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Abstract 
Piezoelectric vibration harvesters with strong electromechanical 

coupling coefficients have recently been combined with nonlinear 

electrical techniques capable of tuning their resonant frequency as a 

solution to provide energy to wireless sensor nodes from wideband 

vibrations. To be fully competitive, this approach requires 

piezoelectric generators with strong global electromechanical 

coupling coefficients k². However, the presence of non-linear 

dielectric and piezoelectric losses in piezoelectric materials 

significantly reduces the power harvested when strongly coupled 

materials are used. This paper presents a non-linear model that allows 

for a better consideration of losses for such piezoelectric harvesters. 

An experimental validation is performed with a strongly coupled 

cantilever based on a PMN-PT material (k²=16 %). The results reveal 

the importance of considering non-linear dielectric losses. Indeed, we 

show thanks to the model that neglecting these losses can induce an 

18 % overestimation of the harvested power for the presented 

prototype driven at 0.5 m/s2 amplitude ambient acceleration. 

 

Nomenclature 

𝑀𝑡 Mass of the proof mass 𝜔 Vibration pulsation 

𝐼𝑡 
Rotary inertia of the proof mass according to 

its center of gravity 
𝑓𝑒𝑥𝑡  Vibration frequency 

𝐷𝑡  
Distance between the free end of the beam and 

the center of gravity of the proof mass 
𝜙(𝑥) Vibration mode shape 

𝐽𝑡 
Ratio between the rotation inertia and the 

mass 
𝑘31
2  

Material coupling coefficient of the 

piezoelectric material 

𝐿𝑏 Beam length 𝑘2 
Global electromechanical coupling coefficient 

of the piezoelectric harvester 

𝐿𝑚 Proof mass length 𝐾 Equivalent linear stiffness 

𝐻𝑚 Proof mass height 𝐵𝑓 Forcing term 

𝐵 Beam and mass width 𝑀 Equivalent mass 

𝒱𝑝 Substrate volume Θ Linear coupling term 

𝒱𝑝 Volume of piezoelectric material 𝐶𝑝 Equivalent clamped capacitance 

𝑚 Mass per unit length of the bimorph 𝛼 Linear coupling term per unit length 

ℎ𝑝 Piezoelectric patches thickness 𝜃2̃ Second order coupling term per unit length 

ℎ𝑠 Substrate thickness 𝑘2̃ Second order bending stiffness per unit length 

𝑒31
𝑒𝑓

 Linear piezoelectric equivalent coefficient 𝐾2 Nonlinear stiffness 



 

 

𝑑31 
Coefficient of the piezoelectric constant 

matrix  
Θ2 Nonlinear coupling term 

𝑠11
𝐸  

Coefficient of the compliance matrix of the 

piezoelectric material 
𝑅𝑙𝑜𝑎𝑑  Resistive load 

𝜖33
𝑇  

Coefficient of the free dielectric matrix of the 

piezoelectric material 
𝑏1 Linear mechanical structural loss coefficient 

𝜖33
𝑒𝑓

 
Linear dielectric permittivity equivalent 

coefficient 
𝑏2 Second order structural loss coefficient 

𝑐11
𝑒𝑓

 Linear elastic equivalent coefficient 𝑑1 Linear dielectric loss coefficient 

𝑐111 Nonlinear elastic constant 𝑑2 second order dielectric loss coefficient 

𝑒311 Nonlinear piezoelectric equivalent constant 𝑎 , 𝑏 
Coefficients that define the beam mode shape 

expression 

𝑌𝑠 Young modulus of the substrate 𝑤𝐿𝑏
 Beam end relative velocity displacement 

𝑌𝐼 Linear bending stiffness 𝑤𝐵 Base displacement of the beam 

𝑥 Longitudinal spatial coordinate 𝒜𝐵 Acceleration amplitude of the beam base 

𝑦 Lateral spatial coordinate 𝑤(𝑥) Transverse deflection of the beam 

𝑧 Transversal spatial coordinate 𝐻 
Nonlinear electric enthalpy density of the 

piezoelectric material 

𝑆1 Longitudinal strain 𝐿 Lagrangian 

𝐸3 Transverse electric field 𝑊𝑒𝑥𝑡  External work 

𝑣 Voltage accross the piezoelectric electrodes 𝑇 Total kinetic energy 

𝑉 Voltage amplitude 𝐹𝑛 Non-conservative force 

𝑟 Generalized spatial coordinate 𝐼𝑛 Leakage current 

𝑅 
Amplitude of the generalized spatial 

coordinate 𝑟 
□̇ Temporal derivative 

𝜆 Flux linkage □′ Spatial derivative according to 𝑥 coordinate 

 

 

 

1. Introduction 

 
Vibration energy harvesting is recognized as a relevant solution to supply electrical power to wireless sensors 

nodes [1–3]. In order to reach sufficient power density, the use of electromechanical resonators have been shown 

required for inertial energy harvesting [4,5]. However, the resulting narrow frequency bandwidth of vibration 

energy harvesters is still an important issue [6,7]. A promising solution to address this problem is to use nonlinear 

electrical techniques [8,9] and power management circuits [10,11] able to tune the resonant frequency of 

piezoelectric harvesters. For example, this solution made it possible to expect a relative bandwidth of 43 % with a 

PZN-PT-based cantilever [9]. In order for this approach to be effective, it is necessary to employ piezoelectric 

harvesters with very strong global electromechanical coupling coefficients 𝑘² (𝑘2 > 10 %). Proposals for the 

design of such harvesters have therefore recently been made in the literature [12,13] and offer promising 

perspectives for broadband vibration energy harvesting. Nevertheless, the presence of nonlinear dielectric losses 

in the piezoelectric materials have been shown to considerably reduce the harvested power when strongly coupled 

materials are used [14]. Such dielectric losses must be taken into account in the models as neglecting them can 

lead to a significant error in the expected harvested power. Since a model to predict the behavior of the harvester 

taking into account non-linear dielectric losses is absent from the state of the art, this paper proposes a new 

nonlinear model corroborated by experimental results for strongly coupled energy harvester. 

The linear losses of piezoelectric materials have already been studied in the prior art for various piezoelectric 

devices [15,16]. As an example, Uchino et al. expressed the necessity to consider a piezoelectric loss tangent 



 

 

coefficient especially for actuator applications [17]. Recently, Wild et al. discussed the difficulty to distinguish 

dissipation origin (mechanical, dielectric and piezoelectric) depending on the piezoelectric constitutive equation 

form [18]. Concerning energy harvesting applications, dielectric and piezoelectric losses in piezoelectric materials 

are often neglected [19,20] as they don’t have a significant influence for low and moderately coupled devices. The 

electric field experienced is indeed usually weak in the materials. Nevertheless, the consideration of a dielectric 

loss coefficient has been shown necessary for devices that include strongly coupled materials [14,21]. While 

models to consider linear dielectric losses have been proposed in the literature [21], nonlinear dielectric losses can 

be experienced in the very strongly coupled devices. Indeed, Morel et al. demonstrated the increase of the 

equivalent dielectric loss tangent on a PZN-PT based cantilever under an increasing electric field [14]. They also 

observed such nonlinear dielectric losses with the increase of the vibration amplitude. They indeed showed an 

experimental decrease of 30% of the power due to the increasing electric field in the material. Therefore, 

considering nonlinear dielectric losses is necessary to model the behaviour of vibration energy harvesters in the 

case of prototypes involving strongly coupled materials. 

In this paper, we introduce a model that takes material nonlinearities of strongly coupled piezoelectric harvesters 

into account. The model, based on the Rayleigh method, is introduced in section 2. In order to validate this model, 

a strongly coupled prototype and the experiments conducted are then presented in section 3. The section 4 is 

dedicated to results presentation and discussion. In this last section, we discuss the importance of considering a 

dielectric nonlinear losses coefficient.  

 

2. Modelling 
 

2.1. Discussion about dielectric loss coefficients 

 

This section deals with the loss considerations made in the present work. Losses in piezoelectric materials have 

been discussed in various ways in the literature [17,18]. It seems important to clearly state the intention of this 

paper and the definition of the loss coefficients used. 

 

As mentioned by Wild et al. [18], the terms “dielectric loss”, “mechanical loss” and “piezoelectric loss” are 

intended to describe physical contributions that differ depending on the considered form of the piezoelectric 

constitutive equation (the e-form,  d-form, h-form and g-form [22]). For the analysis of vibration energy harvesters, 

the base acceleration is usually fixed and the output voltage on the electrodes is measured, and therefore, the e-

form is used. For this form of constitutive equation, the energy loss per cycle that increases with the displacement 

(strain in case of local consideration) at constant voltage (electrical field in case local consideration) is considered 

in the term of “mechanical loss”. Moreover, the term of “dielectric loss” represents the energy loss per cycle that 

increases with the output voltage at constant displacement. Finally, the “piezoelectric” term induces an effect that 

increases with both displacement and electric field. This effect can induce either losses or an increase in the 

harvested power [23]. The above definitions of “mechanical”, “piezoelectric” and “dielectric” losses will be used 

in this paper. 

 

According to the work of Leadenham and Erturk [19], a second-order nonlinear mechanical loss coefficient 

must be considered in order to model the behaviour of PZT based cantilevers. Both linear and non-linear 

mechanical dissipations must be taken into account in the model. The energy loss per cycle  due to linear 

mechanical loss 𝑈𝑚
lin is proportional to the square of the relative displacement of the beam 𝑅 as expressed in (1) 

and the energy loss per cycle  due to nonlinear mechanical loss 𝑈𝑚
nonlin is proportional to the cube of the relative 

displacement of the beam 𝑅 as mentioned in (2). 

 

𝑈𝑚
lin ∝ 𝑅2 (1) 

𝑈𝑚
nonlin ∝ 𝑅3 (2) 

 

The model proposed in [19] did not consider piezoelectric and dielectric losses as this did not seem necessary 

for the studied PZT-based cantilevers. Considering linear dielectric losses, the energy loss per cycle 𝑈𝑑
lin is 

proportional to the output voltage amplitude 𝑉 of the harvested as expressed in (3) where 𝑉 is the voltage 

amplitude. 

  

𝑈𝑑
lin ∝ 𝑉2 (3) 



 

 

 

Considering a second-order nonlinear dielectric loss coefficient, the energy loss per cycle due to electrical 

nonlinear loss 𝑈𝑑
nonlin is proportional to the cube of the voltage amplitude. 

 

𝑈𝑑
nonlin ∝ 𝑉3 

 
(4) 

Since the experimentally observed dissipations as a function of the voltage are due to both piezoelectric and 

dielectric hysteresis [24], piezoelectric loss coefficients should be considered in addition to dielectric loss 

coefficients to finely model the harvesters behavior. However, we show in this paper that only dielectric loss 

coefficients are sufficient for the phenomenological modelling of the performance of vibration energy harvesters. 

Dielectric losses and piezoelectric losses have equivalent influences on the mean power harvested by piezoelectric 

vibration energy harvesters, as long as the vibration frequency remains in the vicinity of the resonant frequency of 

the harvester. Since off-resonance states are, in most cases, out of interest in energy harvesting applications 

(because of the low harvested power level), distinguishing these two kind of losses appears unnecessary 

 

Therefore, we propose a nonlinear model that takes into account linear and nonlinear dielectric losses in addition 

to linear and nonlinear mechanical losses as proposed by Leadenham and Erturk [19]. The model also considers a 

nonlinear stiffness coefficient and a nonlinear coupling coefficient in order to take the mechanical softening of the 

piezoelectric material into account. The device studied is presented in the following section. The model is then 

introduced in section 2.3. 

 

2.2. Design and parameters of the system 

 

The studied harvester consists of a bimorph cantilever with a bulky proof mass at the tip end (Figure 1.a) and 

for which the two piezoelectric layers have the same length (𝐿𝑏) and the same width (𝐵) as the substrate. The 

piezoelectric layers have the same thicknesses (ℎ𝑝) and are completely covered with electrodes on the bottom and 

top surfaces, which are connected in parallel (Figure 2). Figure 1.b shows the problem parameters of the proposed 

cantilever while bending. The proof mass, symmetrical with respect to the neutral axis of the beam, is modelled 

with an equivalent point mass defined by a mass 𝑀𝑡 and a rotary inertia 𝐼𝑡 placed at a distance 𝐷𝑡  from the free 

end of the beam on the neutral axis.  

 

a)   b)   

Figure 1: a) Cantilever with proof mass and b) cantilever during bending. 

 

As the beam length is much larger compared to its thickness (𝐿𝑏 > 10 (2ℎ𝑝 + ℎ𝑠)), the Euler-Bernoulli theory 

can be used. Furthermore, as the beam length is much larger than the width (𝐿𝑏 > 5𝐵), the plane stress assumption 

is considered. Finally, due to the electrodes’ architecture, the displacement field and the electric field are only 

considered in the transverse direction (𝐸3 and 𝐷3 along the 𝑧 axis). 

The model introduced here is derived from the two degree of freedom linear model that we presented in [12], 

focusing on the first resonant mode. The Hamilton principle and the Rayleigh method are used to determine the 

equation of motion and the equation of current. Unlike the model in [12], nonlinear terms are introduced in the 

enthalpy expression to consider the mechanical softening and piezoelectric coefficient nonlinearity. Moreover, 
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Figure 2: Beam layers and electrode connection. 𝑣 represents the voltage across the electrodes. 
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linear and nonlinear losses are considered as an external work by adding non-conservative forces and leakage 

currents. 

The Rayleigh method is detailed, and the equations of motion and current are determined in section 2.3. The 

expression of the first mode shape is determined in section 2.4 and the equation is solved to find the steady state 

solution in the case of sinusoidal excitation in section 2.5.  

 

2.3. Hamilton principle 

 

The Hamilton principle applied to the piezoelectric harvester is described in (5) where 𝛿 represents virtual 

variations of the quantities between time  0 and  1. 𝐿 is the Lagrangian that represents the difference of the kinetic 

energy 𝑇 and the total potential energy 𝑈 as expressed in (6).  𝑊𝑒𝑥𝑡 is the external work that considers the harvested 

energy and the losses. 

The total potential energy 𝑈 of the piezoelectric bimorph is the sum of the potential energies of the substrate, 

𝑈𝑠, and of the piezoelectric material 𝑈𝑝 as expressed in (7). The expressions of 𝑈𝑠 and 𝑈𝑝 are given in (8) and (9) 

respectively. The equivalent stiffness of the substrate 𝑌𝑠
𝑒𝑓

 is equal the Young modulus 𝑌𝑠 of the substrate as the 

plane stress assumption is considered. 𝑆1 is the longitudinal strain in the material. 𝐻 represents the enthalpy of the 

piezoelectric material. 𝒱𝑝 and 𝒱𝑠 represent the volumes of the piezoelectric patches and the substrate respectively. 

According to the work of Leadenham and Erturk [19], the nonlinear electric enthalpy density expression in the 

piezoelectric material is given by equation (10) where 𝐸3 is the electric field, 𝑐11
𝑒𝑓

 and 𝑒31
𝑒𝑓

 represent the linear 

elastic and piezoelectric equivalent coefficients respectively. 𝜖33
𝑒𝑓

 is the linear dielectric permittivity equivalent 

coefficient. 𝑐111 is the nonlinear elastic constant and 𝑒311is the nonlinear piezoelectric constant. The function sgn() 

represents the sign function as expressed in (11). As the plane stress assumption is considered, the equivalent linear 

parameters are given from the matrix coefficients in equations (12) to (14).  

 

 

 

The longitudinal strain in the beam is given in (15) according to the Euler-Bernoulli theory where 𝑤(𝑥  ) is the 

transverse (in the 𝑧 direction) deflection of the beam. The apostrophes represent the spatial derivative according 

to 𝑥 coordinate. As discussed in [25], the electric field must be considered variable across the patches thicknesses 

for strongly coupled piezoelectric materials. Then the expression of the transverse electric field is given by (16) 

where 𝜆 is the flux leakage as introduced in [26] and expressed in (17). 𝑧𝑚 = (ℎ𝑝 + ℎ𝑠)/2 is the center position 

of the upper piezoelectric patch. With this definition −𝑧𝑚 is the center position of the lower piezoelectric patch. 

 

 

∫ (𝛿𝐿 + 𝛿𝑊𝑒𝑥𝑡)𝑑 = 0
𝑡1

𝑡0

 (5) 

𝐿 = 𝑇 − 𝑈 

 
(6) 

𝑈 = 𝑈𝑝 + 𝑈𝑠 (7) 

𝑈𝑠 =
1

2
∫ 𝑌𝑠

𝑒𝑓
𝑆1
2𝑑𝒱𝑠

𝒱𝑠

 (8) 

𝑈𝑝 = ∫ 𝐻𝑑𝒱𝑝
𝒱𝑝

 (9) 

𝐻 =
1

2
𝑐11
𝑒𝑓
𝑆1
2 +

1

 
𝑐111𝑆1

3sgn(𝑆1) − 𝑒31
𝑒𝑓
𝑆1𝐸3 −

1

2
𝑒311𝑆1

2sgn(𝑆1)𝐸3 −
1

2
𝜖33
𝑒𝑓
𝐸3
2 (10) 

sgn(𝑓) = {
1       if  𝑓 ≥ 0
−1     if  𝑓 < 0

 (11) 

𝜖33
𝑒𝑓

= 𝜖33
𝑇 −

𝑑31
2

𝑠11
𝐸  (12) 𝑐11

𝑒𝑓
=

1

𝑠11
𝐸  (13) 𝑒31

𝑒𝑓
=
𝑑31

𝑠11
𝐸  (14) 

𝑆1 = −𝑧𝑤′′(𝑥  ) (15) 



 

 

 

The total potential energy 𝑈 can finally be obtained using the equations (8) to (10) and (15) and (16) and is 

expressed in (18) where 𝑌𝐼 is the linear bending stiffness expressed in (19). 𝑘2̃ is the second order mechanical 

bending stiffness per unit length expressed in (20), 𝛼 is the linear coupling term per unit length expressed in (21), 

𝜃2̃ is the second order coupling term per unit length expressed in (22), 𝐶𝑝 is the equivalent clamped capacitance 

expressed in (23). 

 

𝑈 =
1

2
∫ {𝑌𝐼(𝑤′′)2 +

1

 
𝑘2̃(𝑤

′′)3sgn(𝑤′′) − [ α  𝑤′′ + 𝜃2̃(𝑤
′′)2sgn(𝑤′′)]�̇�}

𝐿𝑏

0

𝑑𝑥 −
1

2
𝐶𝑝�̇�

2 
(18) 

𝑌𝐼 = 𝐵 [𝑌𝑠
𝑒𝑓 ℎ𝑠

3

12
+ 𝑐11

𝑒𝑓
(
2

 
(ℎ𝑝 +

ℎ𝑠
2
)
3

−
ℎ𝑠
3

12
+ 𝑘𝑒31

2
ℎ𝑝
3

6
) ] (19) 

𝑘2̃ = 𝐵
1

2
ℎ𝑝 [𝑐111(ℎ𝑝

3 + 4ℎ𝑝
2ℎ𝑠 +  ℎ𝑝ℎ𝑠

2 + ℎ𝑠
3) +

e31
𝑒𝑓

𝜖33
𝑒𝑓
 𝑒311(ℎ𝑝

3 + ℎ𝑝
2ℎ𝑠) ] (20) 

𝛼 = 𝑒31
𝑒𝑓
𝐵(ℎ𝑝 + ℎ𝑠) (21) 

𝜃2̃ =
1

6
𝑒311𝐵(4ℎ𝑝

2 + 6ℎ𝑝ℎ𝑠 +  ℎ𝑠
2) (22) 

𝐶𝑝 =
𝐵2𝐿𝑏𝜖33

𝑒𝑓

ℎ𝑝
 (23) 

 

The total kinetic energy 𝑇 considered in the Hamilton principle consists of the kinetic energies of the beam and 

of the proof mass including its rotary inertia is expressed in (24). 𝑚 represents the mass per unit length of the 

bimorph expressed in (25) where 𝜌𝑠 and 𝜌𝑝 are the densities of the piezoelectric material and of the substrate 

respectively. �̇�𝐵 is the base (clamped end) velocity, 𝑤𝐿𝑏̇  is the beam end relative velocity, 𝑤𝐿𝑏̇
′ is the beam end 

speed of rotation. 

 

 

 

Using the Rayleigh approach, 𝑤(𝑥  ) can be expressed by the mode shape 𝜙(𝑥) multiplied by a generalized 

mechanical coordinate 𝑟( ) as given in (26). 𝜙(𝑥) is the first resonant frequency mode shape and 𝑟( ) describes 

the displacement of a point on the beam as a function of time. Consequently, we can define two generalized 

coordinates that are the displacement at the end of the beam 𝑟( ) and the flux leakage 𝜆( ). The variation of the 

Lagrangian can then be expressed as (27). 

 

𝑤(𝑥  ) = 𝜙(𝑥)𝑟( ) (26) 

 

𝛿𝐿(𝑟 �̇� �̇�) =
𝜕𝐿

𝜕�̇�
𝛿�̇� +

𝜕𝐿

𝜕𝑟
𝛿𝑟 +

𝜕𝐿

𝜕�̇�
𝛿�̇� 

 

(27) 

 

As discussed in section 2.2, the mechanical losses and dielectric losses are considered by a non-conservative 

force 𝐹𝑛 and a leakage current 𝐼𝑛 that are expressed in (28) and (29) respectively, where 𝑏1 is the linear mechanical 

𝐸3 = −
�̇�

ℎ𝑝
sgn(𝑧) +

𝑒31
𝑒𝑓

𝜖33
𝑒𝑓
(𝑧 − 𝑧𝑚sgn(𝑧))𝑤

′′(𝑥  ) 

 

(16) 

�̇� = 𝑣 (17) 

𝑇 =
1

2
∫ 𝑚[�̇� + 𝑤�̇�( )]

2𝑑𝑥1 
𝐿𝑏

0

+ [𝑀𝑡(𝑤𝐿𝑏
̇ + 𝑤�̇�)

2
+𝑀𝑡𝐷𝑡 ((𝑤𝐿𝑏

̇ + 𝑤�̇�) 𝑤𝐿𝑏
̇ ′ + 𝑤𝐿𝑏

̇ ′(𝑤𝐿𝑏
̇ + 𝑤�̇�) )  

+ (𝑀𝑡𝐷𝑡
2 + 𝐼𝑡) 𝑤𝐿𝑏

̇ ′
2
] 

(24) 

𝑚 = 𝐵(ℎ𝑠𝜌𝑠 + 2ℎ𝑝𝜌𝑝) (25) 



 

 

structural loss coefficient, 𝑏2 is a second order structural loss coefficient, 𝑑1 is a linear dielectric loss coefficient, 

𝑑2 is a second order dielectric loss coefficient. Considering that the harvester is connected to a resistive load 𝑅𝑙𝑜𝑎𝑑 , 

the variation of the external work is expressed by equation (30). 

 

 

 

Integrating by parts the Lagrangian variation in (27) and using the work expression in (30), the Hamilton 

principle given in (5) becomes the equation (31). 

 

Replacing the Lagrangian with the expressions of the potential energy (18) and of the kinetic energy (24) in 

equation (31) allows to deduce equations (32) and (33), where the equivalent mass 𝑀, the linear stiffness 𝐾, the 

linear coupling term Θ, the forcing term 𝐵𝑓, the nonlinear stiffness 𝐾2 and the nonlinear coupling term Θ2 are 

expressed in equations (34) to (39). 

 

 

. 

𝑀 = 𝑚∫ 𝜙(𝑥)2
𝐿𝑏

0

𝑑𝑥 +𝑀𝑡[𝜙(𝐿𝑏)]
2 + 2𝑀𝑡𝐷𝑡𝜙

′(𝐿𝑏)𝜙(𝐿𝑏) + (𝐼𝑡 +𝑀𝑡𝐷𝑡
2)[𝜙′(𝐿𝑏)]

2 (34) 

𝐾 = 𝑌𝐼 ∫ (𝜙′′(𝑥))2𝑑𝑥
𝐿𝑏

0

 (35) 

Θ = 𝛼𝜙′(𝐿𝑏) (36) 

𝐵𝑓 = 𝑚∫ 𝜙(𝑥)
𝐿𝑏

0

𝑑𝑥 + 𝑀𝑡𝜙(𝐿𝑏) + 𝐷𝑡𝑀𝑡𝜙
′(𝐿𝑏) (37) 

𝐾2 = 𝑘2̃∫ sgn(𝜙′′(𝑥))(𝜙′′(𝑥))3𝑑𝑥
𝐿𝑏

0

 (38) 

Θ2 = 𝜃2̃∫ sgn(𝜙′′(𝑥))(𝜙′′(𝑥))2𝑑𝑥
𝐿𝑏

0

 (39) 

 

2.4. Beam mode shape expression 

 

The mode shape 𝜙(𝑥) determination of the first bending resonant mode of a cantilever with proof mass was 

previously detailed in [12]. As the beam mass is considered small compared to the mass of the proof mass, the 

mode shape can be expressed analytically as a function of the proof mass parameters and the beam length. If 

the expression of the mode shape is normalized by the beam end displacement (𝜙(𝐿𝑏) = 1), 𝑟( ) represents the 

beam displacement at 𝑥 = 𝐿𝑏 and 𝜙(𝑥) is expressed by (40). 𝑎 and 𝑏 are coefficients that are expressed in the 

(41) and (42) respectively. 𝛽 is the rotation amplitude to deflection amplitude ratio as introduced in [12] and 

expressed in (43), where 𝐽𝑡 is the ratio between the rotation inertia and the mass defined as 𝐽𝑡 = 𝐼𝑡/𝑀𝑡. 

 

𝜙(𝑥) =
𝑥2 ( 𝑏 − 𝑎

𝑥
𝐿𝑏
  +   𝑎)
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(40) 

𝐹𝑛 = −[𝑏1𝑟 sgn(𝑟) + 𝑏2𝑟
2]sgn(�̇�) (28) 

𝐼𝑛 = −[𝑑1 �̇� sgn(𝑣) + 𝑑2𝑣�̇�] sgn(�̇�) (29) 

𝛿𝑊𝑒𝑥𝑡 = −
�̇�

𝑅𝑙𝑜𝑎𝑑
𝛿𝜆 − [𝑏1𝑟 sgn(𝑟) + 𝑏2𝑟

2]sgn(�̇�)𝛿𝑟 − [𝑑1 𝜆 sgn(�̇�) + 𝑑2�̇�𝜆 ] sgn(𝜆 )𝛿𝜆  (30) 
 

∫ {[−
𝜕

𝜕 
(
𝜕𝐿

𝜕𝑟
) +

𝜕𝐿

𝜕𝑟
− [𝑏1𝑟 sgn(𝑟) + 𝑏2𝑟

2]sgn(�̇�)] 𝛿𝑟
𝑡1

𝑡0

+ [−
𝜕

𝜕 

𝜕𝐿

𝜕�̇�
−
�̇�

𝑅
− [𝑑1 𝜆 sgn(�̇�) + 𝑑2�̇�𝜆 ] sgn(𝜆 )] 𝛿𝜆} 𝑑 = 0 

 

(31) 

𝑀𝑟 + 𝐾𝑟 + 𝐾2𝑟
2sgn(𝑟) − Θ𝑣 − Θ2𝑣𝑟sgn(𝑟) + (𝑏1𝑟sgn(𝑟) + 𝑏2𝑟

2)sgn(�̇�) = −𝐵𝑓𝑤 𝐵 (32) 

Θ�̇� + Θ2𝑟�̇�sgn(𝑟) + 𝐶𝑝�̇� +
𝑣

𝑅𝑙𝑜𝑎𝑑
+ (𝑑1�̇�sgn(𝑣) + 𝑑2𝑣�̇�)sgn(�̇�) = 0 (33) 



 

 

 

𝑎 =
6 (2 − 𝐿𝑏𝛽 )

𝐿𝑏
2  (41) 𝑏 =

2 (2 𝐿𝑏  𝛽 −   )

𝐿𝑏
2  (42) 

 
𝛽

= −
  (2 𝐷𝑡 + 𝐿𝑏)

  𝐽𝑡  − (9 𝐷𝑡
4 +  18 𝐷𝑡

3𝐿𝑏  +  15 𝐷𝑡
2𝐿𝑏

2 +  18 𝐷𝑡
2𝐽𝑡  +  6 𝐷𝑡 𝐿𝑏

3 +  18 𝐷𝑡 𝐿𝑏 𝐽𝑡  +  𝐿𝑏
4 +    𝐿𝑏

2 𝐽𝑡  +  9 𝐽𝑡
2)

1
2 +    𝐷𝑡

2 − 𝐿𝑏
2
 

 

(43) 

 

 

2.5. Model resolution 

 

As done in [19], the method of harmonic balance is used to solve the nonlinear differential equations (32) and 

(33). For an harmonic base acceleration with constant amplitude (𝑤𝐵 ( ) = 𝒜𝐵 cos(Ω )), we assume that the 

displacement 𝑥 and the voltage 𝑣 are harmonic and we consider the first harmonic terms of the Fourier series 𝑅1, 

𝑅2, 𝑉1 and 𝑉2 as expressed in (44) and (45).  

 

Replacing 𝑟( ) and 𝑣( ) in equations (32) and (33) and considering the first harmonic terms in the application 

of the harmonic balance results to equations (46) to (49) where 𝑅 and 𝑉 are the displacement and voltage 

amplitudes given by √𝑅1
2 + 𝑅2

2 and √𝑉1
2 + 𝑉2

2 respectively. 

  

 

Equations (46) to (49) are then solved thanks to Newton-Raphson algorithm in order to determine the voltage 

amplitudes (𝑉1 and 𝑉2) and relative displacement amplitudes (𝑅1 and 𝑅2) at given excitation pulsation 𝜔, resistive 

load 𝑅𝑙𝑜𝑎𝑑  and base acceleration amplitude 𝒜𝐵. With this resolution, we are interested in determining the 

amplitudes of the beam displacement 𝑟( ) and the voltage 𝑣( ). The experimental validation of the model is 

detailed in the next section.  

 

3. Experiments and results 

  
3.1. Device introduction 

 

The experimental validation was carried out on the strongly coupled cantilever based on PMN-PT single crystals 

shown in Figure 3. The PMN-PT material we used is the [001] poled PMN-0.29PT produced by TRS ceramics 

(TRS X2B). The PMN-PT patches have been cut to size by the manufacturer and glued in our laboratory on a steel 

beam with epoxy glue (Epotecny E505). The proof mass is made from two steel sheets bonded on the substrates 

with a 3M® epoxy glue. The geometrical parameters are given in Table 1 and the material parameters are given in 

Table 2. 

 

 
Figure 3 : Picture of the assembled prototype. 
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𝑟( ) =  𝑅1 cos(ω ) + 𝑅2 sin(ω ) (44) 

𝑣( ) =  𝑉1 cos(ω ) + 𝑉2 sin(ω ) (45) 

−𝑀𝜔2𝑅1 + (
2

𝜋
𝑏1 +

4

 𝜋
𝑏2𝑅) 𝑅2 + (𝐾 +

8

 𝜋
𝐾2𝑅)𝑅1 − 𝛩𝑉1 −

4

 𝜋
𝛩2 [

(2𝑅1
2 + 𝑅2

2)𝑉1 + 𝑅1𝑅2𝑉2
𝑅

]

+ 𝐵𝑓𝒜𝐵 = 0 

(46) 

−𝑀𝜔2𝑅2 − (
2

𝜋
𝑏1 +

4

 𝜋
𝑏2𝑅)𝑅1 + (𝐾 +

8

 𝜋
𝐾2𝑅)𝑅2 − 𝛩𝑉2 −

4

 𝜋
𝛩2 [

(2𝑅2
2 + 𝑅1

2)𝑉2 + 𝑅1𝑅2𝑉1
𝑅

] = 0 (47) 

𝐶𝑝𝜔𝑉2 +
1

𝑅𝑙𝑜𝑎𝑑
𝑉1 + (𝛩 +

4

 𝜋
𝛩2𝑅)𝜔𝑅2 +

2

𝜋
𝑑1𝜔𝑉1 + 𝑑2

4

 𝜋
𝑉𝜔𝑉1 = 0 (48) 

𝐶𝑝𝜔𝑉1 −
1

𝑅𝑙𝑜𝑎𝑑
𝑉2 + (𝛩 +

4

 𝜋
𝛩2𝑅)𝜔𝑅1 −

2

𝜋
𝑑1𝜔𝑉2 − 𝑑2

4

 𝜋
𝑉𝜔𝑉2 = 0 (49) 



 

 

 

 
 

Table 1: Geometrical parameters of the 

prototype. 

Material PMN-PT 

Beam length 𝐿𝑏 45 mm 

Mass length 𝐿𝑚 45 mm 

Height of mass 𝐻𝑚 5 mm 

Beam and mass width 𝐵 10 mm 

Substrate thickness ℎ𝑠 0.5 mm 

Piezoelectric thickness ℎ𝑝 0.5 mm 

 

 

Table 2: Properties of the PMN-PT 

material [27]. 
d31 -699 pm.V-1 

𝑠11
𝐸  52.1×10-12Pa-1 

𝜖33
𝑇  5400 ϵ0 F.m-1 

𝜌𝑝 7750 kg.m-3 

 

Based on the material parameters given in Table 2, the expected values of the linear global parameters can be 

determined from equations (34) to (39) and are given in Table 3. 

 

Table 3 : Coefficients deduced from the model and the material parameters. 

Name Coefficient Value 

Equivalent mass 𝑀 35.4 g 

Forcing term 𝐵𝑓 25.4 g 

Linear stiffness 𝐾 1 358 N/m 

Coupling term Θ -3.70×10-3 N/V 

Capacitance 𝐶𝑝 69.1×10-9 F 

 

 

3.2. Measurements under vibration and results 

 

The realized experiments consist in measuring the output power and the displacement amplitude under harmonic 

vibration excitation for various accelerations levels and various resistive loads. The experimental setup, depicted 

in Figure 4, is composed of an electromagnetic shaker (K2075E-HT), an accelerometer (PCB Piezotronics 

356A17) are a programmable electrical resistance that are controlled from a computer thanks to a dSpace board. 

A dedicated Matlab script defines the acceleration level, frequency and control the resistive loads. The experiments 

have been done for 5 acceleration levels between 0.019 m/s² and 0.5 m/s² and 60 resistive loads 𝑅𝑙𝑜𝑎𝑑  

logarithmically spaced between 1 kΩ and 10 MΩ over 95 excitation frequencies between 27 Hz and 33 Hz. 

 

 
Figure 4 : Experimental setup for characterization under vibrations. 

 

The harvested power is represented in Figure 5 as a function of the resistive load 𝑅𝑙𝑜𝑎𝑑  and the excitation 

frequency 𝑓𝑒𝑥𝑡  for the 5 acceleration amplitudes 𝒜𝐵. As the proposed prototype has a strong global 

electromechanical coupling coefficient 𝑘² and a high quality factor 𝑄𝑚  ([
𝑘2

1−𝑘2
] 𝑄𝑚 > 9 as 𝑘2 = 16% and 𝑄𝑚 >

50), two power peaks are observed. One power peak is reached near the short-circuit resonant frequency (about 
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board



 

 

29 Hz) for a small resistive load (about 10 kΩ), the second peak is reached near the open-circuit resonant frequency 

(about 31.5 Hz) for a high resistive load (about 1.5 MΩ). As the prototype exhibits mechanical softening, the 

power peaks occur at lower frequencies with increasing acceleration level. 

 

  
Figure 5 : Measured mean power as function of frequency and resistive load for 5 acceleration amplitudes 

𝒜𝐵. The mean power is given by 𝑃 = 𝑉2/𝑅𝑙𝑜𝑎𝑑 . 

 

 

The experimental equivalent parameters of the equations (32) and (33) have been determined by fitting the 

power and displacement amplitude deduced from the model to the measured values. For this purpose, the amplitude 

error between the model mean power and the experiment was minimised by varying the equivalent parameters. 

The measured power and displacement for several resistive loads are represented in Figure 6 and Figure 7 

respectively. The parameters derived from the fit are given in Table 4.  

 

 
Figure 6 : Output mean power as a function of the excitation frequency for resistive loads of 1.2 kΩ, 2.6 kΩ, 

5.6 kΩ, 12 kΩ, 27 kΩ, 57 kΩ, 126 kΩ, 276 kΩ, 602 kΩ, 1.3 MΩ, 2.9 MΩ and 6.3 MΩ: experimental results 

and model results with fitted coefficients. 



 

 

 
Figure 7 :  Displacement amplitude 𝑅 as a function of the excitation frequency for resistive loads of 1.2 kΩ, 

2.6 kΩ, 5.6 kΩ, 12 kΩ, 27 kΩ, 57 kΩ, 126 kΩ, 276 kΩ, 602 kΩ, 1.3 MΩ, 2.9 MΩ and 6.3 MΩ: experimental 

results and model results with fitted coefficients. At 0.5 m/s², points are missing from the displacement 

measurement as the displacement could be only measured in the  ±0.2 mm range. 

 

Table 4 : Coefficients deduced from the experiments. 

Name Coefficient Value 
Equivalent mass 𝑀 35.2 g 

Forcing term 𝐵𝑓 23.1 g 
Linear stiffness 𝐾 1 178 N/m 
Coupling term Θ -3.05×10-3 N/V 
Capacitance 𝐶𝑝 41.9×10-9 F 

Nonlinear stiffness 𝐾2 -2.44×105 N/m² 
Nonlinear coupling term Θ2 1,22 N/Vm 
Linear mechanical loss 𝑏1 12.8 N/m 

Nonlinear mechanical loss 𝑏2 8,57×104 N/m² 
Linear dielectric loss 𝑑1 0 F 

Nonlinear dielectric loss 𝑑2 2,03×10-10 F/V 
 

The average error between the model and experiment is calculated using equation (50) where 𝑛𝑎𝑐𝑐, 𝑛𝑟𝑒𝑠 and 

𝑛𝑓𝑟𝑞 are the numbers of accelerations, resistances and frequencies which are equal to 5, 60 and 95 respectively. 

𝑃𝑒𝑥𝑝 is the experimental mean power and 𝑃𝑡ℎ is the mean power derived from the model. 

 

The average error the model and experiment is equal to 9.5 % for power evaluation. The average error for the 

displacement evaluation is equal to 14.4 % for the 4 exploitable acceleration levels (i.e. measurements the 0.5 m/s² 

is not considered due to missing points). 

 

4. Discussions 

 

4.1. Discussion on model validation 

 
It can be seen from Figure 6 and Figure 7 that the proposed model provides a good evaluation of the 

experimental behaviour of the cantilever-type generator. The presented model is therefore able to predict the 

nonlinear behaviour of strongly coupled harvesters subjected to various acceleration levels. 

1

𝑛𝑎𝑐𝑐𝑛𝑟𝑒𝑠𝑛𝑓𝑟𝑞
∑ ∑ ∑ (

|𝑃𝑡ℎ − 𝑃𝑒𝑥𝑝|

𝑃𝑒𝑥𝑝
) 

𝑛𝑓𝑟𝑞𝑛𝑟𝑒𝑠𝑛𝑎𝑐𝑐

 

 

(50) 



 

 

Furthermore, the linear parameter deduced from model fitting (Table 3) are close to the linear parameters 

deduced from the material parameters of the material supplier (Table 4), which means that the model is also able 

to approximately predict the performance of a harvester in a design phase from the parameters given a priori. The 

differences, especially on the linear stiffness 𝐾 and linear coupling term Θ can be explained by uncertainties in 

material parameters, manufacturing and clamping conditions as discussed in previous work [12]. 

 
4.2. Dielectric losses consideration  

 

It can be noted that the linear dielectric loss coefficient 𝑑1 is taken as zero in the model fitting (Table 4). The 

nonlinear dielectric loss coefficient seems to be more relevant to consider the harvester behavior than the linear 

one. In order to analyze the influence of the nonlinear dielectric loss coefficient on the harvested power, the power 

at optimal resistive loads is represented in Figure 8 as a function of the frequency for 3 acceleration levels. The 

harvested power is shown with the consideration of the dielectric loss coefficient 𝑑2 and without its consideration. 

Not taking the nonlinear dielectric loss coefficient into account is equivalent to using the model presented in [19].  

The power for optimal pairs of parallel capacitive and resistive loads is also plotted to deduce the expected 

results when the resonant frequency of the harvester is electrically tuned. Indeed, non-linear electrical interfaces, 

such as those based on Synchronous Electric Charge Extraction (SECE) techniques, are able to emulate 

combinations of resistive and capacitive loads in order to tune the resonant frequency of strongly coupled 

piezoelectric harvesters [28]. The harvested power for resistive and capacitive loads is a relevant indicator that 

allows us to know the expected power using a non-linear electrical interface. As an example, the model predicts 

that the frequency bandwidths defined at half of the maximal power are equal to 3.1 Hz and 3.7 Hz for optimal 

resistive and capacitive loads and acceleration amplitudes 𝒜𝐵 of 0.019 m/s² and 0.5 m/s² respectively (Figure 8). 

This represents relative bandwidths of 10 % and 12.3 % of the center frequencies respectively. This bandwidths 

corresponds to the minimum bandwidth expected when using the short-circuit synchronous electric charge 

extraction (SC-SECE) technique [9]. The expected behavior of a strongly coupled harvester with material 

nonlinearities has been validated experimentally with combinations of resistive and capacitive loads in a previous 

work [29]. 

  
Figure 8: Model-derived power harvested by the proposed piezoelectric cantilever versus frequency for 

optimal resistive loads and optimal pairs of parallel capacitive and resistive loads.  

 

The average errors between the models and experiment on power with optimal resistive loads are calculated for 

the three acceleration levels and are given in Table 5.  

 

Table 5 : Average error between the models and experiment on power with optimal resistive loads  

Acceleration amplitude 0.019 m/s² 0.097 m/s² 0.5 m/s² 

Average error of the model with dielectric losses 3,6% 7,1% 6,5% 

Average error of the model without dielectric losses 3,4% 8,6% 12,3% 

 

32 µW



 

 

The proposed model offers a better accuracy on the power evaluation than the literature model with the increase 

of the acceleration amplitude. From the model (Figure 8), we can see that the nonlinear dielectric loss coefficient 

has a significant influence on the power harvested near the open-circuit resonant frequency (around 31.5 Hz). This 

is because the load impedance magnitudes required to maximize the power are higher near the open-circuit 

resonant frequency and lower near to the short-circuit resonant frequency. This means that the optimal voltage 

close to 31.5 Hz is higher than the optimal voltage close to 29 Hz, as shown in Figure 9. Therefore, since the 

energy loss per cycle increase with the voltage amplitude when we take into account dielectric losses, lower output 

power is expected around 31.5 Hz compared to the case when these losses are not taken into account. 

 

  
Figure 9 : Voltage magnitude derived from the model as a function of frequency for optimal resistive loads 

and optimal pairs of parallel capacitors and resistors. 

 

The model (Figure 8) also shows that the influence of dielectric losses increases with the acceleration level. 

While the influence is hardly noticeable at low level (0.019 m/s²), a strong influence is noticed at high acceleration 

level (0.5 m/s²). Considering the dielectric losses, the maximum power harvested at the high optimal resistive load 

is 32 µW lower than the maximum power that would be harvested without dielectric losses at the optimal reactive 

load at 0.5 m/s² (Figure 8). This represents a relative decrease of more than 18 % of the expected power at the 

optimal resistive load. Neglecting nonlinear dielectric losses when modelling strongly coupled vibration energy 

harvesters can therefore lead to a significant overestimation of the harvested power. 

Figure 10 represents the evolution of the calculated power at the second power peak on the optimal resistive 

load (the peaks around 31.5 Hz) as a function of the acceleration level when the dielectric loss coefficient 𝑑2 is 

taken into account and not taken into account. The relative decrease when considering the dielectric loss coefficient 

is also shown. This figure shows the increasing influence of the dielectric loss with the acceleration level. The 

relative power loss due to dielectric loss increases rapidly (15 % decrease over 0.12 m/s²) and tends to saturate 

below 20 % above 0.5 m/s². As this relative power decrease is not constant with the acceleration level variation, a 

linear dielectric loss coefficient cannot be sufficient to consider the increasing loss with voltage. Non-linear 

dielectric loss modelling is thus necessary to adequately account for the behavior of strongly coupled harvesters 

based on strongly coupled materials. As the behavior of strongly coupled harvester may differ depending on the 

piezoelectric material used, an analysis using this model on different types of materials should be carried out. 

 



 

 

 
Figure 10 : Harvested power deduced from the model at the second power peak (around 31.5 Hz) as a 

function of the acceleration amplitude 𝒜𝐵. The relative difference is given by |𝑃without − 𝑃with|/𝑃with where 

𝑃without is the harvested power without the consideration of dielectric losses and Pwith is the harvested power 

with the consideration of dielectric losses 

 

 

 

5. Conclusions 
 

This paper reports on the experimental validation of a new model that considers nonlinear material losses in 

piezoelectric harvesters. For this purpose, it takes into account a second order dielectric loss term in addition to a 

mechanical second order mechanical loss term. The presented model allows a better consideration of the harvested 

power under vibration than previous models and is proven to be necessary for accurately predicting the 

performance of strongly coupled harvesters. An experimental validation is carried out with a strongly coupled 

cantilever based on PMN-PT material. The results reveal the importance of considering a nonlinear dielectric loss 

coefficient. Indeed, we show thanks to the proposed model that neglecting this coefficient can induce an error up 

to 18% between the measured power and the predicted power for the presented harvester.  

As it has been shown that strongly coupled vibrational energy harvesters are needed to extend the performance 

of resonant frequency tuning by electrical methods, the use of the present model will be necessary for the study of 

broadband vibration harvesters. In future work, the effect of nonlinear dielectric loss on the power harvested by 

strongly coupled energy harvesters combined with advanced energy extraction circuit able to tune the generator’s 

resonant frequency will be studied (e.g. SC-SECE). 
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