
sigmoid mapping to obtain a value that leans in the [0,1] interval (see Figure
1). We use the ADAM version of stochastic gradient descent algorithm as
optimization algorithm and we use the Binary Cross Entropy (BCE) as loss
function.

2.2.1 XAI methods assessment

To compare the consistency of each XAI method to extract gender-oriented
saliency maps (SM), we propose to assess each method throughout the whole
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dataset by our normalized-mask process. We recall that T = 1200 is the
number of brain snapshots for each IC and C = 25 is the number of ICs.
We denote by f : RT×C → [0, 1] our deep classifier and gmf : RT×C → RT×C

the saliency mapping derived from f thanks to the explainer m. For a given
explainer m, a classifier f and for each subject data X, we obtained an
explanation map g̃mf of the X classification by :

g̃mf (X) = s(gmf (X))�X

where s is a [0,1]-standardization mapping, such that for all well defined
A ∈ RT×C :

s(A) =
A−min(A)

max(A)−min(A)
∈ [0, 1]T×C

and where � denotes the Hadamard product. The insights behind g̃mf trans-
formation is to allow methods to be comparable since they don’t produce
the same output range thanks to standardization process as well as let them
throw their own expressiveness capacities throught SMs. A XAI method is a
method that redistribute as relevant as possible the information flow condi-
tionally as the classification output. The literature already provides gender
discriminating brain networks such as cingulate cortex, medial and lateral
frontal cortex, temporoparietal regions, insula, and precuneus. For gender
classification, we expect that XAI method provide larger importance weights
to the aforementioned brain networks. The Pearson correlation study is a
well-kwown statistical pipeline that highlights such networks interaction ac-
cording gender and ages [4], [19], [7]. We denote the Pearson correlation
matrix of an input X over the temporal axis as PC(X) ∈ MC([−1, 1]).
For ordering methods, we compare the Frobenius norm distribution of the
matrix PC(X)− PC(g̃mf (X))) throughout the whole dataset.

2.3 Interpretating methods

In this study, we compare the relevance of several state of the art XAI
methods. These methods are qualified as local since they supply one ex-
planation map by input and as intrinsic because the built explanation is
network-dependant (architecture and weights).

Saliency (SA) [15] is a simple approach for computing input attribution,
returning the gradient of the output with respect to the input. This ap-
proach can be understood as taking a first-order Taylor expansion of the
network at the input, and the gradients are simply the coefficients of each
feature in the linear representation of the model. The absolute value of these
coefficients can be taken to represent feature importance.
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Input × Gradient (IXG) is an extension of the Saliency approach, tak-
ing the gradients of the output with respect to the input and multiplying
by the input feature values. One intuition for this approach considers a lin-
ear model; the gradients are simply the coefficients of each input, and the
product of the input with a coefficient corresponds to the total contribution
of the feature to the linear model’s output.

Feature Ablation (FA) [12] is a perturbation based approach to compute
attribution, involving replacing each input feature with a given baseline /
reference value (e.g. 0), and computing the difference in output. Input
features can also be grouped and ablated together rather than individually.

Feature Permutation (FP) [12] is a perturbation based approach which
takes each feature individually, randomly permutes the feature values within
a batch and computes the change in the loss as a result of this modification.

Layer Wise Relevant Propagation (LRP) [1] is an equally distributed
feature relevance backpropagation system. The LRP method has been ex-
tensively used by the deep learning community especially in computer vision.

Deconvolution (DEC) [22] computes the gradient of the target output
with respect to the input, but backpropagation of ReLU functions is over-
ridden so that only non-negative gradients are backpropagated. In Decon-
volution, the ReLU function is applied to the output gradients and directly
backpropagated.

Score-CAM (SCAM) [18] is a post-hoc visual explanation method based
on class activation mapping (CAM) [23], Score-CAM gets rid of the depen-
dence on gradients by obtaining the weight of each activation map through
its forward passing score on target class, the final result is obtained by a
linear combination of these weights and upsampled activation maps of the
lastest convolutional layer.

2.4 Network-IC correspondance mapping

For the given resolution C, we have constructed the correspondance mapping
between known anatomo-functionnal networks and our C ICs. This map-
ping baseline has been handcrafted by an expert. The baseline mapping is
summarized in Table 2.4.
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IC Network Name

1 Bilateral Visual Cortex (BVC)

2 Internal Visual Cortex (IVC)

3 Dorsal Attention Network (DAN)

4 Default Mode Network (DMN)

5 Right Central Executive Network (RCEN)

6 Salience Network (SN)

7 Left Central Executive Network (LCEN)

8 Precuneus / Default Mode Network (P/DMN)

9 Posterior Visual Network (PVN)

10 Bilateral Central Executive Network (BCEN)

11 Temporal Posterior Network (TPN)

12 Neocerebellum (N)

13 Motor Cortex (MC)

17 Frontal Singular Network (FSN)

18 Left Cerebellum (LC)

19 Precuneus (P)

20 Ventral Attention Network (VAN)

23 Fronto-percular Network (FPN)

25 Ventral Striatum (VS)

Table 2: Correspondance table between ICs and anatomo-functionnal net-
works. The components n°14,15,16,21,22,24 are assimilated as noisy com-
ponents
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Figure 2: Left - Methods dispersion according to our pipeline. The box
shows the quartiles of the Frobenius norm distributions derived from our
evaluation. Right - Model classification performances.The line shows the
mean loss for each epoch and the colored area show the 95% confidence
interval of the estimated mean over 5 independents trainings.

3 Experimental Results

3.1 Classification task

Our trained model reaches a negligeable test error surrounding the 0.1 value
for the binary cross entropy (BCE) after 22 epochs. We note that the
learning pass is quiet stable along epochs.

3.2 Methods classification

Applied to fMRI data, XAI methods must at least recover the intrinsic func-
tionnal activity present in the data. According to our pipeline, we observe
in Figure 2 that Deconvolution, Feature Ablation, Feature Permutation, In-
put × Gradient and Saliency methods are clustered in neighborhood with
respect to the Frobenius norm which is far away from the ICs temporal
activity ground truth. That means that these methods does not recover
the temporal linear interaction underlied in raw IC components. The Layer
Wise Relevant Propagation is the farthest method and it is comparable to
masked raw ICs time series with standard gaussian noise (GN) with respect
to our process. This trend of providing poor SMs has been deeply investi-
gated by [3]. Perturbation based methods do not provide any forward step
towards better results for recovering ICs temporal activities. The highest
ICs temporal activity fidelity is reach by the SCAM method.

3.3 Gender discrimination throught XAI methods

Literature always requires expert annotations to identify anatomo-functional
networks across brains. Thanks to our DNN-based high classification score
and the use of an adapted XAI method, we emulate the expert requirement
to extract and recover gender discriminating networks. Studies [8], [20], [7],
[19], [5] indicate that the strongest gender discriminating networks are the
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Default Mode Network (IC n°4), Salience Network (IC n°6), the Left Central
Executive Network (IC n°7) as well as the Right Central Executive Network
(IC n°5). We address the gender comparing studies by gathering and tem-
porally concatenating ICs activities respectively with respect to women and
men. Then we compute, for each gender, the batch Pearson correlation
matrices according to the SCAM method or LRP method.

For highlighting gender differences intrinsically present between women
and men, we evaluate correlation differences amplitude between these two
genders (see Figure 3). Not surprisingly we notice that there is difference be-
tween women and men mainly for the Default Mode Network, Salience Net-
work, the Left/Right Central Executive Networks. Since the LRP method is
irrelevant for our task, it does not rise up any meaningful differences between
the two genders.

Figure 3: Correlation differences amplitude between Men-Women Pearson
correlations matrix - Left : throught SCAM, Right : throught LRP

4 Discussion and Conclusion

Many regular algorithms for gender classification based on resting state brain
networks activities have been proposed by the state of the art. Their high
interpretability aspect is often in contrast with their performances. For di-
agnostics purposes, an interpretable model is more suitable than an opaque
one. To improve medical diagnostics, we use the power of AI and apply
SCAM model to grab classification decisions rules of our AI model. Our re-
sults show that such AI follow the same decision rules as regular model but
with increased classification performance while recovering neurology litera-
ture results. This work is a preliminary work for studying newer XAI method
over the same data or within an other paradigm such as task-related brain
networks activities, or non healthy patient.
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