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THE ISOTHERMAL LIMIT FOR THE COMPRESSIBLE EULER EQUATIONS
WITH DAMPING

QUENTIN CHAULEUR

Abstract. We consider the isothermal Euler system with damping. We rigorously show the
convergence of Barenblatt solutions towards a limit Gaussian profile in the isothermal limit γ → 1,
and we explicitly compute the propagation and the behavior of Gaussian initial data. We then
show the weak L1 convergence of the density as well as the asymptotic behavior of its first and
second moments.
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1. Introduction

We consider the isentropic compressible Euler equations with frictional damping:

(1.1a)

(1.1b)


∂tρ+ ∂xm = 0,

∂tm+ ∂x

(
m2

ρ

)
+ ∂xρ

γ +m = 0,

with ρ(0, x) = ρ0(x) ≥ 0 and m(0, x) = m0(x) for x ∈ R, t ≥ 0, and the adiabatic gas exponent
γ > 1. Such a system appears in the mathematical modeling of compressible flow through a porous
medium, and its study has drawn a lot of attention over the last decades [19]. The global existence
of L∞ weak entropy solutions to the Cauchy problem of (1.1) is now well established (see for
instance [20] and [14]), and it is known that their long-time asymptotic behavior [12] is governed
by the limit diffusive profile:

(1.2a)
(1.2b)

{
∂tρ = ∂2xρ

γ ,

m = −∂xργ ,
where equation (1.2a) is the porous media equation, whose fundamental solutions are called Baren-
blatt solutions [5], and equation (1.2b) is the famous Darcy law. In [18], the author constructs a

1
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class of particular solutions for (1.1) which tend to the Barenblatt solutions ρ asymptotically in
time, with an explicit rate log(t)/t. In [13], the authors find the explicit rates

‖ρ− ρ‖2L2(R) ≤ C(1 + t)−k1+ε if 1 < γ ≤ 2,

and
‖ρ− ρ‖γLγ(R) ≤ C(1 + t)−k2+ε if γ > 2,

for any ε > 0, with k1 = min
(

γ2

(γ+1)2 ,
γ−1
γ

)
and k2 = min

(
γ2

(γ+1)2 ,
1
γ

)
, for every L∞ weak entropy

solution (ρ,m) of (1.1). Unfortunately, the decay rates are not in L1-norm, which is the natural
norm as (1.1a) and (1.2a) both satisfies the conservation of norm

‖ρ(t, .)‖L1(R) = ‖ρ0‖L1(R) and ‖ρ(t, .)‖L1(R) = ‖ρ0‖L1(R) for all t ≥ 0.

Decay rates in L1-norm were achieved for a particular range of γ in [15], where the authors show
that

‖ρ− ρ‖L1(R) ≤ C(1 + t)−
1

4(γ+1)
+ε if 1 < γ < 3,

which was recently improved and extended in [11] with the estimate

‖ρ− ρ‖L1(R) ≤ C(1 + t)
− 1

(γ+1)2
+ε for all γ > 1.

Throughout the years, a lot of effort has been put to extend the range of γ to finally achieve the
full range γ > 1 of barotropic pressure laws P (ρ) = ργ . The next natural step is the study of the
case γ = 1, which leads to the isothermal pressure law P (ρ) = ρ. However, in the compressible
fluid literature, much fewer results are known for the isothermal Euler system with damping

(1.3a)

(1.3b)


∂tρ+ ∂xm = 0,

∂tm+ ∂x

(
m2

ρ

)
+ ∂xρ+m = 0,

which stands as the limit γ → 1 of the isentropic system (1.1). In [14], the authors show the
existence of L∞ entropy weak solutions to the Cauchy problem of (1.3). They also prove, up to a
scaling in space z = x/

√
1 + t, the Lploc convergence of the density ρ towards a diffusive profile ρ

which satisfies the heat equation

(1.4) ∂tρ = ∂2xρ,

in the case max(ρ+, ρ−) > 0, where ρ(±∞) = ρ±. However, time dependent Gaussian functions,
which stand as particular solutions of the heat equation on the whole space, do not satisfy this
condition. In a bounded domain Ω ⊂ Rd, the author shows in [21] the exponential convergence of
any global solution (ρ,m) with small initial data (ρ0,m0) towards the limit profile (‖ρ0‖L1/|Ω|, 0).
In fact, at least formally, equation (1.3) satisfies the energy inequality

(1.5)
1

2

∫
R

m2

ρ
+

∫
R
ρ log ρ+

∫ t

0

∫
R

m2

ρ
≤ E0 for all t ≥ 0,

but the left-hand side has no definite sign due to the logarithmic contribution in the potential en-
ergy, a property that causes many technical difficulties such as a lack of compactness on the whole
space R when the density t 7→ ρ(t, .) ∈ L1(R) vanishes at infinity.
In [6], in the case of the compressible Euler equations without frictional damping (µ = 0), the
authors show that Gaussian functions stand as particular solutions of their system. They also
prove that every global weak solution disperses and converges to a universal asymptotic Gaussian
profile, up to a rescaling by their dispersion rate, in the weak L1 topology, under some integrability
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assumptions on the moment of order 2 of the initial data ρ0. We will show in this paper that
this kind of property still holds in the case with damping (1.3), and we will study the asymptotic
behavior of Gaussian solutions and moments of order 1 and 2 of the density ρ as they stand as a
key ingredient for the proof of this kind of feature.

The formal limit γ → 1 is singular regarding many features of the isentropic case, especially for
the energy inequality of system (1.1):

(1.6)
1

2

∫
R

m2

ρ
+

1

γ − 1

∫
R
ργ +

∫ t

0

∫
R

m2

ρ
≤ E0.

In this paper we propose to give sense to the formal isothermal limit γ → 1, in particular we will
rigorously show and illustrate the convergence of the Barenblatt solutions of (1.2a) to the Gaussian
solutions of (1.4), a feature which does not seem to be so much known in the community to the
best of the author knowledge.

From now on, (ργ ,mγ) with γ > 1 will denote a solution of the isentropic Euler system (1.1),
whereas (ρ,m) will denote a solution of the isothermal Euler system. The overline bar will be use
for solutions of the different limit diffusive profiles. The notation C will denote a generic constant
C > 0.

This paper is organized as follows. In Section 2, we provide energy estimates, assumptions about
existence and regularity of solutions of equations (1.3), and we state the main results of this paper.
In Section 3, we show that Barenblatt solutions converge to a Gaussian profile as γ → 1. In Section
4, we explicitly compute the behavior of Gaussian solutions of (1.3). In Section 5, we study the
evolution of the first and second moments of every weak solution of (1.3). In Section 6, we prove
the weak L1 convergence of every solution towards a universal Gaussian profile. Finally, in Section
7, we give some perspectives about the open question of explicit convergence rate in the isothermal
case.

2. Assumptions and main results

We first give a notion of global weak solution for the 1-dimensional isothermal Euler equations
with damping, and we will assume the global existence of this kind of solutions through the rest of
the paper:

Definition 2.1. We say that (ρ,m) is a weak solution of system (1.3) in [0, T [ with initial data
(ρ0,m0) ∈ L1(R) × L1(R), if there exists locally integrable functions √ρ, Λ such that, by defining
ρ :=

√
ρ2 and m =

√
ρΛ, the following holds:

(i) The global regularity:
√
ρ ∈ L∞([0, T [ ;L2(R)), Λ ∈ L2([0, T [ ;L2(R)),

with the compatibility condition
√
ρ ≥ 0 a.e. on (0,∞)× R, Λ = 0 a.e. on {ρ = 0} .

(ii) For any test function η ∈ C∞0 ([0, T [× R),∫ T

0

∫
R

(ρ∂tη +m∂xη)dxdt+

∫
R
ρ0η(0)dx = 0,
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and for any test function ζ ∈ C∞0 ([0, T [× R;R),∫ T

0

∫
R

(
m∂tζ + Λ2∂xζ + ρ∂xζ −mζ

)
dxdt

+

∫
R
m0ζ(0)dx = 0.

Assumption 2.2. Let (ρ0,m0) ∈ L1(R) × L1(R). We assume that there exists a weak solution
(ρ,m) of system (1.3) with initial data (ρ0,m0) in the sense of Definition 2.1 which satisfies, for all
t ≥ 0, the energy estimate

1

2

∫
R

m2(t, x)

ρ(t, x)
dx+

∫
R
ρ(t, x) log(ρ(t, x))dx+

∫ t

0

∫
R

m2(s, x)

ρ(s, x)
dxds ≤ C,

with the additional regularity

(t, x) 7→ x2ρ(t, x) ∈ L∞([0, T [ ;L1(R)).

Remark 2.3. The L∞ entropy weak solutions of system (1.3) described in [14] are in fact weak
solutions of (1.3) when the initial data (ρ0,m0) ∈ L∞(R)× L∞(R) satisfies the estimates

0 ≤ ρ0 ≤ C and |m0| ≤ Cρ0| log ρ0|
(see [14, Definition 1] for a precise definition of L∞ entropy weak solutions of system (1.3)). Note
that the existence of L∞ entropy weak solutions of the isothermal Euler system without damping
is proved in [16] under the same initial data conditions.

We now have to introduce several quantities in order to state our results. Let τ be the unique
C∞([0,∞)) solution of the differential equation

τ̈ =
2

τ
− τ̇ , τ(0) = 1, τ̇(0) = 0.

From [8], we know that this function satisfies, as t→ +∞,

τ(t) ∼ 2
√
t and τ̇(t) ∼ 1√

t
.

We also introduce the Gaussian function

Γ := e−y
2

.

We make the change of variable y = x/τ(t),

ρ(t, x) =
1

τ(t)
R

(
t,

x

τ(t)

)
and m(t, x) =

1

τ(t)2
M

(
t,

x

τ(t)

)
+
τ̇(t)

τ(t)
yR

(
t,

x

τ(t)

)
.

We first remark that this change of variable preserves the L1-norm, so for all t ≥ 0, at least formally∫
R
R(t, y)dy =

∫
R
ρ(t, x)dx =

∫
R
ρ0(x)dx.

System (1.3) becomes, in the terms of the new unknown (R,M),

(2.1a)

(2.1b)


∂tR+

1

τ2
∂yM = 0,

∂tM +
1

τ2
∂y

(
M2

R

)
+ ∂yR+ 2yR+M = 0,
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which have the following energy inequality:

(2.2) E(t) +

∫ t

0

τ̇(t)

τ3(t)

∫
R

M2

R
dyds ≤ C,

where

(2.3) E(t) =
1

2τ(t)2

∫
R

M2

R
dy +

∫
R
R log

(
R

Γ

)
dy.

In fact, differentiating with respect to time the left part of (2.2), using equations (2.1a) and (2.1b)
and by integration by parts, we get that

d

dt

(
1

2τ(t)2

∫
R

M2

R
+

∫
R
R logR+

∫
R
y2R+

∫ t

0

τ̇(s)

τ(t)3

∫
R

M2

R
ds

)
= − 1

τ2

∫
R

M2

R
≤ 0.

Note that from the Csiszár-Kullback inequality (see e.g. [2])∫
R
R log

(
R

Γ

)
≥ 1

2‖R0‖L1

‖R− Γ‖2L1 ≥ 0,

we direclty get that for all t ≥ 0, E(t) ≥ 0.

Denoting by Ekin the kinetic energy

Ekin(t) :=
1

τ2(t)

∫
R

M2(t, y)

R(t, y)
dy

for all t ≥ 0, the asymptotics of τ and τ̇ and the following Lemma 5.2 give that

Ekin ∈ L∞(R+) and
∫ ∞
0

Ekin(t)

1 + t
dt <∞,

so we know there exists a sequence (tn)n, such that tn →∞ and

Ekin(tn)→ 0 as n→∞.

Unfortunately, we have no proof that this property is actually satisfied uniformly in time, even if
it seems to be a reasonable assumption that we state in the following:

Assumption 2.4. We assume that

Ekin(t) =
1

τ2(t)

∫
R

M2(t, y)

R(t, y)
dy → 0 as t→∞.

This assumption is for instance satisfied for Gaussians solutions of system (1.3), with an explicit
convergence rate in t−1/2 (see Remark 5.4 below). We now state the two main results of this paper:

Proposition 2.5. Under Assumption 2.2 and Assumption 2.4, we have∫
R

 1
y
y2

R(t, y)dy −→
∫
R

 1
y
y2

Γ(y)dy as t→∞.

Proposition 2.6. Under Assumption 2.2, we have

R(t) ⇀
t→∞

Γ weakly in L1(R).
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Remark 2.7. In Proposition 2.5, Assumption 2.4 is only required to show the convergence of the
moment of order 2. Without this assumption, we are only able to show that the moment of order
2 is uniformly bounded (see Lemma 5.2).

Remark 2.8. Note that Propositions 2.5 and 2.6 are also satisfied in higher space dimensions Rd
with d ≥ 1, in the sense that∫

Rd

 1
y
|y|2

R(t, y)dy −→
∫
Rd

 1
y
|y|2

Γ(y)dy as t→∞

with Γ = e−|y|
2

, and
R(t) ⇀

t→∞
Γ weakly in L1(Rd).

Of course, our notion of global weak solution has to be adapted to the d-dimensional case, as well
as system (1.3), and we refer to [6] and [8] for some d-dimensional analogue of Definition 2.1.
In the same vein, the following discussion about the particular Gaussian solutions of (1.3) can easily
be generalized to any dimension d by a tensorization property. We also refer the reader to [6] and
[8] for some d-dimensional analogue of system (4.1)-(4.2)-(4.3).

3. The limit γ → 1 of Barenblatt’s solutions

We consider the unique fundamental solution of the porous media equation (with the Dirac delta
function as initial data)

(3.1)

{
∂tργ = ∂2x

[(
ργ
)γ]

,

ργ(−1, x) = λδ(x), λ > 0,

which is called the Barenblatt solution [4]. Note that we take the initial data at t = −1 to avoid
the singularity at t = 0. We recall that this solution can be written

(3.2) ργ(t, x) = (1 + t)−
1
γ+1

[
A−Bξ2

] 1
γ−1

+

with ξ = x(1 + t)−
1
γ+1 , [f ]+ = max {f, 0}, B = γ−1

2γ(γ+1) and A determined by

(3.3) 2A
γ+1

2(γ−1)B−
1
2

∫ π
2

0

(cos θ)
γ+1
γ−1 dθ = λ.

Moreover, ργ is continuous on R, it satisfies the conservation of mass∫
R
ργ(t, x)dx = λ

for all t ≥ −1, and has compact support for any finite time T > 0, namely

ργ = 0 if |ξ| ≥
√
A/B.

The power 1
γ−1 in (3.2) could make the limit γ → 1 unclear, however we can show:

Proposition 3.1. We make the change of variable ξ = x(1 + t)−
1
γ+1 and

ργ(t, x) = (1 + t)−
1
γ+1Bγ

(
x(1 + t)−

1
γ+1

)
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which preserves the L1-norm. Then,

Bγ →
λ

2
√
π
e−

ξ2

4 in L∞(R) as γ → 1.

In particular, the L∞ estimate

|ργ(t, x)| ≤ A
1

γ−1 (1 + t)−
1
γ+1

has the following continuous limit when γ → 1:

|ρ(t, x)| ≤ λ

2
√
π

(1 + t)−
1
2 ,

where ρ denotes the Gaussian limit of the Barenblatt profile ργ as γ → 1 (namely ρ := ρ1, we omit
the index γ when γ = 1).

Proof. We have, for |ξ| <
√
A/B,

Bγ(ξ) =
[
A−Bξ2

] 1
γ−1

+
= exp

(
1

γ − 1
logA+

1

γ − 1
log

(
1− B

A
ξ2
))

,

as A > 0 from expression (3.3) and B
A ξ

2 < 1. We have now two terms to handle when γ → 1.
Taking the logarithm in equation (3.3), and recalling that B = γ−1

2γ(γ+1) , we have

1

γ − 1
logA =

2

γ + 1

(
log

(
λ

2
√

2γ(γ + 1)

)
− log

(
1√
γ − 1

∫ π
2

0

(cos θ)
γ+1
γ−1 dθ

))
.

We denote ε = γ − 1, so we look at the limit ε→ 0 of the following Wallis integral

W1+ 2
ε

=

∫ π
2

0

(cos θ)1+
2
ε dθ =

∫ π
2

0

(cos θ)
γ+1
γ−1 dθ.

We recall the well-known equivalent of Wallis integral when ε→ 0,

W1+ 2
ε

=

√
π

2
(
1 + 2

ε

) +O

(
1

1 + 2
ε

)
=

√
πε

4 + 2ε
+O(ε),

so it is easy to check that

1√
γ − 1

∫ π
2

0

(cos θ)
γ+1
γ−1 dθ =

√
π

4
(1 +O(ε))

as γ → 1, and then

exp

(
1

γ − 1
logA

)
=

λ

2
√
π

1

1 +O(ε)
.

For the second term, as we have

B

A
= B

(
2W1+ 2

ε

λB
1
2

) 2ε
2+ε

=
ε

4
+O(ε2)

from the previous equivalent, we write

1

ε
log

(
1− B

A
ξ2
)

= −1

ε

∑
n≥1

1

n

(
B

A
ξ2
)n
∼ −1

4
ξ2 + ε

∑
n≥2

1

n

(
ξ2

4

)n
εn−2,
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so finally

exp

(
1

γ − 1
log

(
1− B

A
ξ2
))
−→ e−

ξ2

4 ,

and

Bγ (ξ)− λ

2
√
π
e−

ξ2

4 =
λ

2
√
π
e−

ξ2

4

(
1

1 +O(ε)
eO(ε) − 1

)
= O(ε).

On |ξ| ≥
√
A/B, we know that Bγ (ξ) = 0, and as ξ → e−ξ

2/4 is a Gaussian,

sup
|ξ|≥
√
A/B

∣∣∣∣Bγ (ξ)− λ

2
√
π
e−

ξ2

4

∣∣∣∣ =
λ

2
√
π
e−

A
B ≤ Ce− 1

ε ,

so finally

sup
ξ∈R

∣∣∣∣Bγ (ξ)− λ

2
√
π
e−

ξ2

4

∣∣∣∣ ≤ Ce− 1
γ−1 +O(γ − 1) −→ 0 as γ → 1,

which ends the proof. �

In order to illustrate this result, we make the following numerical simulation of the function Bγ
for several values of γ (namely γ = 2, 1.5 and 1.1), and the initial condition constant λ = 1. We
also plot the limit Gaussian profile e−ξ

2/4/2
√
π, which corresponds to the case γ = 1.

Figure 1. Convergence of Bγ towards its limit Gaussian profile.
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4. Gaussian solutions

In this section, following [6], we seek for particular Gaussian solutions of (1.3) of the form

ρ(t, x) = b(t)e−α(t)(x−x(t))
2

and
m(t, x) = (β(t)x+ c(t))ρ(t, x),

with the initial conditions b(0) = b0 > 0, α(0) = α0 > 0, β(0) = β0 ∈ R, c(0) = c0 ∈ R. As
system (1.3) is invariant by translation, we assume that x(0) = 0. We also denote ρ0 = ρ(0, .)
and m0 = m(0, .). Plugging these expressions into (1.3), we obtain the following set of differential
equations:

(4.1) α̇+ 2αb = 0, β̇ + β2 + β = 2α,

(4.2) ẋ = βx+ c, ḃ = b(α̇x2 + 2αcx(ẋ− c)− β),

(4.3) ċ+ βc+ c = −2αx.

In order to solve this system, mimicking [17], we can check that the two equations of (4.1) are
satisfied if and only if α and β are of the form

α(t) =
α0

τ(t)2
, β(t) =

τ̇(t)

τ(t)
,

where τ is the global solution of the differential equation

(4.4) τ̈ =
2α0

τ
− τ̇ , τ(0) = 1, τ̇(0) = β0.

We recall (see [8]) that there exists a unique global solution τ ∈ C∞([0,∞)) to this nonlinear ODE,
and that this solution remains uniformly bounded from below by a strictly positive constant.
Plugging these expressions into the second equation of (4.2), we also get that

b(t) =
b0
τ(t)

.

We also get an expression of c in terms of the center x of our Gaussian:

c(t) = c0 −
(

1 +
τ̇

τ

)
x.

Let first show that the center of the Gaussian has an explicit expression, which does not depend on
the function τ :

Proposition 4.1. We have

x(t) =
1

‖ρ0‖L1(R)

(∫
R
xρ0 − (1− e−t)

∫
R
m0

)
.

In particular, there exists x∞ ∈ R such that

x(t)→ x∞ as t→∞.
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Proof. We know that ρ is a Gaussian function centered in x, so we get that for all t ≥ 0,∫
R

(x− x(t))ρ(t, x)dx = 0,

hence we only have to study the first moment of ρ keeping in mind that

x(t) =
1

‖ρ0‖L1(R)

∫
R
xρ(t, x)dx.

Integrating equation (1.3b) over R we get that

d

dt

(∫
R
m(t, x)dx

)
=

∫
R
∂tm(t, x)dx = −

∫
R
m(t, x)dx,

so we get by integration by parts that
d

dt

(∫
R
xρ(t, x)dx

)
=

∫
R
x∂tρ(t, x)dx = −

∫
R
m(t, x)dx = −e−t

∫
R
m0(x)dx,

so finally integrating this expression over [0, t] we get the result. �

In order to know the behavior of our Gaussian functions when t→∞, we only need to get some
equivalents of the real function τ , which is the goal of the following proposition. We refer to [8] for
a complete study of the differential equation (4.4).

Proposition 4.2. Let τ be the unique C∞([0,∞)) solution of the differential equation (4.4), then
we have

τ(t) ∼ 2
√
α0t and τ̇(t) ∼

√
α0

t
.

In particular,

α(t) ∼ 1

4t
, β(t) ∼ 1

2t
, b(t) ∼ b0

2
√
α0t

and c(t)→ c0 − x∞.

5. Evolution of certain quantities

In this section, we are going to give two propositions that describe the behavior of respectively
the first and second moment of the renormalized density R.

Proposition 5.1. We denote

I1 =

∫
R
Mdy and I2 =

∫
R
yRdy.

Then, there exists C ≥ 0 such that

I1(t) = e−tI1(0) and I2(t) ∼ C√
t

as t→∞.

Proof. First off, mimicking the calculus of the proof of Proposition 4.2, we have by integrating
equation (1.3b) over R and integration by parts that

d

dt

(∫
R
Mdy

)
= −

∫
R
Mdy,

so we easily get that
I1(t) = e−tI1(0).
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Now, by integration by parts, and using (2.1), we get the system of coupled differential equations:

İ1 =

∫
R
∂tM = −

∫
R

[
1

τ2
∂x

(
M2

R

)
+ ∂yR+ 2yR+M

]
= −I1 − 2I2,

and
İ2 =

∫
R
y∂tR = −

∫
R
y
∂xM

τ2
=

1

τ2
I1.

We denote Ĩ2 = τI2, so that
˙̃I2 = τ̇ I2 + τ İ2 = τ̇ I2 +

1

τ
I1,

and
¨̃I2 = τ̈ I2 + τ̇ İ2 −

τ̇

τ
I1 +

1

τ
İ1 = −(τ̇ I2 +

1

τ
I1) = − ˙̃I2,

hence
˙̃I2(t) = ˙̃I2(0)e−t

and
Ĩ2(t) = Ĩ2(0) + ˙̃I2(0)(e−t − 1).

We easily compute the initial conditions
˙̃I2(0) = I1(0) and Ĩ2(0) = I2(0),

so finally

I2(t) =
1

τ(t)

[
I2(0)− I1(0)(1− e−t)

]
∼ 1

τ(t)
[I2(0)− I1(0)]

when the initial condition are not well prepared in the sense that I2(0) 6= I1(0). Note that if
I2(0) = I1(0), we have

I2(t) =
e−t

τ(t)
I1(0).

�

We now give an useful lemma, which induces the boundedness of the second moment of the
density R uniformly with respect to time:

Lemma 5.2. There holds

(5.1) sup
t≥0

∫
R
R(t, y)(1 + y2 + | logR(t, y)|)dy <∞

and

(5.2)
∫ ∞
0

τ̇(t)

τ3(t)

∫
R

M2

R
dydt <∞.

Proof. Since E(t) ≥ 0, (5.2) follows from (2.2). We define

E+ :=
1

2τ2

∫
R

M2

R
dy +

∫
R>1

R logR+

∫
R
y2R,

such that Equation (2.2) gives

E+(t) +

∫ t

0

τ̇(t)

τ3(t)

∫
R

M2

R
dyds ≤ C +

∫
R<1

R log

(
1

R

)
.
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The last term is controlled by ∫
R<1

R log

(
1

R

)
≤ Cε

∫
R
R1−ε

for all ε > 0 arbitrary small. By an interpolation formula, we get that∫
R
R1−ε . ‖R‖1−

3ε
2

L1 ‖y2R‖ε/2L1

for all 0 < ε < 2
3 . This implies that for all t ≥ 0,

E+(t) +

∫ t

0

τ̇(t)

τ3(t)

∫
R

M2

R
dyds . 1 + Eε/2+ (t),

thus E+(t) ∈ L∞(R+), and equation (5.1) follows. �

With Assumption 2.4, we can then show a much better result on the second moment of the
density R than its boundedness, which is the convergence of this second moment towards the
second moment of the Gaussian Γ:

Proposition 5.3. We denote

J1 =

∫
R
y2(R− Γ)dy.

Then, under Assumption 2.4,
|J1(t)| → 0 as t→ +∞.

Proof. Denoting

J2 =

∫
R
yMdy,

we first write the system of differential equations satisfied by J1 and J2. By integration by parts
and using equation (2.1a), we compute

J̇1 =
d

dt

∫
R
y2∂t(R− Γ) = −

∫
R
y2
∂yM

τ2
=

2

τ2

∫
R
yM =

2

τ2
J2.

Still by integration by parts, and using equation (2.1b), we get that

J̇2 =

∫
R
y∂tM = −

∫
R
y

[
1

τ2
∂y

(
M2

R

)
+ ∂yR+ 2yR+M

]
=

1

τ2

∫
R

M2

R
+

∫
R
R−

∫
R

2y2R−
∫
R
yM.

Here we introduce the function Γ, writing∫
R
R− 2

∫
R
y2R =

∫
R

Γ− 2

∫
R
y2Γ−

∫
R

2y2(R− Γ),

and we can remark by an easy calculation that∫
R
y2Γ =

1

2

∫
R

Γ,

so that finally

J̇2 + J2 + 2J1 =
1

τ2

∫
R

M2

R
.

We denote J̃1 = τJ1, so that
˙̃J1 = τ̇J1 + τ J̇1 = τ̇J1 +

2

τ
J2,
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and
¨̃J1 = τ̈J1 + τ̇ J̇1 −

2τ̇

τ
J2 +

2

τ
J̇2 = − ˙̃J1 −

2

τ
J1 +

2

τ3

∫
R

M2

R
,

so we write
¨̃J1 + ˙̃J1 +

1

τ2
J̃1 =

2

τ3

∫
R

M2

R
.

Rather than trying to solve directly this non-autonomous differential equation of order 2, we will
work on the following approximate equation, for t ≥ 1,

(5.3) f̈ + ḟ +
1

4t
f =

2

τ
Ekin.

In fact, denoting w = J̃1 − f , we see that w satisfies the differential equation

ẅ + ẇ +
1

4t
w +

(
1

τ2
− 1

4t

)
J̃1 = 0,

with (
1

τ2
− 1

4t

)
=

(τ − 2
√
t)(τ + 2

√
t)

4tτ2
= O

(
1

t
3
2

)
as we actually know from [8] that τ(t) − 2

√
t is uniformly bounded. The homogeneous part of

equation (5.3) can be written under a Kummer’s type equation

tf̈ + tḟ +
1

4
f = 0

which has two fundamental independent solutions (see [1])

f1(t) = tM
(

5

4
, 2,−t

)
= te−tM

(
3

4
, 2, t

)
and

f2(t) = e−tU
(
−1

4
, 0, t

)
= te−tU

(
3

4
, 2, t

)
,

where M(a, b, z) and U(a, b, z) respectively denotes the Krummer’s and the Tricomi’s function,
which both stand as confluent hypergeometric functions and are independent solutions of the Kum-
mer’s equation

z
d2w

dz2
+ (b− z)dw

dz
− aw = 0.

In particular, from the asymptotic properties [1]

M(a, b, z) =
Γ(b)

Γ(a)
ezza−b

(
1 +O

(
|z|−1

))
and

U(a, b, z) = z−a
(
1 +O

(
|z|−1

))
,

we get the following asymptotic for our fundamental solutions

(5.4) f1(t) ∼ C

t
1
4

(
1 +O

(
1

t

))
and

(5.5) f2(t) ∼ e−tt 1
4

(
1 +O

(
1

t

))
.
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From the classical theory of linear differential equations, we know that every solution of equation
(5.3) can be written under the form

(5.6) f(t) = c1f1(t) + c2f2(t) + f0(t),

where c1 and c2 denote two real numbers, and f0 is a particular solution of (5.3). We easily compute
the Wronskian function

W (t) = f1(t)ḟ2(t)− ḟ1(t)f2(t)

by solving the differential equation

Ẇ = ḟ1ḟ2 + f1f̈2 − f̈1f2 − ḟ1ḟ2 = f1(−ḟ2 −
1

τ2
f2) + (ḟ1 +

1

τ2
f1)f2 = −W,

which leads to
W (t) = W0e

−t.

Then, by a variation of constant formula, we can find a particular solution of (5.3) under the form

f0(t) = f2(t)

∫ t

0

f1(s)

W (s)

Ekin(s)

τ(s)
ds− f1(t)

∫ t

0

f2(s)

W (s)

Ekin(s)

τ(s)
ds,

so that using Assumption 2.4 and the equivalents (5.4) and (5.5), we get that every solution of (5.3)
has the asymptotic:

|f(t)| = o(
√
t).

In fact, in the expression of (5.6),∣∣∣∣f1(t)

∫ t

0

esf2(s)
Ekin(s)

τ(s)
ds

∣∣∣∣ . 1

t
1
4

∫ t

1

s−
1
4 Ekin(s)ds = o(

√
t),

and every other terms is bounded as t→∞. The same result applies for the function w = J̃1 − f ,
so we can write that for all t ≥ t0 ≥ 0,

(5.7) J̃1(t) = f(t) + c1f1(t) + c2f2(t) + f2(t)

∫ t

t0

f1(s)

W (s)

(
1

4s
− 1

τ(s)2

)
J̃1(s)ds

− f1(t)

∫ t

t0

f2(s)

W (s)

(
1

4s
− 1

τ(s)2

)
J̃1(s)ds.

We already know from Lemma 5.2 that J̃1 is O(
√
t), and as we have just shown that f is o(

√
t), for

ε > 0 fixed, there exists t0 ≥ 0 such that, for all t ≥ t0,

|J̃1(t)| ≤ C
√
t,

∣∣∣∣ 1

4s
− 1

τ(s)2

∣∣∣∣ ≤ Ct− 3
2 and

1√
t
|f(t) + c1f1(t) + c2f2(t)| ≤ ε

2
.

Injecting these inequalities in the right-hand side of (5.7), we have
1√
t
|J̃1(t)| ≤ ε

2
+
C

t
1
4

+
C

t
3
4

≤ ε

for t large enough, so we finally get by a bootstrap argument that

|J̃1(t)| = o(
√
t).

Finally, recalling that J̃1 = τJ1 and that τ ∼ 2
√
t, we can conclude that

|J1| =
∣∣∣∣∫

R
y2(R− Γ)dy

∣∣∣∣ = o(1),

which ends the proof. �
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Remark 5.4. Note that in the Gaussian case, we can explicitly compute the kinetic energy

Ekin(t) =
1

τ2(t)

∫
R

M2(t, y)

R(t, y)
dy =

c(t)

τ(t)
‖ρ0‖L1(R) = O

(
1√
t

)
,

unless the initial data are well prepared in the sense that c0 = x∞ (which would actually improve
this rate). This feature gives an explicit rate of convergence of Ekin towards 0 that can be propagated
to the convergence of the second momentum of R by adapting the proof of Proposition 5.3, namely

|J1| =
∣∣∣∣∫

R
y2(R− Γ)dy

∣∣∣∣ = O

(
1√
t

)
.

6. Convergence

Proof of Proposition 2.6. We are first going to try to eliminate the momentum M of our target
equation. Differentiating equation (2.1b) with respect to y, and using equation (2.1a) in order to
express

∂t(∂y(RM)) = −∂(τ2∂tR),

we get that

−∂t(τ2∂tR)− τ2∂tR+ LR = − 1

τ2
∂y

(
M2

R

)
.

where we have defined the Fokker-Planck operator

L := ∂2y + 2∂y(y·).

Following [8], we introduce another scaling in time s defined by

(6.1) ∂s = τ2∂t,

and the notation
R̃(s(t), y) := R(t, y).

We calculate the quantities

∂t(τ
2∂tR) =

1

τ2
∂2s R̃ and τ2∂tR = ∂sR̃,

hence we obtain the following equation:

(6.2) − 1

τ2
∂2s R̃− ∂sR̃+ LR̃ = − 1

τ2
∂y

(
M2

R̃

)
.

Now we remark that equation (5.1) induces

(6.3) sup
s≥0

∫
R
R̃(s, y)(1 + |y|2 + | log R̃(s, y)|)dy <∞,

that equation (5.2) gives

(6.4)
∫ ∞
0

τ̇(t)

∫
R

M̃2

R̃
dydt <∞,

and that
τ(s) ∼ 2e2s and τ̇(s) ∼ e−2s,

so we can conclude like in [7]. Let a sequence sn →∞, take s ∈ [−1, 2], and denote

R̃n(s, y) := R̃(s+ sn, y).
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From (6.3) along with the de la Vallée-Poussin [9] and Dunford-Pettis theorems [10], we get the
following weak convergence (up to a subsequence, not relabeled for reader’s convenience), for all
p ∈ [1,∞),

R̃n ⇀
t→∞

R̃∞ in Lp(−1, 2;L1(R)).

We also get the weak convergence of the initial datum, up to another subsequence:

R̃n(0) ⇀
t→∞

R̃0,∞ in L1(R).

Thanks to (6.3), we also get that the family (R̃(sn, .))n is tight, so∫
R
R̃0,∞(y)dy =

∫
R

Γ(y)dy

and ∫
R
R̃0,∞(y)(1 + |y|2 + | log R̃0,∞(y)|)dy <∞.

Then, denoting τn(s) = τ(s+ sn), equation (6.4) implies that

− 1

τ2n
∂y

(
M2
n

R̃n

)
⇀
t→∞

0 in L1(−1, 2;W−2,1(R)).

In addition, in (6.2), all the other terms but two obviously go weakly to zero, which yields

(6.5) ∂sR̃∞ = LR̃∞

in D′((−1, 2) × R), with R̃∞(0, ; ) = R̃0,∞ ∈ L1(R). Thanks to the above bounds on R̃0,∞, it is
known (see [3]) that the solution R̃∞ to (6.5) is actually defined for all s ≥ 0 and satisfies

(6.6) ‖R̃∞ − Γ‖L1(R) −→
t→∞

0.

Going back to system (2.1), we need to show that R̃∞ is independent of s. In the s variable,
equation (2.1a) becomes

(6.7) ∂sR̃+ ∂yM̃ = 0,

and (6.4) implies that M̃ ∈ L2(−1, 2;L1(R)). With M̃n(s) := M̃(s+ sn), we have

∂yM̃n −→
n→∞

0 in L2(−1, 2;W−1,1(R)),

so

∂sR̃∞ = 0.

Combining this last equality with equation (6.6), we infer that R̃∞ = Γ. The limit being unique,
no extraction of a subsequence is needed, and we conclude that

R̃(s) ⇀
s→∞

Γ weakly in L1(R).
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7. Conclusion

We have shown that Gaussian functions play an important role in the study of the isothermal
compressible Euler equation, standing both as particular solutions of the system (1.3) and time-
asymptotic limit of solutions of this system. They also make the link between the isentropic and
the isothermal system, as limit of the Barenblatt solutions of (1.2a).

The next step of the analysis of the long-time behavior of this system would be to find an explicit
convergence rate of any L∞ weak solution of (1.3) towards the limit Gaussian profile, adapting the
work from [13], [15] and [11]. A good approach seems to be the use of the Csiszár-Kullback inequality
that gives a lower bound of the entropy by the L1-norm of ρ− ρ:

‖ρ− ρ‖2L1 ≤ 2‖ρ0‖L1

∫
R
ρ log

(
ρ

ρ

)
= 2‖ρ0‖L1

∫
R
R log

(
R

Γ

)
.

Unfortunately, no decreasing rate of the entropy function is currently known. This is still an
open question that appears in other fields of the analysis of PDEs, for instance the study of the
logarithmic Schrödinger equation [7]. Note that in [21], the author indeed has an upper bound for
the entropy, assuming ρ ≥ c > 0, which is true on the compact set Ω ⊂ R but obviously false on
the whole space R.
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