
HAL Id: hal-03335184
https://hal.science/hal-03335184

Submitted on 6 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental Workflow for Energy and Temperature
Profiling on HPC Systems

Kameswar Rao Vaddina, Laurent Lefèvre, Anne-Cécile Orgerie

To cite this version:
Kameswar Rao Vaddina, Laurent Lefèvre, Anne-Cécile Orgerie. Experimental Workflow for Energy
and Temperature Profiling on HPC Systems. ISCC 2021 - IEEE Symposium on Computers and Com-
munications, Sep 2021, Athens, Greece. pp.1-7, �10.1109/ISCC53001.2021.9631413�. �hal-03335184�

https://hal.science/hal-03335184
https://hal.archives-ouvertes.fr


Experimental Workflow for Energy and
Temperature Profiling on HPC Systems

Kameswar Rao Vaddina
Univ. Rennes, Inria, CNRS, IRISA

Rennes, France
kvaddina@inria.fr

Laurent Lefèvre
Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP

Lyon, France
laurent.lefevre@inria.fr

Anne-Cécile Orgerie
Univ. Rennes, Inria, CNRS, IRISA

Rennes, France
anne-cecile.orgerie@irisa.fr

Abstract—Despite recent advances in improving the perfor-
mance of high performance computing (HPC) and distributed
systems, power dissipation and thermal cooling challenges persist,
impacting their total cost of ownership. Making HPC systems
more energy and thermal efficient will require understanding of
individual power dissipation and temperature contributions of
multiple hardware system components and their accompanying
software. In this work, we present an experimental workflow for
energy and temperature profiling on systems running parallel
applications. It allows full and dynamic control over the execution
of applications for the entire frequency range. Through its use,
we show that the energy response to frequency scaling is highly
dependent on the workload characteristics and it is convex in
nature with an optimal frequency point. During the course of our
experimentation, we encountered a non-intuitive finding, where
we observed that the tested low-power processor is consuming
more power on average than the standard processor.

Index Terms—Energy profiling, power measurement, temper-
ature profiling, monitoring infrastructure, HPC systems

I. INTRODUCTION

As the workload running on HPC systems is highly vari-
able, power demand becomes unpredictable [6]. This leads
to planning for the worst case situation, and consequently to
over-budgeting. The unexpected power peaks caused by varied
system utilization combined with limited power and cooling
capacity poses significant power management challenges. To
address these challenges, we can limit the power consumed
by system components by dynamically adjusting and redis-
tributing power among server components. At the same time,
as the process node shrinks, the on-chip power density of the
CPUs increases due to higher and denser transistor integration.
The increase in power density contributes to higher on-chip
temperatures, thus limiting the available thermal design power.
This tightens the energy efficiency constraints and significantly
reduces the system performance.

Over the past decade, there is a growing demand for faster
floating point operations in newer application domains like
data-analytics, machine learning and scientific computing. The
CPU vendors are doubling down on the core count and
improving core frequencies while taking advantage of the
process node shrinkage and relentlessly trying to improve the
energy efficiency of the processors.

The HPC platforms available in the market, have a lot
of software acting in unison, trying to meet the challeng-
ing workload demands. The BIOS, operating system, device

drivers and user-level software applications, all have some
level of impact on the overall energy consumption of the
system. A bulk of this energy is being consumed by the
software applications that run on the platform. Thus, it is
imperative to observe and measure the impact of software
applications on power requirements, so that developers can
benefit from this information and optimize their code for low
energy consumption. Since, increase in temperature leads to an
exponential increase in power dissipation, it is also important
to have a unified approach for optimizing for both energy and
temperature (energy/temperature co-optimization) [17].

The fine-grained granularity required in terms of temporal
profiling (complete and individual code sections) and spatial
profiling (power dissipation of dominant components like
CPU, memory, etc) can be a great asset to the software
developers in understanding the power profile of the system
during the software development process. Therefore, having
an experimental workflow and methodology which can profile
for both energy and temperature is a critical aspect of any
energy efficiency research project, and can provide us with
very interesting insights.

Power and temperature measurement and characterization
of applications on HPC systems can lead to insights that were
previously not possible and is hence an interesting research
direction. In this paper, we describe a novel experimental
workflow for highly accurate and on-line mechanism that
allows to perform energy and temperature monitoring and pro-
filing of parallel applications running on HPC systems. This
low-overhead monitoring infrastructure uses a combination of
Model Specific Registers (MSR’s) and a pseudo file system
provided by the Linux Kernel called sysfs. It is devoid of
any external invasive tools. It embeds a non-intrusive and
low-overhead logging service which is based on systemd. The
logging service runs in the background and only logs during
the execution of the benchmark, thus providing fine-grained
and precise, power and temperature values and achieving good
precision and sampling rate (11-16 samples/second for 1200-
1800 MHz). Our workflow is very flexible in modeling the
experiment by providing control knobs which allow the user
to investigate the effect of CPU off-lining on performance,
power and temperature. We use simple control knobs to
enable/disable standard Intel features like Hyper-threading and
Turbo Boost. The internals of this workflow are described in



details to be reproducible by others. Furthermore, using this
monitoring infrastructure, we confirm and re-validate the ex-
istence of the Energy-/Frequency Convexity Rule which states
that the Energy-/Frequency curve exhibits a convex behavior,
with an optimal frequency point where energy consumption
can be minimized.

The remainder of this paper is structured as follows. In
Section II, we describe the state-of-the-art in energy and
temperature profiling and show how our experimental flow
differs from them. In Section IV, we describe our monitoring
infrastructure. The experimental setup is described in Sec-
tion IV. The results obtained by running various benchmarks,
our hypothesis and data analysis are discussed in detail in
Section V. Finally, we conclude in Section VI and provide
remarks on future work.

II. RELATED WORK

Over the past years, HPC systems have been at the forefront
of new application domains like simulation based compu-
tational science, data intensive computing, machine learning
etc. This tremendous amount of growth in IT infrastructure
has a staggering effect on the energy usage and efficiency
of HPC systems [4]. Energy-efficiency has become one of
the most important metrics to aspire, for contemporary green
computing and data-centers. Optimizing for energy along with
temperature decreases ageing related issues and increases the
longevity of the infrastructure by increasing mean time to
failure (MTTF) [22]. In HPC systems, for some workloads
the substantial contributor of energy consumption are the
CPU’s [15], whose energy consumption is highly dependent
on the CPU frequency and the characteristics of the workload.

The prior works on accounting for energy on processors
and server platforms for various kinds of workloads already
exist. Many of them differ at what hardware IP block level
the profiling is being performed, type of profiling mechanism,
granularity of profiling etc. But, mostly they can be broadly
classified into two different categories [14]. They are, works
that directly measure for energy consumption using external
gauges [21] or on-board sensors [7], and works that model
energy, based on low-level activity derived from hardware
performance counters [13], [20].

External gauges from National Instruments (like NI 9227
for current measurement and NI 9215 for voltage measure-
ment) [21] and from Monsoon power meter [3] can be used to
accurately measure hardware component-level or system-wide
energy consumption. On-board power sensors like Intel’s Run-
ning Average Power Limit (RAPL) [18] have also been used
previously to get the energy consumption of individual hard-
ware components. The accuracy of tools that model energy
consumption from low-level hardware performance counter
data is hardware specific and very workload dependent [19].

Previously, it has been presented in several studies that the
energy consumption curve of the microprocessor with respect
to clock frequency is convex in nature. Many of the approaches
were from the perspective of the CPU’s dynamic voltage and
frequency scaling (DVFS) without considering the impact of

software applications on the overall energy consumption [12].
Others have re-validated the existence of Energy-/Frequency
convexity curve in the context of embedded systems and
energy-critical software applications [21]. Efraim et al. [5]
have also validated the existence of an optimal frequency
and voltage operational point in order to achieve minimal
energy consumption on Intel® Core processors. Some research
works [1], [9] have discussed the convex behavior and revealed
how to exploit it from the system-level point of view.

Many of the above addressed works study and analyze
only the power consumption and that too in isolation. But,
leakage power component of the total power dissipation in-
creases exponentially with temperature. Also, in order to do
energy/temperature accounting per user or per application,
a thorough study has to be commissioned to measure these
metrics while the user is logged in or while running a
particular application. This study could be used as the basis for
future hardware and software co-optimization of energy and
temperature. Our current work does profiling of both power
and temperature in unison. This allows to build an accurate
analytical model for power dissipation as our future work.

We use Intel’s RAPL interface which is part of their power-
capping framework. Intel introduced RAPL power metering
capability first in Sandy Bridge micro-architecture. It is a
model based power meter with accuracy comparable to exter-
nal analog power meters [18]. The RAPL’s interface is via the
model specific registers (MSR’s), which are control registers
used for performance monitoring and toggling of certain CPU
features. RAPL also provides power limiting feature, which
can be used to limit the power and dynamically adjust the
p-states. We read the files under Sysfs powercap interface
for energy profiling and at the same time use raw-access to
the underlying MSR’s for temperature profiling. More details
about our experimental setup, results and analysis is described
below.

III. ENERGY AND TEMPERATURE MONITORING
INFRASTRUCTURE

Our experimental workflow is depicted on Figure 1 and
detailed hereafter.

A. Tuned hardware parameters

The default intel pstate CPU performance scaling driver
only supports two CPU governors (namely powersave and
performance) at the time of writing this paper. So, at boot
time we pass a kernel line parameter (intel pstate=disable),
which disables the intel pstate driver. This allows the test
environment to boot up with the generic acpi cpufreq scal-
ing driver. The acpi cpufreq scaling driver supports the
userspace governor, which allows us to have full and dynamic
control over the entire frequency range. This governor allows
Linux user space to set the CPU frequency for the policy it
is attached to, by writing to the scaling setspeed attribute of
that policy.

We have disabled Intel’s proprietary Turbo Boost feature
which might introduce some variation in the performance



Experiments

+Set CPU's clock frequency using cpupower tool
+Start logging service on core0 using CPUaffinity
+Launch benchmark pinned to the other cores
+Stop logging service
+Sleep for 20 minutes

Logging Service

+Get timestamp
+Get power of CPU's with RAPL
+Get temperature of cores with MSRs

Hardware Tuning

+Disable TurboBoost
+Disable Hyper-threading
+Disable intel_pstate driver
+Enable acpi_cpufreq driver
+Use the userspace governor

Results

Fig. 1. Experimental workflow

between different benchmark runs [8]. After the boot-up of the
operating system, we also disable Hyper-threading as it causes
indeterminism in the execution of benchmark applications.
Hence, all the benchmark runs in this paper uses only one
logical processor per physical core.

We vary the frequencies from the base to nominal range
(1200-1800MHz for E5-2630L and 1200-2200MHz for E5-
2630) for each benchmark run. Initially, the main launch script
changes the CPU governor from ondemand to userspace and
then sets the CPU frequency with the help of a Linux tool
called cpupower. This allows us to manually control the CPU’s
clock frequency. For each CPU frequency, we first start the
logging service, execute the benchmark and then immediately
stop the logging service. The script then sleeps for about 20
minutes before executing the benchmark for another frequency.
This abundant time allows the CPU to return to steady-state
idle temperature. At the end of the last frequency run, the
CPU governor is reverted back to ondemand from userspace.
At this point the power and temperature trace is written to the
disk. Post processing of the collected trace happens offline.

B. Logging service

We are using Systemd - system and service manager to
initialize the logging service. The logging service loads in the
background immediately after the boot-up of the Linux kernel
image. The ExecStart directive of the logging service specifies
the main script which gets executed and does the logging of
energy and core temperatures. We use Systemd’s controlling
interface and inspection tool called systemctl to start and
stop the logging service. We achieve extremely fine-grained
logging granularity which is devoid of unnecessary data points
by starting the logging service before the execution of the
benchmark and stopping the service right after the execution
of the said benchmark. The core0 of the CPU is dedicated
exclusively to logging by setting the CPUAffinity directive to
0. We achieve asynchronous logging capability by pinning the
execution of benchmarks to the rest of the physical cores.
This step is crucial to avoid unwanted processes movements
between cores during the execution time due to the process
management policy of the Linux kernel. We have empirically
observed that the very act of writing power and temperature
trace to the disk, has only up to 10% to 15% of CPU
utilization on core0. Hence, we conclude that the impact of it
on the overall power and temperature is marginal and can be
considered to be constant across our benchmark runs.

In the main logging script, we use the Linux Power Capping
Framework which exposes power capping devices to the user
space via sysfs file paths in the form of a tree of objects. The
intel-rapl control type object represents Intel’s “Running Av-
erage Power Limit” (RAPL) interface. It contains two power
zones, intel-rapl:0 and intel-rapl:1, representing CPU pack-
ages (PACKAGE ENERGY0 and PACKAGE ENERGY1).
We also use the generic thermal sysfs driver to read the ther-
mal zone package temperatures (PACKAGE ID0 and PACK-
AGE ID1). Apart from logging the package energy values,
package temperatures, the logging script also logs the core
temperatures. This is done by directly reading the Model
Specific Registers (MSR’s) for each corresponding core [11].
The package energy values, package temperatures, and the
core temperatures are then time-stamped with a high-precision
timer and stored for further processing. We find it easier
to minimize overhead and ensure complete control over the
hardware by using our own monitoring software written from
the ground-up.

IV. EXPERIMENTAL SETUP

The experiments were conducted on the Grid’5000 in-
frastructure, which is a large-scale and flexible test-bed for
experiment-driven research. The test-bed allows experiments
in a fully controllable and observable environment and sup-
ports high-quality, reproducible experiments. We used two
Dell PowerEdge R630 servers from two different physical
locations of the Grid’5000 infrastructure.

The two servers have different variants of Intel Xeon
E5 processors. One has a Xeon E5-2630L v4 (Broadwell,
1.80GHz nominal frequency, 2 CPUs/node, 10 cores/CPU) and
the other has Xeon E5-2630 v4 (Broadwell, 2.20GHz nominal
frequency, 2 CPUs/node, 10 cores/CPU). The Xeon E5-2630L
variant is a low power processor. The test environment is
running a minimalist image of Debian10 Linux OS. The
deployment of the test environment is fully automated.

The nodes within the cluster group spread across several
racks are cooled with a central cooling system (CCS). The
CCS leverages “Schneider Electric IN-ROW” rack system
which creates an airtight environment for the nodes. It is
connected to a dedicated management network that enables
remote cooling and control [16]. The temperature outside the
cluster group is regulated by a secondary cooling system
(SCS), which is tasked to maintain a constant temperature in
the server room.



We use the NAS Parallel Benchmark suite [2] (EP - Em-
barrassingly Parallel, and LU - Lower-Upper Gauss-Seidel
solver) and the DGEMM benchmark [10] with the most recent
version of the Intel C/C++ compiler (icc) and its associated
Math Kernel Library (MKL library). The EP benchmark has
been compiled with CLASS=D problem size, whereas the LU
benchmark has been compiled with CLASS=C. The execution
time of the benchmarks for other sizes we tested were either
too short or too long to arrive at a consequential experiment
in a reasonable amount of time.

V. RESULTS AND ANALYSIS

We use our framework to perform an experimental analysis
of the energy-temperature behavior of the two processors
presented above. Since, we disabled Hyper-threading on our
test servers, we have 20 cores per CPU, spread between 2
sockets. The core0 is dedicated to asynchronous logging while
simultaneously executing both benchmarks. Hence, 19 cores
are available for scheduling the MPI tasks. We use mpirun to
launch the MPI benchmarks. The EP benchmark is launched
with 19 threads running on 19 cores. The LU benchmark is
launched with 18 threads running on 18 cores. The inherent
nature of the LU benchmark is that, it has to form a process
grid. Since, 19 is a prime number, we used 18 threads running
on 18 cores. Hence, we did not schedule any task on the last
core (core19) which has been kept idle. We run 4 iterations
of the benchmark runs and found no significant statistical
differences in the results to be reported.

A. Power dissipation and application performance

Figure 2 shows that the average power dissipation of EP
and LU benchmarks increases linearly with the increase in fre-
quency on Broadwell (BW) and Broadwell lowpower (BW l)
architectures. The increase is quite steep with higher slope
during the last segment of the frequency (the last 100MHz
segment of the frequency) for both platforms. It can be seen
that the maximum average power consumption for the low-
power processor (BW l) is lower than the standard processor
(BW), due to having lower maximum frequency. But, the
average power dissipation for the low-power processor (BW l)
architecture is higher than the standard processor (BW). This
is a counter-intuitive result when considering the fact that the
package size, cache sizes (for L1i, L1d, L2 and L3) are the
same for both processors.

1) Analysis of why a low-power processor consumes more
than standard processor: We investigate 4 directions which
could aid us in understanding why the low-power processor is
consuming more power:

1) differences in the processor specifications.
2) performance and energy bias hint from the software.
3) analyzing the contribution of DRAM traffic by under-

standing the run times of the benchmarks.
4) identifying rarely occurring performance variations by

evaluating purely CPU bound benchmarks.

40

50

60

70

80

90

100

110

1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

Frequency (MHz)

A
v
. 
P

o
w

e
r 

(W
)

EP_BW

LU_BW

EP_BW_l

LU_BW_l

Av. Power vs Frequency (EP and LU benchmark)

Fig. 2. Average power dissipation of EP and LU benchmarks for Broadwell
(BW) and Broadwell-lowpower (BW l) architecture.

We did not notice any specific difference when we compared
the product specifications for both processors.

We further investigated, whether the benchmarks have any
software hint, which can guide the hardware heuristic of power
management in order to favor dynamic performance over
energy consumption [11]. We did not find any such reference
in the source code of the benchmarks [2]. We also checked the
lowest 4-bits of IA32 ENERGY PERF BIAS model specific
register (MSR) during the execution of the benchmarks and
it was always set to 7. The MSR value can be anywhere
between 0-15, where a value of 0 corresponds to the highest
possible dynamic performance and a value of 15 corresponds
to the maximum possible energy savings. A value of 7 can
be interpreted as the processor maintains a balance between
dynamic performance and energy consumption. Hence, we
rule out the possibility of software hinting and changing
the hardware heuristic nudging it towards more dynamic
performance thereby consuming more power on average for
the BW l architecture.

Figure 3, shows the performance of the CPU’s i.e., execution
time with respect to the frequency of the processors for both
benchmarks running on our two test platforms. It can be
seen that the execution times for both benchmarks is almost
the same on the test platforms (barring for the additional
available frequency range of the Broadwell platform). Hence,
we can rule out the possibility, that one of the CPU’s might
be waiting on the data from the DRAM and thus contributing
to the increase in the power consumption. The execution
time decreases linearly with the increase in frequency. This
highlights the importance of frequency scaling (DFS) to fine-
tune the performance of the system.

2) Faster memory bus: In order to understand why the
low-power processor on an average consumes more power



0

50

100

150

200

250

300

350

400

1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

Frequency (MHz)

E
xe

c
u
ti
o
n
 t
im

e
 (

s
)

EP_BW

LU_BW

EP_BW_l

LU_BW_l

Execution time vs Frequency (EP and LU benchmark)

Fig. 3. Execution time of EP and LU benchmarks for Broadwell (BW) and
Broadwell-lowpower (BW l) architecture.

for the same benchmarks when compared to the standard
processor, we used a CPU bound double-precision floating
point general matrix multiply (DGEMM) benchmark. We used
Intel® C/C++ compiler along with Intel® Math Kernel Library
(Intel® MKL) to compile and build the DGEMM benchmark.
The Math Kernel Library provides fast implementations for
many frequently used math routines. The benchmark takes
as its only parameter the problem size N. It then allocates
3 matrices of size N x N and initializes them with random
data. We chose a small matrix size of 100x100 numbers which
would fit in the L3 Cache (25MB shared memory per NUMA
node). The script is setup to run the DGEMM benchmark 1
million times. The script uses numactl utility, which runs the
processes with a specific scheduling and memory placement
policy. We use this utility to launch the benchmark on all
the available 19 cores. We found that even for DGEMM
benchmark, the low-power CPU is consuming more power
on average, but it is executing the benchmark faster than the
standard CPU across the frequency range.

Considering the fact that the benchmark’s data is small
enough to fit in the last-level (L3) cache, and the fact that
the benchmark gets executed faster on the low-power CPU and
also that it is consuming more power on average, we conclude
that the memory bus between the last-level shared cache and
the CPU cores is faster and therefore consuming more power.
Although, it can simply be assumed that this discrepancy
is the result of the manifestation of Intel’s product binning,
it warrants an extensive study on caches (eviction rates)
using hardware performance counters which might enable to
identify the underlying mechanism for the increased power
consumption of the low-power CPU. Such a detailed micro-
architectural study is left as the future work.

B. Energy consumption

Figure 4 and Figure 5 shows the plot of energy consump-
tion of EP and LU benchmarks with respect to frequency
for Broadwell and Broadwell-lowpower CPU architectures
respectively. The plots reveal that the energy-frequency curve
for both benchmarks on both architectures has a convexity
with an optimal frequency point (f opt) at which the energy
consumption is minimized. This optimal frequency point is at
1600 MHz for both architectures.

17500

18000

18500

19000

19500

20000

20500

21000

21500

22000

22500

1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

Frequency (MHz)

E
n
e
rg

y
 (

J
)

EP_BW

EP_BW_l

Energy vs Frequency (EP benchmark)

Fig. 4. Energy consumption of EP benchmark for Broadwell (BW) and
Broadwell-lowpower (BW l) architecture.

4200

4300

4400

4500

4600

4700

4800

4900

5000

5100

5200

5300

5400

5500

1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

Frequency (MHz)

E
n
e
rg

y
 (

J
)

LU_BW

LU_BW_l

Energy vs Frequency (LU benchmark)

Fig. 5. Energy consumption of LU benchmark for Broadwell (BW) and
Broadwell-lowpower (BW l) architecture.



As the CPU frequency decreases, the execution times of
the benchmarks increases linearly, while the leakage power
continues to be drawn during the time the CPU is active.
This leakage power contributes to the convexity of the energy
curve on the lower end of the frequency range, i.e., when the
operating frequency f is lower than the optimal frequency
fopt. For the region where the operating frequency is greater
than the optimal frequency (f>fopt), the energy consumption
is attributed to the increase in frequency (and thus voltage),
which contributes to the dynamic power.

It can also be seen that for the standard CPU which has
an extended frequency range of up to 2200 MHz, the energy
consumption is relatively flat (with some minor variation) after
the fopt point i.e., between 1600 MHz and 2100 MHz. This
means, that we can trade-off small amounts of energy increases
for faster execution times. In the case of EP benchmark run-
ning on BW l architecture, we can increase the performance
of the benchmark by 23.8% by increasing the clock frequency
from 1600 MHz to 2100 MHz. This would marginally increase
the energy consumption by about 1.28%. Similarly, we can
increase the performance of LU benchmark running on LU l
architecture by 17.89%, by increasing the clock frequency
from 1600 MHz to 2100 MHz. This would marginally increase
the energy consumption by about 3.98%.

So, when a new benchmark enters the system and the CPU
happens to be idling at the lowest possible frequency then the
faster we approach the fopt point and run the benchmark, the
more the energy savings. Similarly, if the CPU happens to be
at the maximum frequency by virtue of its energy-performance
policy and a new benchmark enters the system whose policy
is to conserve energy, then the faster we approach the fopt
point and run the benchmark, the more the energy savings.

C. CPU temperature

Figure 6 shows the average CPU core temperatures plotted
with respect to frequency for EP and LU benchmarks running
on our test platforms. The temperature profiles for all the
cores are captured for the whole duration of the benchmark
execution and for all the frequency ranges. We then average
the core frequencies of all the cores (across the two sockets)
and then plot the curves with respect to the frequency. The
critical temperature for the BW architecture is at 60◦C and
70◦C respectively, whereas for the BW l it is 80◦C and 90◦C.
It can be seen that the average core temperatures of both
benchmarks executing on the two platforms increases linearly.
For both benchmarks, the average temperatures are well below
their critical temperatures.

Figure 7 shows that the average package temperatures
plotted with respect to frequency for EP and LU benchmarks
running on our test platforms. Similar to the core temperatures,
the package temperatures are also captured for the whole
duration of the benchmark execution and for all the frequency
ranges. We then average the package temperatures for both
sockets and then plot the curves with respect to the frequency.
It can be seen that the average package temperatures of both
benchmarks executing on the two platforms increases linearly.

30

35

40

45

50

55

60

1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

Frequency (MHz)

A
v
. 
c
o
re

 t
e
m

p
e
ra

tu
re

 (
°
C

)

EP_BW

LU_BW

EP_BW_l

LU_BW_l

Av. Core temperature vs Frequency (EP and LU benchmark)

Fig. 6. Average core temperature of EP and LU benchmarks for Broadwell
(BW) and Broadwell-lowpower (BW l) architecture.

It can also be seen that the average package temperatures
is higher than the average core temperatures. The Package
temperatures are point temperatures provided by onboard
sensors placed strategically at a known hotspot region. Even in
this case, the package temperatures are well below the critical
temperatures.

30

35

40

45

50

55

60

1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

Frequency (MHz)

A
v
. 
p
a
c
k
a
g
e
 t
e
m

p
e
ra

tu
re

 (
°
C

)

EP_BW

LU_BW

EP_BW_l

LU_BW_l

Av. Package temperature vs Frequency (EP and LU benchmark)

Fig. 7. Average package temperature of EP and LU benchmarks for Broadwell
(BW) and Broadwell-lowpower (BW l) architecture.

VI. CONCLUSIONS AND FUTURE WORK

As HPC systems are becoming more and more constrained
with thermal envelopes, optimizing parallel applications for



energy efficiency remains a critical challenge. We argue that
understanding power dissipation and its link with temperature
is the necessary first step towards optimizing the energy
efficiency of HPC systems. In this work, we have presented
a new experimental workflow for energy and temperature
monitoring and profiling of parallel applications. Our exper-
imental workflow relies on low-overhead monitoring which
gives a complete and flexible control over the execution of
applications for the entire frequency range. We detailed the
software and hardware parts used by our workflow in order to
provide precise and exhaustive insights on how to resuse it for
other studies. This work is also an attempt to fill the method-
ological gap in the literature about reproducible experiments
on energy-efficient computing architectures. Our experimental
analysis reaffirms that the energy/frequency response is convex
in nature with an optimal frequency point where the energy
consumption is minimal. We also encountered a non-intuitive
finding, where the average power dissipation of a tested low-
power processor was found to be more than the standard
processor. We analyzed that result in greater detail.

Our future work will focus on studying the caches and
their eviction rates using hardware performance counters, in
order to completely understand as to why the low-power
processor is consuming more power on average than the
standard processor. We also plan to build an analytical model
for the energy/frequency convex curve, which would give
software developers access to energy and temperature profiles
during the early phase of software development cycle. In
that regard, we have investigated the undocumented feature
of Intel Opcodes for supply voltage monitoring and have
obtained the voltage part of the frequency/voltage pair. The
level of accuracy and sampling rate achieved in this work will
allow in the future to do energy and temperature profiling of
software applications. It will also allow to analyze the impact
of smaller segments of software programs on the energy
budget, thereby paving the way for fine-grained energy and
temperature optimizations.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out us-
ing the Grid’5000 test-bed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr). This work is supported by the Hac
Specis Inria Project Lab.

REFERENCES

[1] B. Austin and N. J. Wright, “Measurement and interpretation of micro-
benchmark and application energy use on the cray xc30,” in Energy
Efficient Supercomputing Workshop, 2014, pp. 51–59.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The nas parallel benchmarks,” The International
Journal of Supercomputing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[3] N. Brouwers, M. Zuniga, and K. Langendoen, “NEAT: a novel energy
analysis toolkit for free-roaming smartphones,” in ACM conference on
embedded network sensor systems, 2014, pp. 16–30.

[4] T. Chainer, M. Schultz, P. Parida, and M. Gaynes, “Improving data center
energy efficiency with advanced thermal management,” IEEE Trans. on
Components, Packaging and Manufacturing Technology, vol. 7, no. 8,
pp. 1228–1239, 2017.

[5] R. Efraim, R. Ginosar, C. Weiser, and A. Mendelson, “Energy aware race
to halt: A down to earth approach for platform energy management,”
IEEE Computer Architecture Letters, vol. 13, no. 1, pp. 25–28, 2012.

[6] A. Gainaru, H. Sun, G. Aupy, Y. Huo, B. A. Landman, and P. Raghavan,
“On-the-fly scheduling versus reservation-based scheduling for unpre-
dictable workflows,” The International Journal of High Performance
Computing Applications, vol. 33, no. 6, pp. 1140–1158, 2019.

[7] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W. Cameron,
“Powerpack: Energy profiling and analysis of high-performance systems
and applications,” IEEE Trans. on Parallel and Distributed Systems,
vol. 21, no. 5, pp. 658–671, 2009.

[8] A. Guermouche and A.-C. Orgerie, “Thermal design power and vec-
torized instructions behavior,” Concurrency and Computation: Practice
and Experience, 2021.

[9] G. Hager, J. Treibig, J. Habich, and G. Wellein, “Exploring performance
and power properties of modern multi-core chips via simple ma-
chine models,” Concurrency and computation: practice and experience,
vol. 28, no. 2, pp. 189–210, 2016.

[10] Intel. (2017) Benchmarking gemm on intel® architecture processors.
[Online]. Available: https://software.intel.com/

[11] ——, “Intel® 64 and ia-32 architectures software developer’s manual,”
Combined Volumes, October 2019.

[12] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling:
The laws of diminishing returns,” in International Conference on Power
aware computing and systems, 2010.

[13] I. Manousakis, F. S. Zakkak, P. Pratikakis, and D. S. Nikolopoulos,
“TProf: An energy profiler for task-parallel programs,” Sustainable
Computing: Informatics and Systems, vol. 5, pp. 1–13, 2015.

[14] L. Mukhanov, P. Petoumenos, Z. Wang, N. Parasyris, D. S. Nikolopou-
los, B. R. De Supinski, and H. Leather, “Alea: A fine-grained energy
profiling tool,” ACM Trans. on Architecture and Code Optimization,
vol. 14, no. 1, 2017.

[15] A.-C. Orgerie, M. D. d. Assuncao, and L. Lefevre, “A survey on
techniques for improving the energy efficiency of large-scale distributed
systems,” ACM Computing Surveys, vol. 46, no. 4, 2014.

[16] J. Pastor and J. M. Menaud, “Seduce: a testbed for research on thermal
and power management in datacenters,” in International Conference on
Software, Telecommunications and Computer Networks, 2018.

[17] T. Patel, A. Wagenhäuser, C. Eibel, T. Hönig, T. Zeiser, and D. Tiwari,
“What does Power Consumption Behavior of HPC Jobs Reveal? :
Demystifying, Quantifying, and Predicting Power Consumption Char-
acteristics,” in IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2020, pp. 799–809.

[18] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Ra-
jwan, “Power-management architecture of the intel microarchitecture
code-named sandy bridge,” IEEE micro, vol. 32, no. 2, pp. 20–27, 2012.

[19] S. Schubert, D. Kostic, W. Zwaenepoel, and K. G. Shin, “Profiling
software for energy consumption,” in IEEE International Conference
on Green Computing and Communications, 2012, pp. 515–522.

[20] C.-H. Tu, H.-H. Hsu, J.-H. Chen, C.-H. Chen, and S.-H. Hung, “Perfor-
mance and power profiling for emulated android systems,” ACM Trans.
on Design Automation of Electronic Systems, vol. 19, no. 2, 2014.

[21] K. R. Vaddina, F. Brandner, G. Memmi, and P. Jouvelot, “Experimental
energy profiling of energy-critical embedded applications,” in Inter-
national Conference on Software, Telecommunications and Computer
Networks, 2017.

[22] K. R. Vaddina, J. M. Cebrián, and L. Natvig, “Transient temperature
prediction for aging thermal sensors using artificial neural network,”
in Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP), 2016, pp. 51–57.


