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AN EXACT RADON FORMULA FOR LAMBERTIAN TOMOGRAPHY

JEAN-BAPTISTE BELLET

Abstract. This letter, based on an extension of the Radon transform on distributions, is a math-
ematical contribution to the field of reflective tomography in optics. Indeed, we tackle the recon-
struction of a Lambertian convex reflector using tomography. In a bi-dimensional setup, we prove
that the Lambert’s cosine law can be inverted by some Radon formula involving distributions. The
associated reconstruction contains the geometry and the physics of the problem: it is a Radon
measure supported by the reflector, and its density is the inverse of the albedo.

1. Introduction

Over the past decades, there has been a considerable interest in developing new imaging modalities
based on scattering of light and extensions of the Radon transform, such as Compton scattering
tomography [17, 20], Bragg scattering tomography [21], or reflective tomography [2, 3, 8, 11, 12,
19]. This paper deals with reflective tomography in visible to near-infrared optics. In this field,
one reconstructs a scene from optical images using a Radon inversion. The geometry of such a
reconstruction is meaningful [1], because the Radon transform is a Fourier Integral Operator [13].
Nevertheless, to the author’s knowledge, reflective tomography is not justified by an exact inversion
formula. In this letter, we tackle this problem in the case of uniform diffuse reflection off a strictly
convex surface, as in Figure 1. We derive a Radon formula which rigorously inverts a Lambert’s
cosine law.

Figure 1. Diffuse reflection by the Lambert’s cosine law on a strictly convex surface.
Here, an isotropic point source z emits light with a power per unit solid angle Φ/(4π).
On the surface ∂D, an illuminated point y reflects light uniformly; for an angle of
incidence α, the point y reflects a radiance Φ/(4π2|z−y|2) ρ(y) cosα in any direction
above the tangent plane. The dimensionless coefficient ρ(y) ∈ [0, 1] is the albedo,
defined as the percentage of incident irradiance which is reflected.

To begin with, let us describe uniform diffusion of light from an ideal matte opaque surface,
called a Lambertian reflector. This modeling is based on radiometric concepts [22], and is an usual
model for reflection off surfaces in optics; see for example [14, Sec. 3.A], [7]. As in Figure 1, we
assume that the surface of a Lambertian reflector, denoted by ∂D, is illuminated by an isotropic
point source located at z. We denote by Φ the power of this source (energy by time unit, in [W]).
The associated power per unit solid angle is Φ/(4π) (in [W.sr−1]). Therefore, an illuminated point
y ∈ ∂D, with angle of incidence α, receives an irradiance Φ cosα/(4π|z− y|2) (power per unit area,
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in [W.m−2]). By assumption, this incident irradiance is uniformly reflected off the surface; it is
assumed that the point y radiates the same radiance (power per unit projected area, and per unit
solid angle, in [W.m−2.sr−1]), in any direction above the tangent plane. This uniform radiance is
given by the Lambert’s cosine law

Φ

4π2|z − y|2
ρ(y) cosα;

here, the (dimensionless) albedo ρ(y) ∈ [0, 1] represents the percentage of the incident irradiance
which is reflected in any direction. This model of radiance is of particular interest, since a light
sensor in a camera measures a quantity which is essentially proportional to the radiance of the
visible point y [10]. Finally, assuming that z is in far field with |z − y| ≈ R a large constant, we
consider that the records are given by ρ(y) cosα, up to a constant factor.

In this letter, we restrict our attention to a Lambert’s cosine law ρ(y) cosα, in a bi-dimensional
setup, in R2. We aim at finding an explicit Radon formula which relates the geometry ∂D ⊂ R2,
the albedo coefficient ρ : ∂D → R, and values of the “radiance” ρ(y) cosα. In comparison, in usual
(X-ray) tomography, a record is an attenuated intensity along a line in a semi-transparent medium.
Up to a factor, the Beer-Lambert’s law models the record of a line L by

exp

[
−
∫
L
a(x)d`

]
,

where the function a(x) represents an attenuation coefficient of the medium [16]; in this case, the
link with the Radon transform of a, defined by R[a](L) =

∫
L a(x)d`, is very clear. For a Lambertian

reflector, extracting a Radon transform from the cosine law ρ(y) cosα is not so clear. Our main
result, Theorem 1, answers to this question for a strictly convex reflector; it is based on an extension
of the Radon transform on distributions, as described in [9, Chap. 1], [15, Chap. 2].

2. Background and notation

Unless otherwise stipulated, we assume throughout the letter:

(A1): D ⊂ R2 is a bounded open set with C 1 boundary ∂D, such that the closure D̄ is strictly
convex, i.e. ∀x, y ∈ D̄, ∀t ∈ (0, 1), tx + (1 − t)y ∈ D; ν(y) ∈ S1 denotes the exterior unit
normal vector to D at y ∈ ∂D, and µ denotes the length measure on ∂D.

(A2): ρ ∈ L∞(∂D) is a positive function, bounded and bounded away from zero, i.e. ρ(∂D) ⊂
[c, C] where c, C are two positive constants.

As displayed in Figure 2, for any angle θ = (θ1, θ2) ∈ S1, and for any s ∈ R, the set {x ∈ R2 :
x · θ = s} represents a line at signed distance s from the origin, orthogonal to θ, and oriented by
θ⊥ := (θ2,−θ1). For our purpose, intersecting lines with ∂D is of particular interest; we refer to
Lemma 1 in Appendix A for intermediate results related to this problem of convex analysis. In

Figure 2. Geometrical setup of Lemma 1 and Definition 1. For any angle θ ∈ S1,
the set S(θ) contains the values s ∈ R such that the line x · θ = s intersects D. For
any s ∈ S(θ), ∂D ∩ {x · θ = s} = {y(θ, s), y(−θ,−s)} with ν(y(θ, s)) · θ⊥ > 0. For
s ∈ ∂S(θ), the line x·θ = s is tangent to ∂D at a unique y(θ, s), and ν(y(θ, s))·θ⊥ = 0.

For any s /∈ S(θ), D̄ ∩ {x · θ = s} = ∅. The bold curve represents a set of visible

points, {y(θ, s), s ∈ S(θ)}.
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particular, Lemma 1.(i) proves that if a line x · θ = s intersects D̄, either D̄∩{x · θ = s} = {y(θ, s)}
with ν(y(θ, s)) · θ⊥ = 0, either ∂D ∩ {x · θ = s} = {y(θ, s), y(−θ,−s)} with ν(y(θ, s)) · θ⊥ > 0. The
set of values s associated to the latter case is the set S(θ) given by (3). Lemma 1.(i) justifies the
following definition.

Definition 1. Assume (A1-A2). The lambertian projection of (D, ρ), denoted by L[D, ρ], is a
function defined on S1 × R as follows. For every (θ, s) ∈ S1 × R,

• if the line x · θ = s does not intersect D̄, then L[D, ρ](θ, s) := 0;
• if the line x · θ = s intersects D̄, the visible point y(θ, s) is defined as the unique point
y ∈ ∂D ∩ {x · θ = s} such that ν(y) · θ⊥ ≥ 0, and

L[D, ρ](θ, s) := ρ(y(θ, s)) ν(y(θ, s)) · θ⊥.

3. Main result

Theorem 1. Assume (A1-A2). Let R : E ′(R2)→ E ′(S1×R) denote the Radon transform extended
on distributions by duality. Then,

R
[

1

ρ
dµ

]
=

(
1

L[D, ρ](θ, s)
+

1

L[D, ρ](−θ,−s)

)
1L[D,ρ](θ,s)>0, (1)

where, by convention, the right member takes the value 0 if (and only if) L[D, ρ](θ, s) = 0.

Proof. The proof is a combination of the definitions of a Radon measure [4, Chap. 4], a Radon
transform on distributions [9, Chap. 1], and the formula (5) of Appendix A for integration on ∂D.
Indeed, the function 1

ρ is bounded on ∂D; therefore 1
ρ ∈ L

1(∂D, dµ), and 1
ρdµ ∈ E ′(R2) is defined

as a compactly supported distribution by〈
1

ρ
dµ, ψ

〉
=

∫
∂D

ψ(y)

ρ(y)
dµ(y), ψ ∈ E(R2).

Then the Radon transform of 1
ρdµ is a distribution in E ′(S1 × R), defined by〈

R
[

1

ρ
dµ

]
, φ

〉
=

〈
1

ρ
dµ,R∗φ

〉
, φ ∈ E(S1 × R),

where R∗φ ∈ E(R2) is defined by

R∗φ(x) =

∫
S1
φ(θ, x · θ)dθ, x ∈ R2.

Fix φ ∈ E(S1 × R). By Fubini’s theorem,〈
R
[

1

ρ
dµ

]
, φ

〉
=

∫
∂D

R∗φ(y)

ρ(y)
dµ(y) =

∫
S1

∫
∂D

φ(θ, y · θ)
ρ(y)

dµ(y)dθ.

For any θ ∈ S1, the relation (5), with f(y) = φ(θ,y·θ)
ρ(y) ∈ L

∞(∂D) ⊂ L1(∂D), proves that∫
∂D

φ(θ, y · θ)
ρ(y)

dµ =

∫
S(θ)

φ(θ, s)

ρ(y(θ, s))ν(y(θ, s)) · θ⊥
+

φ(θ, s)

ρ(y(−θ,−s))ν(y(−θ,−s)) · (−θ)⊥
ds.

Therefore, 〈
R
[

1

ρ
dµ

]
, φ

〉
=

∫
S1

∫
R
φ(θ, s)

(
1s∈S(θ)

L[D, ρ](θ, s)
+

1s∈S(θ)

L[D, ρ](−θ,−s)

)
dsdθ.

This computation shows that the compactly supported function

1s∈S(θ)

L[D, ρ](θ, s)
+

1s∈S(θ)

L[D, ρ](−θ,−s)
, with 1s∈S(θ) = 1L[D,ρ](θ,s)>0,

is in L1(S1 × R) and coincides as a distribution with R
[
1
ρdµ

]
∈ E ′(S1 × R). This concludes the

proof. �
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Corollary 1. Assume (A1-A2). Then, the distribution 1
ρdµ ∈ E ′(R2) is uniquely determined by the

Lambertian projection L[D, ρ]; moreover, it can be reconstructed by the formula

1

ρ
dµ =

1

2π
R∗Hs∂s

1L[D,ρ](θ,s)>0

L[D, ρ](θ, s)
; (2)

here R∗ : D′(S1 × R) → D′(R2) denotes the backprojection and H : E ′(R) → D′(R) denotes the
Hilbert transform (both extended on distributions).

Proof. We apply the Radon inversion formula extended on distributions [9, Theorem 5.5], with
T = 1

ρdµ ∈ E ′(R2),

T =
1

4π
R∗Hs∂sRT, T ∈ E ′(R2).

Here, by definition of R∗ : D′(S1 × R)→ D′(R2), and H : E ′(R)→ D′(R), the formula means〈
1

ρ
dµ, ψ

〉
=

1

4π

∫
S1×R

(
1s∈S(θ)

L[D, ρ](θ, s)
+

1s∈S(θ)

L[D, ρ](−θ,−s)

)
∂sHs[Rψ(θ, s)]dθds, ψ ∈ D(R2),

with the usual Radon transform R, Hilbert transform Hs (with respect to s), defined by

Rψ(θ, s) =

∫
x·θ=s

ψ(x) d` ∈ D(S1 × R), ψ ∈ D(R2),

Hsg(s) =
1

π
p.v.

∫
R

g(t)

s− t
dt ∈ E(R), g ∈ D(R).

Since ∂sHs[g(−s)] = [∂sHsg](−s), the change of variable (θ, s) := (−θ,−s) yields∫
S1×R

1s∈S(θ)

L[D, ρ](−θ,−s)
∂sHs[Rψ(θ, s)]dθds =

∫
S1×R

1−s∈S(−θ)

L[D, ρ](θ, s)
∂sHs[Rψ(−θ,−s)]dθds.

By the way, we have the symmetry S(θ) = −S(θ) and Rψ(θ, s) = Rψ(−θ,−s), and we obtain〈
1

ρ
dµ, ψ

〉
=

2

4π

∫
S1×R

1s∈S(θ)

L[D, ρ](θ, s)
∂sHs[Rψ(θ, s)]dθds

=

〈
1

2π
R∗Hs∂s

1s∈S(θ)

L[D, ρ](θ, s)
, ψ

〉
, ψ ∈ D(R2).

�

4. Conclusion and discussion

Theorem 1 provides a way to extract a Radon transform from a Lambert’s cosine law ρ(y) cosα,
for a Lambertian convex reflector (D, ρ) in two dimensions. The formula (1) exhibits an appropriate
pre-processing to obtain an element in the range of the transform: the cosine law L[D, ρ] must be
inverted, then symmetrized. In this case, the relevant mathematical object to represent the scene
is the Radon measure dµ

ρ . This object contains simultaneously the geometry and the physics of the

problem. Indeed, the support of this Radon measure is exactly the boundary ∂D of the reflector,
while the density is directly the inverse of the albedo ρ. As a consequence of the Radon formula (1),

the representation dµ
ρ of the scene can be deduced from Lambertian projections, by the filtered

backprojection (2), well-defined mathematically.
To the author’s knowledge, it is the first time that such a mathematical proof is obtained for

a problem of Lambertian tomography, with an exact formula. This result potentially opens new
perspectives concerning reflective tomography in a more general framework. For instance, studying
the following question is of particular interest: given a set of bi-dimensional optical images of a
three-dimensional scene with occlusions, is there a Radon measure supported by surfaces, whose
Radon transform (or X-ray transform) reproduces some transformation of the optical images? Also,
the results of this work may open new practical applications in optics. It is worth investigating
practical implementation of (2) and testing on real optical data.
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Appendix A. Convex analysis

For completenness, we prove some intermediate results of convex analysis; they appear clearly in
Figure 2.

Lemma 1. Assume (A1) and let θ ∈ S1 be an angle.

(i) Let s ∈ R be such that the line x · θ = s intersects D̄, i.e. s ∈ S(θ) where S(θ) denote the set

S(θ) := {x · θ, x ∈ D} ⊂ R. (3)

Then, there exists a unique point y ∈ ∂D such that

y ∈ ∂D, y · θ = s, ν(y) · θ⊥ ≥ 0. (4)

(ii) The function s ∈ S(θ) 7→ y(θ, s), where y(θ, s) is defined by (4), is a C 1 parametrization of the
set

∂D(θ) := {x ∈ ∂D : ν(x) · θ⊥ > 0},
with

|∂sy(θ, s)| = (ν(y(θ, s)) · θ⊥)−1.

(iii) Let f ∈ L1(∂D, dµ) be integrable for the length measure µ on ∂D. Then,∫
∂D

f dµ =

∫
S(θ)

(
f(y(θ, s))

ν(y(θ, s)) · θ⊥
+

f(y(−θ,−s))
ν(y(−θ,−s)) · (−θ)⊥

)
ds. (5)

Proof. As in [18, pp. 51-53], fix d : R2 → R a defining function of D, i.e. d ∈ C 1(R2) such that

D = {x ∈ R2 : d(x) < 0}, ∂D = {y ∈ R2 : d(y) = 0}, ∇d(y) 6= 0, y ∈ ∂D.

The exterior normal vector satisfies ν(y) = ∇d(y)
|∇d(y)| , y ∈ ∂D.

(i) The set S(θ) represents a projection of the bounded open convex set D on the line x · θ⊥ = 0;
then S(θ) is a bounded open interval. By construction, for every s ∈ R, the line x · θ = s meets D

if and only if s ∈ S(θ). The closure S(θ) is a line segment and satisfies S(θ) = {x · θ, x ∈ D̄}; the

line x · θ = s meets D̄ if and only if, s ∈ S(θ).
Fix s ∈ ∂S(θ). Then the line x · θ = s is a supporting hyperplane of the convex set D (see [5, pp.

50-51]). Hence, D̄∩{x · θ = s} is contained in ∂D, and it contains a unique point y0 ∈ ∂D, because
D̄ is strictly convex. The boundary ∂D is smooth, so the supporting hyperplane x · θ = s is tangent
to ∂D at y0, i.e. ν(y0) · θ⊥ = 0. Indeed, the C 1 function g : t 7→ d(sθ + tθ⊥) has a minimum at
t0 = y0 · θ⊥, because g(t0) = 0 and g(t) > 0, t 6= t0; this implies g′(t0) = ∇d(y0) · θ⊥ = 0.

Fix now s ∈ S(θ). Then the line x · θ = s meets D, and ∂D ∩ {x · θ = s} contains only
the two distinct extremities of the line segment D̄ ∩ {x · θ = s}. Denote these extremities by
y1 = sθ+ t1θ

⊥, y2 = sθ+ t2θ
⊥, with t1 6= t2. By strict convexity, z = y1 + 1

2(y2−y1) ∈ D; therefore,

∇d(y1) · (y1− z) > 0 (see for instance [6, Lemma 2.1]), which is equivalent to (t1− t2) ν(y1) · θ⊥ > 0.
Analagously, (t2 − t1) ν(y2) · θ⊥ > 0, which proves ν(y1) · θ⊥ ν(y2) · θ⊥ < 0.

(ii) We deduce from the proof of (i) that ∂D(θ) = {y(θ, s), s ∈ S(θ)}; indeed, for any s ∈ S(θ),
y(θ, s) ∈ ∂D(θ), and for any x ∈ ∂D(θ), x = y(θ, x · θ) with x · θ ∈ S(θ). Furthermore, the set
∂D(θ) satisfies an implicit equation

d(sθ + tθ⊥) = 0, with ∂td(sθ + tθ⊥) = |∇d(sθ + tθ⊥)| ν(sθ + tθ⊥) · θ⊥ 6= 0.

Around any s ∈ S(θ), by the implicit function theorem, ∂D(θ) can be locally represented by an
equation t = φ(s), where φ is a (local) C 1 function satisfying φ′(s) = −∂sd(sθ+ tθ⊥)/∂td(sθ+ tθ⊥).
Finally, y(θ, s) = sθ + φ(s)θ⊥ is C 1 on the whole open interval S(θ), and

∂sy(θ, s) · θ⊥ = φ′(s) = − ν(y(θ, s)) · θ
ν(y(θ, s)) · θ⊥

, |∂sy(θ, s)| =
√

1 + φ′(s)2.

(iii) The set ∂D can be decomposed as a disjoint union

∂D = {νy · θ⊥ > 0} ∪ {νy · (−θ)⊥ > 0} ∪ {νy · θ⊥ = 0}
= ∂D(θ) ∪ ∂D(−θ) ∪ {y(θ, s), s ∈ ∂S(θ)},
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which proves that ∫
∂D

fdµ =

∫
∂D(θ)

f(y)dµ(y) +

∫
∂D(−θ)

f(y)dµ(y).

We use the parametrization of (ii), once for θ, once for −θ. To finish with, we change the variable
in the second integral; s := −s, the domain of integration becomes −S(−θ) = S(θ). �
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