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In this article, we use the complex compensated Horner's method to derive a compensated Ehrlich-Aberth method for the accurate computation of all roots of a polynomial. In particular, under suitable conditions, we prove that the limiting accuracy for the compensated Ehrlich-Aberth iterations is as accurate as if computed in twice the working precision and then rounded into the working precision. Moreover, we derive a running error bound for the complex compensated Horner's and use it to form robust stopping criteria for the compensated Ehrlich-Aberth iterations. Finally, extensive numerical experiments illustrate that the backward and forward errors of the root approximations computed via the compensated Ehrlich-Aberth method are similar to those obtained with a quadruple precision implementation of the Ehrlich-Aberth method with a significant speed-up in terms of the computation time.

1. Introduction. The use of error-free transformations to produce compensated arithmetic routines has a long and interesting history, which includes the works of Dekker, Gill, Goldberg, Kahan, Knuth, and Møller [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF][START_REF] Gill | A process for the step-by-step integration of differential equations in an automatic digital computing machine[END_REF][START_REF] Goldberg | What every computer scientist should know about floating-point arithmetic[END_REF][START_REF] Kahan | Further remarks on reducing truncation errors[END_REF][START_REF] Knuth | The Art of Computer Programming: Seminumerical Algorithms[END_REF][START_REF] Møller | Quasi double-precision in floating point addition[END_REF]. These works were the first to extend the working precision of a computation without the use of a hardware or software implementation of a high precision format [START_REF] Enge | MPC: A library for multiprecision complex arithmetic with exact rounding[END_REF][START_REF] Fousse | MPFR: A multipleprecision binary floating-point library with correct rounding[END_REF]. More recently, Rump, Ogita, and Oishi have developed algorithms for the summation and dot product computed in k-fold working precision [START_REF] Ogita | Accurate sum and dot product[END_REF], k ≥ 2, as well as the computation of a summation that is faithfully rounded [START_REF] Rump | Ultimately fast accurate summation[END_REF][START_REF] Rump | Accurate floating-point summation part I: faithful rounding[END_REF].

In addition, error-free transformations have been used to develop the compensated Horner's method for the evaluation of a polynomial and its derivatives at a real or complex number [START_REF] Graillat | Compensated Horner scheme[END_REF][START_REF] Graillat | Algorithms for accurate, validated and fast polynomial evaluation[END_REF][START_REF] Graillat | Accurate summation, dot product and polynomial evaluation in complex floating point arithmetic[END_REF][START_REF] Jiang | Accurate evaluation of a polynomial and its derivative in Bernstein form[END_REF][START_REF] Jiang | Accurate evaluation of the k-th derivative of a polynomial and its application[END_REF]. The real compensated Horner's method has been used to improve the accuracy of eigenvalue approximations of a symmetric tridiagonal matrix and real root approximations of a real polynomial [START_REF] Gemignani | Accurate polynomial root-finding methods for symmetric tridiagonal matrix eigenproblems[END_REF][START_REF] Graillat | Accurate simple zeros of polynomials in floating point arithmetic[END_REF]. In [START_REF] Graillat | Accurate simple zeros of polynomials in floating point arithmetic[END_REF], Graillat shows that if the real compensated Horner's method is used to evaluate a polynomial, then the Newton iterations converge to an approximate root as accurately as if computed in twice the working precision and then rounded into the working precision.

The Ehrlich-Aberth (Börsch-Supan) method [START_REF] Aberth | Iteration methods for finding all zeros of a polynomial simultaneously[END_REF][START_REF] Börsch-Supan | A posterior error bounds for the zeros of polynomials[END_REF][START_REF] Ehrlich | A modified Newton method for polynomials[END_REF] combines Newton's method with an implicit deflation strategy, which allows for the computation of all roots of a polynomial. In this article, we use the complex compensated Horner's method to develop a compensated Ehrlich-Aberth method that can compute all roots of a polynomial as accurately as the Newton iterations from [START_REF] Graillat | Accurate simple zeros of polynomials in floating point arithmetic[END_REF]. The outline of this article is as follows: In Section 2, we recall the basic properties of real and complex floating-point arithmetic. Then, in Section 3, we describe the Horner method and compensated Horner method for polynomial evaluation in complex floating-point arithmetic. Moreover, we derive a running error bound for the compensated Horner method, which considers the rounding errors that occur during the computation. Section 4 is devoted to the presentation of the Ehrlich-Aberth method and compensated Ehrlich-Aberth method. In particular, the running error bound for the compensated Horner method is used to form robust stopping criteria for the sequence of root approximations. Moreover, under suitable conditions, we prove that these root approximations have a limiting accuracy as if computed in twice the working precision and then rounded into the working precision. Finally, in Section 5, extensive numerical experiments illustrate that the backward and forward errors of the root approximations computed via the compensated Ehrlich-Aberth are similar to those obtained with a quadruple precision implementation of the Ehrlich-Aberth method but with a significant speed-up in terms of the computation time.

2. Floating-Point Arithmetic. Throughout this article, we assume that the computer arithmetic satisfies the IEEE 754 standard [START_REF]ANSI/IEEE, IEEE Standard for Binary Floating Point Arithmetic[END_REF], and that no underflow nor overflow occurs. We denote by F the set of floating-point numbers and by µ the unit roundoff. Note that for single precision, µ = 2 -24 and for double precision, µ = 2 -53 , where the exponent corresponds to the precision of this floating-point format. Finally, we use the standard notation fl (•) to denote floating-point operations in working precision.

2.1. Real Floating-Point Arithmetic. For operations • ∈ {+, -, •}, the IEEE 754 standard requires the result of fl (a • b) to be correctly rounded, i.e., as accurate as if computed exactly and then rounded to the current precision [START_REF] Goldberg | What every computer scientist should know about floating-point arithmetic[END_REF]. In this article, we assume that all the computations are performed with rounding to nearest (using round to even). Throughout this article, we make use of the quantities γ n , which are defined in the usual way [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]:

γ n = nµ 1 -nµ ,
where n ∈ N is assumed to satisfy nµ < 1. Moreover, we make use of the round to nearest mode to perform error-free transformations for a floating-point operation. In particular, for each x = fl (a • b), there exists a y ∈ F such that x + y = a • b. The pair (x, y) is called the error-free transformation of (a, b) for the operation •. For instance, Algorithm 2.1 is attributed to Knuth [START_REF] Knuth | The Art of Computer Programming: Seminumerical Algorithms[END_REF] and returns the error-free transformation of (a, b) for addition. Note that Algorithm 2.1 requires 6 flops to be executed. In addition, we make use of the fused multiply-add operation, which is denoted FMA (a, b, c) and results in the floating point number nearest to a•b+c ∈ R. Note that the fused multiply-add operation was added to the IEEE 754 standard in 2008 and is supported by many modern processors [START_REF] Nievergelt | Scalar fused multiply-add instructions produce floating-point matrix arithmetic provably accurate to the penultimate digit[END_REF]. Moreover, the error-free transformation of (a, b) for multiplication can be performed using the fused multiply-add operation as is done in [START_REF] Ogita | Accurate sum and dot product[END_REF], see Algorithm 2.2. For processors that don't support the fused multiply-add operation, the error-free transformation of (a, b) for multiplication can be computed with the splitting operation introduced by Dekker [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF] but requires 17 flops rather than the 2 flops required by Algorithm 2.2, see Algorithm 3.3 of [START_REF] Ogita | Accurate sum and dot product[END_REF]. We conclude this section with a theorem from [START_REF] Ogita | Accurate sum and dot product[END_REF] that summarizes the properties of Algorithm 2.1 and Algorithm 2.2. 

a • b = x + y, x = fl (a • b) , |y| ≤ µ |x| , |y| ≤ µ |a • b| .

Complex

Floating-Point Arithmetic. We define C = F + iF to be the set of complex floating-point numbers, where i = √ -1 is the imaginary unit. Also, we use the operators Re (•) and Im (•) to denote the real and imaginary part of a complex number, respectively. As in the real case, we denote by fl (•) the operations that are done in floating-point working precision. The following holds for all a, b ∈ C and • ∈ {+, -}:

fl (a • b) = (a • b)(1 + ),
where | | ≤ µ. In addition, we have

fl (a • b) = (a • b)(1 + ), where | | ≤ √ 2γ 2 . This further implies that (2.2) |fl (a • b) -a • b| ≤ µ |a • b| and |a • b -fl (a • b)| ≤ µ |fl (a • b)| , for • ∈ {+, -} and (2.3) |a • b -fl (a • b)| ≤ √ 2γ 2 |a • b| .
Finally, throughout this article, we make use of the quantity

γ n = n √ 2γ 2 1 -n √ 2γ 2 .
As in the real case, the error-free transformation of the pair of complex floatingpoint numbers (a, b) for the operation • is a pair (x, y) such that x = fl (a • b) and x + y = a • b. The error-free transformation of (a, b) ∈ C 2 for complex addition is a [g 5 , h 5 ] = TwoSum (g 1 , -g 2 ); [g 6 , h 6 ] = TwoSum (g 3 , g 4 )

w = g 5 + ig 6 ; x = h 1 + ih 3 ; y = -h 2 + ih 4 ; z = h 5 + ih 6
We conclude this section with a theorem from [START_REF] Graillat | Accurate summation, dot product and polynomial evaluation in complex floating point arithmetic[END_REF] that summarizes the properties of Algorithm 2.3 and Algorithm 2.4. 3. Horner's Method. Consider the polynomial of degree m in the variable z defined by

(3.1) p(z) = a m z m + • • • + a 1 z + a 0 ,
where a 0 , a 1 , . . . , a m ∈ C, and a m = 0. Given z ∈ C, we can compute the polynomial evaluation p(z) using Horner's method as shown in Algorithm 3.1.

Algorithm 3.1 Horner's Method. function [h 0 ] = Horner (p, z) : h m = a m for k = m -1 to k = 0 do h k = fl (z • h k+1 + a k ) end for
The result h 0 = Horner (p, z) satisfies the following forward error bound [START_REF] Graillat | Accurate summation, dot product and polynomial evaluation in complex floating point arithmetic[END_REF]:

|p(z) -h 0 | ≤ γ 2m p(|z|), where p(z) = m k=0 |a k | z k . Finally, if p(z) = 0, then we have the relative forward error bound |p(z) -h 0 | |p(z)| ≤ γ 2m cond (p, z) ,
where the condition number of the polynomial evaluation of p at z is defined by

(3.2) cond (p, z) = p(|z|)/ |p(z)| .
3.1. Compensated Horner's Method. To improve the standard error bound of Horner's method, we follow the development in [START_REF] Graillat | Accurate summation, dot product and polynomial evaluation in complex floating point arithmetic[END_REF] to produce a compensated Horner's method in complex floating-point arithmetic. To this end, we record the error at each iteration from both the floating-point product and sum operations. Specifically, we produce four error polynomials: p π , p µ , p ν , p σ , which are collected monomial-by-monomial as outlined in Algorithm 3. To obtain a true error-free transformation, we would need to recursively perform Algorithm 3.2 on the four error polynomials of degree (m -1) until the resulting error polynomials were constant. This recursive process would result in many error terms: Four polynomials of degree (m -1), 16 polynomials of degree (m -2), and so on to include 4 m constant polynomials. Moreover, most of the coefficients in these polynomials would suffer from underflow. For this reason, we only consider the first-order error terms. In particular, Algorithm 3.3 shows how we compute the forward error e(z) = (p π + p µ + p ν + p σ )(z) using Horner's method applied to the polynomial whose coefficients are those of (p π + p µ + p ν + p σ ), computed using the doubly compensated summation method from Priest [START_REF] Priest | On properties of floating point arithmetics: Numerical stability and the cost of accurate computations[END_REF].

h m = a m for k = m -1 to k = 0 do [ ĥk , π k , µ k , ν k ] = TwoProductCmplx (h k+1 , z) [h k , σ k ] = TwoSumCmplx ĥk , a k Set π k , µ k , ν k , σ k ,
In fact, any of the summation methods from [START_REF] Demmel | Accurate and efficient floating point summation[END_REF][START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF][START_REF] Priest | On properties of floating point arithmetics: Numerical stability and the cost of accurate computations[END_REF][START_REF] Rump | Ultimately fast accurate summation[END_REF][START_REF] Rump | Accurate floating-point summation part I: faithful rounding[END_REF] that guarantee a relative error bound of 2µ can be used. For example, in [START_REF] Graillat | Accurate summation, dot product and polynomial evaluation in complex floating point arithmetic[END_REF], the authors advocate for the use of the accurate summation method from [START_REF] Rump | Ultimately fast accurate summation[END_REF][START_REF] Rump | Accurate floating-point summation part I: faithful rounding[END_REF], the result of which is guaranteed to be faithfully rounded, i.e., as accurate as if computed exactly and then rounded to an adjacent floating-point number. Hence, the relative error in the accurate summation method is 2µ; however, since we only need to sum 4 complex floating-point numbers, it is more efficient to use the doubly compensated summation method. Although the result of this method is not guaranteed to be faithfully rounded, it follows from the analysis of Priest in [START_REF] Priest | On properties of floating point arithmetics: Numerical stability and the cost of accurate computations[END_REF]Section 4.1] that it has the same relative error of 2µ. If we ignore the cost of the sort, which for the given 4 floating-point values requires 9 absolute values, 6 comparisons, and 3 swaps, then the execution of Algorithm 3.4 requires 30 flops. Since Algorithm 3.3 uses the complex doubly compensated summation from Algorithm 3.5, it follows that its execution requires 68m -8 flops.

Algorithm 3.3 Horner's method applied to the degree (m -1) polynomial (p + q + r + s).

function

[v 0 ] = HornerSum (p, q, r, s, z) : v m-1 = DbleCompSumCmplx (p m-1 , q m-1 , r m-1 , s m-1 ) for k = m -2 to k = 0 do v k = fl (z • v k+1 + DbleCompSumCmplx (p k , q k , r k , s k )) end for Algorithm 3.4 Doubly compensated summation of a 1 , a 2 , a 3 , a 4 ∈ F. function [s n ] = DbleCompSum (a 1 , a 2 , a 3 , a 4 ) : Sort the a i so that |a 1 | ≥ • • • ≥ |a 4 | s 1 = a 1 , c 1 = 0 for k = 2 to k = 4 do y k = fl (c k-1 + a k ) u k = fl (a k -(y k -c k-1 )) t k = fl (y k + s k-1 ) v k = fl (y k -(t k -s k-1 )) z k = fl (u k + v k ) s k = fl (t k + z k ) c k = fl (z k -(s k -t k )) end for Algorithm 3.5 Doubly compensated summation of a 1 , a 2 , a 3 , a 4 ∈ C. function [x + iy] = DbleCompSumCmplx (a 1 , a 2 , a 3 , a 4 ) : x = DbleCompSum (Re (a 1 ) , Re (a 2 ) , Re (a 3 ) , Re (a 4 )) y = DbleCompSum (Im (a 1 ) , Im (a 2 ) , Im (a 3 ) , Im (a 4 ))
Let p π , p µ , p ν , p σ be the error polynomials from Algorithm 3.2. Then, by [17, Lemma 5.4], the result v 0 = HornerSum (p π , p µ , p ν , p σ , z) satisfies the following forward error bound:

(3.3) |e(z) -v 0 | ≤ γ 2m-1 ( (p π + p µ + p ν ) + p σ )(|z|).
It is worth noting that [START_REF] Graillat | Accurate summation, dot product and polynomial evaluation in complex floating point arithmetic[END_REF]Lemma 5.4] is formally stated for the accurate summation method from [START_REF] Rump | Ultimately fast accurate summation[END_REF][START_REF] Rump | Accurate floating-point summation part I: faithful rounding[END_REF]; however, since the doubly compensated method has the same relative error bound the result follows. Now, by combining the error-free transformation of Horner's method and the method for computing the corresponding forward error, we obtain the compensated Horner's method shown in Algorithm 3.6, which requires 100m -7 flops to be executed.

Algorithm 3.6 Compensated Horner's Method. function [c 0 ] = CompHorner (p, z) : [h 0 , p π , p µ , p ν , p σ ] = EFTHorner (p, z) e 0 = HornerSum (p π , p µ , p ν , p σ , z) c 0 = fl (h 0 + e 0 )
From [17, Theorem 5.5], we know that the result c 0 = CompHorner (p, z) satisfies the following forward error bound:

(3.4) |p(z) -c 0 | ≤ µ |p(z)| + γ 2 2m p(|z|).
Furthermore, if p(z) = 0, then we have the following relative forward error bound

|p(z) -c 0 | |p(z)| ≤ µ + γ 2 2m cond (p, z) .
Therefore, the compensated Horner's method is as accurate as if computed in twice the working precision and then rounded into the working precision.

Running Error Bound.

The error bound in (3.4) is not useful in practice since it contains the quantity p(z). Therefore, we establish a running error bound that can be computed using the error polynomials produced in Algorithm 3.2. We begin with the following lemma. Lemma 3.1. Let p, q, r, s be degree (m -1) polynomials with non-negative coefficients a k , b k , c k , d k ∈ F, and let x ∈ F be non-negative. Then,

0 ≤ m-1 k=0 (a k + b k + c k + d k )x k ≤ (1 + 2µ) m-1 HornerSum (p, q, r, s, x) .
Proof. Consider Algorithm 3.3 and the intermediate values v k . We prove that for k = 0, 1, . . . , m -1, we have

s(k) := k j=0 (a m-1-k+j + b m-1-k+j + c m-1-k+j + d m-1-k+j )x j ≤ (1 + 2µ) 2k+1 v m-1-k . (3.5)
The base case, k = 0, holds since the relative error in the doubly compensated summation is bounded above by 2µ, that is,

(a m-1 + b m-1 + c m-1 + d m-1 ) ≤ (1 + 2µ) DbleCompSum (a m-1 , b m-1 , c m-1 , d m-1 ) = (1 + 2µ)v m-1 .
Suppose that (3.5) holds for some integer k, where 0 ≤ k < m -1, and note that s(k + 1) can be split into the sum of two parts:

  k j=0 (a m-1-k+j + b m-1-k+j + c m-1-k+j + d m-1-k+j )x j   x and a m-k-2 + b m-k-2 + c m-k-2 + d m-k-2 .
By the induction hypothesis, the first part is bounded above by (1+2µ) 2k+1 x•v m-1-k and, since the relative error in the doubly compensated summation is bounded above by 2µ, the second part is bounded above by

(1 + 2µ) DbleCompSum (a m-k-2 , b m-k-2 , c m-k-2 , d m-k-2 ) .
Therefore, s(k + 1) is bounded above by

(1 + 2µ) 2k+1 x • v m-1-k + (1 + 2µ) DbleCompSum (a m-k-2 , b m-k-2 , c m-k-2 , d m-k-2 ) , which, in turn, is bounded above by (1 + 2µ) 2k+1 (1 + µ) 2 times fl (x • v m-1-k + DbleCompSum (a m-k-2 , b m-k-2 , c m-k-2 , d m-k-2 )) .
Thus,

s(k + 1) ≤ (1 + 2µ) 2(k+1)+1 v m-k-2 ,
and it follows that (3.5) holds for k = 0, 1, . . . , m -1.

We are now ready to prove the running error bound for the compensated Horner's method in Algorithm 3.6. Theorem 3.2. Let p be a complex polynomial as defined in (3.1). Then, c 0 = CompHorner (p, z) satisfies

|c 0 -p(z)| ≤ fl µ |c 0 | + ( γ 4m+2 HornerSum (|p π | , |p µ | , |p ν | , |p σ | , |z|) + 2µ 2 |c 0 |) . Proof. Note that c 0 = CompHorner (p, z) satisfies |c 0 -p(z)| = |fl (h 0 + e 0 ) -p(z)| ≤ |fl (h 0 + e 0 ) -(h 0 + e 0 )| + |(h 0 + e 0 ) -p(z)| ≤ µ |fl (h 0 + e 0 )| + |e 0 -e(z)| ,
where e(z) = (p π + p µ + p ν + p σ )(z). Applying the forward error bound in (3.3) and Lemma 3.1, we have

|e 0 -e(z)| ≤ γ 2m-1 ( (p π + p µ + p ν ) + p σ )(|z|) ≤ (1 + 2µ) 2m-1 γ 2m-1 HornerSum (|p π | , |p µ | , |p ν | , |p σ | , |z|) .
Next, we make use of the following inequalities:

(1 + √ 2γ 2 ) γ m ≤ γ m+1 and γ m ≤ (1 - √ 2γ 2 ) γ m+1 .
The first inequality implies that (1 9 γ 4m+2 . We summarize these results in the following inequality

+ √ 2γ 2 ) 2m-1 γ 2m-1 ≤ γ 4m-2 . This combined with 2µ ≤ √ 2γ 2 implies that (1 + 2µ) 2m-1 γ 2m-1 ≤ γ 4m-2 . Furthermore, the second inequality implies that γ 4m-2 ≤ (1 - √ 2γ 2 ) 4 γ 4m+2 . Since (1 - √ 2γ 2 ) ≤ (1 -µ) 9/4 , it follows that γ 4m-2 ≤ (1 -µ)
(3.6) (1 + 2µ) 2m-1 γ 2m-1 ≤ γ 4m-2 ≤ (1 -µ) 9 γ 4m+2 .
Now, we analyze the error in the computation of

γ k = k √ 2γ 2 1 -k √ 2γ 2 = 2kµ √ 2 (1 -2µ) -2kµ √ 2 .
Note that 2µ, 2kµ, and (1 -2µ) are floating-point numbers computed exactly, and the IEEE standard requires the square-root operation be rounded to nearest. Therefore, 2kµ

√ 2 ≤ (1-µ) -2 fl 2kµ √ 2 and (1-2µ)-2kµ √ 2 ≥ (1-µ) 3 fl (1 -2µ) -2kµ √ 2
, and it follows that

(3.7) γ k ≤ (1 -µ) -6 fl ( γ k ) .
Finally, we apply the inequalities in (3.6) and (3.7) to obtain the following:

|c 0 -p(z)| ≤ µ |c 0 | + (1 + 2µ) 2m-1 γ 2m-1 HornerSum (|p π | , |p µ | , |p ν | , |p σ | , |z|) ≤ µ |c 0 | + (1 -µ) 9 γ 4m+2 HornerSum (|p π | , |p µ | , |p ν | , |p σ | , |z|) ≤ µ |c 0 | + (1 -µ) 2 fl ( γ 4m+2 HornerSum (|p π | , |p µ | , |p ν | , |p σ | , |z|)) .
Therefore, the error in the computation c 0 is bounded above by

(1 -µ)µ |c 0 | + (1 -µ) 2 fl ( γ 4m+2 HornerSum (|p π | , |p µ | , |p ν | , |p σ | , |z|)) + µ 2 |c 0 | ,
which, since we can always assume that 2(1 -µ) 2 ≥ 1, is bounded above by

(1 -µ)µ |c 0 | + (1 -µ) 2 fl ( γ 4m+2 HornerSum (|p π | , |p µ | , |p ν | , |p σ | , |z|)) + 2µ 2 |c 0 | .
Furthermore, since we assume that no underflow occurs, both µ |c 0 | and 2µ 2 |c 0 | are floating-point numbers computed exactly and it follows that the error in the computation c 0 is bounded above by

(1 -µ) µ |c 0 | + fl γ 4m+2 HornerSum (|p π | , |p µ | , |p ν | , |p σ | , |z|) + 2µ 2 |c 0 | .
Therefore, we have

|c 0 -p(z)| ≤ fl µ |c 0 | + ( γ 4m+2 HornerSum |p π | , |p µ | , |p ν | , |p σ | , |z|) + 2µ 2 |c 0 | .
4. Ehrlich-Aberth Method. Let p be a degree m complex polynomial as defined in (3.1). Throughout this section, we assume that p has simple roots ζ 1 , . . . , ζ m ∈ C. For 1 ≤ i ≤ m and n ≥ 0, let z n,i ∈ C denote the approximation of ζ i after n iterations. The Ehrlich-Aberth method [START_REF] Aberth | Iteration methods for finding all zeros of a polynomial simultaneously[END_REF][START_REF] Bini | Numerical computation of polynomial zeros by means of Aberth's method[END_REF][START_REF] Börsch-Supan | A posterior error bounds for the zeros of polynomials[END_REF][START_REF] Ehrlich | A modified Newton method for polynomials[END_REF] updates each root approximation as follows (4.1)

z n+1,i = fl z n,i - p(z n,i ) p (z n,i ) -p(z n,i )A n,i (z n,i ) , where A n,i (z) = j =i (z -z n,j ) -1
. Note that we reference the fractional expression on the right side of (4.1) as the Ehrlich-Aberth correction term. The polynomial evaluations in (4.1) can be computed using Horner's method from Algorithm 3.1. Moreover, given z ∈ C and h 0 = Horner (p, z), we can push the error in the computation back onto the coefficients as follows [START_REF] Bini | Numerical computation of polynomial zeros by means of Aberth's method[END_REF]Theorem 7]:

h 0 = m i=0 a i (1 + i ) z i , where | i | ≤ (2 √ 2 + 1)i + 1 µ + O(µ 2
). Note that the backward error of z as a root of the polynomial p is defined by

η(z) = min { : (p + ∆p) (z) = 0, |∆a i | ≤ |e i | , i = 0, 1, . . . , m} ,
where the e i are arbitrary and represent tolerances against which perturbations are measured, and ∆p(z

) = ∆a m z m + • • • + ∆a 1 z + ∆a 0 .
It is well-known, e.g., see [START_REF] Chaitin-Chatelin | Lectures on Finite Precision Computations, Software, Environments and Tools[END_REF], that

η(z) = |p(z)| α(|z|) ,
where

α(z) = m i=0 |e i | z i . Let e i = (( 2 
√ 2 + 1)i + 1)a i . Then, the inequality (4.2) η(z) ≤ µ
guarantees that z is a root of (p + ∆p), where |∆a i | is no bigger than the upper bound of |a i | i , for all i = 0, 1, . . . , m. Furthermore, if η(z) > µ, then z being a root of (p + ∆p) implies that |∆a i | is bigger than |a i | i for some i = 0, 1, . . . , m. Hence, in exact arithmetic, (4.2) denotes a stopping criterion that guarantees iterations do no terminate until z is a root of a polynomial whose coefficients are no more perturbed than the floating-point computation of p(z). In practice, we stop updating the root approximation z if the following inequality holds:

(4.3) |h 0 | > µ Horner (α, |z|) ,
where the coefficients of α have been stored as floating-point numbers.

4.1. Compensated Ehrlich-Aberth Method. Let z ∈ C be a root approximation of the polynomial p such that the stopping criterion (4.3) holds. Then, h 0 = Horner (p, z) is no longer a reliable computation for updating the root approximation z. However, c 0 = CompHorner (p, z) may still be reliable, depending on the value of cond (p, z) as defined in (3.2). In this case, we update the root approximation using (4.1) and the compensated Horner's method. If the polynomial has well-conditioned simple roots, then we only need to apply the compensated Horner's method to p. However, the more difficult polynomial equations have multiple or near multiple roots, which may be ill-conditioned. For this reason, we use the compensated Horner's method to evaluate p and p . A method for performing these evaluations is derived from [19, Algorithm 2] and presented in Algorithm 4.1.

It is clear that the value of c 0 from Algorithm 4.1 is the same as its value from Algorithm 3.6; therefore, c 0 satisfies the forward error bound in (3.4) and the running error bound in Theorem 3.2. Moreover, the derivative value c 0 can be shown to satisfy a similar forward error bound by appealing to [START_REF] Jiang | Accurate evaluation of the k-th derivative of a polynomial and its application[END_REF]Theorem 4] and making the necessary changes from real to complex floating-point arithmetic.

Furthermore, the value of s 0 from Algorithm 4.1 satisfies

s 0 = HornerSum (|p π | , |p µ | , |p ν | , |p σ | , |z|) ,
where p π , p µ , p ν , and p σ are the polynomials created by EFTHorner (p, z). Therefore, by Theorem 3.2, it follows that 

|c 0 -p(z)| ≤ fl µ |c 0 | + (γ 4m+2 s 0 + 2µ 2 |c 0 |) . Hence, if fl µ |c 0 | + (γ 4m+2 s 0 + 2µ 2 |c 0 |) < |c 0 | ,
s m = 0 for k = m -1 to k = 0 do [ ĥ k , π k , µ k , ν k ] = TwoProductCmplx h k+1 , z [h k , σ k ] = TwoSumCmplx ĥ k , h k+1 e k = fl z • e k+1 + e k+1 + DbleCompSumCmplx (π k , µ k , ν k , σ k ) [ ĥk , π k , µ k , ν k ] = TwoProductCmplx (h k+1 , z) [h k , σ k ] = TwoSumCmplx ĥk , a k e k = fl (z • e k+1 + DbleCompSumCmplx (π k , µ k , ν k , σ k )) s k = fl (|z| • s k+1 + DbleCompSum (|π k | , |µ k | , |ν k | , |σ k |)) end for c 0 = fl (h 0 + e 0 ), c 0 = fl (h 0 + e 0 )
then the error in the computation of p(z) is smaller than the size of |c 0 | and is still a reliable computation. Thus, we obtain the following stopping criterion for the compensated Ehrlich-Aberth method (4.4)

|c 0 | ≤ fl µ |c 0 | + (γ 4m+2 s 0 + 2µ 2 |c 0 |) .
Finally, let z ∈ C be an approximate root of the polynomial p, and consider the computation [c 0 , c 0 , s 0 ] = CompHornerDer (p, z). Denote by EA(p, z) the computed Ehrlich-Aberth correction term using the values of c 0 and c 0 . Then, even if (4.4) does not hold, it may happen that the following does hold:

(4.5) |EA(p, z)| ≤ µ |z| ,
which implies that the relative change made to z by the Ehrlich-Aberth correction term is insignificant. In summary, we don't stop updating the root approximations from the compensated Ehrlich-Aberth method until either (4.4) or (4.5) holds, which guarantees that the updates don't cease until the relative error in the compensated Horner method is too big, or the relative size the Ehrlich-Aberth correct term is too small. Before proceeding, note that Horner and compensated Horner methods are prone to overflow; for instance, when a large degree polynomial with positive coefficients is evaluated at z, where |z| > 1. For this reason, the reversal polynomial p R (z) := z m p(1/z), which for ρ = 1/z satisfies

p(z) = z m p R (ρ) p (z) = mz m-1 p R (ρ) -z m-2 p R (ρ),
is used to compute the Ehrlich-Aberth correction term when |z| > 1 [START_REF] Bini | Numerical computation of polynomial zeros by means of Aberth's method[END_REF].

Limiting Accuracy.

In [START_REF] Tisseur | Newton's method in floating point arithmetic and iterative refinement of generalized eigenvalue problems[END_REF], Tisseur examined the multi-variable Newton's method, allowing for extended precision in the computation of the residual, and its application to iterative refinement for the generalized eigenvalue problem. In particular, for a close enough eigenvalue approximation, Newton's method converges to an eigenvalue approximation with limiting accuracy that depends on the relative rounding error µ and the accuracy of the computed residual.

Then, in [START_REF] Graillat | Accurate simple zeros of polynomials in floating point arithmetic[END_REF], Graillat applied this result to real polynomials with real simple zeros. Specifically, if the polynomial evaluation is computed using the real compensated Horner's method, then for a close enough root approximation, Newton's method converges to a root approximation with limiting accuracy as if computed in twice the working precision and then rounded into the working precision. In this section, we show that the compensated Ehrlich-Aberth method has a similar limiting accuracy for all, real or complex, roots of a polynomial.

To this end, we re-write (4.1) as follows

(4.6) z n+1,i = z n,i -J n,i (z n,i ) + e n,i -1 (p(z n,i ) + e n,i ) + n,i ,
where J n,i (z) = p (z) -p(z)A n,i (z), e n,i is the error in computing p(z n,i ), e n,i is the error in computing J n,i (z n,i ) and performing the division, and n,i is the error in the subtraction.

For i = 1, . . . , m, we assume that p(z n,i ) is computed via the compensated Horner's method in Algorithm 3.6. Hence,

|e n,i | ≤ µ |p(z n,i )| + γ 2 2m p(|z n,i |).
We also assume that e n,i ≤ µφ (p, z n,i , m, µ) ,

for some function φ that reflects the error in computing J n,i (z n,i ) and performing the division. For the error n,i , we have

| n,i | ≤ µ |z n,i | + J n,i (z n,i ) + e n,i -1 (p(z n,i ) + e n,i )
Since the roots of p, denoted by ζ 1 , . . . , ζ m , are assumed to be simple, it follows that for i = 1, . . . , m, there exists a closed disk D i in the complex plane centered at ζ i such that ζ j / ∈ D i for all j = i. Furthermore, for close enough root approximations, we can assume that z n,i ∈ D i and z n,j / ∈ D i for all j = i. Under these assumptions, we have the following result. Lemma 4.1. For i = 1, . . . , m, there exists a β i > 0 such that for all z, w ∈ D i , we have

|p(z) -p(w) -J n,i (w)(z -w)| ≤ β i 2 |z -w| 2 + |p(w)| |A n,i (w)| |z -w| .
Proof. Since p is Lipschitz continuous on D i , there exists a

β i > 0 such that |p (z) -p (w)| ≤ β i |z -w| ,
for all z, w ∈ D i . Furthermore, for all z, w ∈ D i , p(z) -p(w) -J n,i (w)(zw) can be written as

1 0 (p (w + t(z -w)) -p (w)) (z -w)dt + p(w)A n,i (w)(z -w).
Therefore, by Holder's inequality and the Lipschitz continuity of p , we have

|p(z) -p(w) -J n,i (w)(z -w)| ≤ β i 2 |z -w| 2 + |p(w)| |A n,i (w)| |z -w| .
From Lemma 4.1 and the continuity of p and A n,i on D i , it follows that there exists M i > 0 such that

|p(z) -p(w) -J n,i (w)(z -w)| ≤ β i 2 |z -w| 2 + M i |z -w| ,
for all z, w ∈ D i . Furthermore, the Lipschitz continuity of J n,i on D i implies that there exists β i > 0 such that

|J n,i (z) -J n,i (w)| ≤ β i |z -w| ,
for all z, w ∈ D i .

Theorem 4.2. For i = 1, . . . , m assume that

(4.7) J n,i (z n,i ) -1 e n,i ≤ ν < 1, and 
(4.8) β i J n,i (ζ i ) -1 |z n,i -ζ i | ≤ τ < 1.
Then, z n+1,i in (4.6) is well-defined and satisfies

|z n+1,i -ζ i | ≤ G i |z n,i -ζ i | + g i ,
where

G i = ν 1 -ν + µ(2 + µ) (1 -τ )(1 -ν) + M i + µ + (1 + µ) 2 τ 2(1 -τ )(1 -ν) and g i = µ |ζ i | + γ 2 2m 1 + µ (1 -τ )(1 -ν) p(|z n,i |) |p (ζ i )| .
Proof. By (4.8) and the Lipschitz continuity of J n,i on D i , we have (4.9)

J n,i (ζ i ) -1 |J n,i (z n,i ) -J n,i (ζ i )| ≤ β i J n,i (ζ i ) -1 |z n,i -ζ i | ≤ τ < 1.
Also, note that

J n,i (z n,i ) -1 = 1 + J n,i (z n,i ) -J n,i (ζ i ) J n,i (ζ i ) -1 J n,i (ζ i ) -1 ,
which, combined with (4.9), implies that (4.10)

J n,i (z n,i ) -1 ≤ J n,i (ζ i ) -1 1 -|J n,i (ζ i ) -1 | |J n,i (z n,i ) -J n,i (ζ i )| ≤ J n,i (ζ i ) -1 1 -τ .
Similarly, (4.7) and (4.10) give us

(4.11) J n,i (z n,i ) + e n,i -1 ≤ J n,i (z n,i ) -1 1 -J n,i (z n,i ) -1 e n,i ≤ J n,i (ζ i ) -1 (1 -τ )(1 -ν) .
Therefore, J n,i (z n,i ) + e n,i is non-zero, so z n+1,i in (4.6) is well-defined and

z n+1,i -ζ i = z n,i -ζ i -J n,i (z n,i ) + e n,i -1 (p(z n,i ) + e n,i ) + n,i = 1 - J n,i (z n,i ) J n,i (z n,i ) + e n,i (z n,i -ζ i ) - p(z n,i ) -J n,i (z n,i ) (z n,i -ζ i ) + e n,i J n,i (z n,i ) + e n,i + n,i .
Hence, we have the following bound

|z n+1,i -ζ i | ≤ 1 - J n,i (z n,i ) J n,i (z n,i ) + e n,i |z n,i -ζ i | + |p(z n,i ) -J n,i (z n,i ) (z n,i -ζ i )| + |e n,i | J n,i (z n,i ) + e n,i + | n,i | . (4.12) From 1 - J n,i (z n,i ) J n,i (z n,i ) + e n,i = e n,i J n,i (z n,i ) + e n,i = J n,i (z n,i ) -1 e n,i 1 + J n,i (z n,i ) -1 e n,i
and (4.7), we have

(4.13) 1 - J n,i (z n,i ) J n,i (z n,i ) + e n,i ≤ ν 1 -ν .
From Lemma 4.1, we have

(4.14) |p(z n,i ) -J n,i (z n,i ) (z n,i -ζ i )| ≤ β i 2 |z n,i -ζ i | 2 + M i |z n,i -ζ i | and |p(z n,i ) -J n,i (ζ n,i ) (z n,i -ζ i )| ≤ β i 2 |z n,i -ζ i | 2 .
Hence,

|p(z n,i )| ≤ |p(z n,i ) -J n,i (ζ i ) (z n,i -ζ i )| + |J n,i (ζ i ) (z n,i -ζ i )| ≤ β i 2 |z n,i -ζ i | 2 + |J n,i (ζ i )| |z n,i -ζ i | , (4.15)
which allows us to bound the error term e n,i as follows (4.16) |e

n,i | ≤ µ β i 2 |z n,i -ζ i | 2 + |J n,i (ζ i )| |z n,i -ζ i | + γ 2 2m p(|z n,i |)
and the error term n,i as follows (4.17)

| n,i | ≤ µ (|z n,i -ζ i | + |ζ i | + |d n,i |) ,
where

|d n,i | = J n,i (z n,i ) + e n,i -1 (|p(z n,i )| + |e n,i |) ≤ J n,i (ζ i ) -1 (1 -τ )(1 -ν) (1 + µ) β i 2 |z n,i -ζ i | 2 + |J n,i (ζ i )| |z n,i -ζ i | + γ 2 2m p(|z n,i |) .
Note that conditions (4.7) and (4.8) are necessary for z n+1,i in (4.6) to be defined. Assumption (4.7) is a condition on the accuracy of computing J n,i (z) and assumption (4.8) is a condition on the diameter of the disk D i and the conditioning of the root ζ i . In our final result, we assume that we can make ν, τ and M i small enough, say ν ≤ 1 8 , τ ≤ 1 8 , and M i ≤ 1 8 . Under these assumptions, we have the following result, which implies that under suitable conditions the compensated Ehrlich-Aberth method computes all roots of a polynomial as accurate as if computed in twice the working precision and then rounded into the working precision.

Corollary 4.3. For i = 1, . . . , m, let z 0,i ∈ D i . Then, the compensated Ehrlich-Aberth method generates a sequence of of approximations whose absolute error decreases until the first n for which

(4.18) |z n+1,i -ζ i | ≈ µ |ζ i | + γ 2 2m p(|ζ i |) |p (ζ i )| .
Furthermore, if ζ i = 0, then we have the following relative limiting accuracy

(4.19) |z n+1,i -ζ i | |ζ i | ≈ µ + γ 2 2m cond (p, ζ i ) ,
where

(4.20) cond (p, ζ) = p(|ζ|) |ζ| |p (ζ)|
is the condition number for the computation of the root ζ of p.

Proof. By Theorem 4.2, for i = 1, . . . , m, we have

|z 1,i -ζ i | ≤ G i |z 0,i -ζ i | + g i .
Under the assumption that ν ≤ 1 8 , τ ≤ 1 8 , and M i ≤ 1 8 , we have G i ≤ 1 2 and it follows that the absolute error contracts unless (4.18) already holds. Thus, the result follows via induction.

Numerical Experiments.

In this section, we present the results of several numerical experiments to demonstrate the running error bound of the compensated Horner method in Theorem 3.2 and the limiting accuracy of the compensated Ehrlich-Aberth method in Corollary 4.3. In addition, we compare the computation time of the compensated Horner to the Horner method implemented in double and quadruple precision. Finally, we compare the computation time, backward error, and forward error of the compensated Ehrlich-Aberth method to the Ehrlich-Aberth method implemented in quadruple precision. Note that all higher precision computations, such as those in quadruple precision, are implemented using the GNU MPFR and MPC libraries [START_REF] Enge | MPC: A library for multiprecision complex arithmetic with exact rounding[END_REF][START_REF] Fousse | MPFR: A multipleprecision binary floating-point library with correct rounding[END_REF]. The results that follow are from tests run on an Intel Core i7 CPU running 3.2GHz with 16GB of memory. All code is written in C and compiled using Apple clang version 12.0.5 and is available at https://github.com/trcameron/CompEA. 5.1. Compensated Horner's Method. In this section, we illustrate the running error bound of the compensated Horner method in Theorem 3.2 and the computation time of the compensated Horner method in comparison to the Horner method implemented in double and quadruple precision.

5.1.1. Running Error Bound. The numerical experiment is designed as follows: We evaluate the expanded form of p(z) = (z -(1 + i)) 5 for 2000 z values near the root 1 + i. For each value of z, we compute CompHorner (p, z), the running error bound in Theorem 3.2, and the a priori error bound in (3.4). Then, we compute an accurate evaluation of p(z) in a high precision format, which allows us to measure the forward error in the computation CompHorner (p, z). The results are shown in Figure 1, where Im (z) = 1 and Re (z) ranges from 0.99 to 1.01 with a step size of 10 -5 . Note that as z gets closer to the root 1 + i, the condition number increases and the a priori error bound becomes more pessimistic. The running error bound is more accurate as it takes into account the rounding errors that occur during the computation. In addition to comparing the computation time of the compensated Horner method to the Horner method implemented in double and quadruple precision, we compare the computation time of the compensated Horner Method when the fast accurate summation method from [START_REF] Rump | Accurate floating-point summation part I: faithful rounding[END_REF] is used versus the doubly compensated summation method in Algorithm 3.3. Note that this test illustrates our point made in Section 3.1 that the doubly compensated summation method is more efficient in this case.

The experiment is designed as follows: We form 100 random complex polynomials of each degree from 100 to 2500, incremented by 10. For each polynomial, the computation time required to evaluate the polynomial at a random complex number is recorded. Then, the average time for each degree is displayed in Figure 2. Note that the compensated Horner method is about 2 times faster with the doubly compensated summation method versus with the fast accurate summation method. Moreover, the compensated Horner method with the doubly compensated summation method is about 4 times faster than the Horner method implemented in quadruple precision. In this section, we illustrate the limiting accuracy of the compensated Ehrlich-Aberth method in Corollary 4.3. In addition, we compare the accuracy and computation time of the compensated Ehrlich-Aberth method to the Ehrlich-Aberth method implemented in double and quadruple precision. Finally, the experiments in this section illustrate the robustness of the stopping criteria for the compensated Ehrlich-Aberth method discussed in Section 4.1.

Indeed, in all experiments, the stopping criteria was used to suspend the compensated Ehrlich-Aberth iterations and, as evident by the accuracy of the root approximations, these iterations were not suspended prematurely. 5.2.1. Limiting Accuracy. The experiment is designed as follows: Chebyshev polynomials of the first kind are created for each degree from 5 to 80, incremented by 1. It is known that the roots of the Chebyshev polynomial become more ill-conditioned as the degree of the polynomial increases. In Figure 3, we compare the maximum condition number of the roots of each Chebyshev polynomial to the maximum forward error in the computed roots using the Ehrlich-Aberth method implemented in double precision and the compensated Ehrlich-Aberth method. In addition, we include the limiting accuracy bounds for both methods. 

Error.

In this section, we illustrate that the backward errors of the root approximations computed by the compensated Ehrlich-Aberth method are similar to the backward errors of the root approximations computed by the quadruple precision implementation of the Ehrlich-Aberth method. To that end, we investigate polynomials with well-conditioned roots and polynomials with ill-conditioned roots.

Throughout this section, we let Ehrlich-Aberth and Ehrlich-Aberth-Quad denote the Ehrlich-Aberth method implemented in double and quadruple precision, respectively. In addition, we let Ehrlich-Aberth-Comp denote the compensated Ehrlich-Aberth method. Finally, we make use of the following measurement of backward error: Given a set of root approximations z 1 , . . . , z m for the polynomial p, we define the relative backward error of all root approximations by (5.1)

η(z 1 , . . . , z m ) = p -q ∞ p ∞ ,
where • ∞ denotes the infinity vector norm, and q is the polynomial with leading coefficient equal to the leading coefficient of p and whose roots are exactly z 1 , . . . , z m . Note that we compute the coefficients of the polynomial q in a high precision format using the GNU MPC and MPFR libraries [START_REF] Enge | MPC: A library for multiprecision complex arithmetic with exact rounding[END_REF][START_REF] Fousse | MPFR: A multipleprecision binary floating-point library with correct rounding[END_REF]. First, we consider polynomials with well-conditioned roots. For degree m = 10, 20, 40, . . . , 1280, we create 10 polynomials with random complex coefficients that have real and imaginary parts distributed in the interval [-1, 1]. We compute the roots of each polynomial using Ehrlich-Aberth, Ehrlich-Aberth-Quad, and Ehrlich-Aberth-Comp, and the relative backward error and the elapsed computation time is recorded. Then, the average over all 10 polynomials for each degree is recorded on the left of Figure 4. On the right of Figure 4, the same test is repeated for polynomials of the form p(z) = 1 + 2z + Note that slope of the linear regression line is reported for both the backward error and elapsed time in Figure 4. In particular, the dependence of the relative backward error on the degree of the polynomial has been reduced from nearly quadratic for Ehrlich-Aberth to linear for Ehrlich-Aberth-Comp. In addition, the computation time suggests that all three methods have a quadratic cost complexity. However, Ehrlich-Aberth-Quad is approximately 100 -200 times slower than Ehrlich-Aberth, whereas, Ehrlich-Aberth-Comp is only 2 -4 times slower.

Next, we compare the backward error and computation time when working with polynomials with ill-conditioned roots. For degree m = 10, 20, 30, . . . , 150, we create 10 polynomials with random complex roots on the unit circle. Then, we compute their roots using Ehrlich-Aberth, Ehrlich-Aberth-Quad, and Ehrlich-Aberth-Comp, and the relative backward error and the elapsed computation time is recorded. The average over all 10 polynomials for each degree is recorded on the left of Figure 5. On the right of Figure 5, the same test is repeated for the truncated exponential:

p(z) = 1 + x + 1 2 x 2 + 1 3! x 3 + • • • + 1 m! x m ,
maximum relative forward error of the root approximations is recorded on the left of 6. Next, for degree m = 5, 6, . . . , 25, we consider monic mth degree polynomials whose roots have small imaginary parts: j + (-1) j 8µi, for j = 1, 2, . . . , m. For each polynomial, the maximum relative forward error of the root approximations is recorded in the middle of Figure 6. Finally, we consider Wilkinson polynomials of degree m = 5, 6, . . . , 20. For each polynomial, the maximum relative forward error of the root approximations is recorded on the right of Figure 6. Note that the results in Figure 6 illustrate the limiting accuracy of the compensated Ehrlich-Aberth method indicated by 4.3. That is, the root approximations in examples have a relative forward error as if they were computed in twice the working precision and then rounded into the working precision. Moreover, in each of the tests, we can see the point at which the maximum condition number of the polynomial roots became too large and we lost the additional pseudo-precision afforded to us by the compensated Horner's method.

Next, we consider polynomials with multiple or near multiple roots. In particular, the Mandelbrot polynomial, which has roots that lie in a fractal (Mandelbrot set), and is defined recursively by p 0 (z) = 1 and p j (z) = zp 2 j-1 + 1, for j = 1, 2, . . . , k, with degree m = 2 k -1. For degree our purposes, we consider m = 63, i.e., k = 6. Also, we consider the Kameny polynomial, which is defined by

p(z) = (c 2 z 2 -3) 2 + c 2 z 9 .
For c = 10, 10 3 , these polynomials have two close real roots with 3, 10 common decimal digits, respectively, and a complex pair with very small imaginary parts: 10 -4 , 10 -13 , respectively. Finally, we consider the following polynomials with multiple roots: Note that the non-multiple roots of p 1 (z) and p 2 (z) are well-conditioned, whereas the non-multiple roots of p 3 (z) are ill-conditioned.

In Table 1, we display the maximum relative forward error in the root computations via Ehrlich-Aberth, Ehrlich-Aberth-Quad, and Ehrlich-Aberth-Quad. In addition, the worst case limiting accuracy is displayed for each polynomial to illustrate the result in Corollary 4.3. Finally, note that this test illustrates the importance of using the compensated Horner's method to evaluate the polynomial derivative. Indeed, if the Horner method implemented in double precision is used, then the forward error of Ehrlich-Aberth-Comp is 2.42 • 10 -1 for the Mandelbrot polynomial. Hence, in this case, the limiting accuracy is not attained unless the compensated Horner's method is used to evaluate the polynomial and its derivative.

Conclusion.

The compensated Ehrlich-Aberth method is effective for the accurate computation of all roots of a polynomial. In Theorem 3.2, we proved a running error bound for the compensated Horner method. Then, in Section 4.1, we used this error bound to form robust stopping criteria for the compensated Ehrlich-Aberth method that guarantees iterations do not terminate until the relative error in the polynomial evaluation is too large or until the relative size of the Ehrlich-Aberth correction term is too small. Moreover, in Corollary 4.3, we showed that under suitable conditions, all root approximations have a limiting accuracy as if computed in twice the working precision and then rounded into the working precision. Finally, in Section 5, extensive numerical experiments illustrate the accuracy of the compensated Horner and Ehrlich-Aberth methods as well as the speed-up in terms of computation time as compared to the quadruple precision implementations of the Horner and Ehrlich-Aberth methods, respectively.

  As a result, for a, b ∈ F, floating-point operations satisfy fl (a • b) = (a • b)(1 + ), where | | ≤ µ. This further implies that (2.1) |fl (a • b) -a • b| ≤ µ |a • b| and |a • bfl (a • b)| ≤ µ |fl (a • b)| .

Algorithm 2 . 1

 21 Error-free transformation of (a, b) ∈ F 2 for addition. function [x, y] = TwoSum (a, b) : x = fl (a + b) z = fl (xa) y = fl ((a -(xz)) + (bz))

Algorithm 2 . 2

 22 Error-free transformation of (a, b) ∈ F 2 for multiplication. function [x, y] = TwoProduct (a, b) : x = fl (a • b) y = FMA (a, b, -x)

Theorem 2 . 1 .

 21 Let a, b ∈ F. Then, for [x, y] = TwoSum (a, b) we have a + b = x + y, x = fl (a + b) , |y| ≤ µ |x| , |y| ≤ µ |a + b| , and for [x, y] = TwoProduct (a, b) we have

Algorithm 2 . 3

 23 Error-free transformation of (a, b) ∈ C 2 for addition. function [x, y] = TwoSumCmplx (a, b) : [Re (x) , Re (y)] = TwoSum (Re (a) , Re (b)) [Im (x) , Im (y)] = TwoSum (Im (a) , Im (b)) straightforward extension of Algorithm 2.1 and is shown in Algorithm 2.3. Note that Algorithm 2.3 requires 12 flops to be executed. The error-free transformation of (a, b) ∈ C 2 for complex multiplication requires multiple products of the real and imaginary parts of a and b as shown in Algorithm 2.4. Note that Algorithm 2.4 requires 20 flops to be executed. In contrast, if the splitting operation from [6] was used in Algorithm 2.2, then Algorithm 2.4 would require 64 flops to be executed, see Algorithm 3.3 from [17]. Algorithm 2.4 Error-free transformation of (a, b) ∈ C 2 for multiplication. function [w, x, y, z] = TwoProductCmplx (a, b) : [g 1 , h 1 ] = TwoProduct (Re (a) , Re (b)); [g 2 , h 2 ] = TwoProduct (Im (a) , Im (b)) [g 3 , h 3 ] = TwoProduct (Re (a) , Im (b)); [g 4 , h 4 ] = TwoProduct (Re (a) , Im (b))

Theorem 2 . 2 .

 22 Let a, b ∈ C. Then, for [x, y] = TwoSumCmplx (a, b) we have a + b = x + y, x = fl (a + b) , |y| ≤ µ |x| , |y| ≤ µ |a + b| , and for [w, x, y, z] = TwoProductCmplx (a, b) we have a • b = w + x + y + z, w = fl (a • b) , |x + y + z| ≤ √ 2γ 2 |a • b| .

Algorithm 4 . 1

 41 Compensated Horner's Method for p and p . function [c 0 , c 0 , s 0 ] = CompHornerDer (p, z) : h m = a m , h m = 0, h m = 0 e m = 0, e m = 0, e m = 0
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  respectively, as the coefficient of degree k in p π , p µ , p ν , p σ .

	end for
	It is immediately clear that h 0 = Horner (p, z). Furthermore, by induction, it is
	easy to show that
	p(z) = h 0 + (p π + p µ + p ν + p σ )(z),
	and it follows from [17, Proposition 5.3] that
	( (p π + p µ + p ν ) + p σ )(|z|) ≤ γ 2m p(|z|).

Table 1

 1 PolynomialLimiting Accuracy Ehrlich-Aberth Ehrlich-Aberth-Comp Ehrlich-Aberth-Quad Mandelbrot 2.53 • 10 -5 4.42 • 10 -1 3.04 • 10 -8 1.70 • 10 -11 Kameny, c = 10 1.11 • 10 -16 1.42 • 10 -14 1.77 • 10 -16 1.11 • 10 -16 Kameny, c = 10 3 1.11 • 10 -16 5.11 • 10 -11 1.25 • 10 -16 1.11 • 10 -16 p Multiple and Near Multiple Roots Test

	1 (z) p 2 (z) p 3 (z)	N/A N/A N/A	3.76 • 10 -3 7.19 • 10 -4 1.56 • 10 -2	3.02 • 10 -6 8.40 • 10 -8 7.86 • 10 -8	8.88 • 10 -7 1.90 • 10 -8 1.04 • 10 -8
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for degree m = 10, 20, 30, . . . , 100. Note that the growing condition number of the polynomial roots causes the accuracy of Ehrlich-Aberth to rapidly decline. In contrast, Ehrlich-Aberth-Comp is able reduce the relative backward error of all computed roots to O(µ) for polynomials of degree less than 80. Of course, once the condition number of the polynomial roots is too large, say greater than 10 16 , the additional accuracy afforded by the compensated Horner method is lost.

Forward Error.

In this section, we illustrate the improvements made to the forward error of root approximations using the compensated Ehrlich-Aberth method developed in Section 4.1. In particular, we investigate polynomials with simple ill-conditioned roots and polynomials with multiple and near multiple roots. Throughout this section, we let Ehrlich-Aberth and Ehrlich-Aberth-Quad denote the Ehrlich-Aberth method implemented in double and quadruple precision, respectively. In addition, we let Ehrlich-Aberth-Comp denote the compensated Ehrlich-Aberth method.

First, we consider polynomials with simple ill-conditioned roots. In particular, for degree m = 5, 6, . . . , 20, we consider the monic mth degree polynomial with prescribed roots 2 -m/2 +j -3, for j = 0, 1, . . . , m -1, where • denotes the floor function. For each polynomial, the