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ABSTRACT
The specialization of the configuration space of a software system
has been considered for targeting specific configuration profiles, us-
ages, deployment scenarios, or hardware settings. The challenge is
to find constraints among options’ values that only retain configura-
tions meeting a performance objective. Since the exponential nature
of configurable systems makes a manual specialization unpractical,
several approaches have considered its automation using machine
learning, i.e., measuring a sample of configurations and then learn-
ing what options’ values should be constrained. Even focusing
on learning techniques based on decision trees for their built-in
explainability, there is still a wide range of possible approaches
that need to be evaluated, i.e., how accurate is the specialization
with regards to sampling size, performance thresholds, and kinds of
configurable systems. In this paper, we compare six learning tech-
niques: three variants of decision trees (including a novel algorithm)
with and without the use of model-based feature selection. We first
perform a study on 8 configurable systems considered in previous
related works and show that the accuracy reaches more than 90%
and that feature selection can improve the results in the majority of
cases. We then perform a study on the Linux kernel and show that
these techniques performs as well as on the other systems. Overall,
our results show that there is no one-size-fits-all learning variant
(though high accuracy can be achieved): we present guidelines and
discuss tradeoffs.

CCS CONCEPTS
• Software and its engineering → Software product lines; •
Computing methodologies → Classification and regression
trees.

1 INTRODUCTION
More andmore software systems are configurable through command-
line parameters, configuration files, or compile-time options. Users
can set many configuration options’ values to fit their functional
requirements and performance objectives. For instance, users can
change parameters’ values of the x264 encoder to obtain a video
in a fast way; users can configure Linux to obtain a kernel with a
binary size below a certain threshold (e.g., less than 20Mb).

The configuration of a configurable system is an error-prone
and time-consuming task. There is a combinatorial explosion of

possible configurations and the effects of options on performance is
hard to document and formalize. Numerous works have shown that
quantifying the performance influence of each individual option is
not meaningful in most cases [3]. That is, the performance influence
of 𝑛 options, all jointly activated in a configuration, is not easily
deducible from the performance influence of each individual option.
Capturing the complex interactions among options and their effects
on performance is mandatory.

An approach for supporting users in the configuration process is
to specialize the configuration space of a software system. Given a
performance objective, the specialization builds presets or profiles
through constraints over options’ values. Constraints can be on
individual options: some specific values are already preset and
users can focus on the remaining options. Constraints can also be
among several options to only keep combinations of options’ values
(configurations) that have acceptable performance. For instance,
the encoder x264 can be specialized to encode videos in a fast way:
some options values are preset while the remaining options can
still be configured for dealing with hardware constraints, output
quality, or functional concerns.

Specializing the configuration space of a software system has
a long tradition since the seminal paper of Czarnecki et al. [12].
Specialization has been considered for targeting specific profiles,
usages, deployment scenarios, or hardware settings [2, 4, 11, 20, 41].
The idea is to retain only a subset of configurations that meet a
performance threshold (e.g., execution time below one second) and
thus discard the rest. Specialization should not be confused with
configuration optimization (tuning) where the goal is to find a
unique and optimal configuration. Through specialization, users
still have flexibility (variability) to configure their systems. The
benefit is that some options’ value are already preset for reaching a
performance threshold. A unique challenge is to identify configura-
tions that should be kept (or, equivalently, to discard non-acceptable
configurations), which boils down to specify constraints among
options’ values.

On the one hand, measuring all configurations is infeasible in
practice owing to the combinatorial explosion of possible configu-
rations. On the other hand, the manual specification of constraints
is an error-prone, time-consuming, and hardly repeatable task for
any performance objective. It is however possible to automated
the specialization process using machine learning, i.e., measuring a
sample of configurations and then learning what options’ values
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should be constrained. Even focusing on learning techniques based
on decision trees for their built-in explainability, there is still a
wide range of possible approaches that need to be evaluated, i.e.,
how accurate is the specialization with regards to sampling size,
performance thresholds, and kinds of configurable systems.

In this paper, we propose six learning techniques based on re-
gression, classification, feature selection and a combination thereof.
We first perform a study on 8 configurable systems with dozens of
options considered in the related work. We then perform a study on
a much larger configurable systems – the Linux kernel considering
9K+ options. In summary, our contributions are as follows:

• We propose a new way to use decision trees, called special-
ized regression and tailored toward performance specializa-
tion;

• We design and develop six performance specialization learn-
ing strategies with three variants of Decision Trees: regres-
sion, classification, and specialized regression;

• We perform an empirical study to compare the accuracy re-
sults of these techniques. Through our experimental results,
we find that Decision Tree is a very accurate algorithm for
performance specialization. However, they are sensitive to
threshold variation. Feature selection is a reliable way to
produce more accurate results; however training time was
not significant.

• We perform a case study with the Linux kernel and we show
very similar results to the 8 considered baseline configurable
systems, except for training time which for Linux presented
significant improvements with the use of feature selection.

• We gather stakeholders on how to use the different strategies
for automated performance specialization. We discuss trade-
offs of training a model on the fly, and using default strategy
and feature selection. We also point out future directions.

• We have made all the artifacts from our experiments publicly
available at https://github.com/HugoJPMartin/SPLC2021.

2 PERFORMANCE SPECIALIZATION
In a configurable system, not all combinations of options’ values
are possible (e.g., some options are mutually exclusive and some
thresholds are required). Variability models are used to precisely de-
fine the space of valid (functional) configurations, typically through
the specification of logical constraints among options. Assuming
that all supposedly valid configurations of a variability model lead
to acceptable products can be misleading since constraints may not
be specified due to missing knowledge beforehand when the vari-
ability model is built. Moreover, nowadays systems are developed
by integrating products, which belong to multiple systems, and
communicate and interact with each other under various config-
urations [37]. In this scenario, configurations may fail to interact
leading to unacceptable performances, e.g. dependencies on ex-
ternal libraries are not considered. The manual identification of
constraints is a difficult task and it is easy to forget or wrongly
specify a constraint leading to configurations that do not meet a
particular requirement [42]. However, it is most of the time imprac-
tical to exhaustively test and measure system performance under all
possible configurations. To overcome this issue, we can specialize a

variability model to deliver the right functionality and performance
assisting stakeholders in making informed decisions.

Specialization is the process of limiting the variability space to a
subset of configurations that meet a specific threshold. Thresholds
are logical decision rules over non-functional property values with
regards to system limitations, such as binary size < 50Mb. They
are constraints defined as equality (i.e., =) or inequalities (i.e., ≤; <;
>; ≥) [30]. The specialization process is a transformation process
that takes a variability space as input and yields another variability
space as output, such that the set of configurations denoted by the
latter space is a subset of the configurations denoted by the former
space (see Figure 1) [11].

The specialization of a variability space involves the addition of a
set of new constraints (rules) to options’ values. Such rules describe
how performance influences the system options’ interactions, i.e.
the variability space is restricted to only configurations satisfying
the given performance threshold. The restricted subset of configu-
rations represents the space of specialization. As an example, the
Linux can be specialized to obtain a kernel binary size below 50Mb
(see Figure 1). To meet the threshold, a set of options values (in
gray) are preset to true while others to false, and the remaining
options (in black) can still be configured. This is helpful to avoid
large kernels that take too much time to compile. Notice that we
consider a threshold, thus contrary to optimization approaches that
aim at satisfying a specific optimization objective (e.g. minimize
binary size), we aim at specializing the configuration space to a
subset of acceptable configurations. Although optimization is not
our aim here, the specialization may highly assist the optimization
process later when deriving a suited configuration, e.g. to support
the variability at runtime.

How do we find a set of options that affect considerably perfor-
mance? Options can be captured by running the system and mea-
suring performance of each configuration. However, as the config-
uration space is typically very large and measuring each valid con-
figuration is often infeasible, the use of learning-based techniques
are promising for specialization. Learning techniques automatically
obtains rules without exploring all possible configurations. They
are used under the condition a sample of configurations’ measure-
ments is available. The idea is to learn out of a (small) sample of
configurations’ observations and hopefully generalize to the whole
configuration space.

The learning process consists of four main stages: (1) definition
of a performance threshold, (2) sampling, (3) measuring, and (4)
learning (see Figure 1). The fifth stage (validation) is interesting
for assessing the prediction models and their accuracy – a central
research question of this paper. First, the process starts by defining a
threshold and selecting a sample set of valid configurations. Second,
building and measuring the sample of configurations. Third, these
measurements and the performance threshold are used as input
to accurately learn a prediction model. Finally, the validation step
computes the accuracy of the prediction model.

Prediction models support stakeholders understanding the char-
acteristics of the variability space, i.e. the effects of some options
and how options interact. Interpretability for specialization is very
important both for validating the insights of the learning and for
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Figure 1: Configuration of a specialized Linux kernel. Given a performance threshold (binary size < 50Mb), the specialization
process identifies constraints among options that preclude some (combinations of) values (in gray); users still have some
flexibility to configure other options (in black).

encoding the knowledge into a variability model. As an exam-
ple, consider learning techniques based on decision trees. Each
branch of a tree represents a set of rules (decisions) that satisfy
a threshold leaf. Thus, as a result, rules are mined by building
the conjunction of a path to reach a threshold leaf. In the ex-
ample of Figure 1, the algorithm learns that by having the op-
tions CONFIG_64BIT, CONFIG_SLOB, and CONFIG_PCI deselected;
and CONFIG_DEBUG_INFO_SPLIT, CONFIG_UBSAN_SANITIZE_ALL,
CONFIG_OPTIMIZE_INLINING, and CONFIG_DEBUG_INFO_REDUCED
selected; dramatically increase performance (binary size). Thus,
options are preset and no modification of these options’ values
are allowed. Without specialization, we are likely to set different
options’ values. An interesting example is "defconfig", a default con-
figuration for Linux, in which the binary size is around 70Mb. So, in
case users start the configuration with "defconfig", they do not meet
the specified threshold. Notice that learning is useful and necessary
since manually discovering such rules is tedious, error-prone, and
time-consuming. Moreover, it requires expert’s knowledge of the
system domain. The overall outcome is constraints among options
that are retrofitted into a variability model and a configurator. Con-
straints can either force the values of individual options or logically
involve several options. Such constraints are learned out of learning
models.

Related Work. Performance specialization is applicable to several
domains. Temple et al. [41, 42] explore the domain of video genera-
tor. To improve the learning process, Temple et al. [42] specifically
target low confidence areas for sampling. The authors use an ad-
versarial learning technique, called evasion attack, after a classifier
is trained with a support vector machine. Beyond video generator,
Temple et al. [40] explore also the domains of web server, compiler,
database system, and image processing. Acher et al. [2] explore

the domain of creating a specialized document (such as a paper or
curriculum). Amand et al. [4] applied learning techniques in the 3D
printing domain.

There are several works in the faulty specialization context [5,
14, 15, 22, 35, 37, 41, 47]. These works explore several domains,
such as software-intensive systems, combinatorial model, and 3D
printing. However, these works focus in mining rules for avoiding
invalid configurations, without having performance in mind. As in
the previous works they stick to machine learning classifiers.

There are also several works on performance prediction [3].
They use the same process of sampling, learning and validation.
However they stick to predict the performance of configurations –
not classifying configurations in terms of acceptable performance.
To the best of our knowledge, such regression-based approaches
have never been considered in the specialization context.

Sampling configurations is a first step for learning-based perfor-
mance specialization. Several strategies have been proposed [6, 9,
18, 19, 21, 24, 27, 31, 34, 36, 45]. For instance, Oh et al. [31] explore
t-wise coverage with uniform sampling, to ensure a good cover-
age of interactions between options. Munoz et al. [27] tackle the
problem of uniform sampling through the handling of numerical
options. Uniform random sampling is a strong baseline [18, 24, 34]
but is challenging to compute for large feature models [19, 36].

Overall, studies have covered different aspects of specialization
over the last years, such as the use of different systems, algorithms
and sampling techniques. However, from an empirical perspective it
is not evident to what extent interpretable learning approaches are
effective for performance specialization. Current practices mainly
focus on classification algorithms. Although in the optimization and
performance prediction scenarios there are works using regression
techniques [13, 16, 28, 29, 46], these techniques have not been yet
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explored for specialization. Also, some additional steps are worth
exploring (like feature selection prior to learning).

3 AUTOMATED PERFORMANCE
SPECIALIZATION

The key to automated specialization is the identification of con-
straints that can preclude configurations not fitting a performance
threshold. We first frame the specialization problem as a learning
problem. We discuss the space of possible learning algorithms and
show that decision trees represent a good fit between accuracy and
the identification of constraints. We then present three techniques
that can be combined with tree-based feature selection to realize
performance specialization.

3.1 Specialization as a learning problem
Wedenote 𝑝 the number of configuration options and define the con-
figuration space C = {0, 1}𝑝 . Out of this space of configurations C,
we gather a subset of 𝑑 configurations, denoted CS ⊂ C𝑑 . We sepa-
rateCS into a training setC𝑡𝑟S and a test setC𝑡𝑒

S
, soCS = C𝑡𝑟S

⊕
C𝑡𝑒
S
.

Let B = {0, 1} resp. for "non-acceptable" and "acceptable". Then, we
denote:

• 𝑓 : C → R+ the function affecting to any configuration
𝑐 ∈ C its performance 𝑓 (𝑐) ∈ R+,

• 𝑝 : R→ B a predicate that determinewhether a performance
value is acceptable or non-acceptable,

• 𝑠 : C × 𝑝 → B the specialization function affecting to any
configuration 𝑐 ∈ C its acceptability 𝑝 (𝑓 (𝑐)) ∈ B.

With respect to these notations, the goal is to train a learning
algorithm 𝑠 estimating the function 𝑠 for each measured configu-
ration of the training set 𝑐 ∈ C𝑡𝑟

S
. The training set C𝑡𝑟

S
is used to

obtain a learning model, while the testing set C𝑡𝑒
S

only tests the
prediction accuracy of 𝑠 .

3.2 Learning algorithms for specialization
Numerous statistical learning algorithms can be used for perfor-
mance specialization. These algorithms differ in terms of compu-
tational cost, expressiveness and interpretability. We now review
the literature of configurable systems (based on the systematic
survey [3]). We discuss what algorithms are suited or not for our
specific problem. Linear regressions are considered as easy to in-
terpret, but are unable to capture interactions between options or
to handle non-linear effects [26]. Neural networks can reach high
accuracy on large datasets. DeepPerf [17] has been developed for
tackling configurable systems with dozens of options. Empirical
results show the effectiveness of DeepPerf [17] on all systems of
our study (except Linux that has not been considered). However,
neural networks are black-box functions for which it is hard to
extract rules (constraints) among options, a top requirement in the
specialization problem.

Siegmund et al. [38] introduced a learning method called perfor-
mance-influence model. Feature-forward selection and multiple lin-
ear regression are used in a stepwisemanner to shrink or keep terms
representing options or interactions. This method aims to handle
interactions between options, limit the number of options to learn
on, and provide a human-readable formula describing influence

of options and combinations of options on performance. However,
performance-influence model does not address the performance
specialization problem. First, the model addressed a regression
problem while we are interested in predicting the class of a con-
figuration. Second, the technique does not retrofit constraints into
a variability model. The synthesized information (a formula with
coefficients) is not designed for extracting rules and constraints.
Third, a performance-influence model aims to construct a global
performance model: a rewrite is necessary to take the threshold
into account. Fourth, the step-wise addition of interactions among
options does not scale for Linux that exhibits 9K+ options (see more
details hereafter).

Decision trees (e.g., CART) are the most used technique in the
literature [3]. Decision trees have been used either for classification
or regression, have reach competing accuracy, and are interpretable
by construction [40, 43, 44]. The tree structure is ideal for capturing
interactions between options. Rules can easily be extracted and
retrofitted into a variability model.

Random forests are an ensemble learning method that constructs
a multitude of decision trees at training time. As an ensemble
method, the accuracy of random forests can be better than decision
trees. However the question of extracting rules out of multiple trees
is still an open issue.

Overall, decision trees represent a good fit for our specialization
problem. We will consider this learning technique under different
strategies in the following.

3.3 Learning strategies
Fundamentally, the learning problem presented in Section 3.1 is
a supervised, binary classification problem. However, and which
makes it remarkable, the learning has at its disposal continuous
values (performance measurements). In this regard, the problem
is closed to a regression problem, except that one does not want to
eventually predict a quantity but a class.

We now describe three possible techniques for performance
specialization learning: classification, regression, and specialized
regression.

Classification. The straightest strategy is to use a classification
tree. Decision tree models where the target variable can take a
discrete set of values (acceptable, non-acceptable) are called classifi-
cation trees. From the measured performance of configurations and
the defined threshold, it is possible to label each configuration as
acceptable or non-acceptable. Then a classification tree is trained to
predict the performance acceptability on new configurations. One
of the downside of this approach is that the actual performance
value is lost from the dataset, as it is replaced by a simple boolean
value. Not having the numerical information in case a configuration
is either borderline from the performance threshold, or very far
from that threshold, is likely to degrade the accuracy of the learning
process.

Gap in the related work. Classification trees have been considered
in prior works [2, 4, 40]. However, a systematic comparison with
other techniques is missing and it is unclear how the approach
works for large systems like Linux.
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Regression. Another way to produce a decision tree is to tackle
the regression problem. In this case, it would predict directly the
performance of a configuration and then a post-process step can
be applied to determine if that predicted performance is acceptable.
It means that the regression tree has to be rewritten for predicting
the outcome (a class). The promise is to better use the performance
value, unlike the classification approach. However, the learning is
focused onminimizing the error between the predicted performance
value and the actual value independent of the threshold. As a result,
a configuration could well have its performance value predicted
with a very low error but just on the other side of the threshold,
leading to a classification error unrecognized by the regression
algorithm. It should be noted that a regression approach is agnostic
to the threshold, meaning that the model can be used once and for
all, for any threshold. In contrast, a classification tree should be
trained anytime a new performance threshold is specified.

Gap in the related work. Although regression problems have been
widely considered for performance prediction or optimization, we
are unaware of existing works that investigate their effectiveness in
the context of specialization. As stated, specialization is in-between
a regression and classification problem, which questions the accu-
racy of such techniques in this context.

Specialized regression. Considering the weaknesses of the two
previous approaches, we propose a novel and hybrid strategy. The
training of a regression tree is performed over the dataset where
all performance values higher than the performance threshold are
increased by an important amount. Intuitively, we artificially create
a "gap" in the performance distribution representing the threshold.
The intent is to punish errors across the border, while still being able
to take advantage of the insight given by the performance value.
We call this techniques specialized regression since the regression
is aware of the specialization criterion (performance threshold). In
contrast, regression is only aware of the performance values of the
training set and ignore the performance threshold.

3.4 Tree-based Feature selection
An hypothesis is that some configuration options of configurable
systems have little effects on non-functional properties and can
be removed without incurring much loss of information. Feature
selection1 techniques are worth considering when there are many
features and comparatively few samples. Though we are not nec-
essarily in extreme cases like the analysis of DNA microarray
data [10, 39], the Linux case exhibits a very large number of options
𝑝 . The goal is to operate over a reduced number of variables 𝑝 ′ ≪ 𝑝

when training. For smaller configurable systems, feature selection
is also a promising approach as a way to shorten training times,
simplify models, and focus on influential options.

Feature selection can be realized through embedded methods
that keep and remove features as part of the model construction
process [10]. Techniques like Lasso (for least absolute shrinkage
and selection operator), performance-influence models [38] and

1From a terminology point of view, feature selection is sometimes used in the software
product line community to refer to the selection of features i.e., to configuration. We
use here as a machine learning terminology and refer to the selection of a subset of
features considered as relevant for building models. We also consider that there is a
mapping between configuration options and features.

decision trees enter in this category. In fact, most of the learning
techniques use this method internally.

Another complementary approach is to use model-based feature
selection prior to the actual learning. It is a two-step method. First,
a learning process computes what we call a feature ranking list
for ordering important features. Then, this list is fed to a learning
algorithm (in our case: a decision tree) that operates over a subset
of predictive features. Compared to traditional learning algorithms,
the use of model-based feature selection enables to explicitly re-
strict the feature space and hopefully focus on the "right" features.
Hence, the actual training (second step) can benefit from a more
informative feature space. Decision trees are well-suited for the
specialization problem w.r.t. constraints extraction, but may suffer
from accuracy issues when the configuration space is large (e.g., as
is the case for Linux).

Knowing which configuration options are most predictive is cru-
cial and corresponds to the first step of the method. We use random
forest to learn the feature ranking list, owing to their predictive
power and the ability to compute feature importance. Intuitively,
feature importance is the increase in the prediction error of the
model after we permuted the feature’s values [26]. For random
forest, we compute feature permutation importance through the
observation of the effect on machine learning model accuracy of
randomly shuffling each predictor variable [7, 26, 32].

Gap in the related work. Tree-based feature selection can be com-
bined with classification, regression, and specialized regression. To
the best of our knowledge, tree-based feature selection has not been
considered for specializing configurable systems. In total, we have
carefully selected and designed 6 specialization learning techniques
for which we have no evidence of their (relative) effectiveness on
real-world configurable systems – we aim to fill this gap in the rest
of the paper.

4 STUDY DESIGN
To investigate the proposed approaches, we elaborate four research
questions to conduct our experiment:

• RQ1 :What is the accuracy and cost of learning strate-
gies? We aim to evaluate the prediction errors of specializa-
tion learning on nine real-world configurable systems, with
varying cost in term of number of configurations’ measure-
ments.

• RQ2 :What is the best learning strategy? There are mul-
tiple ways to use decision trees (namely classification, regres-
sion and specialized regression) in order to synthesize the
rules needed for the specialization. With regard to accuracy,
is there a best strategy e.g., whatever the subject system is?

• RQ3 : What are the effects of tree-based feature selec-
tion on the accuracy of performance specialization?
We aim to investigate whether feature selection improves or
degrades the accuracy of learning strategies and for which
subject systems, performance thresholds, and training set
size.

• RQ4 :What is the time cost of the 6 learning strategies
to predict performance of a configurable software sys-
tem? This question is to evaluate the practicality and feasibil-
ity of a proposed strategy. To answer this question, we show
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System Features Measured Configurations

Apache 9 192
Berkeley C 19 2.560
Berkeley J 26 180
Dune 11 2.304

HMSGP 14 3.456
HIPAcc 33 13.485
LLVM 11 1.024
SQLite 39 4.553
Linux 9.467 92.562

Table 1: Datasets information, including number of features
and number of measured configurations

the time consumed by the feature selection (if used), hyper-
parameter searching and training process on various highly
configurable software systems (including Linux). We also
put in perspective the fact that some techniques are learned
once and for all, whatever the performance thresholds.

4.1 Datasets
In order to perform our experimentation, we relied on datasets
already used in the community (see details in Table 1).

4.1.1 Common SE datasets. Our first part of the experimentation
is to perform train Decision Trees on reliable datasets commonly
used on numerous occasions in the past [17, 38] to assert learning
techniques efficiency.

4.1.2 Linux dataset. To investigate the scalability of the approaches,
we rely on the dataset made available by Acher et al. [1] on Linux
kernel size. It consists in the binary size measurement of 92.562 con-
figurations, restrained to x86 architectures and 64 bits systems, and
obtained with the use of randconfig, a widely used tool to generate
random kernel configurations, and valid w.r.t constraints between
options. It contains all boolean and tristate options, encoded as
0 and 1; the "module" options value encoded as a 0; as well as a
feature counting the number of active options, for a total of 9.467
features.

4.2 Learning algorithms
Our three approaches rely on Decision Tree, and we used the CART
implementation in scikit-learn[33], a widely used state-of-the-art
Python library for machine learning. We explored a wide range of
hyperparameters, such as the maximum depth of the Tree, or the
loss function for regression approaches betweenMSE and Friedman
MSE, in a grid-search fashion to optimize the efficiency of the
Decision Trees. We also made vary the training set size from 10%
to 70% and used the remaining (at least 30% to avoid overfitting)
as test set to study its impact on the accuracy, the sampling being
made at random among the datasets, as Pereira et al. [34] show
that this sampling method is a strong baseline overall. We repeated
each iteration from 5 to 20 times and report on the average value,
to reduce the impact of randomness on the experimentation.

Specialized Regression. This novel technique relies entirely on
the Regression Tree from scikit-learn. The difference is made on

the dataset. The performance value, which is the learning target, is
modified to suit a specific threshold. However, the amount of the
modification can be any value, and we investigate multiple different
values we will call gap. As using a fixed value might not make sense
for some performance values, we choose gap values depending on
the performance values found in each dataset: maximum, mean, ½
of the mean and ¼ of the mean.

4.3 Threshold influence
The threshold is the performance value for which a configuration
becomes acceptable or not. To investigate a possible influence of
this value on the accuracy of the models, we repeat the learning
phase using different thresholds, hence specializing each model to a
particular threshold. For the regression approach, we do not repeat
the learning process, since a regression model is threshold-agnostic.
Thus, we repeated only the accuracy measurement. We choose 5
threshold values based on the performance distribution for each
dataset, namely 10%, 20%, 50%, 80% and 90% quantiles.

4.4 Metrics
To measure the accuracy of the Decision Trees classification, we
use the balance accuracy[8], which is a combination of sensitivity
and specificity:

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1
2

(
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+ 𝑇𝑁

𝑇𝑁 + 𝐹𝑃

)
with TP for True Positive, TN for True Negative, FN for False

Negative and TP for False Positive. The balanced accuracy heavily
takes in account the influence of imbalanced class distribution,
which inevitably happens due to the threshold variation in the
experiment. In the remaining of the paper, we will refer to balanced
accuracy as "accuracy".

4.5 Tree-based Feature selection
We trained 20 Random Forests on 10% of the training set and ex-
tracted a Feature Ranking List, except for Linux kernel, where we
used the List provided with the dataset [1]. We then repeated the
learning as much as needed to find the optimal number of options.

We consider 6 different strategies:
(1) Classification
(2) Classification with Feature Selection
(3) Regression
(4) Regression with Feature Selection
(5) Specialized Regression
(6) Specialized Regression with Feature Selection
As mentioned, we evaluated all 6 strategies over 5 different

thresholds, and with 4 different training sizes.

5 RESULTS
In this section, we discuss the answers to our research questions
defined in Section 4.

5.1 Results RQ1 and RQ2—Accuracy
Table 2 is a summary of the accuracy over all thresholds for each
system with 70% training set size. With the exception of the SQLite
system, we report an accuracy of more than 90% overall, showing
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System All strategies Classification Classification FS Regression Regression FS Spec. Regr. Spec. Regr. FS

Apache 95.3% (±2.1) 94.3% (±2.3) 92.3% (±3.0) 93.1 (±2.7) 93.3% (±3.3) 92.8% (±2.7) 93.5% (±3.6)
BerkeleyC 99.9% (±0.3) 99.8% (±0.4) 99.9% (±0.3) 99.8 (±0.4) 99.8% (±0.3) 99.5% (±0.6) 99.6% (±0.5)
BerkeleyJ 93.3% (±9.4) 92.9% (±9.2) 92.4% (±9.8) 92.1 (±9.5) 92.4% (±10.1) 90.0% (±12.4) 91.2% (±10.8)
Dune 93.6% (±2.4) 92.8% (±1.7) 92.2% (±1.8) 91.2 (±3.2) 91.9% (±2.9) 92.7% (±3.2) 92.9% (±3.1)
HIPAcc 97.6% (±0.9) 96.6% (±1.1) 97.1% (±0.7) 95.5 (±2.3) 95.6% (±2.3) 94.9% (±4.2) 94.9% (±4.4)
HMSGP 97.3% (±2.1) 96.5% (±2.5) 96.9% (±2.4) 96.7 (±2.2) 97.2% (±2.0) 96.4% (±2.6) 97.0% (±2.3)
LLVM 94.6% (±4.4) 93.8% (±5.2) 94.0% (±5.1) 91.8 (±5.5) 93.2% (±4.7) 93.2% (±3.8) 93.7% (±4.0)
SQLite 74.9% (±10.4) 73.7% (±9.0) 73.4% (±9.0) 70.2 (±8.2) 70.6% (±8.4) 70.1% (±13.6) 70.6% (±13.4)
Linux 92.6% (±4.0) 91.1% (±2.4) 91.3% (±2.8) 91.2 (±2.9) 91.4% (±3.3) 91.8% (±4.2) 92.0% (±4.7)

Table 2: Average accuracy and standard deviation per system and learning technique over all thresholds and for 70% training
set size. FS stands for Feature Selection while All Strategies mean that we systematically choose the best strategy among the 6.

Figure 2: Performance Distribution for BerkeleyJ

that Decision Tree is an algorithm able to handle the complexity of
configurable systems for the specialization task in most cases. We
observe that the best results are held by the Classification strategy
on 6 out of 9 systems. However, since the difference between strate-
gies is very slight, we can consider the 6 strategies to be accurate.
Furthermore, there is no learning strategy better than another on
all thresholds. For some systems, a high standard deviation can
be observed due to thresholds variations within a subject system.
For instance, for BerkeleyJ2 the accuracy for 70% training set size
(T.S.) goes from 77.2% to 100%, respectively at 10% and 50% of A.C.
(acceptable configurations), which is tied to the threshold varia-
tion. This can be explained by the very inconsistent performance
distribution shown in Figure 2.

(RQ1) Decision Tree is an accurate algorithm for perfor-
mance specialization, with more than 90% accuracy for 8
out of 9 systems, including Linux.

5.1.1 Strategies. In this section, we report mainly on the tables
present in our supplementary material2, where we detailed results
over all strategies and systems for each considered threshold and
training size. Here, due to space limitations, we add the detailed
results only for Apache and Linux (see Tables 3 and 4). Notice that

2https://raw.githubusercontent.com/HugoJPMartin/SPLC2021/master/tables.pdf

the results on Table 2 (for all systems) are referent to 70% training
set size and an average over all thresholds.

Classification. As seen previously, classification is overall the best
strategy, and its strength resides mainly in the restrictive threshold
of 10% or 20% A.C. For Apache, at 10% A.C. and 10% and 20% T.S.,
the accuracy is more than 3 points higher on classification than
the two other strategies. For HIPAcc, at 10% A.C. that difference is
from 4 to 5 points, while regression shows 92.2% accuracy at 70%
T.S., classification shows 97.3% accuracy.

Regression. The overall accuracy of regression is very similar to
specialized regression. For 1 out of 8 systems (HMSGP) it is the best
solution. However, regression is a threshold-agnostic approach.
It tends to be very sensible to extreme threshold (10% and 90%
A.C.), which can be seen as a limitation. HMSGP and Linux are
the exceptions, where regression shows itself the best strategy on
many cases. For Linux, regression is the best at 50% A.C. on all T.S.,
and at low T.S. and A.C. We note also that regression is often better
than classification on higher thresholds, and better than specialized
regression on lower thresholds.

Specialized Regression. This approach shines at higher thresh-
olds, being the best strategy in almost all cases at 80% and 90% A.C.
The improvement can be very important, for instance Apache at
90% A.C. and 10% T.S., specialized regression is better by 6 and
9 points over regression and classification. About the gap influ-
ence (Section 4.3), most of the time the minimum value (¼ of the
mean) gives the best results, and in some cases (for Berkeley C and
Berkeley J) it’s the maximum value.

(RQ2) The 6 strategies are particularly sensitive to per-
formance thresholds. Classification is the most efficient
on low thresholds, specialized regression on high thresh-
olds, while regression proves itself a good middle ground.

5.2 Results RQ3—Feature selection
In Tables 3 and 4, the influence of feature selection is represented by
the value inside brackets. In the vast majority of cases, the use of
feature selection improves the results, though the improvement can
be very low (less than 1 point). The most significant improvements
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are for LLVM (see in our supplementary material), with cases show-
ing up to 10.3 points more than their counterpart without feature
selection.

On the other hand, some cases show that feature selection does
not improve the accuracy (mostly for classification strategy). We
report one case where the feature selection has a significantly neg-
ative impact with regression, while there are 21 of such cases (out
of 180 possible cases per strategy) for classification.

Beside, the optimal number of options to select is very variable
depending on threshold and training set size. We did not identify
particular pattern to predict that number beforehand, so the number
of selected options should be considered as a new hyperparameter
for the Decision Tree.

(RQ3) Feature selection is a reliable way to produce more
accurate results (improvements up to 10%), although the
increase is often insignificant. Note that classification-
based learning sometimes does not take advantage of fea-
ture selection – using all features lead to better results.

5.3 Results RQ4—Training time
The training time of a Decision Tree is in the order of milliseconds
(except for Linux). It is up to 22 ms for Specialized Regression on
HIPAcc, which is the system with the largest configuration dataset
(see Table 1). The training time reduction after feature selection
is very slight. The most significant improvement is the reduction
from 6.4 ms to 3.5 ms (for Regression Decision Tree on SQLite).
Proportionally, it is a 45% time reduction. However, the reduction
is imperceptible for a human.

For Linux, the training time of a Decision Tree is 54 seconds for
Classification, 86 seconds for Regression and 93 seconds for Spe-
cialized Regression. With feature selection however, these training
times are reduced to 0.5 second for Classification, 2.3 seconds for
Regression and 1 second for Specialized Regression. These improve-
ments are massive, cutting down the training time from 40 folds
up to 100 folds, making them fit for a real-time usage.

(RQ4) The training time of Decision Trees is in the order of
milliseconds, which makes it very affordable as a learning
technique, except for Linux which takes a minute or more.
For Linux, the use of feature selection makes it possible to
cut down that training time to the order of second(s).

6 DISCUSSION
Guidelines. Using the empirical knowledge we acquired during
the experiments, we aim to propose some guidelines on how to use
the different strategies for automated performance specialization.

Due to the cost of learning, or the specialization model being
shipped as is, it is not always possible to train a new model each
time it is needed ("on the fly"). This computational cost can be a
barrier in terms of user experience. For instance, end-users may
not be interested to wait almost a minute while maintainers may
accept the necessary time to hopefully get accurate specialization.
There are two scenarios:

• You cannot train a model on the fly:
– The default strategy is regression, as being able to handle
all thresholds at once and quite accurately.

– The profile strategy is classification and specialized re-
gression. Instead of having one generic model, it is possible
to focus on one (or more) profile, i.e. threshold. Classifica-
tion is better for highly constraining specialization, while
specialized regression is better for slightly constraining
specialization.

– Note that is is possible to leverage multiple models de-
pending on the needs, and having some particular profiles,
backed up by a regression model for other cases.

• You can train amodel on the fly:When the specialization
model can be re-trained for a specific performance threshold,
it is better not to use regression, but to use classification for
highly constraining specialization and specialized regression
for slightly constraining specialization.

Feature selection should be considered in almost every cases.
When the training time is negligible, the cost of finding the optimal
number of options is negligible too with high chances to have a
more accurate model. When the training time is not negligible, such
as for Linux, the reduced training time makes it worth to explore a
few numbers of options.

Good regressor, bad classifier. "A good regressor should give out
a good classifier" is an intuition that one could have when thinking
about using a regressor to perform a classification task based on a
continuous value, such as specialization. While this happens to be
true in a lot of cases, it also happens to be very wrong in some cases.
During our experiment, we observe a lot of different regressors
and computed both their balanced accuracy and Mean Absolute
Percentage Error (MAPE), a regression error metric, and we noticed
some of them to go completely against the mentioned intuition.
For instance, we have a quite good regressor, with 6% error rate,
but with a quite bad balanced accuracy at just under 70%. On the
other hand, on the same system, we have a very good classifier,
presenting 100% balanced accuracy, but sitting at almost 45% error
rate, one of the worst we found on that system.

Safety and flexibility. If we only used the balanced accuracy as
the most fair and general metric, some other metric can reveal inter-
esting aspects of the classification. Precisionmeasures how much of
the predicted acceptable configurations are actually acceptable, and
indicates the safety of the evaluated classifier. Recall measures how
much of all acceptable configurations are actually considered by
the classifier, and indicates the flexibility. Except in the rare cases
of finding a perfect classifier, there is always a trade-off between
flexibility and safety. One interesting aspect of the Decision Tree
is that for each rule, it can deliver a probability of acceptability,
and this can be used to tweak the rules, either toward flexibility, or
toward safety.

Active learning. In our experiment, we only considered a single
step of learning to create a model. However, in future works, we
can consider multiple steps of learning, and leveraging the inter-
pretability of the Decision Trees to find the most error-prone rules
in order to refine them by sampling around the misclassified con-
figurations. It is also possible to use the Feature Ranking List to
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Training set size Acceptable configurations
10% 20% 50% 80% 90%

Classification
19 (10%) 87.4 (-3.5) 88.5 (+1.4) 83.2 (+1.4) 85.3 (+1.6) 77.1 (-1.3)
38 (20%) 90.2 (-3.3) 90.9 (+1.0) 87.4 (+0.1) 88.5 (-0.6) 81.7 (+0.5)
96 (50%) 91.7 (-0.9) 91.9 (-0.5) 90.5 (-0.8) 95.0 (-1.5) 85.1 (-0.3)
134 (70%) 95.2 (-2.7) 93.6 (-0.8) 93.1 (-2.8) 97.7 (-0.9) 91.6 (-2.7)

Regression
19 (10%) 83.7 (+0.5) 87.6 (+3.8) 84.5 (+0.9) 91.9 (+7.1) 80.5 (+2.8)
38 (20%) 86.7 (+0.9) 90.6 (+3.1) 86.8 (+1.0) 91.9 (+3.6) 84.0 (+3.8)
96 (50%) 91.3 (+0.6) 91.7 (+2.3) 88.1 (+0.2) 94.9 (+1.3) 89.2 (+0.1)
134 (70%) 93.3 (+0.3) 92.4 (+0.7) 89.9 (+0.6) 98.5 (+1.2) 93.4 (+0.3)

Specialized Regression
19 (10%) 83.0 (+1.1) 85.9 (+1.6) 83.7 (+1.6) 92.1 (+4.5) 86.5 (+4.8)
38 (20%) 86.8 (+2.1) 86.7 (+1.2) 86.4 (+0.4) 92.3 (+1.1) 89.2 (+1.8)
96 (50%) 90.6 (+0.1) 88.9 (+0.3) 87.8 (+0.2) 95.7 (+1.7) 93.8 (+2.2)
134 (70%) 93.0 (+0.2) 91.2 (+0.8) 89.9 (+0.7) 98.1 (+1.8) 95.9 (+1.5)

Table 3: Decision tree classification accuracy on performance specialization for Apache on three strategies. The difference of
feature selection on accuracy is represented by the value inside brackets. Bold represents the best result among other strategies
(including feature selection).

Training set size Acceptable configurations
10% 20% 50% 80% 90%

Classification
9256 (10%) 84.4% (+1.7) 88.4% (+0.2) 90.3% (+0.2) 91.8% (+0.7) 91.6% (+2.8)
18512 (20%) 85.4% (+0.4) 89.0% (+0.4) 91.1% (-0.0) 92.5% (+1.0) 92.4% (+0.2)
46281 (50%) 87.3% (-0.4) 90.1% (-0.2) 92.1% (+0.2) 93.1% (+0.4) 93.5% (+1.2)
64793 (70%) 87.4% (-0.4) 89.9% (+0.0) 92.6% (-0.2) 93.4% (+0.4) 93.7% (+1.3)

Regression
9256 (10%) 85.1% (+1.8) 88.5% (+1.4) 91.6% (+1.3) 92.0% (+0.8) 92.0% (+2.4)
18512 (20%) 86.1% (+1.9) 89.5% (+1.2) 92.0% (+0.3) 92.9% (+1.0) 92.4% (+0.8)
46281 (50%) 86.8% (-1.0) 89.7% (+0.0) 92.9% (+0.7) 93.8% (+0.6) 94.2% (+1.2)
64793 (70%) 86.8% (-0.5) 89.9% (+0.2) 92.9% (-0.1) 93.9% (+0.2) 94.1% (+1.0)

Specialized Regression
9256 (10%) 85.0% (+2.0) 87.2% (+1.1) 91.5% (+1.0) 94.8% (+0.7) 95.7% (+0.5)
18512 (20%) 84.4% (+0.6) 87.6% (-0.0) 91.5% (+0.8) 95.1% (+0.7) 96.3% (+0.6)
46281 (50%) 84.7% (+0.9) 87.8% (-0.1) 92.3% (+0.4) 95.6% (+0.7) 96.8% (+0.7)
64793 (70%) 86.2% (-0.3) 89.1% (-0.4) 92.8% (+0.5) 95.8% (+0.6) 97.0% (+0.6)

Table 4: Decision tree classification accuracy on performance specialization for Linuxkernel on three strategies. The difference
of feature selection on accuracy is represented by the value inside brackets. Bold represents the best result among other
strategies (including feature selection).

focus the sampling toward the most influential options and avoid
the ones without influence.

Going further with constraints. The focus of this paper was ac-
curacy since it is crucial in many specialization scenarios. The read-
ability and comprehension of constraints might also be of interest
for practitioners. It is an interesting research direction that requires
e.g., human studies and controlled experiments. The validation of
the quality of the constraints with domain experts (e.g., Linux devel-
opers) is in our agenda. The use of feature selection might also be of
interest here, since rules and constraints will operate over a limited

set of options. More aggressive pruning strategies [25] can also be
envisioned with tradeoffs between accuracy and interpretability.

7 THREATS TO VALIDITY
In this section, we describe some internal and external threats to
the validity of this study.
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7.1 Internal validity

Hyperparameters for Decision Trees. Just like many learning
algorithms, Decision Trees exhibit hyperparameters that can impact
the performance of the algorithm (accuracy as well as training time).
To mitigate this threat, we explored a wide range of them in a grid-
search fashion i.e., we test all combinations of multiple values for
each of them. Complete results and scripts are available online.

Threshold variation. The performance threshold – the limit set
by the user to define an acceptable configuration – can make vary
a lot the accuracies of the learning techniques. We considered this
aspect by using different thresholds, based on the performance
distributions of each system and dataset. However, this may rise
a problem: as we can see in Figure 2, the 10% and 20% thresholds
are very close and also very constraining, which might explain
the low accuracy of the specialization models. In practical terms,
these thresholds do not correspond to any realistic expectation
from a user. Despite this threat, we did observe the phenomenon
for only one system while none of the 6 learning techniques have
been favored. However, we warn that this is a threat that should be
considered for any future work or transfer in a real use case.

Sampling. For this experiment, we focused only on random sam-
pling to avoid spreading ourselves too much. Pereira et al. [34]
shows that random sampling is a strong baseline, but also warns
about the potentially strong influence of different sampling strate-
gies, especially when comparing learning techniques. The explo-
ration of other sampling techniques is definitely in the scope of
future work.

7.2 External validity

Workload influence. It is well known that the input workload of
a system process, for instance the input video for a video encoder,
is another source of variability that should be taken into account.
As we relied on datasets shared by the community, we did not
focus on this aspect of variability at this time. Beside, all systems
are not impacted by workload, such as the binary size of Linux
kernel which is only dependent on the configuration. Thus, we
focused on a single workload to be able at making robust and
reliable statements about a specific strategy. We are confident that
some method of transfer learning should be able to tackle other
workloads. Demonstrating the validity of the approach for other
workloads is part of our future work.

System generalization. As all empirical study, the conclusions
are fully reliable on the studied systems. Thus, we acknowledge that
the use of another system may lead to different results. However,
once we are able to demonstrate evidences of good results to a set
of real-world systems widely used in the literature, including Linux
kernel, we are quite confident in the generalization of our approach.
Still, conducting experiments with other systems is an important
next step, which is part of our future work.

8 CONCLUSION
As software systems become more and more configurable, it be-
comes harder for users to correctly configure them or to reach a

certain goal, being functional or in terms of performance. Specializa-
tion is a technique that adds constraints to a system in order to assist
users in reaching a predefined goal while sacrificing the configura-
bility as little as possible. However, a manual specialization process
to create the constraints can be error-prone, time-consuming, and
heavily dependent on a knowledge that is hard to formalize or
simply not available. The recent rise of data and machine learn-
ing appears to be a good candidate to automate the specialization
process and complement or replace the expert knowledge.

We explored the decision tree learning algorithm, for how suited
it is to extract rules that can be retrofitted into variability models
of configurable systems. We used and compared both classification
and regression trees, as well as a novel variant of regression tree
refined toward the specialization problem, that we called specialized
regression. We also used tree-based feature selection to investigate
how well it can be combined with specialization. We performed
an empirical study to evaluate the ability of Decision Trees to
accurately constrain the configuration space of the systems for
the specialization problem and performance properties. We used
dataset well known in the community, as well as taking up the
challenge of the Linux kernel and its thousands of options.

Our results showed that the learning models are more than 90%
accurate on 8 out 9 systems, including Linux. Every strategy is effi-
cient, but each has its own strength regarding different thresholds,
which makes them all worth considering. Feature selection proved
itself a good and reliable way to improve accuracy, and also to re-
duce the training time. If for most systems, the training time is very
low, in the order of the milliseconds, in the case of the Linux kernel
it can take more than one minute and feature selection reduces that
time to one or two seconds.

We have exposed a panorama of accurate learning techniques
for the performance specialization problem. As future work, we
plan to assess how the inferred configuration knowledge relates to
domain experts’ knowledge (e.g., Linux developers). It will require
to investigate how readable and comprehensible are constraints ex-
tracted from the specialization process. Another research direction
is how this knowledge transfers across deep variability [23] (e.g.,
versions and workloads of a system).
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