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Abstract: Sepsis represents a global health priority
because of its high mortality and morbidity. The key to
improving prognosis remains an early diagnosis to initiate
appropriate antibiotic treatment. Procalcitonin (PCT) is a
recognized biomarker for the early indication of bacterial
infections and a valuable tool to guide and individualize
antibiotic treatment. To meet the increasing demand for
PCT testing, numerous PCT immunoassays have been
developed and commercialized, but results have been
questioned. Many comparison studies have been carried

out to evaluate analytical performance and comparability
of results provided by the different commercially available
immunoassays for PCT, but results are conflicting. External
Quality Assessment Schemes (EQAS) for PCT constitute
another way to evaluate results comparability. However,
when making this comparison, it must be taken into
account that the variety of EQA materials consist of
different matrices, the commutability of which has not yet
been investigated. The present study gathers results from
all published comparison studies and results from 137
EQAS surveys to describe the current state-of-the-art
harmonization of PCT results. Comparison studies glob-
ally highlight a significant variability of measurement
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results that nonetheless seem to have a moderate impact
on medical decision-making. For their part, EQAS for PCT
provides highly discrepant estimates of the interlaboratory
CV. Due to differences in commutability of the EQA mate-
rials, the results from different peer groups could not be
compared. To improve the informative value of the EQA
data, the existing limitations such as non-harmonized
conditions and suboptimal and/or unknown commut-
ability of the EQAmaterials have to be overcome. The study
highlights the need for commutable reference materials
that could be used to properly evaluate result compara-
bility and possibly standardize calibration, if necessary.
Such an initiative would further improve the safe use of
PCT in clinical routine.

Keywords: equivalence; external-quality-assessment;harmo-
nization; method comparison; procalcitonin; sepsis.

Introduction

Sepsis is recognized as a global health priority, with 48.9
million reported cases in 2017 and over 11 million deaths
recorded worldwide every year [1, 2]. Patient mortality is
highly dependent on the delay of antimicrobial therapy
administration [3, 4], early and accurate sepsis diagnosis
followed by appropriate antimicrobial therapy is an
essential determinant for the patient outcome [5–7] and
reducing costs [8, 9]. Procalcitonin (PCT) emerged as a
valuable biomarker to differentiate between infectious
and non-infectious causes of systemic inflammation. In
non-infectious conditions, PCT concentration in plasma or
serum typically remains below 0.05 μg/L [10]. In bacterial
sepsis, however, PCT concentration can increasemore than
1,000 fold from the basal concentration [11, 12], whereas it
remains low in the case of localizedbacterial infections and
viral infections. Numerous studies have demonstrated the
good performance of PCT as a diagnostic marker for sepsis
[13–20], and the prediction of associated mortality [21–23].

Moreover, its implication in the diagnosis of neonatal
sepsis [24] and bacterial lower respiratory tract infections
(LRTI) [25] has been confirmed. Studies have also proved
the utility of PCT for antibiotic management and stew-
ardship in sepsis and LRTI [26, 27], notably in decreasing
the antibiotic treatment duration in ICUs [28–30]. There-
fore, PCT measurement is an efficient tool to reduce the
abuse of broad-spectrum antibiotics, antibiotic-related
side effects, and the occurrence of antibiotic resistance
[25].

To meet the high demand for PCT testing, a wide range
of immunoassays has been developed employing different
calibration, different detection principles and different
antibodies [31]. As PCT-based diagnosis and PCT-guided
antibiotic stewardship depend on specific PCT cutoffs
(i.e., 0.25 μg/L for non-ICU studies and 0.5 μg/L for ICU
studies as stopping rules for an antibiotic) [32], high
comparability among assays is crucial. A lack of compa-
rabilitymay impact patients’ continuity ofmedical care [33]
and hinder the ability to aggregate and compare data from
different clinical trials and epidemiological studies.
Consequently, determining whether the clinical thresholds
established from one trial can be applied to other trials is a
central problem. Therefore, it is essential to develop
analytical and clinical equivalence between results pro-
vided by the different assays. As assay design, particularly
the choice and the selectivity of antibodies, can hardly be
harmonized, standardization of calibration appears the
best and virtually the only way to obtain comparable and
accurate PCT results. In the absence of any higher-order
reference method and internationally agreed to calibration
material for PCT, the Brahms PCT LIA assay has been used
as a surrogate reference method for Thermo Fischer Sci-
entific and its license partners PCT assay development,
hereafter referred as to the Brahms PCT assays [34, 35], and
was the predicate device in the first regulatory submissions
to FDA for KRYPTORandVidas Brahms assays. TheBrahms
Kryptor and Vidas Brahms assays are now used as a
predicate device to evaluate the method comparison of
other Brahms automated immunoassays in subsequent
regulatory submissions. However, other automated PCT
assays have been developed by various diagnostic com-
panies (e.g., Maglumi, Diazyme, DiaSys, Beckman Coulter)
for which there is currently no harmonization system in
place. Alongside fully automated assays, a wide range of
point-of-care PCT tests have also been developed and are
increasingly used in critical care settings. Still, here again,
there is no internationally agreed reference system of
higher-order in place. Several studies have highlighted the
need for harmonization of PCT results [36, 37]. However,
important discrepancies can be observed across conclu-
sions of studies conducted to evaluate the analytical per-
formance and the comparability of results provided by the
different immunoassays for PCT. In this paper, we first
compiled all available comparison studies between
commercially available fully-automated assays for PCT
measurement. We then analyzed results from 137 external
quality assessment (EQA) surveys to document the current
state of the art with regards to the harmonization status of
PCT measurements.
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Comparison studies

We collected all available FDA 510(k) approval documents
and published research papers describing the comparison
of fully automated assays for PCT. Publications in
languages other than English or French were included if
they had a meaningful detailed abstract in English or
French. Thirty-three records from the literature searchwere
identified: 8 FDA 510(k) approval documents [38–45] and
25 research papers [36, 37, 46–68]. Details of each study are
summarized in Supplementary Material, Table 1. The
comparison studies reported in FDA 510(k) approval
documents were performed according to CLSI EP09-A3
“Measurement Procedure Comparison and Bias Estimation
Using Patient Samples”. Most of the research papers did
not refer to any specific guidelines for method comparison
and bias evaluation. All the studies performed at least one
regression analysis between results from two immunoas-
says. However, they didn’t all estimate and discuss the bias
of measurement between the PCT immunoassays apart
from determining the regression analysis and the agree-
ment of classification at clinical concentrations. As these
criteria are crucial to depict the current state of the art of the
correlation and agreement of classification between PCT
assay methods, they were evaluated and discussed below.

Evaluation of the regression analysis
between two assays

In all studies included in this evaluation, a regression plot
analysis was established to evaluate the correlation be-
tween two immunoassays—most of the published studies
employed Passing-Bablok or Deming regression analysis
(see Supplementary Material, Table 1). The majority of
published studies reported a good correlation between the
different PCT assays according to the correlation coefficient
above 0.85 (see Supplementary Material, Table 1). How-
ever, the degree of correlation between the two assays
depends on the number of samples and the concentration
range, as the correlation coefficient will tend to be higher if
the concentration range is broad [69]. The correlation
coefficient informs about the degree of dispersion of mea-
surement results but not on the agreement of results.
Therefore, it is preferable to use bias as an estimator of
agreement. The bias can be subdivided into proportional
and constant bias, and these two components can
respectively be evaluated via the slope and the intercept of
the regression analysis [70]. Like FDA 510(k) method
comparison, the Brahms Kryptor and Vidas Brahms assays

were predominantly employed as the comparative assay
across the different studies (see Supplementary Material,
Table 1). The slope and the intercept of regression equa-
tions are presented in Figure 1. The FDA 510(k) approval
documents show both more negligible proportional and
smaller constant bias (Figure 1(A)) than in the published
research papers (Figure 1(B) and (C)). In data from the FDA
approval documents, the deviation from a slope of 1 was
less than ±6%, whereas it rises to ±69% in some research
papers. This observation could be explained by the fact
that the experimental conditions strictly followed the
technical protocol of FDA 510(k) approval documents. In
other studies, different technical conditions (i.e., reagents,
instruments, interfering sample) could be employed. The
proportional bias between the Brahms Kryptor and other
assays was generally lower than ±25% (Figure 1(B)). The
constant positive bias of the Vidas Brahms compared to the
Brahms Kryptor (>25%) was also confirmed by the manu-
facturer’s data, in which a proportional error of up to 22%
was reported [61].

Compared with the Vidas Brahms, a negative propor-
tional bias was observed for almost all assays, with a ten-
dency to exceed −20% (Figure 1(C)). Additionally, the
evaluation of regression analysis studies employing assays
other than Kryptor Brahms or Vidas Brahms as a compar-
ative method is presented in Supplementary Material,
Table 1. A proportional bias of up to 79% was reported
when comparing the Liaison Brahms assay to the Elecsys
Brahms (on Cobas) or Architect Brahms assay [56]. Overall,
the data presented revealed a noticeable proportional bias
between some assays but observations were variable be-
tween studies. The slope is a valid estimate of the dis-
crepancies between measurement results, provided that
the constant bias is negligible. A non-negligible intercept
indicates thatmeasurement results have a constant bias. In
43 of the 60 comparison studies, the intercept ranged be-
tween −0.2 and 0.2. While this constant bias may have a
negligible impact on medical decision making at high
concentrations of PCT, it could represent significant
differences in measurement results at low clinical cutoffs
(i.e. 0.1, 0.25 and 0.5 μg/L). Using the slope or intercept
alone is not enough to describe the agreement between
assays. We analyzed the combined influence of constant
and proportional bias with a focus on the low PCT con-
centration. For this evaluation, the PCT concentration was
set at clinically relevant concentrations (0.1, 0.25, 0.5, 1, 2,
10 μg/L) for the comparative assay and computed for the
test assays using the 60 regression equations retrieved
from comparison studies. The differences between the
comparative assay and the test assay were then evaluated.
For clinical cutoffs above 0.25 μg/L, the difference between
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assays was less than 15% for 52–57% of evaluations,
between 15 and 30% for 25–32% of evaluations and higher
than 30% for 8–22% of assessments (see Supplementary
Material, Figure 1). The discrepancy between assays is
more accentuated at 0.1 μg/L: a difference between assays
larger than 15% was observed for 80% of cases. However,
such an evaluation of the discrepancy between assays
based on the regression analysis may also be impacted by
the number of samples and the concentration range used to
plot the regression curve. To assess if this computing
evaluation of discrepancy between assays is representative
of the actual situation and is appropriate to accurately
estimate assay bias at the relevant cutoffs, these results
need to be completed by evaluating the experimental bias
between the assays.

The bias of measurement results according
to Bland-Altman plot analysis

Across selected studies, the bias of measurement results
was generally evaluated using Bland-Altman analysis. In
this section, we then limited our investigation to published
studies based on this approach (Table 1). The different

studies reported mean biases, expressed as relative (per-
centage) or absolute values (concentration), between
two immunoassays over a specified concentration range.
However, the documented biases may vary depending on
the concentration range, which differs from one studies to
another one. Indeed, Dipalo et al. reported three different
mean biases (2.7, 11.6, 0.6 μg/L) between the Vidas Brahms
and Brahms Kryptor at concentration range 0.1–58.7,
10.0–58.7, and 0.1–10.0 μg/L, respectively [36]. This raises
the difficulty to compare all studies together. A comparison
of bias through different comparison studies over time for a
given immunoassay should be carefully interpreted
because study designs could substantially differ. Overall,
one can observe that bias reportedwere consistently higher
when comparing the Lumipulse Brahms, Vidas Brahms,
Liaison Brahms, Access, Maglumi assays to the Brahms
Kryptor assay. As observed for the slope, a positive bias for
the Vidas Brahms assay, higher than other assays, was
reported [36, 37, 62–68]. However, this bias seems to be
variable across study and time, as observed in the study
from Lippi et al., where the mean bias between the Vidas
Brahms and Brahms Kryptor assays was only 0.2%. In
addition to a direct impact on patient results, a substantial
bias (positive or negative) for a given immunoassay could

Figure 1: Slopes and intercepts of regression analyses between two PCT assays from FDA 510(k) approval documents and research
documents.
(A) Brahms Kryptor (solid form) and Vidas Brahms (clear form) assay as comparative assay from FDA 510(k) approval documents. (B) Brahms
Kryptor assay as comparative assay from research documents. (C) Vidas Brahms assay as comparative assay from research documents. Slope
(a) and intercept (b) were obtained from the regression equation y = a × x + b established between the results measured on respective test
assay as variable y and the results measured on comparative assay as variable x.
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bepropagated andperpetuated over time if newPCTassays
use this immunoassay (e.g. Vidas Brahms) as a predicate
device for the approval process (FDA or CE marked). In a
comparison study performed between the Liaison Brahms

assay (FDA approved assays using Vidas Brahms assay)
and two FDA approved assays using the Brahms Kryptor as
predicate device (Elecsys Brahms and Architect Brahms
assay), Eidizadeh et al. reported a positive mean bias of

Table : Reported mean bias between assays.

Date Study Test assay Comparative assay Mean bias, µg/L or % Concentration
range, µg/L

Min Max

 FDA K [] Lumipulse Brahms Brahms Kryptor . μg/L . 

 Schuetz et al. [] Vidas Brahms Brahms Kryptor .% .a


a

 Hausfater et al. [] Vidas Brahms Brahms Kryptor . μg/L . .
. μg/L . 

 Sanders et al. [] Advia Brahms Brahms Kryptor −. μg/L . .
−. μg/L  

 Lloyd et Kuyl [] Advia Brahms Brahms Kryptor . μg/L . .
Elecsys Brahms Brahms Kryptor . μg/L . .

 Dipalo et al. [] Diazyme (Beckman) Brahms Kryptor . μg/L . 

 Dipalo et al. [] Liaison Brahms Brahms Kryptor . μg/L . .
Vidas Brahms Brahms Kryptor . μg/L . .

. μg/L  .
. μg/L . 

Elecsys Brahms Brahms Kryptor . μg/L . .
Advia Brahms Brahms Kryptor −. μg/L . .
Diazyme (Architect) Brahms Kryptor −. μg/L . .
Diazyme (Advia) Brahms Kryptor −. μg/L . .
Diazyme (Cobas) Brahms Kryptor −. μg/L . .
Diazyme (AU) Brahms Kryptor −. μg/L . .

 Du puy et al. [] Lumipulse Brahms Brahms Kryptor . μg/L . 

. μg/L . 

 Fortunato [] Liaison Brahms Brahms Kryptor .% .a


a

 Ruzzenente et al. [] Lumipulse Brahms Vidas Brahms −. μg/L . .
−. μg/L  

 Leung et al. [] Architect Brahms Vidas Brahms −. μg/L . 

Elecsys Brahms −. μg/L . 

 Mouatani et al. [] Architect Brahms Brahms Kryptor . μg/L  

. μg/L . 

 Soh et al. [] Architect Brahms Elecsys Brahms −. μg/L . 

Liaison Brahms −. μg/L . 

Vidas Brahms −. μg/L . 

Brahms Kryptor −. μg/L . 

 Wang et al. [] Architect Brahms Vidas Brahms −. μg/L . 

 Lippi et al. [] Access (Access) Brahms Kryptor .% 
a


a

Access (DXI) Brahms Kryptor .% 
a


a

Lumipulse Brahms Brahms Kryptor .% 
a


a

Diazyme (Cobas) Brahms Kryptor .% 
a


a

Elecsys Brahms Brahms Kryptor −.% 
a


a

Vidas Brahms Brahms Kryptor .% 
a


a

Liaison Brahms Brahms Kryptor .% 
a


a

Maglumi Brahms Kryptor .% 
a


a

Architect Brahms Brahms Kryptor −.% 
a


a

 Katz et al. [] Elecsys Brahms Vidas Brahms −. μg/L  

 Lippi et al. [] Access Brahms Kryptor .% . 

 Dupuy et al. [] Diasys (Cobas) Brahms Kryptor . μg/L . 

Diazyme (Cobas) Brahms Kryptor . μg/L . 

aValues reported from Bland and Altman plot.
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40% between the Liaison Brahms assay and both the
Elecsys Brahms and Architect Brahms assays. In contrast,
the Elecsys Brahms assay did not exhibit any significant
bias against the Architect Brahms assay [56]. Other studies
also showed the same positive bias trend for the Liaison
Brahms assay [36, 53, 65, 67].

A study of Lippi et al. based on PCT results of the same
set of 176 frozen plasma samples measured on 10 PCT
assays depict the best recent overview on PCT assay com-
parison. A bias of at least 10% was reported in 28 of 45
pairwise comparisons. Among them, the Diazyme and
Maglumi assays reported the highest bias compared to
other assays (up to 24.9% compared to the Brahms Kryptor
(Table 1) and up to 38.6% compared to the Elecsys Brahms
assay [67]. Moreover, a bias of more than ±20% was un-
expectedly observed between assays belonging to the
Brahms PCT group (i.e., −28.2% between Elecsys Brahms
(on Cobas) and Lumipulse Brahms, −20.8% between
Architect Brahms and Lumipulse Brahms, 22% between
Liaison Brahms and Elecsys Brahms (on Cobas)).

Overall, most of the studies reported that substantial
bias between assays exists and thus shows that harmoni-
zation between all assays is not optimal. However, it is
difficult to appreciate a bias reported for a whole concen-
tration range. The real deviation of results obtained
between assays at a single point concentration cannot be
retrieved. Therefore, bias between assays does not bring
any information on clinical interpretation of the results.
Most of the studies in which a significant bias was reported
also analyzed the clinical concordance at clinical cutoff
concentrations. To estimate the impact of bias on clinical
decisions, we then analyzed results from studies having
evaluated the agreement of classification.

Agreement of classification at clinical cutoff
concentrations

The correct classification of patients is essential to ensure
proper patient management all along the care pathway,
particularly when changing from one immunoassay to
another using the same clinical cutoffs. Therefore, agree-
ment at different clinical cutoff concentrations was
retrieved from published studies to evaluate the influence
of results variability on data interpretation (see Supple-
mentary Material, Table 2). This resulted in 327 reported
agreement values. Among these, 295 (90%) were equal to
or better than 90%. An agreement below 90% was mainly
reported at low concentrations (0.25 and 0.5 μg/L), espe-
cially when the Diazyme assay was compared to other PCT
assays. Although few authors conclude that differences in

measurement results have a moderate impact on medical
decision-making [36, 67], several authors still advised that
longitudinal patient monitoring should preferably be car-
ried out using the same immunoassay [36, 67]. Added to the
fact that some studies outlined a poor agreement between
some assays with up to 38% of misclassification, some
doubts seem to persist regarding the equivalence of results
and the consistency of medical decisions when different
assays are used [49, 54, 58, 61, 67, 68]. A reason for this
could be that in agreement studies, patients classification
is performed using all study samples, which span a high
range of PCT concentration (Table 1). As a better agreement
is expected to be obtained when target concentrations are
far from the clinical cutoff, the agreement between assays
at a specific cutoff (i.e. 0.5, 2.0, 10 μg/L) will largely depend
on the distribution of samples alongside the PCT concen-
tration range. To our knowledge, no study focused on this
point, and such data couldn’t be retrieved from the com-
parison studies. Therefore, the validity of conclusions
regarding the impact on medical decision-making can be
disputed. To properly evaluate the effect of differences
between assays on decision making, the agreement of
classification should be performed using a sufficient
number of samples with concentrations close to each
clinical cutoffs.

Despite differences in experimental designs, compar-
ison studies globally highlight essential differences
between assays that are reported to have a moderate
impact onmedical decision-making. However, comparison
studies generally suffer from various limitations that put
these conclusions into question. Additional data are
needed to evaluate comparability PCT results at clinical
decision limits and interpret differences to medically rele-
vant performance specifications.

External quality assessment
schemes

Data from 143 surveys carried out from 2014 to 2020 were
supplied by 10 external quality assessment scheme (EQAS)
providers from eight different countries: ANSM in France,
CSCQ in Switzerland, Equalis in Sweden, Instand in
Germany, Labquality in Finland, ProBioQual in France,
RCPAQAP in Australia, RfB in Germany, SKML in The
Netherlands and Weqas in the UK. Data from surveys with
less than 10 participants and materials in which PCT con-
centration was lower than 0.05 μg/L were excluded from
this study to enable sufficiently robust data analysis.
Overall, the present study includes 137 surveys with
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approximately 2,220 routine laboratory participants (see
SupplementaryMaterial, Tables 3 and 4). About 27,559 PCT
measurements were performed on samples with concen-
trations ranging from0.05 to 43.66 μg/L (median 2.07 μg/L).
Different types of serum-based materials were used within
the various EQA surveys: fresh pools without spiking with
exogenous PCT for Instand, frozen without spiking with
exogenous PCT for Equalis, frozen with spiking with exog-
enous PCT for Weqas, lyophilized without spiking with
exogenous PCT for RCPAQAP, and SKML, lyophilized with
spiking with exogenous PCT for ANSM, CSCQ, Labquality,
ProBioQual, and RfB.

As an estimator of the harmonization level of PCT
measurements, we calculated the interlaboratory coeffi-
cient of variation (CV) of results provided by all partici-
pants of a given survey. Figure 2 shows the interlaboratory
CV of all 137 surveys as a function of the consensus mean
concentration of PCT. All surveys together, the median
interlaboratory CV was 16.1%. The interlaboratory CVs are
highly heterogeneous across the different surveys. In

several surveys, the interlaboratory CV was in the 5–10%
range, which suggests a much better harmonization level
than in other surveys in which the interlaboratory CV
exceeds 25%. However, these numbers are difficult to
interpret in the absence of medically relevant analytical
performance specifications (APS) defining what inter-
laboratory CV can be deemed acceptable.

In current EQAS, the validity of individual laboratory
results is most often judged using peer group consensus
means as target values with predefined acceptance limits.
Many EQA providers use acceptance limits of 15%, prac-
tices remain heterogeneous, and acceptance limits range
between 12 and 30%. Although these numbers indicate
how much results of an individual laboratory can deviate
from the target, they do not provide any information on
what variability across the different peer groups can be
considered acceptable.

The possible origins of the discrepancies between the
results of different EQAS and the identity of the main
parameters contributing to the interlaboratory CV were
studied as EQA programs relyed on materials with varying
concentrations of PCT and various types of matrices (fresh,
frozen, lyophilized, spiked with recombinant PCT or not),
we investigated the effect of these parameters on the
observed variability of the PCT measurement results.

Influence of the target concentrations

Two different ranges of PCT concentrations were consid-
ered: below and above 10 μg/L. Figure 2, one can notice
that the dispersion of the interlaboratory CV estimates was
greater for PCT concentrations lower than 10 μg/L. How-
ever, the median interlaboratory CVs were in the same
range in these two concentration ranges (13.9% below
10 μg/L vs. 19.5% above 10 μg/L. This could indicate a
potential impact of the target concentration on the vari-
ability of PCT measurement results. To document the
interlaboratory CV close to the clinical cutoffs, we further
split our analysis into narrower concentration ranges. Still,
results were consistent with each other (data not shown),
and the number of surveys was sometimes low in some
split ranges. Therefore, the whole range was considered
afterward.

Moreover, only some matrices were used at high
PCT concentration (fresh non-spiked, lyophilized with or
without spiking) with relatively good consistency between
values of the interlaboratory CV. In contrast, all EQA
materials were covered at low concentrations, and
values of the interlaboratory CV were more scattered. This

Figure 2: Interlaboratory CV obtained from the 137 EQAS on PCT
carried out from 2014 to 2020 by 10 EQA providers from 7 European
countries and Australia.
Consensus mean concentration represents the mean of results
obtained from all immunoassay methods included in each survey. Five
types of serum-based EQA materials were studied: fresh pools of
samples without spiking with exogenous PCT (FreNS), frozen without
spiking with exogenous PCT (FroNS), frozen with spiking with
exogenous PCT (FroS), lyophilized without spiking with exogenous PCT
(LyoNS) and lyophilized with spiking with exogenous PCT (LyoS).
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confirms the need to consider thematerial matrix in further
evaluation.

Influence of within peer group imprecision

TheNon-commutability of EQAmaterials could compromise
the ability to compare, and aggregate results from different
peer groups [71], but results of all laboratories from the same
peer group will all be affected the same way by matrix ef-
fects. Thus, we first evaluated results imprecision within
each peer group. For each type of EQA material (fresh non-
spiked, frozen or lyophilized with and without spiking) and
each survey, we calculated the intra-peer group impreci-
sion, that corresponds to the interlaboratory CV of results
obtained from participants using the same analytical plat-
form. In order to get a sufficiently robust estimate of intra-
peer group imprecision, this analysis was limited to surveys
including more than 20 participants per peer group. Only
the following peer groups fulfilled this criterion: Elecsys
Brahms (on Cobas or Elecsys), Vidas Brahms, Brahms
Kryptor, Architect Brahms, Advia/Atellica Brahms, Radi-
ometer, and Diazyme. Within these peer-groups, only fresh
non-spiked, frozen non-spiked and lyophilized spiked
matrices were evaluated. As presented in Supplementary
Material, Figure 2, and detailed in Supplementary Material,
Table 5–12 a twicehigherwithin-peer group imprecisionwas
observed with fresh non-spiked materials (median CV be-
tween 9.0 and 11.6%) than for frozen non-spiked and
lyophilized spiked materials (median CV between 3.9 and
7.7%), except forDiazymeassay. This suggests that, for fresh
non-spikedmaterials, within peer group imprecision largely
contributed to the overall interlaboratory CV (median CV of
17.6%). On the contrary, within peer-group imprecision
contributed less than between the peer-groups imprecision
to the overall between-lab CV frozen non-spiked and
lyophilized spikedmaterials. However, differences between
the different peer groups could be due to an actual bias and/
or matrix effects caused by non-commutability of EQA ma-
terials without discriminating these two causes. EQA orga-
nizations generally try to provide commutable material
when possible, but it should be noted that this is not always
a necessity depending on the purpose of EQA. In some
countries, the main objective remains to compare results
from labs using the same analytical platform. This is espe-
cially the casewhena largenumberofPOCTare usedby labs
and physicians. In this case, identifying EQA materials that
are commutable for all assays can be very challenging and
EQAprovidersmay have noother choice but usingmaterials
of lower or unknown commutability. EQA schemes still
provide useful information to compare results from one

individual laboratorywith its peers and, therefore, verify the
correct implementation of assays. However, comparing re-
sults from different peer groups is limited by the use of
materials of unknown commutability. This highlights the
need to identify suitable matrices mimicking the most pa-
tient samples.

In search of commutable EQA materials for
PCT

In an attempt to get information on the commutability of
EQA materials without conducting a formal commut-
ability study, the peer group consensus target of results
provided by the most popular immunoassays was
compared with the all-laboratory trimmed mean (ALTM)
(see Supplementary Material, Figure 3). However, this
approach showed different limitations. 5 of 10 involved
EQA providers had a sufficiently large number of par-
ticipants to generate robust data (>20 participants per
peer group). To evaluate results harmonization, the
commutability of the materials should be evaluated for
all major assays. Thus, only two to six peer groups could
be included per EQA survey. Using EQAS in which peer
groups were large enough, two types of matrices could
be represented, namely fresh non-spiked and lyophi-
lized spiked materials, respectively. However, it was not
possible to evaluate the impact of the processes of
lyophilization and spiking on materials’ commutability
separately. Furthermore, as the market share of PCT as-
says dramatically varies across the different countries,
the deviation of a given peer group against the ALTMwill
depend on the relative weight of this peer group.

In the end, it was only possible to get insights into the
batch-to-batch variations in the EQAmaterials froma given
EQA provider, but not to compare various types of EQA
materials from different EQAproviders. Despite differences
in sample matrix and relative weight of the different peer
groups, results still show that some assays consistently
provide results below the ALTM and others above the
ALTM. Although this could reveal actual differences
between assays, no quantitative information can be ob-
tained and interpreted in clinical impact.

Given the impossibility to discriminate between
analytical bias from non-commutability bias, we analyzed
results to get insights into materials characteristics that
could cause differences in commutability. Spikedmaterials
were associated with the highest median interlaboratory
CV, either with frozen materials (20.2%) or lyophilized
materials (21.5%) (Figure 3). In comparison, the median
interlaboratory CV was only 7.1% in surveys relying on
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frozen non-spiked materials and 6.1% in surveys using
lyophilized non-spiked materials (Figure 3). Assuming
that materials non-commutability most often results in
increasing differences between results assays and more
significant interlaboratory CVs (79), these results suggest
that spiking with recombinant PCT could represent a sig-
nificant factor compromisingmaterials commutability. The
median interlaboratory CV was substantially higher in
surveys using fresh non-spiked materials (17.6%) than the
other non-spiked materials (7.1% for frozen and 6.1% for
lyophilized).

As fresh non-spiked materials can be considered the
closest matrix to fresh single donations (that are
commutable by definition), fresh non-spiked materials
were expected to be associated with the highest commut-
ability level the lowest interlaboratory CV. Since the sta-
bility and the homogeneity of the fresh non-spiked
materials was evaluated and demonstrated according to
ISO 17043 requirements. Further studies should investigate
the influence of pooling towards compromising commut-
ability of fresh non-spiked EQA materials. Overall, the
organization of studies relying on fresh materials is chal-
lenging, both from an ethical and technical point of view. It
remains challenging to obtain such samples in sufficient
amounts, circulate these to all EQA participants and get
materials tested within the time frame of the stability
approved.

Due to providing an optimized material for PCT
EQAS in future, it appears desirable to identify suitable

manufacturing processes leading to high commutability.
Such a study is under preparation within IFCCWG-PCT with
involvement from all key stakeholders. First, EQA providers
will be invited to share EQA materials to cover the different
types of matrices. Then, clinical partners will recruit a panel
of clinical specimens that are as close as possible to patient
samples (no spiking, no pooling, no lyophilization, etc.…)
and cover the entire PCT concentration range. Through the
involvement of all assay manufacturers, EQA materials and
clinical specimens will then be measured in repeatability
conditions by all available immunoassays. Statistical anal-
ysiswill be performed using the difference in bias approach,
and commutability acceptance criteria will be defined ac-
cording to the recommendation of IFCC WG-CMT. A signif-
icant difficulty consists of sourcing many single donations
in sufficient amount so that the same samples can be
measured with all available immunoassays. After this work
has been completed, reliable information on commutability
of EQA materials will be open and make it possible to
organize EQA schemes to document the true state of the art
in harmonization of PCT assays. EQA can also help moni-
toring the clinical equivalence of assays in condition that
i) clinically relevant concentrations are targeted (i.e. Close to
the medical decisions limits) and ii) commutability of the
EQA materials is demonstrated for all the assays which
clinical equivalence is to be assessed.

Conclusions

Both published comparison studies and EQA results indi-
cate substantial differences between results provided by
the different commercially available assays for PCT. How-
ever, both strategies have limitations that make it difficult
to evaluate the true current state-of-the-art in harmoniza-
tion properly. In comparison studies and EQA programs, a
clear identification of the involved assays is made difficult
by the co-existence of multiple combinations of analyzers,
reagent lots and calibrators lots. A more comprehensive
description of assay characteristics appears desirable in
both cases. In comparison studies, important differences in
methodology were observed, such as the number of sam-
ples, material matrix, PCT concentration range and
description of assays. To properly evaluate the impact of
differences between assays on medical decisions making,
it would be necessary to involve a sufficiently large number
of samples with low PCT concentrations close to the clini-
cally relevant cutoffs, but this information was usually not
available.

EQA schemes provide valuable information regarding
results consistency within a given peer group. However,

Figure 3: Box plot comparing interlaboratory CV among EQA
material matrix.
Five types of serum-based EQA materials were studied: fresh pools
of samples without spiking with exogenous PCT (FreNS), frozen
without spiking with exogenous PCT (FroNS), frozen with spiking
with exogenous PCT (FroS), lyophilized without spiking with
exogenousPCT (LyoNS) and lyophilizedwith spikingwith exogenous
PCT (LyoS).
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the comparison between assays is limited. The differences
of PCT results are challenging to evaluate due to the
absence of any information regarding materials’ commut-
ability, which hampers the ability to compare and aggre-
gate results from different peer groups.

Although our study relies on an extensive collection
of EQAS results obtained over years and presents the
overall situation internationally for the first time, the va-
riety of PCT EQAS designs, particularly the use of different
materials, and their results illustrate the complexity of the
situation of PCT measurements and highlight the need to
conduct a definitive study to properly establish the status
of harmonization of marketed PCT assays.

After this is achieved, important work will need to be
done to understand the variability of results provided by
the different PCT assays. Differences in results between
assays can be due to the use of different calibrators and/or
different antibodies [67]. It might also be caused by
non-commutability of calibrators that are used in
the metrological traceability chain. ISO 17511:2020 on
metrological traceability in laboratory medicine stresses
the need for calibrators used in the traceability chain to be
commutable [72], but difficulties remain to fulfill this
requirement in practice. Provided that differences between
assays are mostly due to calibration-related issues rather
than specificity issues, a solution could consist of
standardizing calibration through commutable Certified
Reference Materials or panels of patient samples value
assigned with a reference method. Although a significant
fraction of commercially available immunoassays provides
results that are traceable to the Brahms PCT LIA assay,
substantial differences between these assays have been
reported in both EQA schemes and correlation studies, and
even larger differences were reported with other assays.
Therefore, several published correlation studies suggest
that common reference calibration materials should be
developed to improve agreement between PCT assays
[36, 51, 56, 65, 67, 73]. To fill this gap, the IFCC working
group on standardization of PCT assays initiated the pro-
duction of commutable reference materials intending to
evaluate the necessity, the feasibility and the potential
benefit of recalibrating PCT assays [31].
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