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ABSTRACT:  19 

Despite a significant progress in the field of tomography, capture the carbon binder 20 

domain morphology presented in the Li-ion electrode remains challenging, due to its low 21 

attenuation coefficient. In this work, quantitative phase contrast X-ray nano-22 

holotomography is used as a straightforward approach that provides a large 23 

reconstructed volume, where the carbon binder domain can be resolved along with the 24 

active materials and the pore space. As a result, a complete quantitative analysis of the 25 

microstructures of three LiNi0.5Mn0.3Co0.2O2 high energy density electrodes, including the 26 

characterization of each phase separately along with the statistical quantification of their 27 

inter-connectivity at particle scale, is performed. The microstructural heterogeneities are 28 



quantified and comparison between different electrodes is done. The results from this 1 

work suggest the negative impacts of the carbon binder domain excess to the electrode 2 

performance at high C-rates. Those results are true in the case of high energy density 3 

electrodes, and are due to the reduction of the electrochemical active surface area. This 4 

sheds light to the optimization of the electrode design to improve the power rate of high 5 

energy density electrodes. 6 

 7 

KEYWORDS: lithium ion battery, electrode microstructure, X-ray holotomography,  8 

nanoCT, microstructure analysis. 9 
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Introduction 1 

Over the last decades, with the increase of the energy demand along with the shift 2 

towards greener energy solutions, lithium-ion batteries have gained attraction for energy 3 

storage applications.[1]–[4] A lithium-ion battery is an electrochemical device that provides 4 

energy via electrochemical reactions that occur within the two porous electrodes: the 5 

anode and the cathode. Porous structures are widely used for making electrodes since 6 

they can massively increase the specific interfacial area between phases, which 7 

increases the accessible capacity of the active materials at high C-rates. However, the 8 

trade-off is the complexity of the electrode microstructure, as it adopts a hierarchical 9 

architecture.[5] Commonly, the electrode microstructure is a mixture of different phases: 10 

active materials (AM), additives such as mixture of conductive carbon (e.g., C65) and 11 

binder (e.g., PVdF), and pores, which are eventually filled with an electrolyte. This 12 

microstructure has been reported to play a crucial role in the performance of lithium-ion 13 

battery electrodes, as it affects the effective electronic/ionic transport properties through 14 

the morphology of the conducting matrix;[6]–[11] the electrochemical kinetics via the 15 

interfacial area between phases;[12][13] as well as the mechanical properties.[14] Hence, it 16 

is of particular importance to understand the interplay between the complex 17 

microstructure of a porous electrode and its electrochemical performance. In light of this, 18 

over the last years, tomography techniques have been significantly developed as a 19 

powerful tool to investigate the microstructure of the electrodes.[12][15]–[19] These 20 

techniques provide interesting quantitative and/or qualitative metrics that shed light on 21 

the effects of the microstructure on the final performance.[12][20]–[22] In particular, they allow 22 

for a spatial analysis of the distribution of the different phases within the electrode, which 23 

is not accessible from regular electrochemical measurements. Non-uniform distribution 24 

phases leading to microstructural heterogeneities, have been demonstrated to induce a 25 

non-uniform electrochemical behavior, which can deteriorate the final performance, and 26 

cause macroscopic failures.[14][23]–[27]  27 

Focused ion beam scanning electron microscopy (FIB/SEM),[28]–[30] and transmission X-28 

ray computed tomography (TXM CT) including µCT and nanoCT[18][27][31]–[35] are the most 29 

commonly used 3D techniques to study microstructure of batteries. The FIB/SEM 30 



technique usually offers a higher spatial resolution (ca. 10 nm pixel size) compared to 1 

TXM CT, but only a small volume (ca. 10x10x10 µm3) can be acquired under reasonable 2 

time and labor. Because the sample is sequentially milled while imaging, the technique is 3 

inherently destructive, preventing all subsequent studies of the microstructure if needed. 4 

In contrast, TXM CT offers a multiscale (from µ to nano) and nondestructive approach.[36] 5 

While TXM µCT offers a capability of analyzing large volumes such as the visualization 6 

of an entire device,[35] TXM nanoCT provides a spatial resolution below 100 nm allowing 7 

to access properties at micro-scale with a high reliability.[27] Depending on the materials, 8 

the trade-off between an appropriate resolution and a large volume (i.e. the 9 

representativeness) needs to be considered to obtain reliable results. Most of TXM CT 10 

experiments rely on the attenuation contrast, which increases with the density of the 11 

materials or the atomic number of the elements. Thus, low-Z materials such as the mixture 12 

of carbon conductive and binder, so-called the carbon binder domain in the porous 13 

electrode (CBD), have low attenuation. Then, the contrast of the CBD compared to pores 14 

in final images is weak. As a consequence, image analysis, especially the segmentation 15 

step, is challenging and in a majority of studies, CBD and pores cannot be resolved. Few 16 

studies based on TXM nanoCT have attempted to capture the three phases separately: 17 

AM, CBD, and pores. The common approach is to add a synthetic structure of CBD[29][37] 18 

to the AM framework obtained from the tomographic data. Although this approach offers 19 

the ability of adjustment of the CBD morphology,[38]–[40] the results stay somehow “fictive”. 20 

A more realistic approach is from Daemi et al.,[19] in which they combined the information 21 

from the FIB/SEM analysis of a stand-alone CBD electrode (i.e. prepared with no NMC 22 

particles). The use of a stand-alone CBD electrode was also used by Lu et al.[41] to capture 23 

features of the CBD using a novel TXM nanoCT dual-scan superimposition technique. 24 

The validity of the stand-alone CBD electrode might be questioned since the behavior of 25 

the CBD slurry during the manufacturing process might not be the same as when 26 

considering the presence of AM in the slurry. Recently, Müller et al.[42] proposed the 27 

multimodal approach combining TXM nanoCT data with data obtained using 28 

ptychographic X-ray CT. Impressively, this approach enables CBD to be clearly 29 

visualized, as the ptychographic technique offers higher spatial resolution (40 nm) along 30 

with a pixel size of 20 nm. However, combining different imaging techniques requires 31 



significant effort for the sample preparation step, the imaging process and the post-1 

processing data. As an innovative solution, Morelly et al.[43] proposed to replace the 2 

conventional carbon black by carbon-coated iron nanoparticles as contrast-enhancing 3 

particles, which allows resolving the CBD from the remaining. However, this approach 4 

cannot be applied for a wide range of industry-graded electrodes, as it still requires a 5 

supplementary step for making electrodes with specific additives. 6 

Besides the attenuation contrast information, TXM CT also probes the phase contrast 7 

information, which relates to the refraction of the incident beam. Since the refraction index 8 

of a material can be thousand times greater than its absorption factor, phase contrast 9 

between weakly attenuating materials is enhanced. Taiwo et al. used the phase-contrast 10 

tomography to capture the microstructure of weakly-absorbant materials such as 11 

graphite, and obtained improved results compared to absorption-based images.[44] Su et 12 

al. used the Zernike phase contrast to capture the morphology of the Li2O2 in a Li-air 13 

electrode.[34] Moreover, the workflow is quite similar to the absorption-based technique, 14 

which enables a straightforward approach to obtain the 3D microstructure data.  15 

In this study, the hard X-ray nano-holotomography technique illustrated in Figure 1a and 16 

available at the ID16B beamline of the ESRF is used[32][33] to extract microstructural 17 

properties of three different LiNi0.5Mn0.3Co0.2O2 (NMC) porous electrodes. This phase 18 

contrast technique allows the reconstruction of large 3D volumes (for those, the size can 19 

be up to 100x100x100 µm3, see Figure 1b, c), while keeping a small pixel size (50 nm) 20 

for an adequate high spatial resolution and intensity contrast to distinguish the three 21 

domains: AM, CBD and pores. It is worth noting that the resolution of the holotomography 22 

technique might not be enough to capture the nano-porosity that can exist in the CBD 23 

clusters and that can only be captured by FIB/SEM technique (Figure S1). Given that this 24 

porosity can reach up to 47% within the CBD,[29] it can contribute significantly to 25 

electrochemical performance, as discussed by Trembacki et al.[40] and Ferraro et al.[45] 26 

using synthetic CBD morphology. Nevertheless, the holotomography technique still 27 

provides a persistent and high-throughput workflow to capture other microstructural 28 

details. Furthermore, the volumes examined with holotomography are relatively large, in 29 



respect to the most prominent component within the electrodes, i.e. NMC particles (D50 = 1 

4.6 µm). The representativeness can therefore be validated. 2 

The discrimination of the morphology of the different phases within the electrode using a 3 

machine-learning segmentation method (Figure 1d, e) allows for a complete image-based 4 

analysis in order to investigate the effects of the microstructure on the electrode 5 

electrochemical performance. A statistical approach is frequently employed to determine 6 

microstructure inhomogeneities. It can be done by studying variations of different sub-7 

volumes at different locations. In this study, beside the global analysis of the control 8 

volume, a statistical analysis at the particle scale (Figure 1f) including more than 500 9 

individual NMC particles for each sample is proposed instead. It has been chosen 10 

because certain metrics are more relevant at particle scale, since they are related to the 11 

kinetics of the electrochemical reaction, which occurs at the interface between the AM 12 

particles and the electrolyte. This approach provides statistically-significant results that 13 

offer an insight into the distribution of the microstructural properties at particle scale. 14 

Finally, a scenario to comprehend the impact of the microstructure on the electrochemical 15 

performance (via discharge rate-capability measurements) of the three electrodes is 16 

proposed.  17 

Results & Discussion 18 

The results presented here after are based on a careful image processing of the 3D 19 

volumes obtained by X-ray nano-holotomography. All the steps of the image processing 20 

and data analysis are detailed in the ‘Methods’ section of this paper.  It is worth noting: (i) 21 

that the representativeness of the control volumes used for the data analysis has been 22 

validated (Figure S3), (ii) that a machine learning algorithm (Random Forest via Trainable 23 

Weka plugin in ImageJ) has been used for the segmentation and (iii) that a global analysis 24 

of the control volume along with a statistical quantification of the inter-connectivity 25 

between phases at the particle scale are performed for the complete characterization of 26 

the microstructures. 27 

Active material phase  28 



As illustrated in Figure 1b-d, the NMC particles of the AM phase can be well-identified 1 

based on either the grey level (brightest region) or their morphology (e.g. “spherical”-type 2 

secondary particles). The volume fraction (%v) of AM phase for the three samples are 3 

given in Table 1. It shows that the obtained values are slightly higher (2-5%) than 4 

expected ones. While the expected value can contain itself an inherit error due to either 5 

the fabrication process or the measurement of the volume, the difference is also due to 6 

the fact that the voxels at the phases interfaces may belong to more than a single phase 7 

due to the partial volume effect (detailed in the “Methods” section). As such, there is 8 

always some uncertainty in segmenting the interfacial regions between phases. To 9 

evaluate the sensitivity of the uncertainty in this region, from the segmentation results, a 10 

dilatation and an erosion of a single pixel layer at the AM phase boundary have been 11 

done. This step induces a variation of ±6% on the obtained %v AM. Thus, this discrepancy 12 

is considered within the uncertainty range due to the method limitation (i.e. image 13 

resolution). It is worth noting that the overestimation of %v of AM will lead to the 14 

underestimation of the %v of either CBD or pores. 15 

Figure 2a shows the AM phase in MX-1 after being separated into more than 500 16 

individual NMC particles (using Avizo software). It is worth noting that the electrodes 17 

studied in this work are for high energy applications, that require high density of AM. This 18 

can be seen through the highly packed of NMC particles within the control volume. After 19 

the separation of the NMC particles, image-based particle size distribution can be 20 

calculated for each sample. Yet, the edge effect of the cropped volume can cause a 21 

decrease in particle size. It refers to particles that are at the boundaries of the cropped 22 

volume. As such, only a part of them is taken into account for the volume calculation, 23 

which under-estimates their exact size. Thus, to better quantify the particle size, all 24 

particles touching the volume boundaries have been removed (see Figure S1). Figure 2b 25 

shows the particle size distribution of three samples along with the distribution obtained 26 

by the laser diffraction measurement on raw material powder. All three sample exhibit the 27 

highest peak corresponding to the D50  of the materials, despite a slightly lower-than-28 

expected particle size, when comparing to the laser diffraction’s result. Here, we assume 29 

that this is due to the calendaring process, which is known to cause fractures of AM 30 

particles under the high pressure.[14] This assumption is supported by the visualization of 31 



cracked particles in the SEM image of the MX-2b cross-section in Figure 2d. The cracking 1 

parts are also presented in our segmented volume as single AM particles (Figure S1), as 2 

we also accounted the internal fissures during the segmentation step. Also, internal pores 3 

are observed for NMC secondary particles. Interestingly, we can observe the occasional 4 

presence of the CBD inside these internal pores (see purple arrows in Figure 2d), which 5 

shows that these pores can be opened to the electrolyte. This observation is in line with 6 

the work done by Miller et al.,[46] who revealed the penetration of electrolyte through the 7 

AM grain boundaries. Thus, the (de)lithiation process can theoretically occur from the 8 

inside of the NMC secondary particles, reducing the diffusion length, thereby easing the 9 

solid-diffusion process. The broad sphericity distribution (and lower than 1) observed in 10 

Figure 2c challenges the assumption on the sphericity of the NMC particles that is made 11 

in many simulations.  12 

Image-based approach allows the access to the spatial distribution of the AM particles. 13 

Since our sample preparation protocol (see details in ‘Methods’ section) allows to keep 14 

the through-plane direction aligned with the Z-axis during the acquisition step, we can 15 

visualize the distribution of the AM particles in the direction normal to the current collector 16 

(Figure 2e) (the coordinates of the particle are based on the coordinates of its centroid in 17 

space). Our results clearly point out that the big particles tend to move into the bulk of the 18 

electrode rather than be in the electrode boundaries (either separator side or current 19 

collector side), which is consistent with the work from Ebner et al..[47] For the remaining, 20 

most of the particles are well-distributed along the electrode thickness, which can be 21 

confirmed with the minor variation of the %v of AM phase with the fraction of total volume 22 

in Figure S3. The small particles are found to be more at the boundary of the control 23 

volume, which can due to the edge effect mentioned above.  24 

Carbon Binder Domain 25 

The CBD refers to the additives that do not contribute to the capacity of the electrode 26 

(inactive materials) but rather to the rate performance of the electrode. It consists of a 27 

mixture of good electronically-conducting materials (e.g. carbon black, carbon fiber) and 28 

a polymeric binder. The CBD provides the mechanical stability of the electrode and 29 

establish the electronic conducting pathways within the electrode for most active 30 



materials. Thus, it is expected to be well-percolated and uniformly-distributed throughout 1 

the electrode volume. Otherwise, electrons cannot be transported uniformly to all 2 

reaction-sites (at the AM particle surface in contact with electrolyte) across the electrode. 3 

Table 2 shows the microstructural properties of the CBD extracted from the 3D 4 

microstructure data along with the electronic conductivities measured by the 4 lines 5 

method (see Figure S4). Figure 3a shows the 3D CBD distribution and morphology 6 

(green) in the three different samples. It can be seen that the CBD tends to form clusters 7 

that locate in between neighboring particles rather than a film-like morphology. The 8 

presence of CBD clusters observed in this work is consistent with other work [19] [42, 43] 9 

based on different approaches. As it is observed in the 2D slices of the Figure 3b, the 10 

CBD clusters present a porous morphology, which has been also confirmed by high 11 

resolution FIB/SEM data of MX-2b presented in Figure S2, as well as in [19] [42]. Looking 12 

at Table 2, the extracted %v of CBD from MX-1 and MX-2b volumes are consistent with 13 

the expected values, while in MX-1b, the obtained %v of CBD yields a lower value. 14 

Despite a lower %v compared to MX-2b and MX-1b, the CBD network in MX-1 has a 15 

larger volume-specific surface area aCBD (Table 2), which refers to the sum of interfacial 16 

area CBD/AM, and CBD/pores normalized to the control volume. The decrease of aCBD 17 

at higher %v, as it is the case for MX-2b, indicates a more important  formation of CBD 18 

agglomerates. It is important to note that the formation of CBD agglomerates will 19 

negatively impact the inter-connectivity between CBD and the other phases, as it will be 20 

discussed later in the paper. The percolation of the CBD is quantified for the three 21 

samples (Table 2). As expected, higher %v coupled with a lower aCBD in MX-1b and MX-22 

2b results in a better percolation compared to MX-1. 23 

Figure 3c shows the simulation results of the normalized electronic current density 24 

through the control volume in the direction normal to the current collector in the three 25 

samples using a diffusion-based method (see details in ‘Methods’ section). It is worth to 26 

mention that, the flux density maps include only the pathways that allow moving from one 27 

side to the other side of the microstructures, so-called flux-through paths.[48] No or low 28 

flux regions were detected by applying an arbitrary threshold value (2% of maximum) to 29 



the flux density map at steady-state, denoted as dead-end paths. They are represented 1 

in white in Figure 3b, c.  2 

In MX-1b and MX-2b, a considerable amount of flux-through paths are presented 3 

compared to MX-1. These pathways can be considered as long-range connections 4 

presented in the CBD network. They are essential for establishing a good inter-5 

connectivity between different regions of the electrode at larger scale, which, along with 6 

a better percolation, enhances the electronic conductivity of the electrode.[49]–[51] This 7 

hypothesis is supported by the electronic conductivity measurements, shown in Table 2, 8 

on the three samples using the four lines method.[52][53] As expected, MX-2b and MX-1b 9 

exhibit a higher conductivity along with a lower activation energy compared to MX-1.  10 

While flux-through paths can be considered as long-range contacts that rapidly transport 11 

electrons between different regions of the electrode, dead-end paths rather play a role of 12 

short-range contacts, which uniformly distribute the electrons to the reaction-sites 13 

throughout the electrode. As a result, the synergistic effect which provides both long-14 

range and short-range contacts can be crucial to the electrode performance, especially 15 

at high C-rates, as highlighted by several authors.[49]–[51][54] 16 

Pore Network 17 

The pore network is responsible for the ionic transport when filled with the electrolyte. Its 18 

microstructure governs the effective ionic conductivity of the electrolyte within the porous 19 

structure, which is critical for the electrode performance at high C-rates, especially for 20 

high loading electrodes.[55] As expected for high energy density electrodes, the 21 

segmentation of the three volumes results in porosities that are unusually low (<20%), as 22 

it can be seen in Table 3. Although the porosities are slightly lower than the expected 23 

values, they are consistent with the electrode specifications. Despite their low porosities, 24 

all three samples exhibit a percolation of the pore network greater than 94%. MX-1b has 25 

a lowest porosity but presents a highest volume specific surface area apores, which is 26 

defined in the same way as aCBD. The morphology of the pore network (segmented in 27 

blue) in the three different samples is illustrated in Figure 4a. 28 



To investigate the impacts of the pore network on the ionic transport properties, the 1 

tortuosity factor and the McMullin number of the pore network are quantified using 2 

simulations. However, compared to other microstructural properties such as porosity or 3 

volume-specific surface area, the determination of the tortuosity factor is still not 4 

standardized in the literature. Our previous work[48] showed that there is a theoretical 5 

difference between the tortuosity factors calculated by the two methods: the diffusion-6 

based method (regular method),[56] and the symmetric cell method (SCM).[57][58] The 7 

diffusion-based method considers the transport through the porous microstructure 8 

whereas the symmetric cell method considers the transport to the AM surfaces within the 9 

porous microstructure. As demonstrated in [48], the electrode tortuosity factor, obtained 10 

from the SCM, is more suitable to characterize porous electrodes than the commonly-11 

used tortuosity factor. Still, both tortuosity factors are calculated in this work for 12 

comparison. Furthermore, the tortuosity factors (in-plane and through-plane) were also 13 

quantified allowing the investigation of tortuosity anisotropy. The tortuosity anisotropy has 14 

been widely reported in the literature. It has been demonstrated by tomography-based 15 

approach as well as experimental measurements (for the case of MCMB active materials) 16 

to increase with either the non-spherical AM particles or the calendaring process.[59]–[62] 17 

A minor tortuosity anisotropy (߬୲୦୰୭୳୥୦ି୮୪ୟ୬ୣ ൐ 	 ߬୧୬ି୮୪ୟ୬ୣ) is reported for NMC electrodes in 18 

[61] [62] via simulations using 3D microstructures with numerically-generated CBD. The 19 

results can be attributed to the roughly spherical geometry of the raw NMC particle. 20 

However, for both methods used for the tortuosity factor determination, the through-plane 21 

tortuosity factor is noticed to be significantly lower than the in-plane for all electrodes. 22 

Given the low level of porosity (ߝ ൏ 20%) studied here, the electrodes might suffer of a 23 

high applied pressure during the calendaring step. Thus, it can result in a reduction of the 24 

gap between particles in the direction normal to the current collector (Z-axis). The solid 25 

phase (NMC particles + CBD) in the three electrodes can, therefore, form agglomerates 26 

with their longest axes normal to the current collector. This can prevent the ionic transport 27 

in the liquid phase in the direction parallel to the current collector (in-plane), which causes 28 

the higher tortuosity in this direction compared to the through-plane direction. To 29 

qualitatively verify our hypothesis, we calculated the two-point correlation of the three 30 

volumes (two-point correlation analysis is detailed in Supplementary Note 2). The two-31 



point correlation reveals that the solid phase sizes in the through-plane direction (Z-axis) 1 

are significantly larger compared with the in-plane sizes (X and Y-axis) (see Figure S9), 2 

as the Z-axis line reach the asymptotic values after the in-plane lines. The through-plane 3 

direction should be preferred over the in-plane directions in terms of ionic transport 4 

properties in order to improve the electrode performance, since the porous electrode 5 

limitations rather develop across the electrode thickness. For the rest of the article, 6 

tortuosity will refer to the through-plane tortuosity factor unless otherwise specified. 7 

The results of conventional tortuosity factors (McMullin numbers) show the highest value 8 

for MX-1b and the lowest value for MX-2b. Figure 4b shows the simulation results using 9 

the diffusion-based method, in which we can see the flux density passing through the 10 

three volumes (via flux-through pores). The flux density map reveals a uniform distribution 11 

of flux for MX-1. In contrast, MX-1b and MX-2b both show locally higher flux density 12 

regions pointing out to a heterogeneous flux-through porosity. The high flux density 13 

regions may represent the restriction/constriction effects (bottlenecks) in the pore 14 

network, which may be useful for understanding localized degradation mechanisms. 15 

Besides, the simulation of diffusion flux passing through the volumes allows the 16 

identification of the flux-through and dead-end pores, as can be observed in Figure 4c.  17 

Using the SCM, we can see a decreasing trend of the electrode tortuosity factors and 18 

McMullin numbers compared to the previous values for all electrodes in all directions 19 

(Table 3). The MX-1b still has the most tortuous pore network compared to the other two 20 

in terms of electrode tortuosity factor. In both approaches, the lowest tortuosity factor is 21 

found for MX-2b, even though it does not have the highest porosity. Although the 22 

differences between two methods are not apparent, it is worth to restate that the SCM 23 

relies on the (dis)charging of double-layer capacitance at the solid/liquid interface 24 

throughout the electrode instead of the diffusional flux through the porous structure as for 25 

diffusion-based method. Thus, it takes into account both flux-through and dead-end pores 26 

contributions to the overall ionic transport of the pore network.[48] In Figure 4c, the dead-27 

end pores presented in the ortho-slices (colored in white) are mainly small sections and 28 

disconnected (%v < 5% and without percolation), which results in slight effects on the 29 

tortuosity of the pore networks when the SCM is considered.[48]   30 



Inter-connectivity between phases 1 

The inter-connectivity between the different phases within the electrode is investigated in 2 

the following section, as it constitutes an important parameter for the electrode to achieve 3 

a good electrochemical performance. For this purpose, we adopted a statistical approach 4 

in which more than 500 individual particles within each volume were separately studied. 5 

It is worth noting that, in this section, all the volume-specific interfacial areas and the triple-6 

phase boundary (TPB) density, i.e. the boundary where the three different phases (AM, 7 

CBD, pores) meet, are normalized by each AM particle volume and not by the control 8 

volume as in the previous sections. The subscript p is added to these metrics (ap, TBPp 9 

density) to avoid confusion. 10 

For fuel cell electrodes, TPB is the exact location that electrochemical reactions take 11 

place during the operation, since it is the meeting point of three components that are 12 

required for the electrochemical process. In contrast, for lithium-ion battery, the 13 

electrochemical reactions are not necessary take place unique at the TPB but rather at 14 

the AM/electrolyte interface, as will be discussed later in the text. Yet, the TPB for lithium-15 

ion battery remains the reaction-site that costs a lowest polarization related to the 16 

electrochemical reaction. 17 

Figure 5a shows the distribution of the interfacial area between the AM particles and the 18 

CBD of the three samples, aP(AM/CBD). MX-2b has the highest inter-connectivity between 19 

NMC and CBD among the samples along with a large dispersion. Despite a lower %v of 20 

CBD, MX-1 possesses a lower dispersion of aP(AM/CBD), which represents a more uniform 21 

distribution of the CBD. However, the lower average interfacial area with CBD found in 22 

MX-1 might introduce an additional contact resistance due to the poor AM particle-CBD 23 

contacts. 24 

The interfacial area between the AM and the pores, aP(AM/pores), is also determined and 25 

shown in Figure 5a. This interfacial area corresponds to the electrochemical active 26 

surface area, where the charge transfer process occurs. It is worth noting that although 27 

the CBD can eventually be ionically-conducting by considering either the ability to absorb 28 

electrolyte the PVdF[63]–[65] or the porous morphology showed above, one might expect it 29 



to have lower ionic transport properties at high C-rates than the electrolyte filling in the 1 

pores. The presence of CBD at the AM surface can, therefore, negatively impact the 2 

kinetics of charge transfer at the interface AM/CBD. Hence, the interfacial area between 3 

AM/pores will mainly determine the exchange current density (A/m²ASA) within the porous 4 

electrode. Consequently, assuming all the AM surface are in contact with electrolyte only 5 

(i.e. ignoring the CB coverage of the AM particles) can potentially lead to errors in the 6 

evaluation of electrode properties used for the simulation of the electrode behavior.[12] 7 

MX-1 yields a higher AM/pores interfacial area compared to MX-1b and MX-2b, which 8 

can be explained by its highest porosity and its lower AM/CBD interfacial area. 9 

Figure 5b shows the distribution of TPBp density at each particle in the three samples. 10 

The TPBp density per particle volume was found to be the highest in the sample MX-2b, 11 

in average. This sample also presents the largest dispersion of the TPBp density values. 12 

In contrast, sample MX-1 presents a lower average for the TPBp density values but with 13 

a more uniform distribution. The results from aP(AM/CBD) and TPBp density unveil the impact 14 

of %v of CBD on the three microstructures considered in this study. Even though the 15 

CBDs in MX-1b and MX-2b have a smaller volume-specific surface area (aCBD) than in 16 

MX-1, both are still able to provide a larger interfacial area aP(AM/CBD)  and a higher TPBs 17 

density throughout the microstructures due to a higher amount of CBD. This means that 18 

the CBD is still well-dispersed throughout the volume in the samples with high %v of CBD 19 

that have been used in this work. The mechanism of lacking short-range contacts for a 20 

higher %v CBD, as mentioned above, is therefore not valid for samples MX-1b and MX-21 

2b. This can be confirmed further with the visualization of the CBD in Figure 3a, in which 22 

one can see that the CBD distributes well over the entire volume of MX-1b and MX-2b 23 

(very few spaces without the CBD).  24 

Figure 5c, e, f show the percentage of particles surface covered by the CBD and the pores 25 

by particles for MX-1b, MX-2b and MX-1 respectively. The TPBp density of each particle 26 

is also represented with a color scale bar. A broader distribution can be seen for the MX-27 

2b and MX-1b as discussed previously. Furthermore, smaller particles tend to have a 28 

higher cover ratio of CBD as well as TPBp density. On the other hand, larger particles 29 

show a higher cover ratio of pores. A “representative” particle having an effective %s. 30 



covered by CBD (~14%) and pores (~56%) is showed for sample MX-1 in Figure 5d along 1 

with its TPBp map. This particle can be relevant for macroscopic modelling approach.   2 

In summary, the sample MX-1 shows a higher degree of uniformity than MX-1b and MX-3 

2b in terms of inter-connectivity between phases at particle scale. As a result, one might 4 

expect lower microstructural heterogeneities effects during operation for MX-1 compared 5 

to the others, which can be detrimental for the performance. This is in line with what has 6 

been reported by Müller et al.[21] and Forouzan et al.[23] through numerical modeling. 7 

The figure 6a displays the results of the rate capability of the three electrodes measured 8 

in a coin-cell setup at 25°C (see Methods section). The rate capability allows assess the 9 

performance of an electrode under different currents density. It shows that MX-1 10 

outperforms the MX-1b (same loading), especially at high current density region (I>I*), 11 

whereas MX-1b presents a higher TPBp density and a higher %v of CBD. It is worth 12 

mentioning that MX-2b also underperforms when comparing to an electrode having the 13 

same loading with lower %v of CBD (this electrode, however, is not studied in this work). 14 

It is worth noting that for the battery porous electrodes such as graphite or some oxide 15 

materials, the charge transfer does not occur only at the TPBp, since the AM phase can 16 

have an appreciable electronic conductivity. For NMC material, this is particularly true 17 

once it is partially delithiated.[66] Thus, the lack of AM/CBD interfacial area, as well as a 18 

low TPBp density, can be compensated by the electronic transport through the NMC 19 

particles to join the reaction-sites, as discussed in [11] [45]. In addition, the brutal drop of 20 

the rate capability in the high current density region is commonly attributed to the porous 21 

electrode effects, i.e. through the McMullin number as the main limitation is considered 22 

to be in the liquid phase. Nevertheless, by using a 3D particle-resolved, mesoscale model 23 

to investigate the electrochemical behaviors on a per-particle and per-surface basis, 24 

Ferraro et al.[45] demonstrated a significant capacity loss coming from the reaction rate at 25 

the surface of AM particles. The latter is directly related to both interfacial surface area: 26 

AM/Pores and AM/CBD of each particle. In light with this, based on the analysis results 27 

in our work (Figure 5), the excess of CBD (MX-1b, MX-2b) might cause an additional 28 

issue for the electrode performance at high C-rates. Indeed, it can lead to the reduction 29 

of electrochemical active surface area at the particle scale, due to the ionically-blocking 30 



properties of the interface AM/CBD, as illustrated in Figure 6b. This consequence of the 1 

CBD excess has been reported by several authors.[12][13][38][40][45] Consequently, the solid-2 

diffusion limitation can be exacerbated due to the lower electrochemical surface area, 3 

because of longer diffusive pathways for lithium to travel from the surface to the bulk of 4 

the NMC particles. This results in an underutilization of AM. However, this scenario is only 5 

valid when the AM has a good electronic conductivity, which can compensate for the lack 6 

of the AM/CBD interface and/or the TPBp density, as discussed above. For an AM with 7 

high electronic resistance, the TPBp density can be vital for the performance of the 8 

electrode at high C-rates, as reaction-sites mainly sit at the TPB. For instance, since NMC 9 

exhibits a reduction of electronic conductivity at the vicinity of the full lithiation state, 10 

Ferraro et al.[45] observed a higher reactivity at the interfacial area between AM and 11 

porous CBD (i.e., there is electrolyte within the pores of CBD), which consists of multi 12 

TPBp. Here, as NMC exhibits a good electronic conductivity,[66] the performance at high 13 

C-rate seems to be negatively impacted by the excess of CBD, as observed for MX-1b 14 

and MX-2b. Thus, to improve the power rate of the Li-ion battery electrodes having a good 15 

electronic conductivity AM, one should go for high values of interfacial area between AM 16 

and pores rather than between AM and CBD. A porous CBD phase can also create 17 

positive impacts as it allow the electrolyte to impregnate, so that increases the AM/Pore 18 

interface.  19 

Besides, microstructural heterogeneities can also significantly impact the electrode 20 

performance. Here, a higher degree of uniformity observed in MX-1 compared to MX-1b 21 

could help minimize the electrochemical heterogeneities, improve material utilization, and 22 

reduce polarization losses during operation. All result in a better rate capability. 23 

Conclusion 24 

In this work, we demonstrated that the X-ray holotomography-based approach is an 25 

efficient way to reveal valuable insights about the microstructural properties and the 26 

electrode heterogeneity that is not straightforward to quantify using regular 27 

electrochemical-based approaches.  28 



We show that with higher %v of CBD, the CBD provides a higher interfacial area with the 1 

AM phase, along with the tendency to form agglomerates. The formation of agglomerates 2 

promotes the formation of long-range contacts within the porous electrode, which 3 

provides a good electronic conductivity. However, electrode performance is observed to 4 

be deteriorated at high C-rates, with higher %v of CBD, when comparing two electrodes 5 

with the same loading but with different ratios. Based on the analysis, we suggested 6 

herein that increase the %v of CBD causes a decrease of the electrochemical active 7 

surface area (surface area AM/pores). For an electronically-conducting AM, the TPB 8 

density and the AM/CBD interfacial area are thought to have minor effects on the 9 

performance at high C-rates. Thus, to improve the power rate of the Li-ion battery high-10 

energy electrodes, engineering of electrode design should aim for high values of 11 

interfacial area between AM/pores instead. Also, the research for an “ideal” CBD 12 

morphology needs to consider simultaneously different aspects and not only the electrical 13 

conductivity, i.e. simply increase the %v of CBD would not be an obvious solution to 14 

improve the overall performance.  15 

Regarding the pore network, we compared the two methods for tortuosity factor 16 

determination: the diffusion-based method (regular tortuosity factor) and the SCM 17 

(electrode tortuosity factor). A decrease trend was observed when comparing the 18 

electrode tortuosity factor to the regular tortuosity factor, which highlights a positive 19 

contribution of the dead-end pores to the overall ionic transport, albeit it is small compared 20 

to that of through pores, at least with the electrodes studied here. The tortuosity 21 

anisotropy of the pore network has been observed for through-plane and in-plane 22 

directions for both methods. The tortuosity factor in the direction normal to the current 23 

collector was found to be substantially lower than the in-plane direction (about half). 24 

Although the cause of the anisotropy stays uncertain, a hypothesis that is related to the 25 

calendaring process used in this work to achieve electrodes with a high energy density 26 

was proposed.  27 

Finally, a higher heterogeneity in terms of inter-connectivity between phases at particle 28 

scale was also found for the electrodes with higher %v of CBD, which can lead to higher 29 

risk of performance deterioration during battery operation. All of these results are to be 30 



included in a numerical model to a quantitative investigation of their effects on the 1 

performance in a follow-up study. 2 

Methods 3 

Analyzed samples  4 

Three different positive electrodes are investigated in this work and labelled as MX-1, MX-1b, MX-2b. Each 5 

electrode is a mixture of LiNi0.5Mn0.3Co0.2O2, conductive carbon black and polyvinylidene fluoride (PVdF) 6 

with different composition. Their specifications are shown in Table 1, 2 and 3, where expected values of 7 

AM, CBD and pores are reported respectively. 8 

The particle size distribution of the raw  LiNi0.5Mn0.3Co0.2O2 particles is determined with the laser diffraction 9 

method. This method is a widely used particle sizing technique for materials ranging from hundreds of 10 

nanometers up to several millimeters in size. It measures particle size distribution by measuring the angular 11 

variation in intensity of light scattered as a laser beam passes through a dispersed particulate sample. 12 

Large particles scatter light at small angles relative to the laser beam and small particles scatter light at 13 

large angles. The angular scattering intensity data is then analyzed to calculate the size of the particles 14 

responsible for creating the scattering pattern, using the Mie theory of light scattering. The particle size is 15 

reported as a volume equivalent sphere diameter. As for output, laser diffraction will give a volume-weighted 16 

distribution. That is, the contribution of each particle in the distribution relates to the volume of that particle, 17 

i.e., the relative contribution will be proportional to size. 18 

Sample preparation 19 

The sample preparation is a crucial step to get a high-quality result and to avoid artefacts during the 20 

acquisition process. Then, a careful preparation of the sample is needed to have the sample size required 21 

for X-ray nano-tomography. When performing X-ray tomography, the size of the sample is of importance. 22 

The first obvious reason is linked to the absorption of the X-rays. Indeed, because it is a transmission 23 

technique, it is necessary to have enough X-rays going out of the sample to have enough signal on the 24 

detector. The second reason is linked to the field of view of the detector. The 3D resolution will be better if 25 

the sample lateral size fits into this field of view. Local X-ray tomography, i.e. into samples that are bigger 26 

than the field of view, are possible but usually results in a compromise on the final resolution. As the field 27 

of view is equal to the number of pixel on the camera times the pixel size, it is usually quite large for micro-28 

scale X-ray tomography.  Then, appropriate sizing of ex-situ samples (from 0.5 to few mm) is typically not 29 

a problem. In this study the pixel size used was 50nm and corresponds to a field of view of 130 µm. 30 

Moreover, because of the absorption of the NMC particles at the used energy, an optimal size of 50 µm 31 

diameter has been calculated.  32 



For this, a “free-standing” electrode was first required, which was typically obtained by simply peeling the 1 

porous electrode material off the current collector foil. A laser cutter built in-house at IMPMC laboratory was 2 

used to precisely cut a pillar of ca. 50 µm in diameter from the bulk electrode. It is worth mentioning that to 3 

avoid any damage of the laser beam on the region of interest, the pulse mode was used for laser beam 4 

instead of permanent mode. Then, the electrode pillar was mounted on the tip of a quartz capillary, which 5 

is mounted on the sample holder, using cyanoacrylate glue (see Figure S5). 6 

Electrochemical measurements 7 

All measurements are carried out in a controlled temperature chamber at 25°C. The cycling test were 8 

performed with a multipotentiostat (Biologic, France). The operational range for the NMC materials in this 9 

work is chosen between 2.5 and 4.3 V versus Li/Li+. 10 

All coin cells first undergo a formation process in which they are cycled four times with constant-current 11 

(CC) discharge/charge cycles at C/10 to form a stable passive layer the particle surface. For the fifth cycle, 12 

a constant voltage (CV) is held at the end of the discharge until the current gets down to C/50. This extra 13 

steps before further charging were to ensure that the electrode completely lithiated (pristine state) after 14 

removing all possible limitations (for example: solid-diffusion limitation). Finally, a CCCV charge followed 15 

by a CC discharge are carried out, both at C/25, for capacity determination. The available capacity is 16 

determined at the end of the CC discharge. 17 

Rate-capability tests are performed on either a VMP3 or a BCS (Bio-Logic, France). The rate experiments 18 

were conducted on two separate electrodes of the same composition for the reproducibility. We assume 19 

that there is no electrode degradation during the measurements. The cells are cycled with different currents 20 

following by a CV at the end of each cycle to reach a stable stoichiometry until the current gets lower than 21 

C/50. In the rate capability test, the cells were charged with a CC phase followed by a CV phase, which 22 

remained unaltered, independent of the applied discharge current. Between each charge and discharge 23 

cycle a pause of 1 h was kept to allow for relaxation of the cells. In the discharge procedure, the cells were 24 

discharged with C/25, C/10, C/5, C/2, 1C, 2C. 25 

For effective electronic conductivity determination, Electrochemical Impedance Spectroscopy (EIS) were 26 

carried out using ITS system with the 4 lines configuration, and MTZ device from Biologic, France. The 4 27 

lines configuration (see the experiment setup in Figure S3)  is known to minimize the impact from the 28 

contact resistances between the probes and the sample, which can vary along with the applied pressure 29 

on the sample. The temperature was set to vary within a range [-20°C,60°C] allowing to extract the 30 

activation energy of the electronic conductivity. Activation energy close to zero refers to a metallic behavior 31 

of the materials, which provides good electronic conducting pathways.  32 

Holographic X-ray nanoCT technique for Li-ion battery 33 



The interaction of X-rays with a material may be described through the index of refraction n, such as : ݊ ൌ1 
1 െ ߜ െ  β is the absorption coefficient and δ is the decrement of the refractive index  and  refer 2 .ߚ݅
,respectively, to the change of amplitude and the phase shift of the X-ray, as it passing through the 3 
materials.  4 

The holotomography technique used in this study and developed by Cloetens  et al.[33] is based on phase 5 

contrast imaging. It gives high contrast images for low atomic number samples. The setup at the ID16B 6 

beamline of the European Synchrotron Radiation Facility (ESRF)[67] is described in figure1a. The high flux 7 

(8X1010) nano-beam (50x50nm2) is used as a secondary source. Thanks to the diverging beam of 29.6keV, 8 

four tomographies at four different distances from the focal plane are performed by acquiring 2515 9 

projections over 360° with an exposure time of 0.4s per 2D image recorded on a PCO edge 5.5 camera. 10 

The 3D reconstructions with a pixel size of 50 nm are achieved in two steps: (1) recursive phase retrieval 11 

calculation[68][69] using an in-house developed octave script  based on a Paganin-like[70] approach with a 12 

delta/beta of 137 and (2) filtered back projection reconstruction using ESRF software PyHST2.[71] 13 

Data processing 14 

Pre-processing 15 

Due to shortcomings in the image acquisition process, the base signal of an X-ray scan is often 16 

superimposed by different kind of image artefacts, that can be observed in the reconstructed image most 17 

frequently as noise, and blur effects.[72][73] For multi-phases microstructures, these effects can be very 18 

disturbed for the segmentation step. Therefore, pre-processing of the reconstructed 2D images might be 19 

needed to improve the image quality, allowing a good result in the segmentation process.[72][73]  20 

In this work, we applied a non-local mean filter subsequently following by an unsharp mask for edge 21 

enhancement systematically to all the tomographic data. Non-local means filter has been reported to be an 22 

excellent candidate to efficiently remove noise and at the same time conserve edges between objects. In 23 

addition, an unsharp mask is for edge enhancement after denoising process. It reduces the partial volume 24 

effect (see Supplementary Note 1) due to image blur and/or low resolution. As it can be seen in Figure S6, 25 

the contrast between the CBD and the pore space was enhanced after filtering. Figure S8 illustrates the 26 

partial volume effect, when the boundaries between two phases do not manifest themselves as crisp 27 

intensity steps (type Dirac signal), but rather as gradual grey level changes spanning several voxels. The 28 

contrasts between phases are improved while preventing details loss, as shown in the histogram (global) 29 

and line profile (local) of the image (Figure S6). 30 

Pietsch et al.[22] have reported that the uncertainty of the segmented data is well correlated with the Otsu 31 

inter-class variance. Here, we evaluated this metric on our dataset before and after the filtering process. 32 

The filtering process allows to get a better inter-class variance, hence reduces the uncertainty of the 33 

segmentation process. 34 

Image segmentation 35 



Image segmentation is a crucial step in image processing and affects all subsequent image analyses. It is 1 

commonly done by histogram evaluation, which considers only voxel’s grey level (global thresholding). This 2 

approach can be very efficient in terms of computational time and efforts if high contrast between phases 3 

is presented, i.e. separate peaks appear in the histogram. However, for a multi-phases microstructure, each 4 

phase is frequently represented by a distribution of grey level that can be partially overlapped with others, 5 

or even completely hidden in the histogram. Hence, the threshold uncertainty range can be significant when 6 

using a global approach. Moreover, it is worth to note that since this approach is based only on voxel’s grey 7 

level, it can be susceptible to the partial volume effect. Local segmentation methods such as watershed, 8 

converging active contours, show a better performance on the multiphase segmentation of tomographic 9 

images, as reported by Schlüter et al..[72] However, they always rely on grey’s level and/or gradient of grey 10 

values of pixels for the classification.   11 

In this work, the segmentation was performed with an ImageJ’s plugin named Weka,[74] which involved 12 

machine learning in performing the segmentation. This approach is based on features extracted from the 13 

image through a set of different filters. It is based on microstructural information captured from the image 14 

(2D) or volume (3D) to train a machine learning model rather than the only grey level for the classification 15 

of voxels. The model uses a random forest algorithm, which has been reported to be relevant for 16 

classification task without the need for substantial computational resources. This tool is part of the machine 17 

learning field, so-called “supervised learning”, that needs a label data to train the model. Regarding the 18 

label data, the users have to carefully classify the pixels (taken from different slices located throughout the 19 

volume depth) into different classes (three in this work) based on various criteria: the pixel’s grey value, the 20 

pixel’s neighborhood, the morphology of each phase (e.g., the AM particle frequently takes a roughly 21 

spherical geometry, while the CBD tends to form clusters in between AM particles). The pixels that were 22 

classified by the users are then considered as “reference label”. They are used for the training step to get 23 

the best model that minimizes the errors. The model is applied to segment the rest of the volume 24 

automatically. We repeat this process for each sample in this work. The label data, therefore, needs to be 25 

carefully selected by users. The labelling step is mainly based on the subjective human opinion about the 26 

difference of grey value and can vary upon people. Thus, having a pre-processing step to improve the 27 

quality of the image can be helpful to reduce the segmentation error. We compared the segmentation 28 

results of the AM phase in MX-2b with the segmentation result of the same phase using binary threshold 29 

technique on the high resolution FIB/SEM data to validate our segmentation. (Figure S7).  30 

Microstructural analysis 31 

Once images are segmented into three separated phases, the reconstructed 3D volumes of the electrodes 32 

were imported into the commercial software package Avizo V9.4 (Avizo, Thermo Fisher Scientific, Waltham, 33 

Massachusetts, USA) for 3D visualization and NMC particles separation. The particle size distribution is 34 

used as reference to adjust parameters of the separation object algorithm in Avizo. 35 



The phase volume fraction is defined by the ratio: 
௏೔
௏

, where ௜ܸ refers to the volume of phase i, calculated 1 

as the percentage of voxels corresponding to this phase, and ܸ to the total volume of the control volume. 2 

The percolation represents the intra-connectivity of the phase i. It is quantified by the ratio between all 3 

connected voxels of phase i to the total voxels of this phase (connected and isolated voxels) within the 4 

control volume. Voxels that share a common face are considered as connected.  5 

The sphericity is a measure of how closely the shape of an object resembles that of a perfect sphere. It is 6 

defined by the ratio of the surface area of a sphere with the same volume as the given particle to the surface 7 

area of the particle: ߰௣ ൌ
గ
భ
య௏೛
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, where ߰௣, ௣ܸ and ܣ௣ are the sphericity, the volume and the surface area of 8 

the individual particle respectively. The sphericity is calculated for each individual AM particle. 9 

The specific surface area quantifies the surface area of phase i per unit electrode volume. On the other 10 

hand, the specific interfacial surface area refers to the total surface area of the interface between two 11 

phases i, j per unit electrode volume. 12 

It is worth to note that our analysis is based on voxelized data for convenience such that a meshing process 13 

is not necessary. This approach is relevant for volume quantification as it shows comparable results to other 14 

approaches. However, for surface area, this approach tends to overestimate the value of the surface area, 15 

even though with a high value of resolution. The marching cube (MC) algorithm[75] is shown to give the 16 

highest accuracy for the surface area calculation.[30] This algorithm polishes the originally derived voxel-17 

based surface mesh as described in [75]. The ratio avoxel , aMC of the three volumes analyzed here varies 18 

from 1.2 to 1.3. Nevertheless, we may have of particular interest to the relative values rather than the 19 

absolute one since the comparison between samples can still give us insight about the effects of 20 

microstructures.  21 

The TPB density is defined as the length of the intersection among three phases i, j, and k, normalized by 22 

the total volume of the microstructure domain. For voxelized data used in this work, a TPB is defined as the 23 

length of the edges where three of the four connecting voxels contain different phases. 24 

Most of the parameters studied throughout this work are straightforward to quantify using either TauFactor 25 

and/or built-in tools or plugins in Fiji or Avizo. The visualization of the TPBs required adding work.[76] 26 

TauFactor is an open-source MATLAB application developed by Cooper et al.[77] allowing a complete 27 

characterization of the microstructure based on image data. The analysis were proceeded first on separated 28 

phases (AM, CBD, pores), then on the correlation between phases to capture the microstructural 29 

characteristics of the electrodes as a whole. Furthermore, based on the TauFactor framework, an in-house 30 

code was developed. It allows extracting different microstructural properties when the AM phase was 31 

separated into individual particles.  32 



For tortuosity factor determination, our previous work in [48] unambiguously demonstrated that the 1 

electrode tortuosity factor given by the symmetric cell method is a more appropriate metric to characterize 2 

porous electrodes than the conventional tortuosity factor determined with the diffusion-based method. 3 

Hence, in this work, we quantified both tortuosity factors using two approaches for comparison.  4 

Recently, Gayon-Lombardo et al.[78] proposed to use periodic boundaries instead of Dirichlet boundaries 5 

for the diffusion-based method for the conventional tortuosity factor determination. They suggested that this 6 

approach allows representing better the bulk behavior of the microstructure. Thus, it might be interesting 7 

for future works to evaluate the electrode tortuosity factor under the same conditions and to compare the 8 

two methods as what has been done by Nguyen et al..[48] 9 

To study the morphology of the CBD, the diffusion-based method was also used for the simulation of a flux 10 

of electrons passing through the control volume via the CBD. Although this simulation relies on the Fick’s 11 

law, the governing equation is mathematically homologue to the Ohm’s law, which governs the electronic 12 

transport in CBD. 13 

Despite the large acquisition volume given by the X-ray holotomography technique, there is one sample 14 

that suffered from crack, which reduces significantly the exploitable data. Consequently, to be consistent in 15 

the comparison, we considered an adequate sub-volume of 25x25x25 µm3 in each of the three samples 16 

and defined as the control volume. In addition, a representative volume analysis had been done to study 17 

the representativeness of this control volume. As can be seen in Figure S3, all three volumes can be 18 

considered as homogeneous and representative. The two-point correlation calculation also showed in 19 

Figure S9 that the asymptotic behavior is reached for all the three volumes justifying the representativeness 20 

of the control volume. 21 
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 1 

Figure 1. Illustration of the workflow used for this study. a. Schematic representation of the 2 

hard X-ray nano-holotomography experimental setup at ID16B [62] b, c. Raw data filtered with 3 

Non-local Mean and Unsharp Mask in 2D and 3D. d, e. Examples of the segmentation results in 4 

2D and 3D using the machine learning segmentation plugin, Trainable Weka[74], in ImageJ. f. 5 

Visualization of the individual NMC particle colored in red in e along with the interfacial area with 6 

the other phases. 7 

 8 

Table 1. Volume fraction of the active materials in the three electrodes. Expectation (Exp) 9 
values provided by the supplier are reported along with the values extracted from the 3D 10 
tomographic data (Data). 11 

Sample MX-1 MX-1b MX-2b 

%v AM 
Data Exp. Data Exp. Data Exp. 

74.4 70.92 74.1 69.6 71.7 69.6 

 12 

  13 



1 

Figure 2. Morphology of the AM phase in three different samples. a. The AM phase of MX-1 2 

sample is separated into individual particles that allow the statistical analysis of the microstructural 3 

properties by particles.  b. Particle size distribution is given by tomographic data and by laser 4 

diffraction. c. The distribution of the sphericity of the NMC particles in the three samples. d. 5 

FIB/SEM image of the sample MX-2b shows cracked NMC particles. Purple arrows: internal pore 6 

without CBD, Green arrows: internal pore with CBD e. Spatial repartition of the NMC particles in 7 

the three samples in the direction normal to the current collector. Blue circles: Small particles, 8 

Red squares: Average particles and Black stars: Big particles. 9 

Table 2. Microstructural properties of the CBD phase. Expected (Exp.) values are presented 10 
along with the values extracted from the 3D tomographic data (Data). 11 

Sample MX-1 MX-1b MX-2b 

Percolation [%] 88.2 91.4 93.2 

%v CBD 
Data Exp. Data Exp. Data Exp. 

7.5 7.8 8.8 11.3 10.5 11.3 

a
CBD

 [μܕ૛. μ܄۱ܕ
ି૜] 1.12 1.08 1.00 

 ష [S.cm-1] 0.0025 0.0250 0.0300܍࣌

E
a
 [eV] 0.030 0.007 0.006 

 12 



1 

Figure 3. 3D microstructure of the CBD and simulations from diffusion-based method (with 2 

TauFactor) in the three different electrodes. a. The CBD network (green) within the control 3 

volume (25x25x25 µm3). For the ease of visualization, the rest is represented as a transparent 4 

grey phase. b. For the ease of the observation of the porous morphology of the CBD, 2D slices 5 

are chosen to be shown, in which dead-end paths (white) and flux-through paths (blue) are both 6 

presented. One can observe the porous morphology of the CBD in various clusters (either in blue 7 

or white). c. The normalized flux density within the flux-through paths was colored for the three 8 

volumes. Dead-end pathways are represented in the three ortho slices as the white phase. 9 

Through-plane: Z-axis (green arrow), In-plane: X-axis (red arrow), Y-axis (blue arrow). 10 

 11 



Table 3. Microstructural properties of the pore network. Expected (Exp.) values are 1 
presented along with the values extracted from the 3D tomographic data (Data). 2 

Sample MX-1 MX-1b MX-2b 

Percolation 
[%] 

95.5 94.6 94.6 

Porosity 
Data Exp. Data Exp. Data Exp. 

18.1 21.2 17.1 19.1 17.8 19.1 

a
pores

  

[μܕ૛. μ܄۱ܕ
ି૜] 

1.05 1.07 1 

  ࣎
(N

M
) 

X-axis Z-axis X-axis Z-axis X-axis Z-axis 

8.13 
(45.17) 

4.12 
(22.88) 

9.31 
(54.44) 

4.15 
(24.15) 

7.31 
(41.07) 

3.74 
(21.05) 

  ܍࣎
(N

M,e
) 

X-axis Z-axis X-axis Z-axis X-axis Z-axis 

8.51 
(47.28) 

3.78 
(20.87) 

8.57 
(50.12) 

3.95 
(22.99) 

6.97 
(39.16) 

3.56 
(20.00) 

 3 

 4 

 5 



1 

Figure 4. 3D microstructure of the pore network and simulations from diffusion-based 2 

method in the three different electrodes. a. Morphology of the pore network (blue) within the 3 

control volume, the AM & CBD phases are represented in transparent grey for the ease of 4 

visualization. b. The normalized flux density map of the pore network. The flux only passes by the 5 

through-pores in red, dead-end pores are represented in white on the ortho slices. c. The 2D 6 

ortho-slices of the pore network separated into through-pores (blue) and dead-end pores (white). 7 

Through-plane: Z-axis (green arrow), In-plane: X-axis (red arrow), Y-axis (blue arrow). 8 

 9 



1 

Figure 5. Inter-connectivity between phases in three samples. a. Interfacial area per AM 2 

particle volume between AM/CBD (aP(AM/CBD)) and AM/pores (aP(AM/pores))  are presented for each 3 

sample. b. TPBp density per AM particle volume for each sample. c, e, f. Comparison of the 4 

distribution of different microstructural properties in three samples. The size of the dot 5 

corresponds to the particle size. The color corresponds to the TPBp density of the particle, which 6 

is represented on the color bar. d. Visualization of the AM/CBD (green) and AM/pores (blue) 7 



interfacial area along with the TPB map of the representative particle of sample MX-1 (ID=341). 1 

The dashed line to guide eyes cut each other at the representative particle. 2 

 3 

4 

Figure 6. Correlation to the electrode performance. a. The lithiation performance of the three 5 

electrodes measured in a coin-cell setup at 25°C. The current density I* indicated the boundary 6 

between high and low current density regions. b. Our proposed scenario to explain the impact of 7 

the microstructure on the final performance. The electrochemical active surface area are 8 

highlighted in red. The excess of CBD increases the coverage by CBD over the AM particle 9 

surface as well as the TPBp density but reduces significantly the interfacial area between AM and 10 

electrolyte filled in pores at which charge transfer takes place. 11 
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