HAL
open science

From the expansion of the space of the displacements towards the transformations of the plane

Edern Ollivier

To cite this version:

Edern Ollivier. From the expansion of the space of the displacements towards the transformations of the plane: A pool of trajectories for the engineers of the automation of the fair and automated vehicle. 2021. hal-03335352v5

HAL Id: hal-03335352
 https://hal.science/hal-03335352v5

Preprint submitted on 17 Jan 2022 (v5), last revised 19 Jan 2023 (v8)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

FROM THE EXPANSION OF THE SPACE OF THE DISPLACEMENTS TOWARDS THE TRANSFORMATIONS OF THE PLANE*
 EDERN OLLIVIER ${ }^{\dagger}$

Abstract

The odometric model gives the place to a space of displacements. I have been resolving to simulate, integrate, explain and then to validate the odometric model. The model of resolution is to be programmed in the Maple language, with the help of a solver for Maple 2021. An operator with the integral and the imaginary number has been defined to integrate the third equation of the odometric model for the terminal point of it.

Key words. Odometry, Vehicle location and navigation systems, Mobile positioning systems, Trajectory, Convergence of a model, Control of a vehicle.

AMS subject classifications. 47J20/45G05

1. Introduction. As one introduction, I could say that the odometric model is well known now and that everything is done for the space of displacements of a model of automation to be improved with the odometric model. By the non holonomy of the equations of a vehicle, I want to say that the function cannot be integered simply. It is why an odometric model has been developped by the Inria of Rocquencourt in France in order to chase the meaning of the creator of the Cybercars from the Imara team.
2. Main results. I have done the approximation of the computed odometric model then I can understand the purpose of the space of the displacements : There is the convergence of the odometric model with the absolute convergence until an hypergeometric function with a Gamma, and moreover all this space of displacements has a structure K-completed of a group, with the neutral element that is the rotation of an angle of $2^{*} \mathrm{Pi}$ modulo Pi . The formula below is used to be the steering angle of the mathematical function of the computed odometric model.

$$
\alpha(t)=\tan (t)
$$

The formula below is used to be the steering angle integered of the mathematical function of the computed odometric model.

$$
\theta(t)=-\ln (\cos (t))
$$

Moreover the formula below is used to be the value to integer of the mathematical terminal of the computed odometric model.

$$
\beta(t)=\int_{0}^{t} \cos (x)^{I} \mathrm{~d} x
$$

It deals with the value of the steering angle at the value of $\mathrm{Pi} / 2$. Normally the speed value of the wheels of the vehicle should always be tangential to the vehicle. Indeed

[^0]the wheels are to be rolling in the direction of the vehicle. And when the vehicle is turning then the direction of the vehicle is changing of the driving direction.

Here I state our main result as Theorem 2.1; The proof is deferred to Proof 2.
Theorem 2.1 (theta Integration Value [3]). There is the absolute convergence to the function integered of the steering angle at the value of integration of t :

$$
\theta(t)=-\ln (\cos (t))
$$

Theorem 2.2 (Terminal Point Theorem). There is the integration of the instability terminal point of the computed odometric model at the value of integration of Pi/2 :

$$
\left.\beta(\Pi / 2)=\int_{0}^{\Pi / 2} \cos (x)^{I} \mathrm{~d} x=\Gamma(1 / 2+I / 2) \cdot \sqrt{(} \Pi\right) /(2 \cdot \Gamma(1+I / 2))
$$

In other words, the terminal value is computed to a Gamma.

$$
\beta(\Pi / 2)=\Gamma(1 / 2+I / 2) \cdot \sqrt{(} \Pi) /(2 \cdot \Gamma(1+I / 2))
$$

Observe that Theorems 2.1 and 2.2 correctly mix definitions of the value of integration because of the continuity of the function cosinus.

Corollary 2.3. Let $f(x)$ be continuous and differentiable everywhere. If $f(x)^{I}$ can be integered, then $f(x)^{I}$ has an integered value to the terminal point of it.

Proof. Let a and b be two distinct terminal points of f with $a<b$. By Theorem 2.2, there exists a number b such that

$$
\beta(b)=\int_{a}^{b} f(x)^{I} \mathrm{~d} x
$$

Proof. First of all I wish a pleasant retirement to the professors of maths at school for their support along the courses of maths : Paris, Payssant, Girard, Gomez, Landès, Ruaud, Borel, Barrère and al. They have been founding the explanations to better understand the great mathematic theorems as Pythagore, Thalès, Euler, Leibnitz, Rolle, d'Alembert, Pascal, Newton, Gauss and al. They have been founding the solving's method to exercice the thinkings to the resolutions of the roots of the equations of the first and second's degree polynoms, with the Gupta's theory of the numbers, and also to give the understanding's solutions of the differential's equations of the first and second's order with or without a second member. The formula below is used to be the angle $P i$ integered by the exponential function.

$$
\exp (I * \Pi)=-1
$$

And with the Euler's notation :

$$
\cos (\Pi)+I * \sin (\Pi)=-1
$$

On one hand the space of displacements is a subgroup of the space of the transformations of the plane involves that each element of the space of displacements is the limit of a series of elements of this space of displacements. And another hand for each element of this space of displacements Proof 2 there exists a bounded sequence for any displacements, cf. The work of Guillaume Artus on the slavings to be given to

```
Algorithm 1 Build spiral
    Define croquette \(:=\operatorname{proc}(n)\)
    Define local \(i, R, x, z\)
    Define \(R:=[[0,0]]\)
    Define \(i:=1\)
    while \(i<n / 2\) do
        Define \(x:=i / n * P i\)
        Define \(z:=\sin (x) *\) hypergeom \(\left([1 / 2,1 / 2-I / 2],[3 / 2], \sin (x)^{2}\right)\)
        Update \(z:=\operatorname{evalf}(z)\)
        Update \(R:=[o p(R),[\operatorname{Re}(z), \operatorname{Im}(z)]]\)
        Update \(i:=i+1\)
    end while
    return \(R\)
    Define end
```

4. Experimental results. Figure 4.1 shows an example result of the integration. Figure 4.2 shows again an example result of the integration.

5．Discussion of $z=[\boldsymbol{R e}(z), \operatorname{Im}(z)]$ ．As one discussion，I could say that the values of the integrated computed odometric model are computed in the given figures with a procedure recording the complex values at every steps of the procedure given by a volunteer from the Inria of Saclay in France．

6．Conclusions．As one conclusion，I could say that the odometric model is well known now and that everything is done for the commands of a model of automation to be validated with the odometric model［3］．I should also emphasize that a thesis can be done with the first issue of mine about the so called linearization of the equations of the odometric model given back by the issue of the chinese team of researchers［1］．Here and now I am convinced that the simulation can improve the way of the automation of the Cybercars or such an electrical automated guided vehicle．I complain that the framework has now been fully completed and I am waiting for the datas from the industrial opponents of such a task of automation because as when as I could robotize such a project of automation by a control command I could be adopted by the community of the robotic and automation counterparts．I am still registered on the SMF／SMAI to be a valuable person for the control and command task of such a deployment of the automated guided vehicle in the cities of France．

Appendix A．An appendix for the modulo $P i$ ．

Lemma A．1．Idem with the 3＊Pi／2 value modulo Pi．
Acknowledgments．I would like to acknowledge the assistance of a volunteer of the Inria of Saclay in France in solving together these figures．

REFERENCES

［1］Guillaume Artus，Pascal Morin，Claude Samson．Control of a maneuvering mobile robot by the transverse function approach ：control design and simulation results．［Research Report］ RR－5155，INRIA．2004，pp．16．〈inria－00077042〉；
［2］Xiaocong Su，Chaoyong Zhang，Duanfeng Chu，Shidong Liu，Deng，and Chaozhong Wu，Tra－ jectory Planning and Tracking for Autonomous Vehicle Based On State Lattice And Model Predictive Lattice，IEEE Intelligent Transportation Systems Magazine（Volume 11，Issue 2， Summer 2019 ）；
［3］Edern Ollivier．Simulation，integration and explanation of the odometric model for the purpose of the numerical analysis：A pool of trajectories for the engineers of the automation of the fair and automated vehicle．2019．〈hal－02162501v10〉．

[^0]: *Submitted to the SIAM/SIMA editor on the 24/12/2021.
 Funding: This work was not funded by the IEEE.
 \dagger (Member, IEEE, edern.ollivier.fr@ieee.org, http://www.ieee.org/, 17 RUE DE L'AMIRAL HAMELIN at Paris 16 (75116), Société Mathématique de France, https://smf.emath.fr/, Société de Mathématiques Appliquées et Industrielles, http://smai.emath.fr/, edernolli@gmail.com, http: //www.maintenance-elec.fr).

