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ON A COMPENSATED EHRLICH-ABERTH METHOD FOR THE
ACCURATE COMPUTATION OF ALL POLYNOMIAL ROOTS∗

THOMAS R. CAMERON† AND STEF GRAILLAT‡

Abstract. In this article, we use the complex compensated Horner’s method to derive a compen-
sated Ehrlich-Aberth method for the accurate computation of all roots of a polynomial. In particular,
under suitable conditions, we prove that the limiting accuracy for the compensated Ehrlich-Aberth
iterations is as accurate as if computed in twice the working precision and then rounded into the
working precision. Moreover, we derive a running error bound for the complex compensated Horner’s
and use it to form robust stopping criteria for the compensated Ehrlich-Aberth iterations. Finally,
extensive numerical experiments illustrate that the backward and forward errors of the root approx-
imations computed via the compensated Ehrlich-Aberth method are similar to those obtained with
a quadruple precision implementation of the Ehrlich-Aberth method with a significant speed-up in
terms of the computation time.

Key words. polynomial evaluation, error-free transformations, polynomial roots, backward
error, forward error, rounding error analysis
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1. Introduction. The use of error-free transformations to produce compensated
arithmetic routines has a long and interesting history, which includes the works of
Dekker, Gill, Goldberg, Kahan, Knuth, and Møller [6, 12, 13, 21, 22, 23]. These
works were the first to extend the working precision of a computation without the
use of a hardware or software implementation of a high precision format [9, 10].
More recently, Rump, Ogita, and Oishi have developed algorithms for the summation
and dot product computed in k-fold working precision [25], k ≥ 2, as well as the
computation of a summation that is faithfully rounded [27, 28].

In addition, error-free transformations have been used to develop the compensated
Horner’s method for the evaluation of a polynomial and its derivatives at a real or
complex number [16, 15, 17, 20, 19]. The real compensated Horner’s method has been
used to improve the accuracy of eigenvalue approximations of a symmetric tridiagonal
matrix and real root approximations of a real polynomial [11, 14]. In [14], Graillat
shows that if the real compensated Horner’s method is used to evaluate a polyno-
mial, then the Newton iterations converge to an approximate root as accurately as if
computed in twice the working precision and then rounded into the working precision.

The Ehrlich-Aberth (Börsch-Supan) method [1, 4, 8] combines Newton’s method
with an implicit deflation strategy, which allows for the computation of all roots of
a polynomial. In this article, we use the complex compensated Horner’s method
to develop a compensated Ehrlich-Aberth method that can compute all roots of a
polynomial as accurately as the Newton iterations from [14]. The outline of this
article is as follows: In Section 2, we recall the basic properties of real and com-
plex floating-point arithmetic. Then, in Section 3, we describe the Horner method
and compensated Horner method for polynomial evaluation in complex floating-point
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arithmetic. Moreover, we derive a running error bound for the compensated Horner
method, which considers the rounding errors that occur during the computation. Sec-
tion 4 is devoted to the presentation of the Ehrlich-Aberth method and compensated
Ehrlich-Aberth method. In particular, the running error bound for the compensated
Horner method is used to form robust stopping criteria for the sequence of root ap-
proximations. Moreover, under suitable conditions, we prove that these root approx-
imations have a limiting accuracy as if computed in twice the working precision and
then rounded into the working precision. Finally, in Section 5, extensive numerical
experiments illustrate that the backward and forward errors of the root approxima-
tions computed via the compensated Ehrlich-Aberth are similar to those obtained
with a quadruple precision implementation of the Ehrlich-Aberth method but with a
significant speed-up in terms of the computation time.

2. Floating-Point Arithmetic. Throughout this article, we assume that the
computer arithmetic satisfies the IEEE 754 standard [2], and that no underflow nor
overflow occurs. We denote by F the set of floating-point numbers and by µ the unit
roundoff. Note that for single precision, µ = 2−24 and for double precision, µ = 2−53,
where the exponent corresponds to the precision of this floating-point format. Finally,
we use the standard notation fl (·) to denote floating-point operations in working
precision.

2.1. Real Floating-Point Arithmetic. For operations ◦ ∈ {+,−, ·}, the IEEE
754 standard requires the result of fl (a ◦ b) to be correctly rounded, i.e., as accurate
as if computed exactly and then rounded to the current precision [13]. In this article,
we assume that all the computations are performed with rounding to nearest (using
round to even). As a result, for a, b ∈ F , floating-point operations satisfy

fl (a ◦ b) = (a ◦ b)(1 + ε),

where |ε| ≤ µ. This further implies that

(2.1) |fl (a ◦ b)− a ◦ b| ≤ µ |a ◦ b| and |a ◦ b− fl (a ◦ b)| ≤ µ |fl (a ◦ b)| .

Throughout this article, we make use of the quantities γn, which are defined in
the usual way [18]:

γn =
nµ

1− nµ
,

where n ∈ N is assumed to satisfy nµ < 1. Moreover, we make use of the round to
nearest mode to perform error-free transformations for a floating-point operation. In
particular, for each x = fl (a ◦ b), there exists a y ∈ F such that x+y = a◦b. The pair
(x, y) is called the error-free transformation of (a, b) for the operation ◦. For instance,
Algorithm 2.1 is attributed to Knuth [22] and returns the error-free transformation
of (a, b) for addition. Note that Algorithm 2.1 requires 6 flops to be executed.

Algorithm 2.1 Error-free transformation of (a, b) ∈ F2 for addition.

function [x, y] = TwoSum (a, b) :
x = fl (a+ b)
z = fl (x− a)
y = fl ((a− (x− z)) + (b− z))

In addition, we make use of the fused multiply-add operation, which is denoted
FMA (a, b, c) and results in the floating point number nearest to a·b+c ∈ R. Note that
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the fused multiply-add operation was added to the IEEE 754 standard in 2008 and is
supported by many modern processors [24]. Moreover, the error-free transformation
of (a, b) for multiplication can be performed using the fused multiply-add operation
as is done in [25], see Algorithm 2.2.

Algorithm 2.2 Error-free transformation of (a, b) ∈ F2 for multiplication.

function [x, y] = TwoProduct (a, b) :
x = fl (a · b)
y = FMA (a, b,−x)

For processors that don’t support the fused multiply-add operation, the error-free
transformation of (a, b) for multiplication can be computed with the splitting opera-
tion introduced by Dekker [6] but requires 17 flops rather than the 2 flops required
by Algorithm 2.2, see Algorithm 3.3 of [25]. We conclude this section with a theorem
from [25] that summarizes the properties of Algorithm 2.1 and Algorithm 2.2.

Theorem 2.1. Let a, b ∈ F . Then, for [x, y] = TwoSum (a, b) we have

a+ b = x+ y, x = fl (a+ b) , |y| ≤ µ |x| , |y| ≤ µ |a+ b| ,

and for [x, y] = TwoProduct (a, b) we have

a · b = x+ y, x = fl (a · b) , |y| ≤ µ |x| , |y| ≤ µ |a · b| .

2.2. Complex Floating-Point Arithmetic. We define C = F + iF to be the
set of complex floating-point numbers, where i =

√
−1 is the imaginary unit. Also,

we use the operators Re (·) and Im (·) to denote the real and imaginary part of a
complex number, respectively. As in the real case, we denote by fl (·) the operations
that are done in floating-point working precision. The following holds for all a, b ∈ C
and ◦ ∈ {+,−}:

fl (a ◦ b) = (a ◦ b)(1 + ε),

where |ε| ≤ µ. In addition, we have

fl (a · b) = (a · b)(1 + ε),

where |ε| ≤
√

2γ2. This further implies that

(2.2) |fl (a ◦ b)− a ◦ b| ≤ µ |a ◦ b| and |a ◦ b− fl (a ◦ b)| ≤ µ |fl (a ◦ b)| ,

for ◦ ∈ {+,−} and

(2.3) |a · b− fl (a · b)| ≤
√

2γ2 |a · b| .

Finally, throughout this article, we make use of the quantity

γ̃n =
n
√

2γ2

1− n
√

2γ2
.

As in the real case, the error-free transformation of the pair of complex floating-
point numbers (a, b) for the operation ◦ is a pair (x, y) such that x = fl (a ◦ b) and
x + y = a ◦ b. The error-free transformation of (a, b) ∈ C2 for complex addition is a
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Algorithm 2.3 Error-free transformation of (a, b) ∈ C2 for addition.

function [x, y] = TwoSumCmplx (a, b) :
[Re (x) ,Re (y)] = TwoSum (Re (a) ,Re (b))
[Im (x) , Im (y)] = TwoSum (Im (a) , Im (b))

straightforward extension of Algorithm 2.1 and is shown in Algorithm 2.3. Note that
Algorithm 2.3 requires 12 flops to be executed.

The error-free transformation of (a, b) ∈ C2 for complex multiplication requires
multiple products of the real and imaginary parts of a and b as shown in Algorithm 2.4.
Note that Algorithm 2.4 requires 20 flops to be executed. In contrast, if the splitting
operation from [6] was used in Algorithm 2.2, then Algorithm 2.4 would require 64
flops to be executed, see Algorithm 3.3 from [17].

Algorithm 2.4 Error-free transformation of (a, b) ∈ C2 for multiplication.

function [w, x, y, z] = TwoProductCmplx (a, b) :
[g1, h1] = TwoProduct (Re (a) ,Re (b)); [g2, h2] = TwoProduct (Im (a) , Im (b))
[g3, h3] = TwoProduct (Re (a) , Im (b)); [g4, h4] = TwoProduct (Re (a) , Im (b))
[g5, h5] = TwoSum (g1,−g2); [g6, h6] = TwoSum (g3, g4)
w = g5 + ig6; x = h1 + ih3; y = −h2 + ih4; z = h5 + ih6

We conclude this section with a theorem from [17] that summarizes the properties
of Algorithm 2.3 and Algorithm 2.4.

Theorem 2.2. Let a, b ∈ C. Then, for [x, y] = TwoSumCmplx (a, b) we have

a+ b = x+ y, x = fl (a+ b) , |y| ≤ µ |x| , |y| ≤ µ |a+ b| ,

and for [w, x, y, z] = TwoProductCmplx (a, b) we have

a · b = w + x+ y + z, w = fl (a · b) , |x+ y + z| ≤
√

2γ2 |a · b| .

3. Horner’s Method. Consider the polynomial of degree m in the variable z
defined by

(3.1) p(z) = amz
m + · · ·+ a1z + a0,

where a0, a1, . . . , am ∈ C, and am 6= 0. Given z ∈ C, we can compute the polynomial
evaluation p(z) using Horner’s method as shown in Algorithm 3.1.

Algorithm 3.1 Horner’s Method.

function [h0] = Horner (p, z) :
hm = am
for k = m− 1 to k = 0 do
hk = fl (z · hk+1 + ak)

end for

The result h0 = Horner (p, z) satisfies the following forward error bound [17]:

|p(z)− h0| ≤ γ̃2mp̃(|z|),
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where p̃(z) =
∑m
k=0 |ak| zk. Finally, if p(z) 6= 0, then we have the relative forward

error bound
|p(z)− h0|
|p(z)|

≤ γ̃2m cond (p, z) ,

where the condition number of the polynomial evaluation of p at z is defined by

(3.2) cond (p, z) = p̃(|z|)/ |p(z)| .

3.1. Compensated Horner’s Method. To improve the standard error bound
of Horner’s method, we follow the development in [17] to produce a compensated
Horner’s method in complex floating-point arithmetic. To this end, we record the
error at each iteration from both the floating-point product and sum operations.
Specifically, we produce four error polynomials: pπ, pµ, pν , pσ, which are collected
monomial-by-monomial as outlined in Algorithm 3.2. Note that each iteration of
Algorithm 3.2 requires 12 flops for Algorithm 2.3 and 20 flops for Algorithm 2.4 for a
total of 32m flops.

Algorithm 3.2 Error-free transformation of Horner’s Method.

function [h0, pπ, pµ, pν , pσ] = EFTHorner (p, z) :
hm = am
for k = m− 1 to k = 0 do

[ĥk, πk, µk, νk] = TwoProductCmplx (hk+1, z)

[hk, σk] = TwoSumCmplx
(
ĥk, ak

)

Set πk, µk, νk, σk, respectively, as the coefficient of degree k in pπ, pµ, pν , pσ.
end for

It is immediately clear that h0 = Horner (p, z). Furthermore, by induction, it is
easy to show that

p(z) = h0 + (pπ + pµ + pν + pσ)(z),

and it follows from [17, Proposition 5.3] that

( ˜(pπ + pµ + pν) + p̃σ)(|z|) ≤ γ̃2mp̃(|z|).

To obtain a true error-free transformation, we would need to recursively perform
Algorithm 3.2 on the four error polynomials of degree (m − 1) until the resulting
error polynomials were constant. This recursive process would result in many error
terms: Four polynomials of degree (m − 1), 16 polynomials of degree (m − 2), and
so on to include 4m constant polynomials. Moreover, most of the coefficients in
these polynomials would suffer from underflow. For this reason, we only consider
the first-order error terms. In particular, Algorithm 3.3 shows how we compute the
forward error e(z) = (pπ + pµ + pν + pσ)(z) using Horner’s method applied to the
polynomial whose coefficients are those of (pπ + pµ + pν + pσ), computed using the
doubly compensated summation method from Priest [26].

In fact, any of the summation methods from [7, 18, 26, 27, 28] that guarantee a
relative error bound of 2µ can be used. For example, in [17], the authors advocate
for the use of the accurate summation method from [27, 28], the result of which
is guaranteed to be faithfully rounded, i.e., as accurate as if computed exactly and
then rounded to an adjacent floating-point number. Hence, the relative error in the
accurate summation method is 2µ; however, since we only need to sum 4 complex
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floating-point numbers, it is more efficient to use the doubly compensated summation
method. Although the result of this method is not guaranteed to be faithfully rounded,
it follows from the analysis of Priest in [26, Section 4.1] that it has the same relative
error of 2µ. If we ignore the cost of the sort, which for the given 4 floating-point
values requires 9 absolute values, 6 comparisons, and 3 swaps, then the execution
of Algorithm 3.4 requires 30 flops. Since Algorithm 3.3 uses the complex doubly
compensated summation from Algorithm 3.5, it follows that its execution requires
68m− 8 flops.

Algorithm 3.3 Horner’s method applied to the degree (m− 1) polynomial (p+ q +
r + s).

function [v0] = HornerSum (p, q, r, s, z) :
vm−1 = DbleCompSumCmplx (pm−1, qm−1, rm−1, sm−1)
for k = m− 2 to k = 0 do
vk = fl (z · vk+1 + DbleCompSumCmplx (pk, qk, rk, sk))

end for

Algorithm 3.4 Doubly compensated summation of a1, a2, a3, a4 ∈ F .

function [sn] = DbleCompSum (a1, a2, a3, a4) :
Sort the ai so that |a1| ≥ · · · ≥ |a4|
s1 = a1, c1 = 0
for k = 2 to k = 4 do
yk = fl (ck−1 + ak)
uk = fl (ak − (yk − ck−1))
tk = fl (yk + sk−1)
vk = fl (yk − (tk − sk−1))
zk = fl (uk + vk)
sk = fl (tk + zk)
ck = fl (zk − (sk − tk))

end for

Algorithm 3.5 Doubly compensated summation of a1, a2, a3, a4 ∈ C.
function [x+ iy] = DbleCompSumCmplx (a1, a2, a3, a4) :
x = DbleCompSum (Re (a1) ,Re (a2) ,Re (a3) ,Re (a4))
y = DbleCompSum (Im (a1) , Im (a2) , Im (a3) , Im (a4))

Let pπ, pµ, pν , pσ be the error polynomials from Algorithm 3.2. Then, by [17,
Lemma 5.4], the result v0 = HornerSum (pπ, pµ, pν , pσ, z) satisfies the following for-
ward error bound:

(3.3) |e(z)− v0| ≤ γ̃2m−1( ˜(pπ + pµ + pν) + p̃σ)(|z|).

It is worth noting that [17, Lemma 5.4] is formally stated for the accurate summation
method from [27, 28]; however, since the doubly compensated method has the same
relative error bound the result follows. Now, by combining the error-free transforma-
tion of Horner’s method and the method for computing the corresponding forward
error, we obtain the compensated Horner’s method shown in Algorithm 3.6, which
requires 100m− 7 flops to be executed.
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Algorithm 3.6 Compensated Horner’s Method.

function [c0] = CompHorner (p, z) :
[h0, pπ, pµ, pν , pσ] = EFTHorner (p, z)
e0 = HornerSum (pπ, pµ, pν , pσ, z)
c0 = fl (h0 + e0)

From [17, Theorem 5.5], we know that the result c0 = CompHorner (p, z) satisfies
the following forward error bound:

(3.4) |p(z)− c0| ≤ µ |p(z)|+ γ̃22mp̃(|z|).

Furthermore, if p(z) 6= 0, then we have the following relative forward error bound

|p(z)− c0|
|p(z)|

≤ µ+ γ̃22m cond (p, z) .

Therefore, the compensated Horner’s method is as accurate as if computed in twice
the working precision and then rounded into the working precision.

3.2. Running Error Bound. The error bound in (3.4) is not useful in practice
since it contains the quantity p(z). Therefore, we establish a running error bound
that can be computed using the error polynomials produced in Algorithm 3.2. We
begin with the following lemma.

Lemma 3.1. Let p, q, r, s be degree (m − 1) polynomials with non-negative coeffi-
cients ak, bk, ck, dk ∈ F , and let x ∈ F be non-negative. Then,

0 ≤
m−1∑

k=0

(ak + bk + ck + dk)xk ≤ (1 + 2µ)m−1 HornerSum (p, q, r, s, x) .

Proof. Consider Algorithm 3.3 and the intermediate values vk. We prove that for
k = 0, 1, . . . ,m− 1, we have

s(k) :=

k∑

j=0

(am−1−k+j + bm−1−k+j + cm−1−k+j + dm−1−k+j)x
j

≤ (1 + 2µ)2k+1vm−1−k.

(3.5)

The base case, k = 0, holds since the relative error in the doubly compensated sum-
mation is bounded above by 2µ, that is,

(am−1 + bm−1 + cm−1 + dm−1) ≤ (1 + 2µ) DbleCompSum (am−1, bm−1, cm−1, dm−1)

= (1 + 2µ)vm−1.

Suppose that (3.5) holds for some integer k, where 0 ≤ k < m − 1, and note that
s(k + 1) can be split into the sum of two parts:




k∑

j=0

(am−1−k+j + bm−1−k+j + cm−1−k+j + dm−1−k+j)x
j


x

and
am−k−2 + bm−k−2 + cm−k−2 + dm−k−2.
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By the induction hypothesis, the first part is bounded above by (1+2µ)2k+1x ·vm−1−k
and, since the relative error in the doubly compensated summation is bounded above
by 2µ, the second part is bounded above by

(1 + 2µ) DbleCompSum (am−k−2, bm−k−2, cm−k−2, dm−k−2) .

Therefore, s(k + 1) is bounded above by

(1+2µ)2k+1x ·vm−1−k+(1+2µ) DbleCompSum (am−k−2, bm−k−2, cm−k−2, dm−k−2) ,

which, in turn, is bounded above by (1 + 2µ)2k+1(1 + µ)2 times

fl (x · vm−1−k + DbleCompSum (am−k−2, bm−k−2, cm−k−2, dm−k−2)) .

Thus,
s(k + 1) ≤ (1 + 2µ)2(k+1)+1vm−k−2,

and it follows that (3.5) holds for k = 0, 1, . . . ,m− 1.

We are now ready to prove the running error bound for the compensated Horner’s
method in Algorithm 3.6.

Theorem 3.2. Let p be a complex polynomial as defined in (3.1). Then, c0 =
CompHorner (p, z) satisfies

|c0 − p(z)| ≤ fl
(
µ |c0|+ (γ̃4m+2 HornerSum (|pπ| , |pµ| , |pν | , |pσ| , |z|) + 2µ2 |c0|)

)
.

Proof. Note that c0 = CompHorner (p, z) satisfies

|c0 − p(z)| = |fl (h0 + e0)− p(z)|
≤ |fl (h0 + e0)− (h0 + e0)|+ |(h0 + e0)− p(z)|
≤ µ |fl (h0 + e0)|+ |e0 − e(z)| ,

where e(z) = (pπ + pµ + pν + pσ)(z). Applying the forward error bound in (3.3) and
Lemma 3.1, we have

|e0 − e(z)| ≤ γ̃2m−1( ˜(pπ + pµ + pν) + p̃σ)(|z|)
≤ (1 + 2µ)2m−1γ̃2m−1 HornerSum (|pπ| , |pµ| , |pν | , |pσ| , |z|) .

Next, we make use of the following inequalities:

(1 +
√

2γ2)γ̃m ≤ γ̃m+1 and γ̃m ≤ (1−
√

2γ2)γ̃m+1.

The first inequality implies that (1 +
√

2γ2)2m−1γ̃2m−1 ≤ γ̃4m−2. This combined
with 2µ ≤

√
2γ2 implies that (1 + 2µ)2m−1γ̃2m−1 ≤ γ̃4m−2. Furthermore, the second

inequality implies that γ̃4m−2 ≤ (1 −
√

2γ2)4γ̃4m+2. Since (1 −
√

2γ2) ≤ (1 − µ)9/4,
it follows that γ̃4m−2 ≤ (1 − µ)9γ̃4m+2. We summarize these results in the following
inequality

(3.6) (1 + 2µ)2m−1γ̃2m−1 ≤ γ̃4m−2 ≤ (1− µ)9γ̃4m+2.

Now, we analyze the error in the computation of

γ̃k =
k
√

2γ2

1− k
√

2γ2
=

2kµ
√

2

(1− 2µ)− 2kµ
√

2
.
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Note that 2µ, 2kµ, and (1−2µ) are floating-point numbers computed exactly, and the
IEEE standard requires the square-root operation be rounded to nearest. Therefore,
2kµ
√

2 ≤ (1−µ)−2 fl
(
2kµ
√

2
)

and (1−2µ)−2kµ
√

2 ≥ (1−µ)3 fl
(
(1− 2µ)− 2kµ

√
2
)
,

and it follows that

(3.7) γ̃k ≤ (1− µ)−6 fl (γ̃k) .

Finally, we apply the inequalities in (3.6) and (3.7) to obtain the following:

|c0 − p(z)| ≤ µ |c0|+ (1 + 2µ)2m−1γ̃2m−1 HornerSum (|pπ| , |pµ| , |pν | , |pσ| , |z|)
≤ µ |c0|+ (1− µ)9γ̃4m+2 HornerSum (|pπ| , |pµ| , |pν | , |pσ| , |z|)
≤ µ |c0|+ (1− µ)2 fl (γ̃4m+2 HornerSum (|pπ| , |pµ| , |pν | , |pσ| , |z|)) .

Therefore, the error in the computation c0 is bounded above by

(1− µ)µ |c0|+ (1− µ)2 fl (γ̃4m+2 HornerSum (|pπ| , |pµ| , |pν | , |pσ| , |z|)) + µ2 |c0| ,

which, since we can always assume that 2(1− µ)2 ≥ 1, is bounded above by

(1− µ)µ |c0|+ (1− µ)2
(
fl (γ̃4m+2 HornerSum (|pπ| , |pµ| , |pν | , |pσ| , |z|)) + 2µ2 |c0|

)
.

Furthermore, since we assume that no underflow occurs, both µ |c0| and 2µ2 |c0| are
floating-point numbers computed exactly and it follows that the error in the compu-
tation c0 is bounded above by

(1− µ)
(
µ |c0|+ fl

(
γ̃4m+2 HornerSum (|pπ| , |pµ| , |pν | , |pσ| , |z|) + 2µ2 |c0|

))
.

Therefore, we have

|c0 − p(z)| ≤ fl
(
µ |c0|+ (γ̃4m+2 HornerSum

(
|pπ| , |pµ| , |pν | , |pσ| , |z|) + 2µ2 |c0|

))
.

4. Ehrlich-Aberth Method. Let p be a degree m complex polynomial as de-
fined in (3.1). Throughout this section, we assume that p has simple roots ζ1, . . . , ζm ∈
C. For 1 ≤ i ≤ m and n ≥ 0, let zn,i ∈ C denote the approximation of ζi after n
iterations. The Ehrlich-Aberth method [1, 3, 4, 8] updates each root approximation
as follows

(4.1) zn+1,i = fl

(
zn,i −

p(zn,i)

p′(zn,i)− p(zn,i)An,i(zn,i)

)
,

where An,i(z) =
∏
j 6=i (z − zn,j)−1. Note that we reference the fractional expression

on the right side of (4.1) as the Ehrlich-Aberth correction term.
The polynomial evaluations in (4.1) can be computed using Horner’s method from

Algorithm 3.1. Moreover, given z ∈ C and h0 = Horner (p, z), we can push the error
in the computation back onto the coefficients as follows [3, Theorem 7]:

h0 =

m∑

i=0

ai (1 + εi) z
i,

where |εi| ≤
(
(2
√

2 + 1)i+ 1
)
µ+O(µ2). Note that the backward error of z as a root

of the polynomial p is defined by

η(z) = min {ε : (p+ ∆p) (z) = 0, |∆ai| ≤ ε |ei| , i = 0, 1, . . . ,m} ,



10 T. R. CAMERON AND S. GRAILLAT

where the ei are arbitrary and represent tolerances against which perturbations are
measured, and

∆p(z) = ∆amz
m + · · ·+ ∆a1z + ∆a0.

It is well-known, e.g., see [5], that

η(z) =
|p(z)|
α(|z|)

,

where α(z) =
∑m
i=0 |ei| zi. Let ei = ((2

√
2 + 1)i+ 1)ai. Then, the inequality

(4.2) η(z) ≤ µ

guarantees that z is a root of (p+∆p), where |∆ai| is no bigger than the upper bound
of |ai| εi, for all i = 0, 1, . . . ,m. Furthermore, if η(z) > µ, then z being a root of
(p + ∆p) implies that |∆ai| is bigger than |ai| εi for some i = 0, 1, . . . ,m. Hence, in
exact arithmetic, (4.2) denotes a stopping criterion that guarantees iterations do no
terminate until z is a root of a polynomial whose coefficients are no more perturbed
than the floating-point computation of p(z). In practice, we stop updating the root
approximation z if the following inequality holds:

(4.3) |h0| > µHorner (α, |z|) ,

where the coefficients of α have been stored as floating-point numbers.

4.1. Compensated Ehrlich-Aberth Method. Let z ∈ C be a root approx-
imation of the polynomial p such that the stopping criterion (4.3) holds. Then,
h0 = Horner (p, z) is no longer a reliable computation for updating the root ap-
proximation z. However, c0 = CompHorner (p, z) may still be reliable, depending on
the value of cond (p, z) as defined in (3.2). In this case, we update the root approx-
imation using (4.1) and the compensated Horner’s method. If the polynomial has
well-conditioned simple roots, then we only need to apply the compensated Horner’s
method to p. However, the more difficult polynomial equations have multiple or near
multiple roots, which may be ill-conditioned. For this reason, we use the compensated
Horner’s method to evaluate p and p′. A method for performing these evaluations is
derived from [19, Algorithm 2] and presented in Algorithm 4.1.

It is clear that the value of c0 from Algorithm 4.1 is the same as its value from
Algorithm 3.6; therefore, c0 satisfies the forward error bound in (3.4) and the running
error bound in Theorem 3.2. Moreover, the derivative value c′0 can be shown to
satisfy a similar forward error bound by appealing to [19, Theorem 4] and making the
necessary changes from real to complex floating-point arithmetic.

Furthermore, the value of s0 from Algorithm 4.1 satisfies

s0 = HornerSum (|pπ| , |pµ| , |pν | , |pσ| , |z|) ,

where pπ, pµ, pν , and pσ are the polynomials created by EFTHorner (p, z). Therefore,
by Theorem 3.2, it follows that

|c0 − p(z)| ≤ fl
(
µ |c0|+ (γ̃4m+2s0 + 2µ2 |c0|)

)
.

Hence, if

fl
(
µ |c0|+ (γ̃4m+2s0 + 2µ2 |c0|)

)
< |c0| ,
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Algorithm 4.1 Compensated Horner’s Method for p and p′.

function [c0, c
′
0, s0] = CompHornerDer (p, z) :

hm = am, h′m = 0, h′′m = 0
em = 0, e′m = 0, e′′m = 0
sm = 0
for k = m− 1 to k = 0 do

[ĥ′k, π
′
k, µ
′
k, ν
′
k] = TwoProductCmplx

(
h′k+1, z

)

[h′k, σ
′
k] = TwoSumCmplx

(
ĥ′k, hk+1

)

e′k = fl
(
z · e′k+1 + ek+1 + DbleCompSumCmplx (π′k, µ

′
k, ν
′
k, σ
′
k)
)

[ĥk, πk, µk, νk] = TwoProductCmplx (hk+1, z)

[hk, σk] = TwoSumCmplx
(
ĥk, ak

)

ek = fl (z · ek+1 + DbleCompSumCmplx (πk, µk, νk, σk))
sk = fl (|z| · sk+1 + DbleCompSum (|πk| , |µk| , |νk| , |σk|))

end for
c0 = fl (h0 + e0), c′0 = fl (h′0 + e′0)

then the error in the computation of p(z) is smaller than the size of |c0| and is still
a reliable computation. Thus, we obtain the following stopping criterion for the
compensated Ehrlich-Aberth method

(4.4) |c0| ≤ fl
(
µ |c0|+ (γ̃4m+2s0 + 2µ2 |c0|)

)
.

Finally, let z ∈ C be an approximate root of the polynomial p, and consider the
computation [c0, c

′
0, s0] = CompHornerDer (p, z). Denote by EA(p, z) the computed

Ehrlich-Aberth correction term using the values of c0 and c′0. Then, even if (4.4) does
not hold, it may happen that the following does hold:

(4.5) |EA(p, z)| ≤ µ |z| ,

which implies that the relative change made to z by the Ehrlich-Aberth correction
term is insignificant. In summary, we don’t stop updating the root approximations
from the compensated Ehrlich-Aberth method until either (4.4) or (4.5) holds, which
guarantees that the updates don’t cease until the relative error in the compensated
Horner method is too big, or the relative size the Ehrlich-Aberth correct term is too
small.

Before proceeding, note that Horner and compensated Horner methods are prone
to overflow; for instance, when a large degree polynomial with positive coefficients
is evaluated at z, where |z| > 1. For this reason, the reversal polynomial pR(z) :=
zmp(1/z), which for ρ = 1/z satisfies

p(z) = zmpR(ρ)

p′(z) = mzm−1pR(ρ)− zm−2p′R(ρ),

is used to compute the Ehrlich-Aberth correction term when |z| > 1 [3].

4.2. Limiting Accuracy. In [29], Tisseur examined the multi-variable New-
ton’s method, allowing for extended precision in the computation of the residual,
and its application to iterative refinement for the generalized eigenvalue problem. In
particular, for a close enough eigenvalue approximation, Newton’s method converges
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to an eigenvalue approximation with limiting accuracy that depends on the relative
rounding error µ and the accuracy of the computed residual.

Then, in [14], Graillat applied this result to real polynomials with real simple
zeros. Specifically, if the polynomial evaluation is computed using the real compen-
sated Horner’s method, then for a close enough root approximation, Newton’s method
converges to a root approximation with limiting accuracy as if computed in twice the
working precision and then rounded into the working precision. In this section, we
show that the compensated Ehrlich-Aberth method has a similar limiting accuracy
for all, real or complex, roots of a polynomial.

To this end, we re-write (4.1) as follows

(4.6) zn+1,i = zn,i −
(
Jn,i(zn,i) + e′n,i

)−1
(p(zn,i) + en,i) + εn,i,

where Jn,i(z) = p′(z) − p(z)An,i(z), en,i is the error in computing p(zn,i), e
′
n,i is the

error in computing Jn,i(zn,i) and performing the division, and εn,i is the error in the
subtraction.

For i = 1, . . . ,m, we assume that p(zn,i) is computed via the compensated
Horner’s method in Algorithm 3.6. Hence,

|en,i| ≤ µ |p(zn,i)|+ γ̃22mp̃(|zn,i|).

We also assume that ∣∣e′n,i
∣∣ ≤ µφ (p, zn,i,m, µ) ,

for some function φ that reflects the error in computing Jn,i(zn,i) and performing the
division. For the error εn,i, we have

|εn,i| ≤ µ
(
|zn,i|+

∣∣∣
(
Jn,i(zn,i) + e′n,i

)−1
(p(zn,i) + en,i)

∣∣∣
)

Since the roots of p, denoted by ζ1, . . . , ζm, are assumed to be simple, it follows
that for i = 1, . . . ,m, there exists a closed disk Di in the complex plane centered at
ζi such that ζj /∈ Di for all j 6= i. Furthermore, for close enough root approximations,
we can assume that zn,i ∈ Di and zn,j /∈ Di for all j 6= i. Under these assumptions,
we have the following result.

Lemma 4.1. For i = 1, . . . ,m, there exists a βi > 0 such that for all z, w ∈ Di,
we have

|p(z)− p(w)− Jn,i(w)(z − w)| ≤ βi
2
|z − w|2 + |p(w)| |An,i(w)| |z − w| .

Proof. Since p′ is Lipschitz continuous on Di, there exists a βi > 0 such that

|p′(z)− p′(w)| ≤ βi |z − w| ,

for all z, w ∈ Di. Furthermore, for all z, w ∈ Di, p(z)− p(w)− Jn,i(w)(z −w) can be
written as

∫ 1

0

(p′(w + t(z − w))− p′(w)) (z − w)dt+ p(w)An,i(w)(z − w).

Therefore, by Holder’s inequality and the Lipschitz continuity of p′, we have

|p(z)− p(w)− Jn,i(w)(z − w)| ≤ βi
2
|z − w|2 + |p(w)| |An,i(w)| |z − w| .
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From Lemma 4.1 and the continuity of p and An,i on Di, it follows that there
exists Mi > 0 such that

|p(z)− p(w)− Jn,i(w)(z − w)| ≤ βi
2
|z − w|2 +Mi |z − w| ,

for all z, w ∈ Di. Furthermore, the Lipschitz continuity of Jn,i on Di implies that
there exists β′i > 0 such that

|Jn,i(z)− Jn,i(w)| ≤ β′i |z − w| ,

for all z, w ∈ Di.

Theorem 4.2. For i = 1, . . . ,m assume that

(4.7)
∣∣Jn,i(zn,i)−1e′n,i

∣∣ ≤ ν < 1,

and

(4.8) β′i
∣∣Jn,i(ζi)−1

∣∣ |zn,i − ζi| ≤ τ < 1.

Then, zn+1,i in (4.6) is well-defined and satisfies

|zn+1,i − ζi| ≤ Gi |zn,i − ζi|+ gi,

where

Gi =
ν

1− ν
+

µ(2 + µ)

(1− τ)(1− ν)
+Mi + µ+

(1 + µ)2τ

2(1− τ)(1− ν)

and

gi = µ |ζi|+ γ̃22m
1 + µ

(1− τ)(1− ν)

p̃(|zn,i|)
|p′(ζi)|

.

Proof. By (4.8) and the Lipschitz continuity of Jn,i on Di, we have

(4.9)
∣∣Jn,i(ζi)−1

∣∣ |Jn,i(zn,i)− Jn,i(ζi)| ≤ β′i
∣∣Jn,i(ζi)−1

∣∣ |zn,i − ζi| ≤ τ < 1.

Also, note that

Jn,i(zn,i)
−1 =

(
1 +

Jn,i(zn,i)− Jn,i(ζi)
Jn,i(ζi)

)−1
Jn,i(ζi)

−1,

which, combined with (4.9), implies that

(4.10)
∣∣Jn,i(zn,i)−1

∣∣ ≤
∣∣Jn,i(ζi)−1

∣∣
1− |Jn,i(ζi)−1| |Jn,i(zn,i)− Jn,i(ζi)|

≤
∣∣Jn,i(ζi)−1

∣∣
1− τ

.

Similarly, (4.7) and (4.10) give us

(4.11)
∣∣∣
(
Jn,i(zn,i) + e′n,i

)−1∣∣∣ ≤
∣∣Jn,i(zn,i)−1

∣∣
1−

∣∣Jn,i(zn,i)−1e′n,i
∣∣ ≤

∣∣Jn,i(ζi)−1
∣∣

(1− τ)(1− ν)
.

Therefore,
(
Jn,i(zn,i) + e′n,i

)
is non-zero, so zn+1,i in (4.6) is well-defined and

zn+1,i − ζi = zn,i − ζi −
(
Jn,i(zn,i) + e′n,i

)−1
(p(zn,i) + en,i) + εn,i

=

(
1− Jn,i(zn,i)

Jn,i(zn,i) + e′n,i

)
(zn,i − ζi)−

p(zn,i)− Jn,i(zn,i) (zn,i − ζi) + en,i
Jn,i(zn,i) + e′n,i

+ εn,i.
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Hence, we have the following bound

|zn+1,i − ζi| ≤

∣∣∣∣∣1−
Jn,i(zn,i)

Jn,i(zn,i) + e′n,i

∣∣∣∣∣ |zn,i − ζi|

+
|p(zn,i)− Jn,i(zn,i) (zn,i − ζi)|+ |en,i|∣∣Jn,i(zn,i) + e′n,i

∣∣ + |εn,i| .
(4.12)

From

1− Jn,i(zn,i)

Jn,i(zn,i) + e′n,i
=

e′n,i
Jn,i(zn,i) + e′n,i

=
Jn,i(zn,i)

−1e′n,i
1 + Jn,i(zn,i)−1e′n,i

and (4.7), we have

(4.13)

∣∣∣∣∣1−
Jn,i(zn,i)

Jn,i(zn,i) + e′n,i

∣∣∣∣∣ ≤
ν

1− ν
.

From Lemma 4.1, we have

(4.14) |p(zn,i)− Jn,i(zn,i) (zn,i − ζi)| ≤
βi
2
|zn,i − ζi|2 +Mi |zn,i − ζi|

and

|p(zn,i)− Jn,i(ζn,i) (zn,i − ζi)| ≤
βi
2
|zn,i − ζi|2 .

Hence,

|p(zn,i)| ≤ |p(zn,i)− Jn,i(ζi) (zn,i − ζi)|+ |Jn,i(ζi) (zn,i − ζi)|

≤ βi
2
|zn,i − ζi|2 + |Jn,i(ζi)| |zn,i − ζi| ,

(4.15)

which allows us to bound the error term en,i as follows

(4.16) |en,i| ≤ µ
(
βi
2
|zn,i − ζi|2 + |Jn,i(ζi)| |zn,i − ζi|

)
+ γ̃22mp̃(|zn,i|)

and the error term εn,i as follows

(4.17) |εn,i| ≤ µ (|zn,i − ζi|+ |ζi|+ |dn,i|) ,

where

|dn,i| =
∣∣∣
(
Jn,i(zn,i) + e′n,i

)−1∣∣∣ (|p(zn,i)|+ |en,i|)

≤
∣∣Jn,i(ζi)−1

∣∣
(1− τ)(1− ν)

(
(1 + µ)

(
βi
2
|zn,i − ζi|2 + |Jn,i(ζi)| |zn,i − ζi|

)
+ γ̃22mp̃(|zn,i|)

)
.

Note that conditions (4.7) and (4.8) are necessary for zn+1,i in (4.6) to be defined.
Assumption (4.7) is a condition on the accuracy of computing Jn,i(z) and assump-
tion (4.8) is a condition on the diameter of the disk Di and the conditioning of the
root ζi. In our final result, we assume that we can make ν, τ and Mi small enough,
say ν ≤ 1

8 , τ ≤ 1
8 , and Mi ≤ 1

8 . Under these assumptions, we have the following
result, which implies that under suitable conditions the compensated Ehrlich-Aberth
method computes all roots of a polynomial as accurate as if computed in twice the
working precision and then rounded into the working precision.
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Corollary 4.3. For i = 1, . . . ,m, let z0,i ∈ Di. Then, the compensated Ehrlich-
Aberth method generates a sequence of of approximations whose absolute error de-
creases until the first n for which

(4.18) |zn+1,i − ζi| ≈ µ |ζi|+ γ̃22m
p̃(|ζi|)
|p′(ζi)|

.

Furthermore, if ζi 6= 0, then we have the following relative limiting accuracy

(4.19)
|zn+1,i − ζi|
|ζi|

≈ µ+ γ̃22m cond (p, ζi) ,

where

(4.20) cond (p, ζ) =
p̃(|ζ|)
|ζ| |p′(ζ)|

is the condition number for the computation of the root ζ of p.

Proof. By Theorem 4.2, for i = 1, . . . ,m, we have

|z1,i − ζi| ≤ Gi |z0,i − ζi|+ gi.

Under the assumption that ν ≤ 1
8 , τ ≤ 1

8 , and Mi ≤ 1
8 , we have Gi ≤ 1

2 and it follows
that the absolute error contracts unless (4.18) already holds. Thus, the result follows
via induction.

5. Numerical Experiments. In this section, we present the results of several
numerical experiments to demonstrate the running error bound of the compensated
Horner method in Theorem 3.2 and the limiting accuracy of the compensated Ehrlich-
Aberth method in Corollary 4.3. In addition, we compare the computation time of
the compensated Horner to the Horner method implemented in double and quadruple
precision. Finally, we compare the computation time, backward error, and forward
error of the compensated Ehrlich-Aberth method to the Ehrlich-Aberth method im-
plemented in quadruple precision. Note that all higher precision computations, such
as those in quadruple precision, are implemented using the GNU MPFR and MPC
libraries [9, 10]. The results that follow are from tests run on an Intel Core i7 CPU run-
ning 3.2GHz with 16GB of memory. All code is written in C and compiled using Apple
clang version 12.0.5 and is available at https://github.com/trcameron/CompEA.

5.1. Compensated Horner’s Method. In this section, we illustrate the run-
ning error bound of the compensated Horner method in Theorem 3.2 and the compu-
tation time of the compensated Horner method in comparison to the Horner method
implemented in double and quadruple precision.

5.1.1. Running Error Bound. The numerical experiment is designed as fol-
lows: We evaluate the expanded form of p(z) = (z − (1 + i))5 for 2000 z values near
the root 1 + i. For each value of z, we compute CompHorner (p, z), the running error
bound in Theorem 3.2, and the a priori error bound in (3.4). Then, we compute an
accurate evaluation of p(z) in a high precision format, which allows us to measure
the forward error in the computation CompHorner (p, z). The results are shown in
Figure 1, where Im (z) = 1 and Re (z) ranges from 0.99 to 1.01 with a step size of
10−5. Note that as z gets closer to the root 1 + i, the condition number increases
and the a priori error bound becomes more pessimistic. The running error bound
is more accurate as it takes into account the rounding errors that occur during the
computation.

https://github.com/trcameron/CompEA
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Fig. 1. Running Error Bound Test

5.1.2. Computation Time. In addition to comparing the computation time of
the compensated Horner method to the Horner method implemented in double and
quadruple precision, we compare the computation time of the compensated Horner
Method when the fast accurate summation method from [28] is used versus the doubly
compensated summation method in Algorithm 3.3. Note that this test illustrates our
point made in Section 3.1 that the doubly compensated summation method is more
efficient in this case.

The experiment is designed as follows: We form 100 random complex polynomi-
als of each degree from 100 to 2500, incremented by 10. For each polynomial, the
computation time required to evaluate the polynomial at a random complex num-
ber is recorded. Then, the average time for each degree is displayed in Figure 2.
Note that the compensated Horner method is about 2 times faster with the doubly
compensated summation method versus with the fast accurate summation method.
Moreover, the compensated Horner method with the doubly compensated summation
method is about 4 times faster than the Horner method implemented in quadruple
precision.
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QuadHorner: 1.01
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CompHorner w/ DbleCompSum: 1.03
Horner: 0.81

Fig. 2. Computation Time Test

5.2. Compensated Ehrlich-Aberth Method. In this section, we illustrate
the limiting accuracy of the compensated Ehrlich-Aberth method in Corollary 4.3. In
addition, we compare the accuracy and computation time of the compensated Ehrlich-
Aberth method to the Ehrlich-Aberth method implemented in double and quadruple
precision. Finally, the experiments in this section illustrate the robustness of the
stopping criteria for the compensated Ehrlich-Aberth method discussed in Section 4.1.
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Indeed, in all experiments, the stopping criteria was used to suspend the compensated
Ehrlich-Aberth iterations and, as evident by the accuracy of the root approximations,
these iterations were not suspended prematurely.

5.2.1. Limiting Accuracy. The experiment is designed as follows: Chebyshev
polynomials of the first kind are created for each degree from 5 to 80, incremented by 1.
It is known that the roots of the Chebyshev polynomial become more ill-conditioned
as the degree of the polynomial increases. In Figure 3, we compare the maximum
condition number of the roots of each Chebyshev polynomial to the maximum forward
error in the computed roots using the Ehrlich-Aberth method implemented in double
precision and the compensated Ehrlich-Aberth method. In addition, we include the
limiting accuracy bounds for both methods.
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µ+ γ̃22m cond (p, ζm)
Ehrlich-Aberth-Comp

Fig. 3. Limiting Accuracy Test

5.2.2. Backward Error. In this section, we illustrate that the backward errors
of the root approximations computed by the compensated Ehrlich-Aberth method are
similar to the backward errors of the root approximations computed by the quadruple
precision implementation of the Ehrlich-Aberth method. To that end, we investigate
polynomials with well-conditioned roots and polynomials with ill-conditioned roots.

Throughout this section, we let Ehrlich-Aberth and Ehrlich-Aberth-Quad denote
the Ehrlich-Aberth method implemented in double and quadruple precision, respec-
tively. In addition, we let Ehrlich-Aberth-Comp denote the compensated Ehrlich-
Aberth method. Finally, we make use of the following measurement of backward
error: Given a set of root approximations z1, . . . , zm for the polynomial p, we define
the relative backward error of all root approximations by

(5.1) η(z1, . . . , zm) =
‖p− q‖∞
‖p‖∞

,

where ‖·‖∞ denotes the infinity vector norm, and q is the polynomial with leading
coefficient equal to the leading coefficient of p and whose roots are exactly z1, . . . , zm.
Note that we compute the coefficients of the polynomial q in a high precision format
using the GNU MPC and MPFR libraries [9, 10].

First, we consider polynomials with well-conditioned roots. For degree m =
10, 20, 40, . . . , 1280, we create 10 polynomials with random complex coefficients that
have real and imaginary parts distributed in the interval [−1, 1]. We compute the roots
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of each polynomial using Ehrlich-Aberth, Ehrlich-Aberth-Quad, and Ehrlich-Aberth-
Comp, and the relative backward error and the elapsed computation time is recorded.
Then, the average over all 10 polynomials for each degree is recorded on the left of
Figure 4. On the right of Figure 4, the same test is repeated for polynomials of the
form

p(z) = 1 + 2z + · · ·+ (m+ 1)zm,

for degree m = 10, 20, 40, . . . , 1280.
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Fig. 4. Well-Conditioned Polynomial Roots Test

Note that the slope of the linear regression line is reported for both the backward
error and elapsed time in Figure 4. In particular, the dependence of the relative back-
ward error on the degree of the polynomial has been reduced from nearly quadratic
for Ehrlich-Aberth to linear for Ehrlich-Aberth-Comp. In addition, the computation
time suggests that all three methods have a quadratic cost complexity. However,
Ehrlich-Aberth-Quad is approximately 100 − 200 times slower than Ehrlich-Aberth,
whereas, Ehrlich-Aberth-Comp is only 2− 4 times slower.

Next, we compare the backward error and computation time when working with
polynomials with ill-conditioned roots. For degree m = 10, 20, 30, . . . , 150, we create
10 polynomials with random complex roots on the unit circle. Then, we compute their
roots using Ehrlich-Aberth, Ehrlich-Aberth-Quad, and Ehrlich-Aberth-Comp, and the
relative backward error and the elapsed computation time is recorded. The average
over all 10 polynomials for each degree is recorded on the left of Figure 5. On the
right of Figure 5, the same test is repeated for the truncated exponential:

p(z) = 1 + x+
1

2
x2 +

1

3!
x3 + · · ·+ 1

m!
xm,



COMPENSATED EHRLICH-ABERTH METHOD 19

for degree m = 10, 20, 30, . . . , 100.
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Fig. 5. Ill-Conditioned Polynomial Roots Test

Note that the growing condition number of the polynomial roots causes the accu-
racy of Ehrlich-Aberth to rapidly decline. In contrast, Ehrlich-Aberth-Comp is able to
reduce the relative backward error of all computed roots to O(µ) for polynomials of
degree less than 80. Of course, once the condition number of the polynomial roots is
too large, say greater than 1016, the additional accuracy afforded by the compensated
Horner method is lost.

5.2.3. Forward Error. In this section, we illustrate the improvements made
to the forward error of root approximations using the compensated Ehrlich-Aberth
method developed in Section 4.1. In particular, we investigate polynomials with
simple ill-conditioned roots and polynomials with multiple and near multiple roots.
Throughout this section, we let Ehrlich-Aberth and Ehrlich-Aberth-Quad denote the
Ehrlich-Aberth method implemented in double and quadruple precision, respectively.
In addition, we let Ehrlich-Aberth-Comp denote the compensated Ehrlich-Aberth
method.

First, we consider polynomials with simple ill-conditioned roots. In particular, for
degree m = 5, 6, . . . , 20, we consider the monic mth degree polynomial with prescribed
roots

2−bm/2c+j − 3,

for j = 0, 1, . . . ,m− 1, where b·c denotes the floor function. For each polynomial, the
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maximum relative forward error of the root approximations is recorded on the left
of 6. Next, for degree m = 5, 6, . . . , 25, we consider monic mth degree polynomials
whose roots have small imaginary parts:

j + (−1)j8µi,

for j = 1, 2, . . . ,m. For each polynomial, the maximum relative forward error of
the root approximations is recorded in the middle of Figure 6. Finally, we consider
Wilkinson polynomials of degree m = 5, 6, . . . , 20. For each polynomial, the maximum
relative forward error of the root approximations is recorded on the right of Figure 6.
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Fig. 6. Simple Ill-Conditioned Roots Test

Note that the results in Figure 6 illustrate the limiting accuracy of the compen-
sated Ehrlich-Aberth method indicated by Corollary 4.3. That is, the root approxi-
mations in these examples have a relative forward error as if they were computed in
twice the working precision and then rounded into the working precision. Moreover,
in each of the tests, we can see the point at which the maximum condition number
of the polynomial roots became too large and we lost the additional pseudo-precision
afforded to us by the compensated Horner’s method.

Next, we consider polynomials with multiple or near multiple roots. In particular,
the Mandelbrot polynomial, which has roots that lie in a fractal (Mandelbrot set),
and is defined recursively by p0(z) = 1 and

pj(z) = zp2j−1 + 1,

for j = 1, 2, . . . , k, with degree m = 2k − 1. For degree our purposes, we consider
m = 63, i.e., k = 6. Also, we consider the Kameny polynomial, which is defined by

p(z) = (c2z2 − 3)2 + c2z9.

For c = 10, 103, these polynomials have two close real roots with 3, 10 common decimal
digits, respectively, and a complex pair with very small imaginary parts: 10−4, 10−13,
respectively. Finally, we consider the following polynomials with multiple roots:

p1(z) = (z + 1)5(z50 + z + 1),

p2(z) = (z − 1)4(z2 + z + 5)3(3z − 1)2(z50 + 1),

p3(z) = (z − 15)2
15∏

i=1

(z − i).
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Polynomial Limiting Accuracy Ehrlich-Aberth Ehrlich-Aberth-Comp Ehrlich-Aberth-Quad
Mandelbrot 2.53 · 10−5 4.42 · 10−1 3.04 · 10−8 1.70 · 10−11

Kameny, c = 10 1.11 · 10−16 1.42 · 10−14 1.77 · 10−16 1.11 · 10−16

Kameny, c = 103 1.11 · 10−16 5.11 · 10−11 1.25 · 10−16 1.11 · 10−16

p1(z) N/A 3.76 · 10−3 3.02 · 10−6 8.88 · 10−7

p2(z) N/A 7.19 · 10−4 8.40 · 10−8 1.90 · 10−8

p3(z) N/A 1.56 · 10−2 7.86 · 10−8 1.04 · 10−8

Table 1
Multiple and Near Multiple Roots Test

Note that the non-multiple roots of p1(z) and p2(z) are well-conditioned, whereas the
non-multiple roots of p3(z) are ill-conditioned.

In Table 1, we display the maximum relative forward error in the root computa-
tions via Ehrlich-Aberth, Ehrlich-Aberth-Quad, and Ehrlich-Aberth-Quad. In addition,
the worst case limiting accuracy is displayed for each polynomial to illustrate the re-
sult in Corollary 4.3. Finally, note that this test illustrates the importance of using
the compensated Horner’s method to evaluate the polynomial derivative. Indeed, if
the Horner method implemented in double precision is used, then the forward error
of Ehrlich-Aberth-Comp is 2.42 · 10−1 for the Mandelbrot polynomial. Hence, in this
case, the limiting accuracy is not attained unless the compensated Horner’s method
is used to evaluate the polynomial and its derivative.

6. Conclusion. The compensated Ehrlich-Aberth method is effective for the
accurate computation of all roots of a polynomial. In Theorem 3.2, we proved a
running error bound for the compensated Horner method. Then, in Section 4.1, we
used this error bound to form robust stopping criteria for the compensated Ehrlich-
Aberth method that guarantees iterations do not terminate until the relative error
in the polynomial evaluation is too large or until the relative size of the Ehrlich-
Aberth correction term is too small. Moreover, in Corollary 4.3, we showed that under
suitable conditions, all root approximations have a limiting accuracy as if computed in
twice the working precision and then rounded into the working precision. Finally, in
Section 5, extensive numerical experiments illustrate the accuracy of the compensated
Horner and Ehrlich-Aberth methods as well as the speed-up in terms of computation
time as compared to the quadruple precision implementations of the Horner and
Ehrlich-Aberth methods, respectively.
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