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 which is extended to an arbitrary number of fluids and benefits from two major upgrades, including temperature relaxation preserving the strong-coupling asymptotic limit and positivity of species internal energy.

I.

INTRODUCTION

Hydrodynamic models have become standard tools for understanding physical phenomena as they provide the only formulation enabling one to carry out exhaustive simulations of complex macroscopic systems (astrophysics [START_REF] Martí | Numerical hydrodynamics in special relativity[END_REF][START_REF] Zhang | Ram: A relativistic adaptive mesh refinement hydrodynamics code[END_REF][START_REF] Anderson | Simulating binary neutron stars: Dynamics and gravitational waves[END_REF][START_REF] Giacomazzo | Accurate evolutions of inspiralling and magnetized neutron stars: Equal-mass binaries[END_REF], geological phenomena [START_REF] Chen | An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries[END_REF][START_REF] Pelinovsky | Hydrodynamics of tsunami waves[END_REF][START_REF] Smolarkiewicz | Simulation of all-scale atmospheric dynamics on unstructured meshes[END_REF][START_REF] Vallis | Geophysical fluid dynamics: whence, whither and why?[END_REF], electrochemistry engineering [START_REF] Um | Computational fluid dynamics modeling of proton exchange membrane fuel cells[END_REF][START_REF] Taqieddin | Review-physicochemical hydrodynamics of gas bubbles in twophase electrochemical systems[END_REF][START_REF] Catañeda | Mathematical modeling and simulation of the reaction environment in electrochemical reactors[END_REF], biology [START_REF] Pozrikidis | Numerical simulation of cell motion in tube flow[END_REF], plasma discharges [START_REF] Salabas | Twodimensional fluid modelling of charged particle transport in radio-frequency capacitively coupled discharges[END_REF], Inertial Confinement Fusion [START_REF] Atzeni | The physical basis for numerical fluid simulations in laser fusion[END_REF][START_REF] Marinak | Three-dimensional hydra simulations of national ignition facility targets[END_REF][START_REF] Lefebvre | Development and validation of the troll radiation-hydrodynamics code for 3d hohlraum calculations[END_REF][START_REF] Haines | Cross-code comparison of the impact of the fill tube on high yield implosions on the national ignition facility[END_REF], etc.). However, such models rely on restrictive hypotheses about the underlying microscopic physics [START_REF] Chapman | The Mathematical Theory of Non-uniform Gases: An Account Of The Kinetic Theory Of Viscosity, Thermal Conduction And Diffusion In Gases[END_REF]. In addition to the necessary Equation Of State closure (EOS), which strictly applies at thermodynamic equilibrium, deviation from equilibrium is usually considered through constitutive equations for the stress tensor [START_REF] Haupt | On the mathematical modelling of material behavior in continuum mechanies[END_REF] and the various transport terms (diffusion, viscosity, etc.) are obtained for small deviations corresponding to linear regimes [START_REF] Chapman | The Mathematical Theory of Non-uniform Gases: An Account Of The Kinetic Theory Of Viscosity, Thermal Conduction And Diffusion In Gases[END_REF]. Meanwhile, several experimental results [START_REF] Rinderknecht | Ion thermal decoupling and species separation in shock-driven implosions[END_REF][START_REF] Higginson | Kinetic effects on neutron generation in moderately collisional interpenetrating plasma flows[END_REF][START_REF] Rinderknecht | Kinetic physics in icf: present understanding and future directions[END_REF][START_REF] Zhang | Species separation and hydrogen streaming upon shock release from polystyrene under inertial confinement fusion conditions[END_REF][START_REF] Keenan | Shock-driven kinetic and diffusive mix in high-z pusher icf designs[END_REF] and numerical investigations [START_REF] Larroche | Kinetic simulation of a plasma collision experiment[END_REF][START_REF] Larroche | Ion-kinetic simulations of d-3 he gas-filled inertial confinement fusion target implosions with moderate to large knudsen number[END_REF][START_REF] Le | Simulation and assessment of ion kinetic effects in a direct-drive capsule implosion experiment[END_REF][START_REF] Taitano | Yield degradation in inertial-confinementfusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating[END_REF] suggest that higher accuracy is needed in accounting for the consequences of strongly out-of-equilibrium micro-states, for which the relaxation time-scales of microscopic phenomena is comparable to (or greater than) the hydrodynamic timescale, and require a treatment beyond linear transport regimes.

Because even kinetic descriptions often remains out of reach for simulating macroscopic systems of interest, much efforts have been devoted to incorporate additional micro-physics information into the hydrodynamic partial differential equations (PDE) to be solved. Among them, the Grad's moments methods [START_REF] Grad | On the kinetic theory of rarefied gases[END_REF][START_REF] Grad | Principles of the kinetic theory of gases[END_REF], as an alternative to the Chapman-Enskog expansion, include higher moments of the non-Gaussian velocity distribution function underlying the corresponding simulated fluid, at the expense of providing additional closures to the model. Multi-scale methods [START_REF] Abraham | Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture[END_REF][START_REF] Engquist | Heterogeneous multiscale method: A general methodology for multiscale modeling[END_REF] have been designed in order to compute "inline" the values of parameters involved in transport terms with detailed micro-scale simulations, but this gain * mathieu.marciante@cea.fr in fidelity increases drastically the computational cost of simulations. More recently, machine learning has been used to substitute the usual constitutive equations by an algorithm trained on micro-scale simulations [START_REF] Seryo | Learn-ing the constitutive relation of polymeric flows with memory[END_REF].

The work described in this publication belongs to the multi-fluid strategy [START_REF] Berger | Stopping and thermalization of interpenetrating plasma streams[END_REF][START_REF] Rambo | A comparison of kinetic and multifluid simulations of laser-produced colliding plasmas[END_REF][START_REF] Rambo | Interpenetration and ion separation in colliding plasmas[END_REF][START_REF] Chenais-Popovics | Kinetic to thermal energy transfer and interpenetration in the collision of laser-produced plasmas[END_REF][START_REF] Winglee | Multi-fluid simulations of the magnetosphere: The identification of the geopause and its variation with imf[END_REF][START_REF] Saurel | A multiphase godunov method for compressible multifluid and multiphase flows[END_REF][START_REF] Fan | Segregation in polydisperse fluidized beds: Validation of a multi-fluid model[END_REF][START_REF] Chang | A compatible lagrangian hydrodynamic scheme for multicomponent flows with mixing[END_REF][START_REF] Ghosh | A multispecies, multifluid model for laser-induced counterstreaming plasma simulations[END_REF]. In the present misciblefluids hydrodynamic model, N Euler PDE systems are coupled together through source terms accounting for relaxation processes, in order to refine the description of species mixtures, enabling species segregation effects [START_REF] Bellei | Species separation in inertial confinement fusion fuels[END_REF], or to allow for strong deviations from equilibrium between different fluids where coupling terms are small, as required for interpenetration phenomena for instance [START_REF] Chenais-Popovics | Kinetic to thermal energy transfer and interpenetration in the collision of laser-produced plasmas[END_REF][START_REF] Rambo | A comparison of kinetic and multifluid simulations of laser-produced colliding plasmas[END_REF][START_REF] Riedel | Species separation in inertial confinement fusion fuels[END_REF]. Since fluid species are assumed miscible, material interfaces are not modeled explicitly but may be handled as a result of stiff mass fraction gradients maintained by strong inter-fluid coupling.

The scheme is a finite volumes formulation for systems of conservation laws [START_REF] Godlewski | Hyperbolic systems of conservation laws[END_REF][START_REF] Leveque | Numerical methods for conservation laws[END_REF], which offers a rigorous framework relevant for numerous fields of research where discontinuous solutions (shocks) are encountered. The inter-fluid weak-coupling limit (corresponding to kinetic behaviors) is trivially obtained as N independent singlefluid simulations when coupling is absent. The strongcoupling limit however (corresponding to hydrodynamic behaviors) requires a careful treatment of source terms, for which stiffness is handled through the Asymptoticpreserving (AP) property of the scheme. Indeed, whenever different fluid components get strongly coupled, the corresponding PDE system contains stiff source terms, meaning that the microscopic phenomena responsible for inter-fluid relaxation have much shorter time-or lengthscales than what the macro-scale fluid simulation can reasonably resolve. When using non-AP schemes, the associated truncation error results at best in a depreciated accuracy of the solution or to completely unreliable results. The present scheme relies on implicitation techniques for building the AP property by matching the truncation error of the scheme to the expected physical process, ensuring that the numerical scheme used with coarse grid and large time-steps (with respect to the relaxation length and time-scales) converges towards the appropriate asymptotic limits of the physical model.

The work presented in this publication is the enrichment of the original work [START_REF] Enaux | Thesis: Analyse mathématique et numérique d'un modèle multifluide multivitesse pour l'interpénétration de fluides miscibles[END_REF], in which a 2-fluid scheme with the AP property in velocity relaxation has been devised. However, this original work only obtains positivity of the average fluid internal energy instead of the desirable property of positivity for each fluid component independently. We developed a generalized N -fluid version of the scheme with additional AP property for temperature relaxation coupling and a regularization method allowing one to obtain positivity of each fluid component internal energy.

In section II, we introduce the inter-fluid coupling constraints and the relaxation model used in the code. We show the strong-coupling asymptotic limits of this physical model. In section III we describe the numerical scheme implemented in the code. We first establish notations and briefly recall the Lagrange-remap technique then specifically details the Lagrange stage which contains the major contribution of this publication. We show in appendix B that the Lagrange part of the scheme satisfies the expected temperature relaxation asymptotic limit of the physical model when used with coarse grids and large time-steps. In section IV we gather the numerical results obtained from usual simulation test cases.

The code is implemented with N -fluid capability, however, for the sake of clarity, we present most of the algorithm developments in the 2-fluid context, and give explicit relations for only one of the two species when the analogous relation obviously holds for the second one as well.

II. PHYSICAL MODEL

A.

Euler equations with coupling

The hydrodynamic Euler equations, expressed in an Eulerian reference frame in Cartesian coordinates, and in the case of an isotropic pressure field, read:

∂ t U a + ∂ σ F a σ = S a (1) 
U a =   ρ a ρ a v a ρ a e a   , F a σ =   ρ a v a σ ρ a v a v a σ + P a 1 σ ρ a e a v a σ + P a v a σ   (2) 
where ρ a , v a , e a and P a are respectively the mass density, velocity, specific energy and pressure of the fluid species a, F a σ is the σ-component of the flux, 1 σ is the unit vector in direction σ ∈ {x, y, z}, and summation over repeated space indices is assumed. When a barotropic EOS is used, the pressure field is such that P a = EOS P a (ρ a ), while the ideal gas EOS is given by

P a = EOS ideal P a (ρ a , ε a ) = (γ a -1) ρ a ε a , (3) 
ε a = e a - 1 2 v a 2 , (4) 
where γ a > 1 is the adiabatic index and ε a is the specific internal energy. Moreover, in the ideal gas case, the two remarkable properties hold:

ε a = c a V T a , c a V > 0, (5) 
(∂ ρ ε) a | T = 0, (6) 
where

c a V = (∂ T ε)
a |ρ is the specific heat capacity and T a is the temperature of species a which, otherwise, has to be specified from an additional EOS relation:

T a = EOS T a (ρ a , ε a ) . (7) 
For a single-fluid isolated system, conservation laws of mass, momentum and energy require the source term S a = 0, whereas for a multi-fluid isolated system

∂ t U + ∂ σ F σ = S, (8) 
U =    U a U b . . .    , F σ =    F a σ F b σ . . .    , S =    S a S b . . .    , (9) 
and assuming there is no mass exchange between different species, source terms take the form

S a = (0, F a , W a ) t , (10) with s 
F s = 0, s W s = 0, (11) 
where F a and W a account for total momentum and energy exchanges respectively and can be expanded as

F a = s =a F {as} , W a = s =a W {as} . (12) 
Here, brackets denote anti-symmetry under permutation of species exponents implied by momentum and energy conservation laws. Since in this work source terms don't involve any derivative of the independent variables, they don't take part in the hyperbolicity of the system, which then results in satisfying the hyperbolicity condition for each fluid species independently. When species are interacting, the coupling terms are responsible for the generation of entropy in the system. Using the Lagrangian derivative associated to species a,

D a t = ∂ t + v a • ∇, (13) 
the evolution equation of the internal energy for this species reads

ρ a D a t ε a + P a ∇ • v a = ρ a T a D a t s a , ( 14 
) with ρ a T a D a t s a = W a -F a • v a , (15) 
where D a t s a is the specific entropy production rate during the process. When fluid species a and b are interacting, the last equation associated to the conservation of energy implies the following constraint:

ρ a T a D a t s a + ρ b T b D b t s b = F {ab} • v b -v a (16) 
which is satisfied provided

ρ a T a D a t s a = χ ab F {ab} • v b -v a + ζ {ab} , (17) 
and χ ab + χ ba = 1.

Coefficients χ ab and χ ba distribute the entropy generated by F {ab} among the two fluids and depend on the underlying microscopic physics. The anti-symmetric part ζ {ab} , which induces a decrease of entropy for one of the two species, allows one to model thermal exchanges between the couple of fluids. According to the conservation laws, the energy exchange term finally takes the general form:

W {ab} = F {ab} • V (ab) + ζ {ab} , (19) 
with

V (ab) = χ ab v b + χ ba v a . ( 20 
)
Using this framework, it is then possible to model the relaxation between any two fluids by choosing an appropriate coupling model.

B. Relaxation coupling model

In order to design a versatile numerical scheme, the analytic form of the coupling models are chosen to be the most generic and widely found in literature [START_REF] Berger | Stopping and thermalization of interpenetrating plasma streams[END_REF][START_REF] Chenais-Popovics | Kinetic to thermal energy transfer and interpenetration in the collision of laser-produced plasmas[END_REF][START_REF] Fan | Segregation in polydisperse fluidized beds: Validation of a multi-fluid model[END_REF][START_REF] Benilov | A kinetic derivation of multifluid equa-tions for multispecies nonequilibrium mixtures of reacting gases[END_REF][START_REF] Scannapieco | A multifluid interpenetration mix model[END_REF][START_REF] Prix | Numerical stability in multifluid gas dynamics with implicit drag forces[END_REF][START_REF] Ramshaw | Numerical stability in multifluid gas dynamics with implicit drag forces[END_REF]. The coupling model used for interfluid momentum exchange is a frictional drag force which vanishes when the two fluids have identical velocities. An analogous expression is used for energy coupling which vanishes when thermal equilibrium is reached:

F {ab} = C (ab) v b -v a , C (ab) > 0 ( 21 
)
ζ {ab} = B (ab) T b -T a , B (ab) > 0 ( 22 
)
χ ab , χ ba > 0 ( 23 
)
where parenthesis of terms C (ab) and B (ab) emphasize symmetry under permutation of species exponents and their functional form can depend on any fluid variable. For convenience, we take in the following B (ab) = C (ab) φ (ab) . Dimensional analysis gives [χ] = 1 and

[φ] = [k B ] M -1 ,
where k B is Boltzmann's constant. Assuming a specific microscopic physics underlying the fluid equations, coefficients C, φ and χ may be computed accordingly by means of a theoretical approach (neutral fluids [START_REF] Binstock | Hydrodynamically driven two-phase flow, a theory of hydrodynamically driven dynamic mix[END_REF][START_REF] Cheng | Buoyancy-drag mix model obtained by multifluid interpenetration equations[END_REF], plasma fluids [START_REF] Scannapieco | A multifluid interpenetration mix model[END_REF][START_REF] Wilson | Degradation of radiatively driven inertial confinement fusion capsuleimplosions by multifluid interpenetration mixing[END_REF]) or fitted from microscale simulations provided by high-fidelity physics codes. The positivity of χ terms is required from the following entropy considerations. For future convenience, and without loss of generality, we write

C (ab) = ρ a ν ab = ρ b ν ba , ν ab , ν ba > 0 ( 24 
)
where ν ab can be thought of as the collisional frequency of a single a-particle with the b-fluid during the relaxation process.

Within this model, the production rate of the specific entropy s a is obtained from Eq. ( 17) as

D a t s a = ν ab T a χ ab δv ba 2 + φ (ab) δT ba , (25) 
where δv ab = v av b and δT ab = T a -T b are trivially anti-symmetric terms. For the friction force model to be physically acceptable, its generated entropy has to be positive for both species, which implies the positivity of both χ terms. Thermal coupling however is able to increase or decrease the specific entropy of a given species (the hotter species is cooling down while heating the cooler one) but the total entropy associated to the whole bi-fluid system can only increase, since we obtain formally:

ρ a D a t s a + ρ b D b t s b = C (ab) T a T b × χ ab T b + χ ba T a δv ab 2 + φ (ab) δT ab 2 (26) 
The coupling strength between any two fluids depends on the C (ab) coefficients and can range from 0 to an arbitrarily large value such that the physics associated to the coupling terms becomes the shortest time-scale of the system. Since it is mandatory to ensure that the numerical scheme is consistent with the behavior of the model through the whole range of coupling values, we determine the limits of the model in order to assess the consistency of the scheme. This relaxation model has the trivial uncoupled single-fluid limit as C (ab) → 0, while the strongcoupling asymptotic limits obtained for C (ab) → +∞ is the concern of the next section.

C. Asymptotic limits

As explained in [START_REF] Enaux | Thesis: Analyse mathématique et numérique d'un modèle multifluide multivitesse pour l'interpénétration de fluides miscibles[END_REF], in order to study the strongcoupling asymptotic behavior of the model, it is easier to express the model in the average fluid variables (cf. Appendix A) where coupling terms only appear in the evolution equations of the difference variables δv ab and δT ab . We express these variables as a series expansion in the smallness parameter , and associate the order -1 to the relaxation coupling constant (strong coupling limit):

δv ab = δv ab 0 + δv ab 1 + 2 δv ab 2 + . . . ( 27a 
)
δT ab = δT ab 0 + δT ab 1 + 2 δT ab 2 + . . . (27b) 
C (ab) → -1 C (ab) . (27c) 
Inserting these expressions into their respective evolution equation and gathering terms of equivalent -order, we obtain to lowest order the expected relaxed state δv ab 0 = 0 and δT ab 0 = 0. To the next order in , one gets:

δv ab 1 = 1 ν ab + ν ba ∇P b ρ b - ∇P a ρ a , ( 28 
)
δT ab 1 = c a V c b V φ (ab) ν ab c b V + ν ba c a V ∇ • v (29) × ρ b c b V P b (ρ b ) 2 -(∂ ρ ε) b | T - ρ a c a V P a (ρ a ) 2 -(∂ ρ ε) a | T ,
where v is the average fluid bulk velocity defined in Appendix A. It is shown in [START_REF] Enaux | Thesis: Analyse mathématique et numérique d'un modèle multifluide multivitesse pour l'interpénétration de fluides miscibles[END_REF] that term δv ab 1 leads to a diffusive behavior of the species concentration (parabolic diffusion limit). The term δT ab 1 , absent from the previous work, implies no straightforward definite physical phenomenon. It has already been proven in [START_REF] Enaux | Thesis: Analyse mathématique et numérique d'un modèle multifluide multivitesse pour l'interpénétration de fluides miscibles[END_REF] that the present scheme is AP with respect to velocity relaxation. We demonstrate using Eq. ( 29) in Appendix B that the AP-property is obtained with respect to temperature relaxation as well.

III. NUMERICAL SCHEME

In this part, we aim at explaining the Lagrange-remap technique and explicit notations used throughout the following sections. The numerical scheme is designed using the dimensional splitting method on Cartesian grids [START_REF] Strang | On the construction and comparison of difference schemes[END_REF][START_REF] Duboc | High-order dimensionally split lagrange-remap schemes for compressible hydrodynamics[END_REF], in which the PDE system of Eq. ( 8) is split as successive steps corresponding to each spatial direction. Because we use this method, understanding the scheme only requires the 1D-version of Euler equations, and expressed in a Lagrangian reference frame using mass variables m s and specific volumes τ s = 1/ρ s , the full bi-fluid 6-equations system reads:

                 D a t τ a -∂ m a v a = 0 D a t v a + ∂ m a P a = ν ab δv ba D a t e a + ∂ m a [P a v a ] = ν ab V (ab) δv ba + φ (ab) δT ba a ↔ b (30a) (30b) (30c) 
supplemented with EOS P s (τ s , ε s ) and EOS T s (τ s , ε s ) for each species s ∈ {a, b}. The last line in the preceding system means that the same three equations hold when permuting a and b-species exponents and complete the system. We work within a finite volume formulation of hydrodynamic equations and, for any quantity ϕ, we make use of the following definitions:

ϕ s n i = 1 ∆m s i m s i+ 1 2 m s i-1 2 ϕ s (t n , m) dm (31) 
ϕ s n+ 1 2 i = 1 ∆t t n+1 t n ϕ s (t, m s i ) dt (32) 
∆m s i = ρ s n i ∆x i = ρ s n i x i+ 1 2 -x i-1 2 (33) 
with x i+ 1 2 > x i-1 2 being the boundaries of cell i. We detail in the next section the workflow of the scheme.

A. Lagrange-remap

The Lagrange-remap technique is a two-stage procedure. The first stage is a Lagrangian evolution of fluids, which carries the physical content of the model and endows the scheme with the AP property, followed by the remap stage, which projects the evolved Lagrangian states onto the initial common Eulerian grid. The detailed workflow of the algorithm is described along the following lines.

At initial time, each fluid s is represented on a common Eulerian (in our case Cartesian) grid by intra-cell quantities τ s n i , v s n i and e s n i . The first stage is the Lagrangian evolution of fluids: at each cell boundary x i+ 1 2 , Langrangian fluxes v s n+ 1 2

i+ 1 2 , P s n+ 1 2 i+ 1 2 and P s v s n+ 1 2 i+ 1 2
are computed depending on pressure fields and applied forces. Source terms are then evaluated and used together with fluxes to evolve fluid variables and Lagrangian coordinates in time. At the end of this stage, fluids don't share a single common grid anymore: Lagrangian quantities indexed with a star

                                   τ a n+1 i = τ a n i + ∆t ∆m a i v a n+ 1 2 i+ 1 2 -v a n+ 1 2 i-1 2 v a n+1 i = v a n i - ∆t ∆m a i P a n+ 1 2 i+ 1 2 -P a n+ 1 2 i-1 2 + ∆t ν ab δv ba n+ 1 2 i e a n+1 i = e a n i - ∆t ∆m a i P a v a n+ 1 2 i+ 1 2 -P a v a n+ 1 2 i-1 2 + ∆t ν ab V (ab) δv ba + φ (ab) δT ba n+ 1 2 i a ↔ b (34) (35) (36) 
occupy different spatial areas because each fluid has its own Lagrangian grid given by:

x s * i+ 1 2 = x i+ 1 2 + ∆t v s n+ 1 2 i+ 1 2 , ( 37 
) ∆t ≤ 1 2 ∆x max s,i v s n+ 1 2 i+ 1 2 , ( 38 
)
where the time-step constraint on the second line ensures the positivity of Lagrangian cells. In addition to this constraint, the Lagrange stage is also subject to a CFL stability condition which depends on the specific choice of a Lagrangian flux and is given in the appendix C. The scheme then proceeds with the remap stage: by means of a chosen interpolation technique operated on the new Lagrangian fluid starred-values, one computes the so called remap flux

F s P n+ 1 2 i+ 1 2
. This remap flux is then used to obtain the new Eulerian fluid quantities on the common Eulerian grid:

  ρ s n+1 i ρ s v s n+1 i ρ s e s n+1 i   = ρ s n i   1 v s n+1 i e s n+1 i   - ∆t ∆x i F s P n+ 1 2 i+ 1 2 -F s P n+ 1 2 i-1 2 , (39) 
with

F s P n+ 1 2 i+ 1 2 = v s n+ 1 2 i+ 1 2   ρ s ρ s v s ρ s e s   P i+ 1 2 , (40) 
where (ρ s )

P i+ 1 2 , (ρ s v s ) P i+ 1 2 and (ρ s e s ) P i+ 1 2
are the resulting interpolated values and only depend on fluid quantities of species s. Because the remap stage is a purely geometric step and is independent of physics (i.e. the AP property does not rely on the chosen interpolation technique and the remap flux does not depend on the physical model) this part can be treated independently and no change has been made compared to the original work [START_REF] Enaux | Thesis: Analyse mathématique et numérique d'un modèle multifluide multivitesse pour l'interpénétration de fluides miscibles[END_REF], in which the remap fluxes can be found. In addition, a flux limiter [START_REF] Collela | The piecewise parabolic method (ppm) for gas-dynamical simulations[END_REF][START_REF] Daru | High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations[END_REF] is necessary when a higher than first order remap flux is used.

Finally, intra-cell Eulerian quantities are expressed in Lagrangian variables

  τ s n+1 i v s n+1 i e s n+1 i   = 1 ρ s n+1 i   1 ρ s v s n+1 i ρ s e s n+1 i   , (41) 
and the scheme loops to the Lagrange stage.

In the following sections, we explain in detail the computation of Lagrangian fluxes and source terms. This part contains the new features of the scheme: temperature coupling and the regularization procedure ensuring the positivity of species internal energies.

B. Lagrange stage: flux terms

This Lagrangian flux can be seen as a solution of an approximate Riemann problem [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF], where source terms are taken into account. Flux terms are determined by integrating the pressure and velocity fields along the characteristics of the PDE system. To this aim, we express the time-evolution of pressure by means of its independent variables and make use of the thermodynamic relation linking variation of specific internal energy to entropy (heat) and work:

D a t P a = (∂ τ P ) a |ε D a t τ a + (∂ ε P ) a |τ D a t ε a , (42) 
D a t ε a = T a D a t s a -P a D a t τ a , (43) 
which are both expressed in the Lagrangian coordinate system of species a. Combining these two equations with Eq. (30a) leads to the following relation:

D a t P a + (Z a ) 2 ∂ m a v a = (∂ ε P ) a |τ T a D a t s a , (44) 
with (Z a ) 2 = (∂ ε P )

a |τ P a -(∂ τ P ) a |ε , (45) 
where Z a is the impedance of fluid a. Finally, multiplying Eq. (30b) by ±Z a and adding to equation ( 44) one obtains the following four-equations system expressed along the characteristic lines dm s ± :

             D a ± P a ± Z a D a ± v a = ν ab dm a ± v b -v a ± (∂ ε P ) a |τ Z a χ ab v a -v b 2 + φ (ab) T b -T a D b ± P b ± Z b D b ± v b = ν ba dm b ± v a -v b ± (∂ ε P ) b |τ Z b χ ba v a -v b 2 + φ (ab) T a -T b (46) 
with

D s ± = dt [D s t ± Z s ∂ m s ] = dt [∂ t + (v s ± c s ) ∂ x ] ( 47 
) dm s ± = ±Z s dt = ±ρ s c s dt (48) 
where c s = γ s P s /ρ s is the sound speed of fluid species s. This system fully describes the evolution of pressures and velocity fields of the coupled fluids along the characteristics. Different attempts have been made to incorporate the entropic contribution in the computation of fluxes, by recasting the viscous and thermal parts as pressure contributions enabling the implicitation of those terms. However, the viscous part implies the lost of definite-positivity of the coupling matrix, while the thermal part led to unstable behaviors of the scheme. Fol-lowing what has been done in [START_REF] Enaux | Thesis: Analyse mathématique et numérique d'un modèle multifluide multivitesse pour l'interpénétration de fluides miscibles[END_REF], we only consider the isentropic version of this system which is sufficient to obtain the AP property of the scheme.

We discretize the system of four equations by integrating along the appropriate characteristic paths linking the cell centers, where fluid quantities are taken to be the average cell values, to the cell edges, where fluxes have to be determined. Gathering the numerical details in Appendix C, we are left with the following matrix system for unknown fluxes:

M F X = Π X = P a n+ 1 2 i+ 1 2 v a n+ 1 2 i+ 1 2 P b n+ 1 2 i+ 1 2 v b n+ 1 2 i+ 1 2 t (49)
where matrix M F , and column vector Π do not depend on unknown fluxes. This system is solved using standard matrix inversion technique [START_REF] Press | Numerical Recipes: The Art of Scientific Computing[END_REF]. Finally, setting the specific energy flux to be

P s v s n+ 1 2 i+ 1 2 = P s n+ 1 2 i+ 1 2 • v s n+ 1 2 i+ 1 2 (50)
finalizes the computation of Lagrangian fluxes.

C. Lagrange stage: source terms

Velocity equations

After computing the fluxes, Lagrangian specific volumes in Eq [START_REF] Seryo | Learn-ing the constitutive relation of polymeric flows with memory[END_REF] are immediately available, and the only remaining unknowns are source terms in Eq. ( 35) and [START_REF] Rambo | A comparison of kinetic and multifluid simulations of laser-produced colliding plasmas[END_REF]. Considering the velocity equations, the necessary implicitation of source terms dictates the following discretizations:

ν ab (v b -v a ) n+ 1 2 i = ν ab n i v b n+1 i -v a n+1 i ν ba (v a -v b ) n+ 1 2 i = ν ba n i v a n+1 i -v b n+1 i (51)
which straightforwardly leads to the following linear system in the unknown Lagrangian velocities

M v v n+1 i = v U i v n+1 i = v a n+1 i , v b n+1 i t ( 52 
)
where we used the following notations:

M v = 1 + µ ab i -µ ab i -µ ba i 1 + µ ba i , µ ab i = ∆t ν ab n i ( 53 
)
v U i = v a U i , v b U i t ( 54 
)
v s U i = v s n i - ∆t ∆m s i P s n+ 1 2 i ( 55 
)
with v s U i the uncoupled-fluid velocity (i.e. the expression that velocity would take in absence of any coupling) and we have defined for commodity of notation:

P s n+ 1 2 i = P s n+ 1 2 i+ 1 2 -P s n+ 1 2 i-1 2 . ( 56 
)
Solving this system in the N -fluid configuration does not represent any noticeable difficulty provided with a simple linear system solver using basic preconditioning algorithm [START_REF] Press | Numerical Recipes: The Art of Scientific Computing[END_REF]. However, the analytic 2-fluid solution will allow us to illustrate the following regularization method necessary to compute the remaining specific energies while ensuring positivity of each species specific internal energy. Moreover, we consider for clarity that no thermal coupling is present, and report this particular case to the end of the section.

Specific energy equations and regularization method

In this part, we determine the discretization of the velocity-dependent part of source terms in Eq [START_REF] Rambo | A comparison of kinetic and multifluid simulations of laser-produced colliding plasmas[END_REF]. An obvious choice made in [START_REF] Enaux | Thesis: Analyse mathématique et numérique d'un modèle multifluide multivitesse pour l'interpénétration de fluides miscibles[END_REF] regarding its discretization, is to insert the new Lagrangian velocities v s n+1 i obtained from the last section into the source terms. Despite the fact that the total specific internal energy can be proven to remain positive, simulations show that one of the two species internal energy can become negative. In the following, we describe a regularization technique which greatly improves the stability of the algorithm against this un-physical behavior.

In the 2-fluid configuration, the solution of Eq. ( 52) reads:

v s n+1 i = v s U i + µ i v SC i 1 + µ i , µ i = µ ab i + µ ba i , (57) 
v SC i = µ ab i v b U i + µ ba i v a U i µ ab i + µ ba i , (58) 
where v SC i is the Strong Coupling asymptotic velocity. In order to determine the discretization of specific energy source terms, we express its evolution equation in the numerical variation form corresponding to a timestep ∆t, and make use of a free term w ab = W {ab} /ρ a to be determined on the right hand side:

∆e a i + ∆t ∆m a i P a v a n+ 1 2 i = ∆t w ab i , (59) 
with ∆e a i = ∆ε a i + ∆k a i , and ∆k a i is the variation of specific kinetic energy over the timestep:

∆k a i = 1 2 v a n+1 i 2 -( v a n i ) 2 (60) = v a n i v a n+1 i -v a n i + 1 2 v a n+1 i -v a n i 2 ≈ v a n i v a n+1 i -v a n i . (61) 
The approximation in the last line is justified only in the limit µ ab i 1, but we found however that accounting for the quadratic term leads to poor stability results. From the new Lagrangian velocities expressed in Eq. ( 57) and using the property µ ab i /∆m b i = µ ba i /∆m a i , the implicitation used in the velocity computation leads to the following relation:

v a n+1 i -v a n i = µ ab i 1 + µ i v b n i -v a n i (62) - ∆t ∆m a i 1 - µ ab i 1 + µ i P a + µ ba i 1 + µ i P b n+ 1 2 i
where the second term on the right hand side stands for an effective pressure flux induced by the implicitation technique. We define the regularized pressure flux:

P a reg n+ 1 2 i+ 1 2 = P a n+ 1 2 i+ 1 2 + δP {ab} reg n+ 1 2 i+ 1 2 , ( 63 
)
δP {ab} reg n+ 1 2 i+ 1 2 = 1 1 + µ i µ ba i P b n+ 1 2 i+ 1 2 -µ ab i P a n+ 1 2 i+ 1 2 , (64) 
and emphasize that this regularized flux is specific to a given cell as coefficients µ ab i belong to cell i. Expressing the entropy variation of species a over the timestep leads to:

T a i ∆s a i = ∆ε a i -P a n i ∆τ n i (65) 
= ∆t w ab i -

µ ab i 1 + µ i v b n i -v a n i v a n i (66) - ∆t ∆m a i P a • v a n+ 1 2 i -v a n i P a reg n+ 1 2 i -P a n i v a n+ 1 2 i .
We set the regularized numerical residual to be

g a reg i = - ∆t ∆m a i P a reg • v a n+ 1 2 i -v a n i P a reg n+ 1 2 i -P a reg n i v a n+ 1 2 i , (67) 
and remind that this residual is responsible, in the monofluid case, for the stability property of the algorithm [START_REF] Déprés | Inégalité entropique pour un solveur conservatif du système de la dynamique des gaz en coordonnées de lagrange[END_REF].

The preceding entropy equation becomes:

T a i ∆s a i = ∆t w ab i -

µ ab i 1 + µ i v b n i -v a n i v a n i (68) + ∆t ∆m a i δP {ab} reg -δP {ab} reg n i • v a n+ 1 2 i
+ g a reg i , and summing on both species we get the relation:

s=a,b ρ s n i T s i ∆s s i = C (ab) i ∆t 1 + µ i v b n i -v a n i 2 (69) + ∆t ∆x δP {ab} reg -δP {ab} reg n i • v a -v b n+ 1 2 i + s=a,b g s reg i ,
where we have used ρ a n i w ab i + ρ b n i w ba i = 0. The new term involving anti-symmetric pressures and pressure fluxes is necessary for correcting the associated work and energy flux from the implicitation operated on velocity source terms. Recognizing the entropy contribution for species a to be:

ρ a n i T a i ∆s a i = χ ab n i s=a,b ρ s n i T s i ∆s s i , (70) 
the energy source term is obtained by inserting this entropy contribution in Eq. ( 68) and neglecting the residual terms:

w ab i = ν ab i 1 + µ i v b n i -v a n i V (ab) n i (71) - 1 ∆m a i δP {ab} reg -δP {ab} reg n i • V (ab) n+ 1 2 i .
The regularized source term is finally given by:

ν ab V (ab) δv ba n+ 1 2 i = w ab i , (72) 
V (ab) n i = χ ab i v b n i + χ ba i v a n i , (73) 
V (ab) n+ 1 2 i+ 1 2 = χ ab i v b n+ 1 2 i+ 1 2 + χ ba i v a n+ 1 2 i+ 1 2 , ( 74 
)
and

χ ab i + χ ba i = 1.
This source term greatly improves the stability of the algorithm against negative internal energy values but we did not succeed in demonstrating this mathematical property. Empirical tests show that decreasing sufficiently the time-step suppress the appearance of negative values, which seems to indicate that a CFL-like condition may exist to ensure positivity. In practice, a time-step is determined from satisfying the constraint [START_REF] Chenais-Popovics | Kinetic to thermal energy transfer and interpenetration in the collision of laser-produced plasmas[END_REF] and the appropriate CFL condition corresponding to the chosen Lagrangian flux. The Lagrangian evolution is performed and, if any negative internal energy value is encountered, Lagrangian evolution is re-computed using half the previous time-step. This routine is repeated until positivity is satisfied.

Specific energy equations with AP temperature coupling

In order to obtain the AP property of the scheme for temperature-relaxation coupling, it is necessary to solve a temperature evolution equation before solving for the specific energy equation. Once new temperature values are obtained, they are inserted into the coupling terms of specific energy PDEs, which are solved as explained in the precedent section. The temperature evolution equation is retrieved from the relation:

dε a = (∂ ρ ε) a | T dρ a + c a V dT a , (75) 
which, expressed in Lagrangian coordinates, leads to:

D a t T a = 1 c a V D a t e a - v a 2 2 -(∂ ρ ε) a | T D a t ρ a . ( 76 
)
At this step of the algorithm, the numerical evaluation of Lagrangian density variations and velocity variations are known. Similarly, the fluxes Eq. ( 50) and velocityrelaxation coupling terms Eq. ( 72) appearing in the specific energy equation ( 36) are also known. The remaining temperature coupling term in this last equation is appropriately discretized in order to solve the temperature equation using the implicitation technique:

ν ab φ (ab) δT ba n+ 1 2 i = 1 d ν ab n i φ (ab) n i T b n+1 i -T a n+1 i . ( 77 
)
where d is the number of space dimensions and accounts for the non-directional aspect of the coupling term within the alternating directions method. Solving Eq. ( 76) also requires the knowledge of temperature in cell i at timestep n, which has to be evaluated from Eq. ( 7) because the projection stage does not propagate the temperature variable. This discretization results in a linear system for the unknown temperature vector T n+1 i :

M T T n+1 i = Ti , ( 78 
)
T n+1 i = T a n+1 i , T b n+1 i t ( 79 
)
where definitions of these terms, as well as proof of the corresponding AP property are gathered in Appendix B.

Once new temperatures are determined, thermal coupling source terms in Eq. ( 36) are substituted by the following terms

e a n+1 i = e a n i - ∆t ∆m a i P a v a n+ 1 2 i + ∆t w ab i (80) + c a V n i α T a n+1 i -T a n i , ( 81 
)
where coefficient α improves cancellation of thermal exchanges and is obtained from the energy conservation constraint:

s c s V n i τ a n i α T s n+1 i -T s n i = 0. ( 82 
)
Specific energies are then straightforwardly obtained which finalizes the Lagrange stage.

IV. SIMULATION RESULTS

In order to validate the code, we test the scheme against different usual test problems. All the simulations are done using ideal gas EOS. In addition, we monitor the conservation properties of the scheme and, as long as the positivity of internal energy is ensured, conservation is obtained to machine precision.

Mono-fluid tests

The two first simulations aim at determining the approximation order of the numerical scheme. The first one is a linear advection problem using the following initial conditions for the 1d and 2d cases: and 2d cases are presented on Fig ( 1), and show that the expected order of each projection flux are obtained: the order of the P1 flux is 1, while the order of the P3+TVD flux is 2. We also mention that a P3 flux to which an MP limiter is added has a convergence order of 3, as demonstrated in the original work [START_REF] Enaux | Thesis: Analyse mathématique et numérique d'un modèle multifluide multivitesse pour l'interpénétration de fluides miscibles[END_REF].

ρ 0 (x, y) =          b 1d + sin 2πx L 4 , 1d b 2d + sin 2πx L 4 sin 2πy L 4 , 2d (83) 
v 0 = (v 0x , v 0y ) (84) ε 0 = P 0 / (γ -1) (85) 
The second test problem is the Kidder's isentropic compression in one space dimension [START_REF] Kidder | Theory of homogeneous isentropic compression and its application to laser fusion[END_REF]. This test is usually performed using Lagrangian schemes and has to be slightly adapted for our Lagrange-projection scheme using an Eulerian grid. The initial condition is given by:

ρ 0 (x) = r 2 b -x 2 ρ γ-1 a + x 2 -r 2 a ρ γ-1 b r 2 b -r 2 a 1 (γ-1) (86) v 0 = 0,
and

ε 0 = ρ γ-1 0 , (87) 
with parameters r a = 0, r b = 100, ρ a = 1, ρ b = √ 3 × 10 4 -1, γ = 3, and satisfies ρ 0 (x = 1) = 2. This parameter set provides the value of the initial condition outside the Eulerian simulation domain given by x ∈ [0, 1], and allows one to compute the exact timeevolution of the density, velocity and pressure profiles inside the domain during the whole simulation using the scaling laws:

ρ (x, t) = ρ 0 (x 0 ) h (t) (88) v (x, t) = - x 0 t h (t) x 2 (89) 
P (x, t) = (γ -1) ρ (x, t) γ (90) 
where the fluid state at position x and time t is initially

at x 0 = x/h (t), with h (t) = 1 -(t/τ ) 2 and τ = r 2 b -r 2 a 2γ ρ γ-1 b -ρ γ-1 a . (91) 
In order to perform the simulation, the analytic solution is applied at the boundaries of the domain, allowing for the correct boundary fluxes to be determined. This test problem implies the AP Lagrangian flux, which is expected to be first order accurate, as demonstrated on The last mono-fluid test problem is a 1d Sod's shock tube simulation [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics, a practical introduction[END_REF]. The left (l) and right (r) states on each side of the initial discontinuity are given by: (ρ, v, P ) l = (1, 0, 1) (92) (ρ, v, P ) r = (0.125, 0, 0. 

Multi-fluid tests

To avoid any consideration about microscopic physics, we employ the simplest toy coupling model to illustrate the behavior of the scheme and only require that the exchange rate depends on the quantity of interacting matter. In the following we use

C (ab) = ρ a ρ b η (ab) ( 94 
)
where η (ab) is taken to be uniform and constant, and take the entropic balance term χ ab = 0.5 for all simulations.

The first test is a 2-fluid counter-propagating Sod's shock tube simulation, where at initial time, the two shock tubes are in a symmetric configuration with respect to their common initial discontinuity. The number of grid cells is set to n c = 100. Each fluid has an adiabatic index γ = 1.4 and the relaxation coupling is varied over five different simulations using φ (ab) = 0 and η (ab) = 0, 1, 10, 100 and 10 10 . The density, velocity, pressure and specific internal energy profiles are shown at time t = 0.25 units on Fig. 4. The last line of the figure shows the specific energy profiles of five corresponding simulations for which we set φ (ab) = 0.5.

In the case φ (ab) = 0 and for η (ab) = 0 (solid lines on the extreme left column of the figure) the two shock tubes are independent of each other and the usual Sod's shock tube results are recovered. For η (ab) = 10 10 (dashed curves, same column), the high value of the inter-fluid coupling prevents any motion of the interface as the total system is equivalent to a single-fluid simulation with homogeneous profiles through the entire simulation domain. For intermediate values η (ab) = 1, 10 and 100, the inter-fluid coupling changes the evolution of the shocks. The effect is particularly visible on the velocity profiles which tend to collapse on each other more quickly as the coupling is increased. On the last line of the figure, corresponding to simulations where φ (ab) = 0.5, the same effect is observed on the specific internal energy profiles where the temperature coupling implies the collapse of the specific internal energy of the two ideal gas fluids which possess an identical adiabatic index. The second test is a 3-fluid triple-point test problem. The initial configuration is given by

ρ s (r) = (1 -2κ) ρ s 0 δ (r -r s ) + κ σ =s ρ σ 0 δ (r -r σ ) (95) P s (r) = (1 -2κ) P s 0 δ (r -r s ) + κ σ =s P σ 0 δ (r -r σ ) ( 96 
)
where ρ s (r) and P s (r) are the initial density and pressure of fluid species s ∈ {1, 2, 3} at position r, r i is a position vector which belongs to the spacial domain Ω i given on Fig. 5, with the parameters:

ρ 1 0 , ρ 2 0 , ρ 3 0 = (1, 0.1, 1) , (97) 
P 1 0 , P 2 0 , P 3 0 = (1, 0.1, 0.1) ,

where ρ i 0 and P i 0 are the initial density and pressure of We use Neumann boundary conditions on every side of the domain, and the number of grid cells is set to n x × n y = 350 × 150. We show on Fig. 6 the results of three simulations for which all fluid pairs have identical coupling parameters φ ab = 0 and η = 10 16 (a), η = 10 2 (b) and η = 10 1 (c). For the highest coupling value, case (a), the concentration of the high-pressure fluid displayed on the figures at times t = 0.25 and 0.5 shows that the strong collisional coupling prevents any mixing along most of the interface. We also observe the pres-ence of an instability inside the generated vortex. For smaller couplings, cases (b) and (c), a diffusive behavior is present while the vorticity generated at the triple-point is weakened.

In order to qualitatively determine the influence of thermal coupling terms, we show on Fig. 7 the results of two other simulations for which we take for both the parameters η (01) = 10 16 , η (02) = 1 and η (12) = 10 3 , and set for every couple of fluids φ (ab) = 0 (case a) and φ (ab) = 1 (case b). We see that thermal coupling mitigates the vorticity of the triple-point while suppressing the Kelvin-Helmholtz instability developing inside the vortex zone.

V. CONCLUSION

Based on the original work [START_REF] Enaux | Thesis: Analyse mathématique et numérique d'un modèle multifluide multivitesse pour l'interpénétration de fluides miscibles[END_REF], we have designed a miscible multi-fluid AP scheme solving N Euler PDE systems (mass, momentum and energy) coupled together through velocity and temperature relaxation source terms. The AP property ensures that the numerical error of the scheme matches the asymptotic behavior of the physical model whenever coupling terms are stiff.

We have determined a regularization procedure allowing one to obtain the positivity of each species internal energy independently. We found empirically that positivity is ensured provided that the time-step is chosen sufficiently small. In practical use, a time-step value is determined by considering the Lagrange cell positivity constraint and CFL condition. The time-step is then halved each time the Lagrange evolution drove a negative value of internal energy and the Lagrange evolution is recomputed. Efforts are still undergoing to find a corresponding time-step restriction in order to guaranty positivity before the Lagrange evolution is performed.

At this time, the main weakness of the algorithm lies in the projection phase which faces a well-known issue when operated with a higher than first order projection flux associated to a flux-limiter (here a TVD limiter has been used). Because we are not considering a scalar law but a full Euler system, the projection can drive internal energy to nonphysical values. Decreasing the time-step reduces this behavior but we find it sometimes necessary to artificially add energy in order to keep the simulation running. and replace the time and space derivatives in the specific internal energy PDE:

∂ t ε a + v a ∂ x ε a = P a ρ a ∂ x v a + T a D a t s a (B2)
where T a D a t s a is given by Eq [START_REF] Lefebvre | Development and validation of the troll radiation-hydrodynamics code for 3d hohlraum calculations[END_REF]. Assuming a constant specific heat capacity leads to the relation:

∂ t T a = -v a ∂ x T a - 1 c a V P a ρ a -ρ a (∂ ρ ε) a | T ∂ x v a (B3) + T a c a V D a t s a .
Using some algebra, we get the relation:

v a ∂ x T a -v b ∂ x T b = v ∂ x δT (B4) +δv ∂ x T -∂ x [r a δT ] + r b ∂ x δT
and obtain the PDE governing the time-evolution of the temperature difference variable δT :

∂ t δT + v ∂ x δT + δv ∂ x T -∂ x [r a δT ] + r b ∂ x δT + ρ a c a V P a (ρ a ) 2 -(∂ ρ ε) a | T - ρ b c b V P b (ρ b ) 2 -(∂ ρ ε) b | T (∂ x v -δv ∂ x r a ) + 1 c a V P a (ρ a ) 2 -(∂ ρ ε) a | T + 1 c b V P b (ρ b ) 2 -(∂ ρ ε) b | T ρ r a r b ∂ x δv = ν ab χ ab c a V - ν ba χ ba c b V (δv) 2 - ν ab c a V + ν ba c b V φ (ab) δT (B5)
in which we have expressed some terms using the single-fluid variables ρ s for commodity of reading. Writing the development in small parameter of Eq. ( 27), and injecting δv 0 = 0 (implied by the velocity PDE) into the first -order of the expansion leads to δT 0 = 0 and, reporting this value into the next -order of the expansion implies Eq. ( 29). This equation is, for the following proof of the AP property of the scheme in the δT variable, more conveniently written under the form:

∂ t δT + v ∂ x δT + δv ∂ x T -∂ x [r a δT ] + r b ∂ x δT + ρ a c a V P a (ρ a ) 2 -(∂ ρ ε) a | T ∂ x v a - ρ b c b V P b (ρ b ) 2 -(∂ ρ ε) b | T ∂ x v b = ν ab χ ab c a V - ν ba χ ba c b V (δv) 2 - ν ab c a V + ν ba c b V φ (ab) δT (B6)
which, after developing in small parameter and inserting δv 0 = 0 and δT 0 = 0 leads to:

δT 1 = c a V c b V φ (ab) ν ab c b V + ν ba c a V ρ b c b V P b (ρ b ) 2 -(∂ ρ ε) b | T ∂ x v b - ρ a c a V P a (ρ a ) 2 -(∂ ρ ε) a | T ∂ x v a . ( B7 
)
We note that, for an ideal gas, the following simplification applies:

δT 1 = c a V c b V φ (ab) ν ab c b V + ν ba c a V ∇ • v γ b -γ a T eq (B8)
with T eq the equilibrium temperature of the two fluids.

In order to make the scheme asymptotic preserving in the high temperature-coupling limit, we discretize equation (76) in the following manner: where ∆k a i is given by Eq. ( 60), and replacing the total specific energy difference by its expression from Eq [START_REF] Rambo | A comparison of kinetic and multifluid simulations of laser-produced colliding plasmas[END_REF] leads to the matrix system for the unknown temperature vector T in which the regularization procedure has to be taken into account. The solution of the system is given by:

T a n+1 i -T a n i = e a n+1 i -e a n i c a V n i - B a c a V n i , (B9) 
T s n+1 i = T s i + α i T SC i 1 + α i , ( B16 
)
where we have used the following definitions:

α i = φ (ab) n i µ ab i c b V n i + µ ba i c a V n i c a V n i c b V n i , (B17) 
T SC i = µ ab i c b V n i T b i + µ ba i c a V n i T a µ ab i c b V n i + µ ba i c a V n i , (B18) 
where T SC i is the Strong Coupling asymptotic temperature and µ i terms are defined in Eq. [START_REF] Binstock | Hydrodynamically driven two-phase flow, a theory of hydrodynamically driven dynamic mix[END_REF]. In this asymptotic limit, corresponding to α i → +∞, we can make the following expansion:

T s n+1 i = T SC i + α -1 i T s i -T SC i + O α -2 i .
(B19)

Assuming the system is close to temperature equilibrium, the difference δT ab n i ∝ α -1 i , and retaining the lowest order in α -1 i of the expansion leads to:

δT ab n+1 i ≈ α -1 i Ba -Bb . (B20)
We evaluate the different terms involved in Ba : The chosen discretization of any quantity Q, noted by Q l and Q r , determines the flux L1AP and L2AP. Using the discretization such that: 

Q l = Q r = 1 2 Q i + Q i+1 , ( 
where, for the L1AP-flux, Zs i is given by :

Zs i = Z s l + Z s r 2 max 1, (Z s i ) 2 Z s l Z s r , (C9) 
and for the L2AP-flux, Zs i is given by : Zs i = Z s i .

(C10)

where b 1d = 1 ,FIG. 1 .

 11 FIG. 1. Convergence of the scheme for the advection test in the 1d (blue) and 2d (red) cases. Dashed lines show the P1 projection flux while dotted lines show the P3+TVD projection flux.
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 2 FIG. 2. Convergence of the scheme for the Kidder's isentropic compression test in dimension 1. Dashed line shows the projection flux P1 while dotted line shows the projection flux P3+TVD.

  FIG.3. Sod's shock tube density, velocity, pressure and specific internal energy profiles for t = 0.25 units. Results of simulations are displayed for two number of grid cells nc = 100 (dotted line) and 1000 (solid line), and compared to the exact result (dashed line).
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 6 FIG. 6. Concentration of the high pressure fluid in the triple-point test problem for a) η = 10 16 , b) η = 10 2 and c) η = 10 1 , at time t = 0.25 (left) and t = 0.5 (right).
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 7 FIG. 7. Concentration of the high pressure fluid in the triple-point test problem for two different simulations where φ (ab) = 0 (case a) and φ (ab) = 1 (case b). Other values of the parameters are given in the text.
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 222 ∂ x v a ρ a (B22)and the specific kinetic energy being approximated by: ∆k a i ≈ v a n i ab δv ba dm a -The matrix system obtained is given by: M F X = Π X = P a n+ 1

  C7) corresponds to the L1AP-flux, while using a discretization such thatQ l = Q i and Q r = Q i+1 leads to the L2AP-flux.The CFL conditions associated to each Lagrangian flux is such that :

Appendix A: Average fluid PDE system

The bi-fluid Euler equations expressed in the average fluid variables are given by:

with the following average fluid variables:

q = ρr a r b δv δh -δr (δv) 2 /2 (A2f)

Appendix B: Temperature relaxation AP scheme

In this section we obtain the highly collisional asymptotic limit of the model induced by the temperature relaxation coupling and compare it to the numerical error associated to the chosen numerical discretization in order to assess the consistency of the scheme with the physical model.

To express the time-evolution of the difference temperature variable δT , we use the thermodynamic relation:

leads to:

Inserting Eq. (B21) and Eq. (B24) into Eq. (B14), and assuming δv = 0 in the specific entropy terms, shows that Ba ∝ -

and proves that this discretization leads to a behavior of the scheme in Eq. (B20) that is consistent with the asymptotic behavior of the model in Eq. (B7).

Appendix C: Lagrange stage: flux discretization

The system in equation ( 46) is discretized using the following integration over the mass variable: