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The effective one-body formalism of the gravitational two-body problem in general relativity is
reconsidered in the light of recent scattering amplitude calculations. Based on the kinematic relationship
between momenta and the effective potential, we consider an energy-dependent effective metric describing
the scattering in terms of an effective one-body problem for the reduced mass. The identification of the
effective metric simplifies considerably in isotropic coordinates when combined with a redefined angular
momentum map. While the effective energy-dependent metric as expected is not unique, solutions can be
chosen perturbatively in the post-Minkowskian expansion without the need to introduce nonmetric
corrections. By a canonical transformation, our condition maps to the one based on the standard angular
momentum map. Expanding our metric around the Schwarzschild solution we recover the solution based
on additional nonmetric contributions.

DOI: 10.1103/PhysRevD.104.104029

I. INTRODUCTION

Recent advances in the scattering amplitude-based
approach to the post-Minkowskian expansion of classical
general relativity [1–29] have demonstrated that this new
approach holds the promise of significantly changing the
efficiency of computations in general relativity. The input
from scattering amplitude calculations is increasing fast. At
this point, full third-order post-Minkowskian amplitude
calculations of the scattering of two massive objects are
now available [7,14–16,20,29], and the first results for fourth
post-Minkowskian order have already appeared [17]. This
amplitude-based approach generically computes one observ-
able; the scattering angle in what we can call the hyperbolic
regime of the two-body problem in gravity. Although of
interest in themselves, eventually these results should be
used to predict gravitational waveforms and other observ-
ables associated with two massive objects bound to each
other. One strategy for going from the scattering regime to
the bound-state regime is based on the effective one-body
(EOB) formalism [30,31], suitably adapted from post-
Newtonian to post-Minkowskian formulations [1–3]. So,
hugely successful based on post-Newtonian computations,

it seems timely to revisit this EOB approach and explore
both its flexibility and its power of prediction.
The aim of this paper is to gather known results up to third

post-Minkowskian order in Newton’s constant GN and
include them in the most compact manner in a post-
Minkowskian version of the EOB formalism. The choice
of isotropic coordinates is crucial for simplicity. Interestingly,
once in isotropic coordinates, we find that the simplest
approach is to not expand around the probe limit of the
two-body problem, which would correspond to motion in
the background metric of a Schwarzschild black hole. The
way to achieve this is to enlarge the notion of the effective
metric so that it becomes energy dependent. This possibility
appears to be intuitively appealing and understandable for the
gravitational scattering of two massive objects which, due to
the nonlinearities of general relativity beyond the probe limit,
create backreactions that depend on energy and momentum.
Although the effective metric itself depends on the energy, we
can still impose the standard quadratic mass-shell condition;
we will find the correct map that describes the gravitational
scattering of two massive objects such that the scattering
angle deduced from that metric coincides with the one
computed from the post-Minkowskian expansion of the full
theory. Choosing an angular momentum map that differs
from the one conventionally used [30,31] connects most
straightforwardly to the scattering amplitude-based approach
to general relativity, and we end up describing the reduced
problem in terms of a massive object in an effective metric
that only reduces to the Schwarzschild metric in the probe
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limit. Moreover, as we will demonstrate, the motion is
entirely described by this metric without, at least up to the
present order, introduction of correction terms of the non-
metric kind. By a canonical transformation, we also recover
the condition based on the standard angular momentum map,
without the need to include nonmetric corrections. Expanding
our metric around the Schwarzschild metric can rephrase the
solution in terms of the combination of a Schwarzschild
metric plus additional nonmetric terms, finding complete
agreement with the solution given in that form by Damour
in Ref. [3].

II. POST-MINKOWSKIAN KINEMATICS AND THE
EFFECTIVE METRIC

While the EOB formalism is a standard tool for the
gravitational wave physics community [30–34], it is not
widely known in the particle physics community. Since the
aim of this paper is to explore some of the consequences
of calculating classical general relativity observables with
modern scattering-amplitude methods, we begin this section
with an elementary introduction to the EOB formalism,
phrased in a manner that may be more accessible to particle
physicists.
We begin by considering free-particle kinematics in

Minkowskian space. The aim is to describe the dynamics
of two masses m1 and m2 moving with relative velocity

v≡ jv⃗j ¼ jv⃗1 − v⃗2j; ð1Þ

in terms of a reduced mass

μ≡ m1m2

m1 þm2

; ð2Þ

moving with the same velocity v. It is convenient to
introduce the total mass M ≡m1 þm2 so that μ ¼
m1m2=M. In terms of the original relativistic kinematics,
the Lorentz contraction factor is

γ ¼ E2 −m2
1 −m2

2

2m1m2

¼ p1 · p2

m1m2

; ð3Þ

with pi being the two momenta and where E is the total
energy. Solving Eq. (3) for E in this frame, we have the
relation

E ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðγ − 1Þ

p
; ð4Þ

where

ν≡ m1m2

ðm1 þm2Þ2
¼ μ

M
: ð5Þ

Denoting by Eeff ¼ μγ the energy of the reduced mass μ,
this leads to the relation

H ¼ E ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Eeff

μ
− 1

�s
: ð6Þ

This is the energy map.
To relate the corresponding magnitude of the three-

momentum peff ¼ jp⃗eff j of the reduced mass to the
center-of-mass momentum p∞ of the two masses, we
use free relativistic kinematics with p⃗eff ¼ μγv⃗ and
γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v⃗2

p
. This gives

�
peff

μ

�
2

¼ ðE2 − ðm1 þm2Þ2ÞðE2 − ðm1 −m2Þ2Þ
4m2

1m
2
2

; ð7Þ

which is easily compared to the center-of-mass momentum
p∞

p2
∞ ¼ ðE2 − ðm1 þm2Þ2ÞðE2 − ðm1 −m2Þ2Þ

4E2
; ð8Þ

yielding

peff

μ
¼ p∞E

m1m2

: ð9Þ

This is the momentum map.
Finally, we wish to relate the angular momentum Jeff of

the reduced mass to the angular momentum J of the
two-particle system. We first choose to do this by insisting
that impact parameter b remains fixed. This is in contra-
distinction to the conventionally used prescription of [30]
where, instead, angular momentum is kept fixed.We find our
chosen relation more convenient for the following analysis
because it more directly connects with the expression for the
scattering angle we obtain from the two-body problem. The
possibility of fixing b instead of J has been mentioned in
Ref. [35] but not pursued there (see also Ref. [36] for a
related discussion). Fixing b, we get

b ¼ J
p∞

¼ Jeff
peff

⇒ Jeff ¼ J
peff

p∞
¼ J

E
M

: ð10Þ

This is our angular momentum map. We shall later show
how to obtain the same results based on the conventional
angular momentum map where, instead, one equates J with
Jeff . This will involve a canonical transformation, thus
leaving physics invariant.

III. THE EFFECTIVE METRIC

So far, we have not considered interactions. One impor-
tant lesson from the scattering-amplitude approach to
gravitational scattering in general relativity is that at least
up to, and including, third post-Minkowskian order, there
exists, in isotropic coordinates, a very simple relationship
between center-of-mass momentum p and the effective
classical potential Veffðr; pÞ of the form [7,10,11]
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p2 ¼ p2
∞ − Veffðr; EÞ; ð11Þ

where, in D ¼ 4 dimensions,

Veffðr; EÞ ¼ −
X∞
n¼1

fn

�
GNM
r

�
n
: ð12Þ

The coefficients fi are deduced from the scattering angle

χ ¼ GN χ1 þG2
N χ2 þ G3

N χ3 þOðG4
NÞ; ð13Þ

extracted from scattering-amplitude calculations order-
by-order in the coupling GN as shown. Up to third
post-Minkowskian order, the fi-coefficients extracted
from the amplitude computations read [28]

f1 ¼ 2ð2γ2 − 1Þ μ
2M
E

; ð14Þ

f2 ¼
3 ð5γ2 − 1Þ

2

μ2M
E

; ð15Þ

f3 ¼−μ2
�
−
3

2

ð2γ2− 1Þ ð5γ2− 1Þ
γ2− 1

þ 2
12γ4− 10γ2þ 1

γ2− 1

E
M

�

−
2

3

μ2νM
E

�
2γð14γ2þ 25Þ− ð1− 2γ2Þ2

ðγ2− 1Þ2 ð8− 5γ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2− 1

q
þ
�
6ð4γ4− 12γ2− 3Þffiffiffiffiffiffiffiffiffiffiffiffi

γ2− 1
p −

ð6γ3− 9γÞð1− 2γ2Þ2
ðγ2− 1Þ2

�
arccoshðγÞ

�
;

ð16Þ

including all classical terms that contribute to this order. At
fourth post-Minkowskian order, radiation must be taken
into account and it is not yet obvious how this may affect,
perturbatively in GN , the order-by-order determination of
the coefficients fi.
Our aim now is to provide an effective one-body metric

geffμν for the reduced-mass problem that reproduces the
scattering angle computed from the expression of
Eq. (27). Even if we specify isotropic coordinates it will
quickly become clear that such an effective metric geffμν is
not unique and part of our present purpose is therefore to
explore the most optimal choice.
A general parametrization of geffμν can be provided by

ds2eff ¼ AðrÞdt2−BðrÞðdr2þ r2ðdθ2þ sin2θdφ2ÞÞ; ð17Þ

where AðrÞ and BðrÞ are so far undetermined functions of r.
Because of the large set of coordinate transformations that
are permissible within the choice of isotropic coordinates,
we parametrize the solutions employing the ansatz

AðrÞ ¼
�
1 − hðrÞ
1þ hðrÞ

�
2

; BðrÞ ¼ ð1þ hðrÞÞ4: ð18Þ

In the limit ν → 0, we expect this effective metric to
approach the Schwarzschild metric which in isotropic
coordinates corresponds to

hðrÞ → GNM
2r

: ð19Þ

One standard method for computing the scattering angle in
such an external metric is to determine the principal
function S of the associated Hamilton-Jacobi equation

gαβeff∂αS∂βS ¼ μ2: ð20Þ

Because of conservation of the energy Eeff and angular
momentum Jeff , and considering the motion in the orbital
equatorial plane θ ¼ π=2, we use the standard separated
ansatz

Sðr; t;φÞ ¼ Eefftþ JeffφþWðrÞ; ð21Þ

to obtain

E2
eff

AðrÞ −
J2eff

BðrÞr2 −
1

BðrÞ
�
dWðrÞ
dr

�
2

¼ μ2; ð22Þ

and hence the scattering angle

χ

2
¼ Jeff

Z
∞

rm

dr
r2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞ
AðrÞ E

2
eff −

J2eff
r2 − BðrÞμ2

q −
π

2
; ð23Þ

where rm is the distance of the closest radial approach in the
scattering. This quantity is not independent and follows
from the other parameters of the expression (23) through
the condition

pr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞ
AðrÞ E

2
eff −

J2eff
r2

− BðrÞμ2
s

¼ 0 at r ¼ rm: ð24Þ

Insisting on the angular momentum map of Eq. (10) and
inserting also the momentum map (9), we can rewrite this as
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χ

2
¼ b

Z
∞

rm

dr
r2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞ
AðrÞ

E2eff
p2
eff
− b2

r2 −
BðrÞμ2
p2
eff

r −
π

2
: ð25Þ

It is important to stress that we are employing momentum
and angular momentummaps that were naturally provided at
Minkowskian infinity and which are now taken to hold also
in the presence of interactions. To fix, order-by-order in the
coupling GN , we compare the so far unknown functions
AðrÞ and BðrÞ with the expression for the scattering angle
obtained from the kinematic relation (11). This provides us
with an alternative form of the radial action W and hence

χ

2
¼ −

Z
∞

r̂m

dr
∂pr

∂J −
π

2
; ð26Þ

where, after using p2
r ¼ p2 − J2

r2 and substituting Eq. (11),
we obtain

χ

2
¼ b

Z
∞

r̂m

dr
r2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r2 −
Veffðr;EÞ

p2
∞

q −
π

2
: ð27Þ

Because the two expressions (25) and (27) are so similar in
form, we will now impose the strong requirement of the two
integrands being equal. From the equality of the integrands,
it follows that rm ¼ r̂m since the condition pr ¼ 0 (which is
the zero of the denominator) is the same for the two
expressions. Equality of the integrands is not required,
but since we will be able to find systematic solutions to
this condition, we impose it. It translates into

1 −
Veffðr; EÞ

p2
∞

¼ BðrÞμ2
p2
eff

 
E2
eff

μ2AðrÞ − 1

!
: ð28Þ

This expression can, after imposing E2
eff ¼ μ2 þ p2

eff ¼
γ2μ2, be written as

1 −
Veffðr; EÞ

p2
∞

¼ BðrÞ
γ2 − 1

�
γ2

AðrÞ − 1

�
: ð29Þ

It is clear at this stage that we should not be able to find
solutions for the metric functions AðrÞ and BðrÞ that are
independent of γ, and they will, therefore, (utilizing the
above identification) also depend on the effective energy. But
if our objective is to identify a class of metrics that reproduce
the scattering angle of the actual two-body problem using an
EOB formalism, there is nothing to prevent us from pursuing
this approach. Indeed, the only observable information we
have at our disposal from the amplitude side is the scattering
angle, and all remaining dynamics must be extracted from it.
So the condition (29) fulfils our requirement. Using our
parametrization for the metric coefficients in (18), this
becomes a polynomial equation of sixth order in hðrÞ
�
hðrÞ þ γ − 1

γ þ 1

��
hðrÞ þ γ þ 1

γ − 1

�
ð1þ hðrÞÞ4

¼ ð1 − hðrÞÞ2
�
1þ E2

ðγ2 − 1ÞM2

Veffðr; EÞ
ν2M2

�
: ð30Þ

This equation can always be solved in perturbation theory
with hðrÞ ¼Pn≥1 hnðGM=rÞn for any perturbatively
expanded effective potential Veff ¼ −

P
n≥1 fnðGNM=rÞn.

It is clear that if we had not used the simplifying ansatz (18)
we would have, at each new order in GN , two new metric
coefficients to fit for each new condition from the scattering
angle, allowing a large degree of freedom in the para-
metrization of the effective metric.
It is instructive to analyse in detail the first post-

Minkowskian approximation. Solving perturbatively for
the coefficients hn in hðrÞ ¼Pn≥1 hnðGM=rÞn, we obtain

h1 ¼
1

2

E
M

; ð31Þ

h2 ¼ −
3ð5γ2 − 1Þ
8ð2γ2 − 1Þ

�
1 −

M
E

��
E
M

�
2

; ð32Þ

at the next order we split the expression for h3 ¼ hcons3 þ
hRR3 into a conservative part

hcons3 ¼
�
811γ6 − 224γ5 − 1665γ4 − 288γ3 þ 659γ2 þ 200γ − 45

48ð1 − 2γ2Þ2ðγ2 − 1Þ −
γ ð14γ2 þ 25Þ

6ðγ − 1Þð2γ2 − 1Þ
M
E

��
1 −

M
E

��
E
M

�
3

−
ðγ þ 1Þð4γ4 − 12γ2 − 3Þ
2ðγ2 − 1Þ32ð2γ2 − 1Þ arccoshðγÞ

�
1 −

M2

E2

��
E
M

�
3

; ð33Þ

and a radiation-reaction part

hRR3 ¼ ð2γ2 − 1Þ
�
γð2γ2 − 3Þ arccoshðγÞ
4ðγ − 1Þ3ðγ þ 1Þ2 −

ðγ þ 1Þ ð5γ2 − 8Þ
12ðγ2 − 1Þ5=2

��
1 −

M2

E2

��
E
M

�
3

: ð34Þ
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One can argue whether the radiation-reaction terms hRR3
should be included here. We have kept them because they
are needed to produce the correct scattering angle in the
high-energy limit.
In the probe limit, ν → 0, and the total energy E in (4)

becomes the total mass M. Up to third post-Minkowskian
order, and including the radiation-reaction contributions,
we find that the corrections h2 and h3 all vanish as (E −M).
We thus recover the Schwarzschild solution in isotropic
coordinates since

lim
ν→0

h1 ¼
1

2
; lim

ν→0
hi ¼ 0 for i ¼ 2; 3: ð35Þ

Because the fi coefficients in (14)–(16) are proportional to
μ2 ¼ ν2M2, the effective potential has an overall factor of
ν2 and it is convenient to separate it out by defining
Vprobe
eff ðr;MÞ through Veffðr; EÞ≡ ν2Vprobe

eff ðr;MÞ þOðν3Þ.
Since, furthermore, p2

∞ ¼ M2ν2ðγ2 − 1Þ þOðν3Þ, we of
course also recover the probe potential for the
Schwarzschild metric in isotropic coordinates,

Vprobe
eff ðr;MÞ ¼ M2ðγ2 − 1Þ −M2

�
1þ GNM

2r

�
4

×

�
γ2
�
1þ GNM

2r

1 − GNM
2r

�2

− 1

�
: ð36Þ

The effective energy function in isotropic coordinates that
we propose here corresponds to

E2
eff ¼

ð1−hðrÞ
1þhðrÞÞ

2
�
μ2þ J2eff

r2ð1þhðrÞÞ4þ
p2
r

ð1þhðrÞÞ4
�
; ð37Þ

which in the probe limit becomes

ðEprobe
eff Þ2 ¼

�
1 − GNM

2r

1þ GNM
2r

�2�
μ2 þ p2

ð1þ GNM
2r Þ4

�
; ð38Þ

thus reproducing the Schwarzschild Hamiltonian given in
Eq. (77) of [37].
So far, we have managed to find a simple effective EOB

metric geffμν which correctly reproduces the scattering of two
masses up to third post-Minkowskian order. The main use
of an EOB metric is in the pseudoelliptic regime of bound
orbits where the total energy (minus rest mass) is negative,
and we now briefly consider the use of the metric geffμν in this
regime.
An obvious first check of the metric would be to confirm

that it reproduces the periastron shift of bound orbits to
second order in the post-Minkowskian expansion. Clearly,
to first post-Minkowskian order, the motion is Newtonian
with a 1=r potential and closed orbits. Adding to this the
second-order solution for hðrÞ,

hðrÞ ¼ GNE
2r

þ 3G2
N ð5γ2 − 1ÞEðE −MÞ

8 ð2γ2 − 1Þr2 ; ð39Þ

it is a straightforward exercise to compute the periastron
shift ΔΦ from the EOB metric to this order in GN . The
result is

ΔΦ ¼ 3πG2
NM

2μ2

2J2

�
E
M

�
ð5γ2 − 1Þ; ð40Þ

which agrees with the computation of Ref. [38] where it
was derived by analytic continuation from the scattering
parameters. In the limit E ≃M and γ ≃ 1 it agrees with the
classic result of Robertson for the two-body problem to that
order (see Chapter 8.6 of [39]).
Finally, we can see how, conversely, the energy map (6)

emerges in the present setting. We start with our condition
(28) which imposes the correct scattering angle of the
effective theory. We now keep Eeff ; p2

eff , and μ a priori
unrelated and analyze the condition order-by-order in the
coupling GN . To first post-Minkowskian order it reads

μ2 þ p2
eff − E2

eff

p2
eff

þ
�
f1
p2
∞
þ 4h1
p2
eff

ðμ2 − 2E2
effÞ
�
GNM
r

þOðG2
NÞ ¼ 0: ð41Þ

To zeroth order in GN we obtain the free particle relation
E2
eff ¼ p2

eff þ μ2. To orderGN we next get, after making use
of the leading-order relation and after inserting the expres-
sions for f1 from (14) and h1 from (31),

Eeff

μ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1 − 4p2

∞h1
f1 − 8p2

∞h1

s
¼ γ ¼ E2 −m2

1 −m2
2

2m1m2

; ð42Þ

which is the energy map (6). From order G2
N and up this

relationship is automatically satisfied by the condition (28).

IV. COMPARISONWITH EARLIER APPROACHES

It is interesting to observe that the full leading-order
metric we deduced above is not of Schwarzschild form but
rather has the total mass M ¼ m1 þm2 replaced by total
energy E, with

hðrÞ ¼
X
n≥1

ĥnðγ;M=EÞ
�
GNE
r

�
n
; ð43Þ

so that, to first post-Minkowskian order,

AðrÞ ¼
�
1 − GNE

2r

1þ GNE
2r

�2

þOðG2
NÞ;

BðrÞ ¼
�
1þ GNE

2r

�
4

þOðG2
NÞ:

ð44Þ
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While this energy-dependent metric may appear as an
intuitively appealing effective metric for the post-
Minkowskian problem to this order, it seems to contradict
the observation that to first order in the post-Minkowskian
expansion the effective metric can be chosen to be exactly
of Schwarzschild form [1]. The resolution is as follows.
Our condition for the effective metric geffμν is that it solves
the condition (20). As we have noted above, this leads us
to solutions for the effective metric that are energy
dependent. Instead, the conventional EOB formalism
modifies the mass-shell condition in an alternative man-
ner, replacing Eq. (20) by

gαβeff∂αS∂βS ¼ μ2 þQ; ð45Þ

where the function Q absorbs all terms higher than
quadratic in the momenta. Both prescriptions correct
for the fact that away from Minkowskian infinity we
cannot insist on a purely quadratic equation in Eeff . The
analysis based on Eq. (45) in isotropic coordinates has
first been performed in Ref. [3]. Imposing the usual
angular momentum map J ¼ Jeff the condition of correct
scattering angle must then read, in our notation,

p2
eff þWðRÞ ¼ B̄ðRÞ

�
E2
eff

ĀðRÞ − μ2 −Q

�
; ð46Þ

where the functions Ā and B̄ correspond to the
Schwarzschild metric,

ĀðRÞ ¼
�
1 − GNM

2R

1þ GNM
2R

�2

; B̄ðRÞ ¼
�
1þ GNM

2R

�
4

; ð47Þ

and there is a rescaled three-momentum

P2 ¼ P2
∞ þWðRÞ: ð48Þ

Comparing with the actual kinematical relation Eq. (11) of
the two-body problem this allows us to identify

P2 ¼ p2
eff

p2
∞
p2 ¼

�
E
M

�
2

p2; ð49Þ

and

WðRÞ ¼ −
p2
eff

p2
∞
Veff ¼ −

�
E
M

�
2

Veffðr; EÞ: ð50Þ

The two isotropic coordinates are related by R ¼ r ×
ðM=EÞ and, as we see from Eq. (49), this is part of the
canonical transformation

ðR; PRÞ ¼
�
r
M
E
; pr

E
M

�
: ð51Þ

Expanding the potential WðRÞ ¼Pn≥1 μ
2wnðGNM=RÞn

as in Ref. [3] in terms of coefficients wi and after taking
into account the relation between the two radii r and R, we
find the identification

wi ¼
fi
μ2

�
M
E

�
n−2

: ð52Þ

Plugging in the coefficients fi one readily recovers the wi
of Ref. [3] for i ¼ 1, 2. Finally, rewriting the condition for
the metric and Q in the form

1 −
Veffðr; EÞ

p2
∞

¼ B̄ðRÞ
p2
eff

�
E2
eff

ĀðRÞ − μ2 −Q

�
; ð53Þ

we can immediately compare with our (28). This gives

B̄ðRÞ
�

E2
eff

ĀðRÞ − μ2 −Q

�
¼ BðrÞ

�
E2
eff

AðrÞ − μ2
�
; ð54Þ

where

Q ¼ μ2
X
n≥2

qn

�
GNM
R

�
n
; ð55Þ

Because both expressions yield the correct scattering
angle, we should recover the Q function from Ref. [3].
Indeed, inserting the Schwarzschild metric functions Ā
and B̄ and converting our r-coordinate to R by the above
canonical transformation, we obtain

hðRÞ ¼
X
n≥1

hn

�
M
E

�
n
�
GNM
R

�
n
: ð56Þ

Expanding (54) and using that h1 ¼ E=ð2MÞ we get

q2 ¼ 4ð2γ2 − 1Þ
�
M
E

�
2

× h2; ð57Þ

which after using (32) reproduces the result given in
Eq. (3.33) of Ref. [3]. Next, expanding (54) in GN and
using the fact that h starts at order GN gives

E2
eff

X
n≥0

Xminðn;6Þ

p¼0

ðn − pþ 1Þ6!
p!ð6 − pÞ!

��
GNM
R

�
n
− hðrÞn

�

¼ μ2
X
n≥2

qn

�
GNM
R

�
n
: ð58Þ

Finally, using
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hðRÞn ¼
X
m≥n

X
r1þ���þrn¼m

ri≥1

Yn
i¼1

hri

�
M
E

�
m
�
GNM
R

�
m
; ð59Þ

we have

qn ¼ γ2
Xminðn;6Þ

p¼0

ðn − pþ 1Þ6!
p!ð6 − pÞ! −

Xn
m¼1

Xminðm;6Þ

p¼0

ðm − pþ 1Þ6!
p!ð6 − pÞ!

×
X

r1þ���þrm¼n
ri≥1

Yn
i¼1

hri

�
M
E

�
n
; ð60Þ

which shows how to express the qi-coefficients in terms of
the hi-coefficients of this paper.
To summarize this part: We have shown the equivalence

between our remodeled EOB formalism in isotropic coor-
dinates and the conventionally used formalism that separates
out all nonquadratic energy-momentum terms in a function
Q which is added to the mass-shell condition. A canonical
transformation distinguishes our formulation, which keeps
the impact parameter b fixed in the angular momentummap,
from the conventional one. This choice of canonical coor-
dinates allows us to immediately match the kinematical
relation from amplitude computations with the EOB kin-
ematics of the reduced problem. Additionally, we argued that
it is far simpler to solve for the effective metric directly,
without introducing such an auxiliary function Q that
parametrizes the deviations of the effective metric from
the one of Schwarzschild. Expanding our solution around
the Schwarzschild metric, we recover the Q-function of the
literature, thus demonstrating the equivalence. The purpose
of our remodeling has been to avoid this adding and
subtraction of terms that are the origin of the Q-function.
This seems to not be needed and one can instead work
directly with the energy-dependent metric.

V. CONCLUSIONS

With a fresh look at the EOB formalism in the light
of modern amplitude calculations for gravity, we have

considered a modification of the conventionally phrased
formalism which is not based upon an expansion around
the static Schwarzschild metric. Instead, with a rather
general assumption about the desired form of the effective
one-body metric in isotropic coordinates, we have proposed
a formulation where the metric coefficients are solved
order-by-order from the scattering angles as computed from
amplitudes. Crucial for this to come out in such a simple
form has been the use of isotropic coordinates and an
angular momentum map that differs from the one originally
proposed. An interesting consequence is that we remain
entirely within a metric framework, with no corrections
terms needed, at least up to third post-Minkowskian order.
The one principle that we have used to determine the
effective metric is to equate the integrands of, on one side,
the expression for the relativistic kinematics in isotropic
coordinates and, on the other side, the expression based on
the effective metric. In the probe limit we recover the
Schwarzschild metric in isotropic coordinates and at any
mass range our effective metric produces the correct
scattering angle up to third post-Minkowskian order. We
have also verified that the periastron shift at second post-
Minkowskian order is correctly reproduced. Finally, we
have compared the above proposal with the conventional
formalism and pointed out where differences appear even
though both approaches reproduce correctly the observable
quantities.
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