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Moving-Platform Pose Estimation for Cable-Driven Parallel Robots

Zane Zake1,2, François Chaumette3, Nicolò Pedemonte2, and Stéphane Caro1,4

Abstract— Cable-Driven Parallel Robots (CDPRs) are par-
allel robots with rigid links replaced by cables. As for most
parallel robots the determination of the analytical solutions
to the direct geometrico-static model (DGSM) is a difficult
task that is often not feasible online. However, the knowledge
of the moving-platform (MP) pose is necessary in order to
control the CDPR, e.g. with visual servoing. When the MP pose
measurement is not available, an estimation can be sufficient.
This paper compares three estimation methods: (a) control-
based; (b) image-based; and (c) model-based. The three meth-
ods are implemented experimentally with an open-loop velocity
controller and a closed-loop visual servoing controller. Overall,
very good results are shown with model-based and control-
based methods for both controllers. Finally, it is shown that
the visual servoing controller leads to a better accuracy of the
robot than the velocity controller.

I. INTRODUCTION

Parallel robots have several kinematic chains composed
of rigid links and lower-kinematic pairs connecting their
end-effector, also known as the moving-platform (MP), to
the base. In cable-driven parallel robots (CDPRs) the rigid
links are replaced by cables. The MP motion is achieved by
changing the cable lengths and that, in turn, is accomplished
by winding and unwinding each cable on a winch, which is
usually actuated by a rigidly fixed motor. CDPRs are char-
acterized by a large translational workspace, a large payload
capacity and a low mass in motion. These advantages lead
to applications, such as: (a) moving large objects over large
distances [1]; (b) moving objects with high velocity [2];
(c) providing feedback for a virtual reality application [3];
(d) assisting human rescue operations [4]. However, CDPRs
are often lacking accuracy. In order to improve it one can
enrich the mathematical models describing the geometric,
kinematic, elasto-static and elasto-dynamic behavior of such
robots [3]. In this case, CDPRs are controlled in their joint
space. It is also possible to use exteroceptive sensors such as
cameras to control CDPRs in their Cartesian space [5]–[9].
To improve the accuracy of a CDPR with respect to (wrt.) an
object, the camera is usually mounted on the MP [5, 8, 9]. In
this configuration the camera and the MP move simultane-
ously. When the camera approaches the object, it improves
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the accuracy that becomes excellent at the desired state if the
object occupies a large part of the image plane. However,
with the camera onboard the MP, the MP pose cannot be
observed and thus it must be estimated.

In fact, the problem of knowing the MP pose is not exclu-
sive to visual servoing with an onboard camera. Indeed, the
solution(s) to the direct geometrico-static model (DGSM),
whose aim is to determine the MP pose(s) and the corre-
sponding tensions given a set of cable lengths, is a challeng-
ing task. For most parallel robots many solutions can exist.
However, for CDPRs the complexity is even higher due to
one-directional force that the cable can exert on the MP. The
complexity of the problem has been highlighted by Carricato
et al. for suspended CDPRs with less than six cables in [10].
More precisely, for a 3-cable CDPR the solution of DGSM is
equivalent to finding the roots of a univariate polynomial of
degree 156 [11] and of degree 216 for a 4-cable CDPR [12].
Finally, in 2015 the analysis was extended to a generic
underconstrained CDPR with n cables [13].

The use of interval analysis in the DGSM has proven to
be one of the most efficient methods [14, 15]. The proposed
algorithm can be applied to both fully-constrained and sus-
pended CDPRs and it provides the complete solution of the
DGSM with all the MP poses that could be reached by the
given cable length set. Furthermore, interval analysis can also
be used for more complex CDPR models, for example with
the sagging cable model [16]. However, it should be noted
that finding all the solutions can have a high computational
cost. Once all solutions are available, it is then necessary
to determine the most probable one. Collard and Cardou
propose to find the MP pose with the lowest equilibrium [17].
Indeed, for suspended CDPRs the most likely MP pose is
the one where the MP center of mass is closest to the
ground, which corresponds to the lowest equilibrium pose.
The efficiency of the algorithm is proportional to the amount
of cables of the suspended CDPR. A common work-around
is to start at a known MP pose and use an iterative scheme
to track that solution [18].

It is of interest to evaluate MP pose estimation methods
that can be used online. For example, in visual servoing
a new control output is computed every time an image
becomes available from the camera, which is in general
30 to 60 times per second. Three different approaches are
compared in this paper: (a) control-based; (b) image-based;
(c) model-based. In the control-based approach the control
output is integrated in order to estimate the new MP pose.
This approach has been successfully used with different
visual servoing controllers on CDPRs [8, 9]. In the image-
based approach two images are used to measure the object



pose in the camera frame at two time instants. If at one
time instant the MP pose is known, then at another it can
be computed by using frame transformations, given that the
object of interest does not move between iterations. Finally,
in the model-based approach the lengths of the six cables
that are most in tension are used to compute the MP pose
in the vicinity of the previously known pose with the least
squares method [19]. With all the approaches the initial
MP pose needs to be known and the more accurate its
knowledge, the better the overall behavior of the system.
The three methods are implemented experimentally on a
small CDPR with an open-loop velocity controller and a
closed-loop visual servoing controller. Overall, we show that
control-based and model-based methods produce good MP
pose estimation on our CDPR. Model-based methods are
slightly more accurate when used with an open-loop control,
while the control-based method is the most accurate with
visual servoing. Finally, it is shown that the visual servoing
controller leads to a significantly better accuracy of the robot
than the velocity controller.

This paper is organized as follows. Notations used
throughout this paper are shown in Table I. Section II recalls
the vision-based control strategy for a CDPR. Section III is
dedicated to the introduction of different MP pose estimation
methods. The experimental validation is shown in Section IV.
Conclusions are drawn in Section V.

TABLE I
NOTATION USED THROUGHOUT THE PAPER

• i = 1, . . . ,m denotes the ith cable, where m = 8.
• Boldface lowercase characters are vectors; boldface uppercase char-

acters are matrices.
• Fb, Fp, Fc, Fo denote the base, MP, camera and object frames

respectively (resp.).

• iTj =

[
iRj

itj

0 1

]
is the homogeneous transformation matrix from

Fi to Fj .
• Â and ê are the estimations of A and e, resp.
• [e]× denotes the cross-product matrix of vector e.
• ia is the vector a expressed in Fi

• Ai and Bi are the exit and the anchor points of the ith cable, resp.
• bai and pbi are the vectors pointing from origin of Fb and Fp to Ai

and Bi, resp.

II. VISUAL SERVOING OF A CDPR
The schematic of a spatial CDPR with an onboard camera

and a target object in the workspace can be seen in Fig. 1.
In our case, the six degrees of freedom (DoF) of the MP
are constrained with eight cables. The onboard camera is
fixed so that it can observe the object in the workspace. The
corresponding visual servoing (VS) control scheme is shown
in Fig. 2.

At every iteration an image is received from the onboard
camera and is processed by a computer vision algorithm,
which then outputs the current value of a feature vector s.
The contents of s depend on the chosen VS approach.
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Fig. 1. Schematic of a spatial CDPR with the relevant frames
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Fig. 2. Control scheme for visual servoing of a CDPR

For example, it can simply be the target pose expressed
in the camera frame Fc when a Pose-Based Visual Servo-
ing (PBVS) is implemented [20].

An error e is computed by comparing the feature vec-
tor s and its desired value s∗. To decrease the error e, an
exponential decoupled form is selected

ė = −λe (1)

where λ is a positive gain. The camera velocity is then
expressed as:

cvc = −λ L̂†s e (2)

where L̂†s is the Moore-Penrose pseudo-inverse of the es-
timation of the interaction matrix Ls, defined such that
ṡ = Ls

cvc, and thus it depends on the chosen VS approach.
The camera velocity is then transformed into the MP twist:

pvp = Âd
cvc (3)

where Âd is the estimation of the adjoint matrix Ad [21]:

Ad =

[
pRc [ptc]×

pRc

03
pRc

]
(4)

The cable velocity vector l̇ is related to the MP twist pvp:

l̇ = Â pvp (5)

where A is the Forward Jacobian matrix and it takes the
following form when expressed in the MP frame Fp [19]:

A =


pu>1 (pb1 × pu1)T

...
...

pu>m (pbm × pum)T

 (6)

where pui is the unit vector of li, pointing from the exit
point Ai to the anchor point Bi of the ith cable, and it is
expressed as follows:

pui =
li∥∥li∥∥2

=
pbi − pai∥∥li∥∥2

=
pbi − pRb

bai − ptb∥∥li∥∥2

(7)



As can be seen, the MP pose is required to compute pui.
The output of the control scheme, that is, the cable velocity

vector l̇, is expressed by injecting (2) and (3) into (5):

l̇ = −λ Â Âd L̂
†
s e (8)

Thus, the computation of the control output is not possible
without a measurement or an estimation of the MP pose.

III. MOVING-PLATFORM POSE ESTIMATION

As recalled in the introduction and described in [8, 9],
it is indeed possible to coarsely estimate the MP pose by
successive integration of the control output. Here, we propose
to compare three different MP pose estimation methods,
namely: (i) control-based; (ii) image-based; (iii) model-
based. In all three cases it is assumed that the initial MP
pose bpp0 at t = 0 s is known.

A. Control-Based Estimation

Assuming that the CDPR is controlled in velocity and that
it is able to produce the velocity prescribed by the controller,
this control output can be used for the MP pose estimation.
More precisely, at every iteration the homogeneous transfor-
mation matrix bTp can be updated as follows:

bTp(t) = bTp(t−∆t) e(pvp,∆t) (9)

where e(pvp,∆t) is the exponential map [22] given a velocity
pvp and a time interval ∆t. Note that the MP velocity pvp
is one of the control outputs, as can be seen from Fig. 2.

B. Image-Based Estimation

Assuming that the transformation cTo between the camera
and object frames can be estimated, like in PBVS, it is
possible to express the object pose in the base frame Fb as:

bTo = bTp
pTc

cTo (10)

The transformation matrices present in (10) and the cor-
responding frames are shown in Fig. 1. Since the camera is
fixed on the MP, then pTc does not change with time.

At two different iterations (10) can be expressed as:{
bTo(t0) = bTp(t0) pTc

cTo(t0)
bTo(t) = bTp(t)

pTc
cTo(t)

(11)

If the object is motionless, then bTo does not change
with time, thus bTo(t0) = bTo(t) and then bTp(t) can be
expressed from (11) as:

bTp(t) = bTp(t0) pTc
cTo(t0) cTo

−1(t) pTc
−1 (12)

Unlike control integration, this approach does not require
the CDPR to achieve the control velocity. Indeed, the cal-
culation is done without taking into account the velocity
and time spent to achieve the current pose. Instead two
separate object pose measurements are used. For that, we
can use two successive measurements so that t0 = t −∆t.
In fact, the current measurement can be compared to any
previous measurement, for example the very first one. For
the results presented in Section IV, we use two successive
measurements.

C. Model-Based Estimation

The Direct Geometric Model (DGM) expresses the MP
pose as a function of cable lengths. For a spatial CDPR
with 8 cables this is a very complex problem, which often
cannot be solved rapidly enough to be used in control. As
already said in the introduction, special approaches such as
interval analysis have been used in [14]–[16] to obtain all
the solutions to the DGSM, however this usually comes at
a high computational cost. Furthermore, it is then necessary
to determine which is the correct solution.

Using cable tension measurements, it is possible to esti-
mate the MP pose given the previous pose and cable lengths.
Several approaches are possible depending on the selected
CDPR model complexity.

1) Simple CDPR model: In the simplest CDPR model the
cables are assumed to be massless, non-elastic and always
straight. In such a case, at any given time at most six cables
can be in tension [23]. Thus, the DGM can be simplified to
only take into account the six cables that are most in tension.
Such a model is similar to the Gough-Stewart platform,
whose DGM can have up to 40 solutions. The computation
of all of the solutions can be a lengthy process, which is
not necessary in this case. Indeed, we are only interested in
the solution that is in the vicinity of the last known pose. In
this case, it is possible to use the least squares optimization
method to find the MP pose [19]. The estimation procedure
is shown in Algorithm 1.

Algorithm 1: MP pose estimation from cable lengths
1: Initialization
2: Define the CDPR model with the Cartesian coordi-

nates of Ai and Bi expressed in Fb and Fp, resp.
3: Define the initial MP pose and record it in bppo
4: End of Initialization
5: Pose Estimation
6: while True do
7: Get measurements: cable tensions τ and lengths l
8: Find the six largest cable tensions
9: Compose the residual equations for these six cables:

fi = ||bbi − bai||2 − li
10: Compose the equation to normalize the quaternions:

f7 = q2
1 + q2

2 + q2
3 + q2

4 − 1
11: Find bpp with the least squares method, giving bppo

as the initial guess and f1 to f7 as the system to be
minimized

12: Update bppo = bpp for next iteration
13: end while
14: End of Pose Estimation

Note that the representation of the MP pose is important,
because it affects the amount of unknowns. Here, the pose is
expressed as bpp =

[
x, y, z, q1, q2, q3, q4

]
, where

[
x, y, z

]
is the translational part and

[
q1, q2, q3, q4

]
is the rotational

part expressed as quaternions. Note that, when using quater-
nions, their normalizing equation q2

1 +q2
2 +q2

3 +q2
4 = 1 must

also be taken into account. Thus, there are 7 unknowns and



7 equations, which makes the system solvable.
The least squares algorithm to compute the MP pose

is fast (for example the implementation in Python using
scipy.least squares takes about 0.009 s). Furthermore, using
only the length of the cables that are most in tension makes
the algorithm robust to cable slackness, because the slack
cables are ignored. However, it is a model-based estimation
method, meaning that any error in the model will lead to MP
pose estimation errors.

2) Elastic cables: Cable elasticity affects the final MP
pose as well as the tensions that are obtained in the cables.
Indeed, only with elastic cables it is possible to have all eight
of them in tension [23].

When considering elasticity, the ith cable tension at time t
can be expressed as:

τi(t) = k(t) δli + τi(0) (13)

where:
• δli is the elongation of the ith cable;
• τi(0) is the ith cable tension with the MP positioned on

the ground;
• k(t) = ES/li(t) is the cable stiffness;
• E is the Young modulus of the ith cable;
• S is the cross-section of the ith cable;
• li(t) is the length of the ith cable at time t.
Assuming that the tension measurements are available,

cable elongation δli can be expressed from (13) as:

δli =

(
τi(t)− τi(0)

)
li(t)

ES
(14)

Thus, the ith cable length li obtained from the ith motor
encoder can be corrected to l̂i = li + δli. The estimation of
the MP pose is done as described in Algorithm 1, but in the
equation on line 9 the cable length li is substituted by l̂i.

3) Pulley kinematics: For pulleys of non-negligible size,
the cable exit point has to be defined as the tangent point
between the cable and the pulley sheave. The geometric
model of a pulley is shown in Fig. 3. Here, the frame Fi
of the ith pulley has its origin in point Ai and the axes
are xi, yi and zi. Axis zi is vertical, xi goes through Ai
and the center of the pulley Pi, and yi = zi × xi. The ith
cable and the corresponding pulley sheave lie in the plane
spanned by vectors xi and zi.

zi

xiAi

A
′
i

Bi

Pi

li

Li

ai

Fb

αi
βi

γi

rp

lpi

zb

xbyb

Ai

A
′
i

xi
yi

ϕi

xb

yb

Fig. 3. Pulley geometry

The actual ith cable exit point is the tangent point to its
pulley A

′

i. The vector pointing from Pi to A
′

i is named ci

while the vector pointing from Pi to Bi is named mi. The
exit point location on the pulley depends on the MP pose.
Li is the length of the ith cable between points A

′

i and Bi.
lpi denotes the length of the cable wrapped on the pulley
between points Ai and A

′

i. The full cable length from Ai to
Bi that will be used in Algorithm 1 on line 9 becomes [24]:

lfi = Li + lpi (15)

with
lpi = rp

(
π − αi

)
(16)

and the angle αi is computed as:

αi = −βi + γi (17)

where:
βi = −atan2(Li, rp) (18)

and

γi = arcsin

(
baiz − bbiz
||mi||2

)
(19)

Note that here baiz and bbiz are the third component of
vectors bai and bbi, respectively.

The angle ϕi denotes the rotation of pulley plane about
the axis zi. It can be computed as:

ϕi = atan2(lyi, lxi) (20)

where lxi and lyi are the components of li along the x and
y axes of the base frame Fb. The vector bni points from the
origin of the base frame Fb to the pulley center-point Pi and
is computed as:

bni = bai + rp
bRi xb = bai + rp

bxi (21)

with

bRi = Rzi(ϕi) =

cos(ϕi) −sin(ϕi) 0
sin(ϕi) cos(ϕi) 0

0 0 1

 (22)

and rp is the radius of the pulley sheave.
Vector mi is computed as:

mi = bbi − bni (23)

The ith cable length Li can be computed by:

Li =
√
mim>i − r2

p (24)

4) Elastic cables and pulley kinematics: Finally, we can
also combine pulley kinematics and cable elasticity in the
MP pose estimation. The full cable length from Ai to Bi
that will be used in Algorithm 1 on line 9 becomes:

l̂fi = L̂i + lpi = Li + δLi + lpi (25)

where Li, lpi and δLi are computed by (24), (16), and (14)
resp.
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Fig. 4. ACROBOT: a CDPR prototype located at IRT Jules Verne, Nantes

IV. EXPERIMENTAL VALIDATION

A. Experimental setup

The CDPR used for experimental validation is shown in
Fig. 4. It is a six-DoF suspended CDPR with eight cables,
named ACROBOT. Its frame is a 1.2 m× 1.2 m× 1.2 m
cube. The MP size is 0.18 m× 0.17 m× 0.07 m and its
mass is 3.5 kg. The cables are Dyneema SK78 ⌀2 mm with
E = 111 GPa [25]. Tension sensors are mounted on the
cables close to their anchor points Bi. They are calibrated
for a range from −25 N to 75 N, with an accuracy of 0.24 N
and repeatability of 0.01 N.

Ground-truth measurements are done by a Creaform
C-Track. It is a dynamic tracking system with accuracy
of 0.1 mm and repeatability of 0.02 mm. For the image-based
estimation method we use an AprilTag [26] as an object. It
is a fiducial marker that is recognized and localized by the
ViSP library [27], thus a measurement of cTo is available at
each iteration.

The estimation methods are defined as follows:

• Est. 1 is the control-based method;
• Est. 2 is the image-based method;
• Est. 3 is the model-based method with the simple model;
• Est. 4 is the model-based method with cable elasticity;
• Est. 5 is the model-based method with pulley geometry;
• Est. 6 is the model-based method with cable elasticity

and pulley geometry.

B. Results with open-loop trajectory

A simple open-loop controller is implemented to generate
a straight-line trajectory between the following points:

• bpp0 = [0.112 m, −0.032 m, 0.301 m, −12◦, −10◦, 0◦]
• bpp1 = [0.284 m, −0.197 m, 0.08 m, 0◦, 0◦, 0◦]
• bpp2 = [0.284 m, −0.197 m, 0.25 m, 0◦, 0◦, 0◦]

Initially the MP is at bpp0 and a trajectory is generated
to reach bpp1; then height along z-axis is increased to reach
bpp2; and finally the MP returns to bpp0.

The trajectory between two poses, named ps and pf , is
generated using a fifth-order polynomial [28]:

s = bt5 + ct4 + dt3 + et2 + ft+ g (26)

while considering the following conditions at the start and
at the end of the trajectory: s(ts) = ṡ(ts) = s̈(ts) = 0,
s(tf ) = 1, and ṡ(tf ) = s̈(tf ) = 0.

The MP position btp and translational velocity bvp as a
function of time are expressed as:{

btp(t) = ts + (tf − ts) s(t) (27a)
bvp(t) = (tf − ts) ṡ(t) (27b)

where ts and tf are the translational parts of ps and pf ,
resp.

As for the rotation, we start from psRpf = bRps
> bRpf ,

where bRps and bRpf are the rotation matrices for poses ps
and pf , resp. When changed to axis-angle representation,
psRpf is noted as θpup. Here, the unit vector u is constant
and the angle θp is a function of time θp(t) = θps(t), which
corresponds to a rotation matrix psRpcurr and allows us to
compute the current rotation matrix of the MP:

bRpcurr
= bRps

psRpcurr
(28)

Finally, the angular velocity bωp is computed as:
bωp(t) = θpupṡ(t) (29)

Then the cable velocities are computed as:

l̇ = Â bvp(t) (30)

where bvp(t) =
[
bv>p (t) bω>p (t)

]>
is given from (27b)

and (29). Note that in (30), the Jacobian matrix Â uses
the MP pose computed from (27a) and (28). The control
frequency is 25 Hz.

The experimental results are shown in Figs. 5 and 6 (please
also see the attached video). The task was executed once
using controller (30), during which all data were recorded
to be able to compare the different estimation methods
afterwards. The planned MP trajectory is shown in cyan in
Fig. 5a. The MP trajectory was measured by C-Track and
it is shown in blue in Fig. 5a. Note that while the initial
pose bpp0 is indeed where the experiment starts, however
the poses bpp1 and bpp2 are not reached accurately. At the
end of the first part of the trajectory the MP passes bpp1 and
comes to a stop right afterwards. Then only the z component
is changed, thus bpp2 is also not achieved accurately. Finally,
the MP accurately returns to the initial pose bpp0. Indeed,
as can be seen in Figs. 6a and 6d the initial and final
images received from the camera are identical. Thus, it can
be concluded that the CDPR executes the control velocity l̇
precisely. The positioning error in bpp1 and bpp2 can also
be seen in Fig. 6. Ideally with the MP in bpp1 the AprilTag
should be centered in the image and with no orientation about
z axis. However, as can be seen in Fig. 6b the AprilTag is not
centered and it is rotated. Similarly, in Fig. 6c the AprilTag is
also rotated. These positioning errors come from the fact that
the analytical form of the Jacobian matrix A used in (30) is
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Fig. 5. Experimental results: (a) MP trajectory as estimated by the different
estimation methods, as planned by the open-loop controller and as measured
by C-Track; (b) deviation of the MP pose estimation from the measurement
by C-Track

based on a too simplified CDPR model not corresponding to
the real robot, due to calibration errors and approximations
in the model, e.g., errors in the cable anchor and exit point
coordinates, uncertainties in cable elongation, etc.

After executing the task, the recorded values were supplied
to all MP pose estimation methods. The resulting trajectories
are shown in Fig. 5 as Est. 1 to Est. 6. Surprisingly, the
estimated trajectory with control-based and model-based
estimators corresponds to the planned one (but not to the
achieved one). For instance, at the end of the first part of the
trajectory, the estimated MP pose corresponds to bpp1, even
though the MP is actually shifted by approximately 1 cm.
Similarly, at the end of the second part of the trajectory the
estimated MP pose corresponds to bpp2. This means that all
sampling effects are fully negligible in implementing (30),
leading the robot to achieve the computed velocity bvp(t)

(a) (b)

(c) (d)

Fig. 6. Images from the onboard camera: (a) at t = 0 s at bpp0; (b) at
t = 10 s when bpp1 is supposed to be reached; (c) at t = 15 s when bpp2
is supposed to be reached; (d) at t = 25 s when bpp0 is reached again

and reaching the desired cable length values by successive
integration of l̇. Finally, as the model-based methods rely
on a model, it is not surprising its results deviate from the
ground-truth. Similarly, as the control-based method is not
based on any measurement, it is not surprising its results also
deviate from the ground-truth.

Fig. 5b allows us to evaluate the accuracy of estimation
with each method. Here, the deviation of the estimation from
the actual MP pose measurement is shown as the translational
and the rotational distance. Note that the rotational distance
is the angle θ from the axis-angle expression of the rotation
matrix between the measured and the estimated MP poses.
The vertical dotted lines at t = 10 s and t = 15 s correspond
to the end of the first and second parts of the trajectory,
when bpp1 and bpp2 are supposed to be reached.

Let us begin with Est. 2, because it is the only one
producing a significantly different result. Est. 2 corresponds
to the image-based MP pose estimation method. It is clear
that the AprilTag used in this experiment was too small to
produce a good measurement. Indeed, note the good accuracy
of the measurement between t = 8 s and t = 12 s, when
the MP is the closest to the AprilTag. On the other hand,
as the AprilTag becomes significantly smaller in the image,
the estimation of the MP pose becomes highly noisy. Thus,
with the image-based method the accuracy of the MP pose
estimation depends on the distance between the camera and
the object and thus its size in the image.

The control-based estimation Est. 1 is shown in green.
The translational deviation reaches 1.4 cm at t = 12.4 s and
the task is finished with a deviation of only 1.3 mm. The
estimation of the MP orientation does not surpass 1.6◦ error
and the task is finished with a 0.55◦ error. The result with
the model-based methods is almost the same. More precisely,
the largest translational deviation is 1.21 cm at t = 11.6 s
and at the end of the task reduces to just 1 mm, because the



MP returns to its initial pose bpp0. The largest rotational
distance is 1.6◦ at t = 14.3 s and it reduces to 0.55◦ by the
end of the task. Note that the results with all four model-
based approaches are almost identical. Indeed, for a small
CDPR with Dyneema cables that are almost inelastic and
very small pulleys of 9 mm in diameter, the output of the
four model-based estimation methods is almost the same.

C. Results with PBVS

The second part of the experiments consists of repeating
the trajectory from bpp0 to bpp1 with a PBVS controller
implemented at 25 Hz. The corresponding AprilTag poses in
the camera frame are the following:
• cpo0 =[−0.123 m;−0.101 m; 0.338 m; 168◦;−8◦;−179◦]
• cpo1 =[0 m; 0 m; 0.09 m; 180◦; 0◦; 180◦]

and the feature vector s is defined as s = (cto, θu), where θu
is the axis angle representation of the rotation matrix c∗Rc

between the desired and the current camera frames. In this
case, we use each estimation method within the control
scheme shown in Fig. 2, thus the experiment needs to be
done separately for each of them. The results are shown
in Fig. 7. Note that the trajectory of the MP in Fig. 7 is
no longer a straight line due to the choice of our feature
vector s. Indeed, it ensures a straight line trajectory of the
target object in the image, but does not control the camera,
nor the MP trajectory.

In Fig. 7a trajectories generated when using control-
based and model-based MP pose estimation appear identical.
Indeed, only the pink curve, corresponding to image-based
estimation Est. 2, is slightly deviated. As can be seen in
Fig. 7b, the image-based estimation still provides the worst
results with a rather noisy MP pose estimation. The quality
of the model-based estimations is very similar to the pre-
vious experiment. The deviation does not surpass 1.29 cm
and 2◦ for Est. 3 and Est. 4. The result is slightly worse for
the model-based methods that take pulley kinematics into
account (Est. 5 and Est. 6), where the translational deviation
reaches 1.56 cm. Unlike with the open-loop controller, here
there are differences between the control-based and the
model-based estimation accuracy. Indeed, when used with
a closed-loop controller the control-based method provides
the best MP pose estimation accuracy, not surpassing 0.9 cm
and 2◦. As we now use a closed-loop controller, the con-
troller adapts its output to all perturbations, including the
misestimation of the MP pose. For this reason, the control-
based MP pose estimation gives better results. Thus, the
choice of the MP pose estimation method depends on the
choice of the controller.

D. Accuracy and Repeatability

Finally, as two different controllers were used to arrive
at bpp1 from bpp0, it is possible to evaluate the accuracy
achieved by these controllers. The bar-graph is shown in
Fig. 8. To evaluate repeatability the experiment with the
open-loop velocity controller was repeated 10 times. Simi-
larly, the experiment with the PBVS controller was repeated
30 times. More precisely, five repetitions were done using
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Fig. 7. Experimental results with PBVS: (a) MP trajectory measured by
C-Track; (b) deviation of the MP pose estimation from the measurement by
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Fig. 8. MP pose accuracy at bpp1

each of the six MP pose estimation methods in the PBVS
control loop. When using PBVS the translational accuracy is
five times better, while the rotational accuracy is four times
better than with the open-loop velocity controller. Indeed, as
the AprilTag is perceived, the task is only finished when the
current object pose converges to the desired one and thus a
high accuracy can be achieved.



V. CONCLUSIONS

The knowledge of the MP pose is necessary to be able to
control a CDPR. Three different MP pose estimation methods
were compared in this paper. The image-based method shows
the noisiest results with both controllers. Here, accuracy of
MP pose estimation depends on the distance between the
camera and the target object. The smaller the distance, the
better the accuracy. Control-based and model-based methods
show very good results with both controllers. Model-based
methods are slightly superior when used with an open-loop
controller. Note that for this CDPR there is no difference
as to which model is used in the model-based method. On
the other hand, the control-based method produced a better
result for the closed-loop controller. It is also the simplest
to implement. Thus, the choice of the MP pose estimation
method depends on the choice of the controller.

Note that the CDPR used in the experimental validation
is almost perfect, that is, its controller is able to achieve
the computed velocities. Thus it would be of interest to
extend this study by implementing the same controllers and
estimation methods on larger CDPRs with a high payload
that are not able to ensure this nice property.

Finally, the accuracy of the controllers was compared. The
accuracy is four to five times better with PBVS than with
the velocity controller.
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“Modeling and vision-based control of large-dimension cable-driven
parallel robots using a multiple-camera setup,” Mechatronics, vol. 61,
pp. 20–36, 2019.

[7] R. Chellal, L. Cuvillon, and E. Laroche, “A Kinematic Vision-
Based Position Control of a 6-DoF Cable-Driven Parallel Robot,” in
International Conference on Cable-Driven Parallel Robots, pp. 213–
225, 2015.

[8] Z. Zake, F. Chaumette, N. Pedemonte, and S. Caro, “Vision-based
control and stability analysis of a cable-driven parallel robot,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 1029–1036, 2019.

[9] Z. Zake, F. Chaumette, N. Pedemonte, and S. Caro, “Robust 21/2d
visual servoing of a cable-driven parallel robot thanks to trajectory
tracking,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 660–667, 2020.

[10] M. Carricato and J. P. Merlet, “Stability analysis of underconstrained
cable-driven parallel robots,” IEEE Transactions on Robotics, vol. 29,
no. 1, pp. 288–296, 2013.

[11] M. Carricato, “Direct Geometrico-Static Problem of Underconstrained
Cable-Driven Parallel Robots with Three Cables,” Mechanisms and
Machine Science, vol. 5, no. 3, pp. 269–285, 2013.

[12] M. Carricato and G. Abbasnejad, “Direct Geometrico-Static Analysis
of Under-Constrained Cable-Driven Parallel Robots with 4 Cables,” in
International Conference on Cable-Driven Parallel Robots, pp. 269–
285, 2013.

[13] G. Abbasnejad and M. Carricato, “Direct Geometrico-static Problem
of Underconstrained Cable-Driven Parallel Robots With n Cables,”
IEEE Transactions on Robotics, vol. 31, no. 2, pp. 468–478, 2015.

[14] A. Berti, “Kinematics and statics of cable-driven parallel robots by
interval-analysis-based methods,” PhD thesis, Université de Nice-
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